1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 34 #include "mtdcore.h" 35 36 /* Our partition linked list */ 37 static LIST_HEAD(mtd_partitions); 38 static DEFINE_MUTEX(mtd_partitions_mutex); 39 40 /* Our partition node structure */ 41 struct mtd_part { 42 struct mtd_info mtd; 43 struct mtd_info *master; 44 uint64_t offset; 45 struct list_head list; 46 }; 47 48 /* 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 50 * the pointer to that structure with this macro. 51 */ 52 #define PART(x) ((struct mtd_part *)(x)) 53 54 55 /* 56 * MTD methods which simply translate the effective address and pass through 57 * to the _real_ device. 58 */ 59 60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 61 size_t *retlen, u_char *buf) 62 { 63 struct mtd_part *part = PART(mtd); 64 struct mtd_ecc_stats stats; 65 int res; 66 67 stats = part->master->ecc_stats; 68 res = mtd_read(part->master, from + part->offset, len, retlen, buf); 69 if (unlikely(res)) { 70 if (mtd_is_bitflip(res)) 71 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; 72 if (mtd_is_eccerr(res)) 73 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; 74 } 75 return res; 76 } 77 78 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 79 size_t *retlen, void **virt, resource_size_t *phys) 80 { 81 struct mtd_part *part = PART(mtd); 82 83 return mtd_point(part->master, from + part->offset, len, retlen, 84 virt, phys); 85 } 86 87 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 88 { 89 struct mtd_part *part = PART(mtd); 90 91 return mtd_unpoint(part->master, from + part->offset, len); 92 } 93 94 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 95 unsigned long len, 96 unsigned long offset, 97 unsigned long flags) 98 { 99 struct mtd_part *part = PART(mtd); 100 101 offset += part->offset; 102 return mtd_get_unmapped_area(part->master, len, offset, flags); 103 } 104 105 static int part_read_oob(struct mtd_info *mtd, loff_t from, 106 struct mtd_oob_ops *ops) 107 { 108 struct mtd_part *part = PART(mtd); 109 int res; 110 111 if (from >= mtd->size) 112 return -EINVAL; 113 if (ops->datbuf && from + ops->len > mtd->size) 114 return -EINVAL; 115 116 /* 117 * If OOB is also requested, make sure that we do not read past the end 118 * of this partition. 119 */ 120 if (ops->oobbuf) { 121 size_t len, pages; 122 123 if (ops->mode == MTD_OPS_AUTO_OOB) 124 len = mtd->oobavail; 125 else 126 len = mtd->oobsize; 127 pages = mtd_div_by_ws(mtd->size, mtd); 128 pages -= mtd_div_by_ws(from, mtd); 129 if (ops->ooboffs + ops->ooblen > pages * len) 130 return -EINVAL; 131 } 132 133 res = mtd_read_oob(part->master, from + part->offset, ops); 134 if (unlikely(res)) { 135 if (mtd_is_bitflip(res)) 136 mtd->ecc_stats.corrected++; 137 if (mtd_is_eccerr(res)) 138 mtd->ecc_stats.failed++; 139 } 140 return res; 141 } 142 143 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 144 size_t len, size_t *retlen, u_char *buf) 145 { 146 struct mtd_part *part = PART(mtd); 147 return mtd_read_user_prot_reg(part->master, from, len, retlen, buf); 148 } 149 150 static int part_get_user_prot_info(struct mtd_info *mtd, 151 struct otp_info *buf, size_t len) 152 { 153 struct mtd_part *part = PART(mtd); 154 return mtd_get_user_prot_info(part->master, buf, len); 155 } 156 157 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 158 size_t len, size_t *retlen, u_char *buf) 159 { 160 struct mtd_part *part = PART(mtd); 161 return mtd_read_fact_prot_reg(part->master, from, len, retlen, buf); 162 } 163 164 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 165 size_t len) 166 { 167 struct mtd_part *part = PART(mtd); 168 return mtd_get_fact_prot_info(part->master, buf, len); 169 } 170 171 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 172 size_t *retlen, const u_char *buf) 173 { 174 struct mtd_part *part = PART(mtd); 175 if (!(mtd->flags & MTD_WRITEABLE)) 176 return -EROFS; 177 return mtd_write(part->master, to + part->offset, len, retlen, buf); 178 } 179 180 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 181 size_t *retlen, const u_char *buf) 182 { 183 struct mtd_part *part = PART(mtd); 184 if (!(mtd->flags & MTD_WRITEABLE)) 185 return -EROFS; 186 return mtd_panic_write(part->master, to + part->offset, len, retlen, 187 buf); 188 } 189 190 static int part_write_oob(struct mtd_info *mtd, loff_t to, 191 struct mtd_oob_ops *ops) 192 { 193 struct mtd_part *part = PART(mtd); 194 195 if (!(mtd->flags & MTD_WRITEABLE)) 196 return -EROFS; 197 198 if (to >= mtd->size) 199 return -EINVAL; 200 if (ops->datbuf && to + ops->len > mtd->size) 201 return -EINVAL; 202 return mtd_write_oob(part->master, to + part->offset, ops); 203 } 204 205 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 206 size_t len, size_t *retlen, u_char *buf) 207 { 208 struct mtd_part *part = PART(mtd); 209 return mtd_write_user_prot_reg(part->master, from, len, retlen, buf); 210 } 211 212 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 213 size_t len) 214 { 215 struct mtd_part *part = PART(mtd); 216 return mtd_lock_user_prot_reg(part->master, from, len); 217 } 218 219 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 220 unsigned long count, loff_t to, size_t *retlen) 221 { 222 struct mtd_part *part = PART(mtd); 223 if (!(mtd->flags & MTD_WRITEABLE)) 224 return -EROFS; 225 return mtd_writev(part->master, vecs, count, to + part->offset, 226 retlen); 227 } 228 229 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 230 { 231 struct mtd_part *part = PART(mtd); 232 int ret; 233 if (!(mtd->flags & MTD_WRITEABLE)) 234 return -EROFS; 235 instr->addr += part->offset; 236 ret = mtd_erase(part->master, instr); 237 if (ret) { 238 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 239 instr->fail_addr -= part->offset; 240 instr->addr -= part->offset; 241 } 242 return ret; 243 } 244 245 void mtd_erase_callback(struct erase_info *instr) 246 { 247 if (instr->mtd->_erase == part_erase) { 248 struct mtd_part *part = PART(instr->mtd); 249 250 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 251 instr->fail_addr -= part->offset; 252 instr->addr -= part->offset; 253 } 254 if (instr->callback) 255 instr->callback(instr); 256 } 257 EXPORT_SYMBOL_GPL(mtd_erase_callback); 258 259 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 260 { 261 struct mtd_part *part = PART(mtd); 262 return mtd_lock(part->master, ofs + part->offset, len); 263 } 264 265 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 266 { 267 struct mtd_part *part = PART(mtd); 268 return mtd_unlock(part->master, ofs + part->offset, len); 269 } 270 271 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 272 { 273 struct mtd_part *part = PART(mtd); 274 return mtd_is_locked(part->master, ofs + part->offset, len); 275 } 276 277 static void part_sync(struct mtd_info *mtd) 278 { 279 struct mtd_part *part = PART(mtd); 280 mtd_sync(part->master); 281 } 282 283 static int part_suspend(struct mtd_info *mtd) 284 { 285 struct mtd_part *part = PART(mtd); 286 return mtd_suspend(part->master); 287 } 288 289 static void part_resume(struct mtd_info *mtd) 290 { 291 struct mtd_part *part = PART(mtd); 292 mtd_resume(part->master); 293 } 294 295 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 296 { 297 struct mtd_part *part = PART(mtd); 298 ofs += part->offset; 299 return mtd_block_isbad(part->master, ofs); 300 } 301 302 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 303 { 304 struct mtd_part *part = PART(mtd); 305 int res; 306 307 if (!(mtd->flags & MTD_WRITEABLE)) 308 return -EROFS; 309 ofs += part->offset; 310 res = mtd_block_markbad(part->master, ofs); 311 if (!res) 312 mtd->ecc_stats.badblocks++; 313 return res; 314 } 315 316 static inline void free_partition(struct mtd_part *p) 317 { 318 kfree(p->mtd.name); 319 kfree(p); 320 } 321 322 /* 323 * This function unregisters and destroy all slave MTD objects which are 324 * attached to the given master MTD object. 325 */ 326 327 int del_mtd_partitions(struct mtd_info *master) 328 { 329 struct mtd_part *slave, *next; 330 int ret, err = 0; 331 332 mutex_lock(&mtd_partitions_mutex); 333 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 334 if (slave->master == master) { 335 ret = del_mtd_device(&slave->mtd); 336 if (ret < 0) { 337 err = ret; 338 continue; 339 } 340 list_del(&slave->list); 341 free_partition(slave); 342 } 343 mutex_unlock(&mtd_partitions_mutex); 344 345 return err; 346 } 347 348 static struct mtd_part *allocate_partition(struct mtd_info *master, 349 const struct mtd_partition *part, int partno, 350 uint64_t cur_offset) 351 { 352 struct mtd_part *slave; 353 char *name; 354 355 /* allocate the partition structure */ 356 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 357 name = kstrdup(part->name, GFP_KERNEL); 358 if (!name || !slave) { 359 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 360 master->name); 361 kfree(name); 362 kfree(slave); 363 return ERR_PTR(-ENOMEM); 364 } 365 366 /* set up the MTD object for this partition */ 367 slave->mtd.type = master->type; 368 slave->mtd.flags = master->flags & ~part->mask_flags; 369 slave->mtd.size = part->size; 370 slave->mtd.writesize = master->writesize; 371 slave->mtd.writebufsize = master->writebufsize; 372 slave->mtd.oobsize = master->oobsize; 373 slave->mtd.oobavail = master->oobavail; 374 slave->mtd.subpage_sft = master->subpage_sft; 375 376 slave->mtd.name = name; 377 slave->mtd.owner = master->owner; 378 slave->mtd.backing_dev_info = master->backing_dev_info; 379 380 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 381 * to have the same data be in two different partitions. 382 */ 383 slave->mtd.dev.parent = master->dev.parent; 384 385 slave->mtd._read = part_read; 386 slave->mtd._write = part_write; 387 388 if (master->_panic_write) 389 slave->mtd._panic_write = part_panic_write; 390 391 if (master->_point && master->_unpoint) { 392 slave->mtd._point = part_point; 393 slave->mtd._unpoint = part_unpoint; 394 } 395 396 if (master->_get_unmapped_area) 397 slave->mtd._get_unmapped_area = part_get_unmapped_area; 398 if (master->_read_oob) 399 slave->mtd._read_oob = part_read_oob; 400 if (master->_write_oob) 401 slave->mtd._write_oob = part_write_oob; 402 if (master->_read_user_prot_reg) 403 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 404 if (master->_read_fact_prot_reg) 405 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 406 if (master->_write_user_prot_reg) 407 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 408 if (master->_lock_user_prot_reg) 409 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 410 if (master->_get_user_prot_info) 411 slave->mtd._get_user_prot_info = part_get_user_prot_info; 412 if (master->_get_fact_prot_info) 413 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 414 if (master->_sync) 415 slave->mtd._sync = part_sync; 416 if (!partno && !master->dev.class && master->_suspend && 417 master->_resume) { 418 slave->mtd._suspend = part_suspend; 419 slave->mtd._resume = part_resume; 420 } 421 if (master->_writev) 422 slave->mtd._writev = part_writev; 423 if (master->_lock) 424 slave->mtd._lock = part_lock; 425 if (master->_unlock) 426 slave->mtd._unlock = part_unlock; 427 if (master->_is_locked) 428 slave->mtd._is_locked = part_is_locked; 429 if (master->_block_isbad) 430 slave->mtd._block_isbad = part_block_isbad; 431 if (master->_block_markbad) 432 slave->mtd._block_markbad = part_block_markbad; 433 slave->mtd._erase = part_erase; 434 slave->master = master; 435 slave->offset = part->offset; 436 437 if (slave->offset == MTDPART_OFS_APPEND) 438 slave->offset = cur_offset; 439 if (slave->offset == MTDPART_OFS_NXTBLK) { 440 slave->offset = cur_offset; 441 if (mtd_mod_by_eb(cur_offset, master) != 0) { 442 /* Round up to next erasesize */ 443 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 444 printk(KERN_NOTICE "Moving partition %d: " 445 "0x%012llx -> 0x%012llx\n", partno, 446 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 447 } 448 } 449 if (slave->offset == MTDPART_OFS_RETAIN) { 450 slave->offset = cur_offset; 451 if (master->size - slave->offset >= slave->mtd.size) { 452 slave->mtd.size = master->size - slave->offset 453 - slave->mtd.size; 454 } else { 455 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 456 part->name, master->size - slave->offset, 457 slave->mtd.size); 458 /* register to preserve ordering */ 459 goto out_register; 460 } 461 } 462 if (slave->mtd.size == MTDPART_SIZ_FULL) 463 slave->mtd.size = master->size - slave->offset; 464 465 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 466 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 467 468 /* let's do some sanity checks */ 469 if (slave->offset >= master->size) { 470 /* let's register it anyway to preserve ordering */ 471 slave->offset = 0; 472 slave->mtd.size = 0; 473 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 474 part->name); 475 goto out_register; 476 } 477 if (slave->offset + slave->mtd.size > master->size) { 478 slave->mtd.size = master->size - slave->offset; 479 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 480 part->name, master->name, (unsigned long long)slave->mtd.size); 481 } 482 if (master->numeraseregions > 1) { 483 /* Deal with variable erase size stuff */ 484 int i, max = master->numeraseregions; 485 u64 end = slave->offset + slave->mtd.size; 486 struct mtd_erase_region_info *regions = master->eraseregions; 487 488 /* Find the first erase regions which is part of this 489 * partition. */ 490 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 491 ; 492 /* The loop searched for the region _behind_ the first one */ 493 if (i > 0) 494 i--; 495 496 /* Pick biggest erasesize */ 497 for (; i < max && regions[i].offset < end; i++) { 498 if (slave->mtd.erasesize < regions[i].erasesize) { 499 slave->mtd.erasesize = regions[i].erasesize; 500 } 501 } 502 BUG_ON(slave->mtd.erasesize == 0); 503 } else { 504 /* Single erase size */ 505 slave->mtd.erasesize = master->erasesize; 506 } 507 508 if ((slave->mtd.flags & MTD_WRITEABLE) && 509 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 510 /* Doesn't start on a boundary of major erase size */ 511 /* FIXME: Let it be writable if it is on a boundary of 512 * _minor_ erase size though */ 513 slave->mtd.flags &= ~MTD_WRITEABLE; 514 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 515 part->name); 516 } 517 if ((slave->mtd.flags & MTD_WRITEABLE) && 518 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 519 slave->mtd.flags &= ~MTD_WRITEABLE; 520 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 521 part->name); 522 } 523 524 slave->mtd.ecclayout = master->ecclayout; 525 if (master->_block_isbad) { 526 uint64_t offs = 0; 527 528 while (offs < slave->mtd.size) { 529 if (mtd_block_isbad(master, offs + slave->offset)) 530 slave->mtd.ecc_stats.badblocks++; 531 offs += slave->mtd.erasesize; 532 } 533 } 534 535 out_register: 536 return slave; 537 } 538 539 int mtd_add_partition(struct mtd_info *master, char *name, 540 long long offset, long long length) 541 { 542 struct mtd_partition part; 543 struct mtd_part *p, *new; 544 uint64_t start, end; 545 int ret = 0; 546 547 /* the direct offset is expected */ 548 if (offset == MTDPART_OFS_APPEND || 549 offset == MTDPART_OFS_NXTBLK) 550 return -EINVAL; 551 552 if (length == MTDPART_SIZ_FULL) 553 length = master->size - offset; 554 555 if (length <= 0) 556 return -EINVAL; 557 558 part.name = name; 559 part.size = length; 560 part.offset = offset; 561 part.mask_flags = 0; 562 part.ecclayout = NULL; 563 564 new = allocate_partition(master, &part, -1, offset); 565 if (IS_ERR(new)) 566 return PTR_ERR(new); 567 568 start = offset; 569 end = offset + length; 570 571 mutex_lock(&mtd_partitions_mutex); 572 list_for_each_entry(p, &mtd_partitions, list) 573 if (p->master == master) { 574 if ((start >= p->offset) && 575 (start < (p->offset + p->mtd.size))) 576 goto err_inv; 577 578 if ((end >= p->offset) && 579 (end < (p->offset + p->mtd.size))) 580 goto err_inv; 581 } 582 583 list_add(&new->list, &mtd_partitions); 584 mutex_unlock(&mtd_partitions_mutex); 585 586 add_mtd_device(&new->mtd); 587 588 return ret; 589 err_inv: 590 mutex_unlock(&mtd_partitions_mutex); 591 free_partition(new); 592 return -EINVAL; 593 } 594 EXPORT_SYMBOL_GPL(mtd_add_partition); 595 596 int mtd_del_partition(struct mtd_info *master, int partno) 597 { 598 struct mtd_part *slave, *next; 599 int ret = -EINVAL; 600 601 mutex_lock(&mtd_partitions_mutex); 602 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 603 if ((slave->master == master) && 604 (slave->mtd.index == partno)) { 605 ret = del_mtd_device(&slave->mtd); 606 if (ret < 0) 607 break; 608 609 list_del(&slave->list); 610 free_partition(slave); 611 break; 612 } 613 mutex_unlock(&mtd_partitions_mutex); 614 615 return ret; 616 } 617 EXPORT_SYMBOL_GPL(mtd_del_partition); 618 619 /* 620 * This function, given a master MTD object and a partition table, creates 621 * and registers slave MTD objects which are bound to the master according to 622 * the partition definitions. 623 * 624 * We don't register the master, or expect the caller to have done so, 625 * for reasons of data integrity. 626 */ 627 628 int add_mtd_partitions(struct mtd_info *master, 629 const struct mtd_partition *parts, 630 int nbparts) 631 { 632 struct mtd_part *slave; 633 uint64_t cur_offset = 0; 634 int i; 635 636 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 637 638 for (i = 0; i < nbparts; i++) { 639 slave = allocate_partition(master, parts + i, i, cur_offset); 640 if (IS_ERR(slave)) 641 return PTR_ERR(slave); 642 643 mutex_lock(&mtd_partitions_mutex); 644 list_add(&slave->list, &mtd_partitions); 645 mutex_unlock(&mtd_partitions_mutex); 646 647 add_mtd_device(&slave->mtd); 648 649 cur_offset = slave->offset + slave->mtd.size; 650 } 651 652 return 0; 653 } 654 655 static DEFINE_SPINLOCK(part_parser_lock); 656 static LIST_HEAD(part_parsers); 657 658 static struct mtd_part_parser *get_partition_parser(const char *name) 659 { 660 struct mtd_part_parser *p, *ret = NULL; 661 662 spin_lock(&part_parser_lock); 663 664 list_for_each_entry(p, &part_parsers, list) 665 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 666 ret = p; 667 break; 668 } 669 670 spin_unlock(&part_parser_lock); 671 672 return ret; 673 } 674 675 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 676 677 int register_mtd_parser(struct mtd_part_parser *p) 678 { 679 spin_lock(&part_parser_lock); 680 list_add(&p->list, &part_parsers); 681 spin_unlock(&part_parser_lock); 682 683 return 0; 684 } 685 EXPORT_SYMBOL_GPL(register_mtd_parser); 686 687 int deregister_mtd_parser(struct mtd_part_parser *p) 688 { 689 spin_lock(&part_parser_lock); 690 list_del(&p->list); 691 spin_unlock(&part_parser_lock); 692 return 0; 693 } 694 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 695 696 /* 697 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 698 * are changing this array! 699 */ 700 static const char *default_mtd_part_types[] = { 701 "cmdlinepart", 702 "ofpart", 703 NULL 704 }; 705 706 /** 707 * parse_mtd_partitions - parse MTD partitions 708 * @master: the master partition (describes whole MTD device) 709 * @types: names of partition parsers to try or %NULL 710 * @pparts: array of partitions found is returned here 711 * @data: MTD partition parser-specific data 712 * 713 * This function tries to find partition on MTD device @master. It uses MTD 714 * partition parsers, specified in @types. However, if @types is %NULL, then 715 * the default list of parsers is used. The default list contains only the 716 * "cmdlinepart" and "ofpart" parsers ATM. 717 * 718 * This function may return: 719 * o a negative error code in case of failure 720 * o zero if no partitions were found 721 * o a positive number of found partitions, in which case on exit @pparts will 722 * point to an array containing this number of &struct mtd_info objects. 723 */ 724 int parse_mtd_partitions(struct mtd_info *master, const char **types, 725 struct mtd_partition **pparts, 726 struct mtd_part_parser_data *data) 727 { 728 struct mtd_part_parser *parser; 729 int ret = 0; 730 731 if (!types) 732 types = default_mtd_part_types; 733 734 for ( ; ret <= 0 && *types; types++) { 735 parser = get_partition_parser(*types); 736 if (!parser && !request_module("%s", *types)) 737 parser = get_partition_parser(*types); 738 if (!parser) 739 continue; 740 ret = (*parser->parse_fn)(master, pparts, data); 741 if (ret > 0) { 742 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 743 ret, parser->name, master->name); 744 } 745 put_partition_parser(parser); 746 } 747 return ret; 748 } 749 750 int mtd_is_partition(struct mtd_info *mtd) 751 { 752 struct mtd_part *part; 753 int ispart = 0; 754 755 mutex_lock(&mtd_partitions_mutex); 756 list_for_each_entry(part, &mtd_partitions, list) 757 if (&part->mtd == mtd) { 758 ispart = 1; 759 break; 760 } 761 mutex_unlock(&mtd_partitions_mutex); 762 763 return ispart; 764 } 765 EXPORT_SYMBOL_GPL(mtd_is_partition); 766