1 /* 2 * Simple MTD partitioning layer 3 * 4 * (C) 2000 Nicolas Pitre <nico@cam.org> 5 * 6 * This code is GPL 7 * 8 * $Id: mtdpart.c,v 1.51 2004/11/16 18:28:59 dwmw2 Exp $ 9 * 10 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de> 11 * added support for read_oob, write_oob 12 */ 13 14 #include <linux/module.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/list.h> 19 #include <linux/config.h> 20 #include <linux/kmod.h> 21 #include <linux/mtd/mtd.h> 22 #include <linux/mtd/partitions.h> 23 #include <linux/mtd/compatmac.h> 24 25 /* Our partition linked list */ 26 static LIST_HEAD(mtd_partitions); 27 28 /* Our partition node structure */ 29 struct mtd_part { 30 struct mtd_info mtd; 31 struct mtd_info *master; 32 u_int32_t offset; 33 int index; 34 struct list_head list; 35 int registered; 36 }; 37 38 /* 39 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 40 * the pointer to that structure with this macro. 41 */ 42 #define PART(x) ((struct mtd_part *)(x)) 43 44 45 /* 46 * MTD methods which simply translate the effective address and pass through 47 * to the _real_ device. 48 */ 49 50 static int part_read (struct mtd_info *mtd, loff_t from, size_t len, 51 size_t *retlen, u_char *buf) 52 { 53 struct mtd_part *part = PART(mtd); 54 if (from >= mtd->size) 55 len = 0; 56 else if (from + len > mtd->size) 57 len = mtd->size - from; 58 if (part->master->read_ecc == NULL) 59 return part->master->read (part->master, from + part->offset, 60 len, retlen, buf); 61 else 62 return part->master->read_ecc (part->master, from + part->offset, 63 len, retlen, buf, NULL, &mtd->oobinfo); 64 } 65 66 static int part_point (struct mtd_info *mtd, loff_t from, size_t len, 67 size_t *retlen, u_char **buf) 68 { 69 struct mtd_part *part = PART(mtd); 70 if (from >= mtd->size) 71 len = 0; 72 else if (from + len > mtd->size) 73 len = mtd->size - from; 74 return part->master->point (part->master, from + part->offset, 75 len, retlen, buf); 76 } 77 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) 78 { 79 struct mtd_part *part = PART(mtd); 80 81 part->master->unpoint (part->master, addr, from + part->offset, len); 82 } 83 84 85 static int part_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, 86 size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel) 87 { 88 struct mtd_part *part = PART(mtd); 89 if (oobsel == NULL) 90 oobsel = &mtd->oobinfo; 91 if (from >= mtd->size) 92 len = 0; 93 else if (from + len > mtd->size) 94 len = mtd->size - from; 95 return part->master->read_ecc (part->master, from + part->offset, 96 len, retlen, buf, eccbuf, oobsel); 97 } 98 99 static int part_read_oob (struct mtd_info *mtd, loff_t from, size_t len, 100 size_t *retlen, u_char *buf) 101 { 102 struct mtd_part *part = PART(mtd); 103 if (from >= mtd->size) 104 len = 0; 105 else if (from + len > mtd->size) 106 len = mtd->size - from; 107 return part->master->read_oob (part->master, from + part->offset, 108 len, retlen, buf); 109 } 110 111 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 112 size_t *retlen, u_char *buf) 113 { 114 struct mtd_part *part = PART(mtd); 115 return part->master->read_user_prot_reg (part->master, from, 116 len, retlen, buf); 117 } 118 119 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 120 size_t *retlen, u_char *buf) 121 { 122 struct mtd_part *part = PART(mtd); 123 return part->master->read_fact_prot_reg (part->master, from, 124 len, retlen, buf); 125 } 126 127 static int part_write (struct mtd_info *mtd, loff_t to, size_t len, 128 size_t *retlen, const u_char *buf) 129 { 130 struct mtd_part *part = PART(mtd); 131 if (!(mtd->flags & MTD_WRITEABLE)) 132 return -EROFS; 133 if (to >= mtd->size) 134 len = 0; 135 else if (to + len > mtd->size) 136 len = mtd->size - to; 137 if (part->master->write_ecc == NULL) 138 return part->master->write (part->master, to + part->offset, 139 len, retlen, buf); 140 else 141 return part->master->write_ecc (part->master, to + part->offset, 142 len, retlen, buf, NULL, &mtd->oobinfo); 143 144 } 145 146 static int part_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, 147 size_t *retlen, const u_char *buf, 148 u_char *eccbuf, struct nand_oobinfo *oobsel) 149 { 150 struct mtd_part *part = PART(mtd); 151 if (!(mtd->flags & MTD_WRITEABLE)) 152 return -EROFS; 153 if (oobsel == NULL) 154 oobsel = &mtd->oobinfo; 155 if (to >= mtd->size) 156 len = 0; 157 else if (to + len > mtd->size) 158 len = mtd->size - to; 159 return part->master->write_ecc (part->master, to + part->offset, 160 len, retlen, buf, eccbuf, oobsel); 161 } 162 163 static int part_write_oob (struct mtd_info *mtd, loff_t to, size_t len, 164 size_t *retlen, const u_char *buf) 165 { 166 struct mtd_part *part = PART(mtd); 167 if (!(mtd->flags & MTD_WRITEABLE)) 168 return -EROFS; 169 if (to >= mtd->size) 170 len = 0; 171 else if (to + len > mtd->size) 172 len = mtd->size - to; 173 return part->master->write_oob (part->master, to + part->offset, 174 len, retlen, buf); 175 } 176 177 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, 178 size_t *retlen, u_char *buf) 179 { 180 struct mtd_part *part = PART(mtd); 181 return part->master->write_user_prot_reg (part->master, from, 182 len, retlen, buf); 183 } 184 185 static int part_writev (struct mtd_info *mtd, const struct kvec *vecs, 186 unsigned long count, loff_t to, size_t *retlen) 187 { 188 struct mtd_part *part = PART(mtd); 189 if (!(mtd->flags & MTD_WRITEABLE)) 190 return -EROFS; 191 if (part->master->writev_ecc == NULL) 192 return part->master->writev (part->master, vecs, count, 193 to + part->offset, retlen); 194 else 195 return part->master->writev_ecc (part->master, vecs, count, 196 to + part->offset, retlen, 197 NULL, &mtd->oobinfo); 198 } 199 200 static int part_readv (struct mtd_info *mtd, struct kvec *vecs, 201 unsigned long count, loff_t from, size_t *retlen) 202 { 203 struct mtd_part *part = PART(mtd); 204 if (part->master->readv_ecc == NULL) 205 return part->master->readv (part->master, vecs, count, 206 from + part->offset, retlen); 207 else 208 return part->master->readv_ecc (part->master, vecs, count, 209 from + part->offset, retlen, 210 NULL, &mtd->oobinfo); 211 } 212 213 static int part_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, 214 unsigned long count, loff_t to, size_t *retlen, 215 u_char *eccbuf, struct nand_oobinfo *oobsel) 216 { 217 struct mtd_part *part = PART(mtd); 218 if (!(mtd->flags & MTD_WRITEABLE)) 219 return -EROFS; 220 if (oobsel == NULL) 221 oobsel = &mtd->oobinfo; 222 return part->master->writev_ecc (part->master, vecs, count, 223 to + part->offset, retlen, 224 eccbuf, oobsel); 225 } 226 227 static int part_readv_ecc (struct mtd_info *mtd, struct kvec *vecs, 228 unsigned long count, loff_t from, size_t *retlen, 229 u_char *eccbuf, struct nand_oobinfo *oobsel) 230 { 231 struct mtd_part *part = PART(mtd); 232 if (oobsel == NULL) 233 oobsel = &mtd->oobinfo; 234 return part->master->readv_ecc (part->master, vecs, count, 235 from + part->offset, retlen, 236 eccbuf, oobsel); 237 } 238 239 static int part_erase (struct mtd_info *mtd, struct erase_info *instr) 240 { 241 struct mtd_part *part = PART(mtd); 242 int ret; 243 if (!(mtd->flags & MTD_WRITEABLE)) 244 return -EROFS; 245 if (instr->addr >= mtd->size) 246 return -EINVAL; 247 instr->addr += part->offset; 248 ret = part->master->erase(part->master, instr); 249 return ret; 250 } 251 252 void mtd_erase_callback(struct erase_info *instr) 253 { 254 if (instr->mtd->erase == part_erase) { 255 struct mtd_part *part = PART(instr->mtd); 256 257 if (instr->fail_addr != 0xffffffff) 258 instr->fail_addr -= part->offset; 259 instr->addr -= part->offset; 260 } 261 if (instr->callback) 262 instr->callback(instr); 263 } 264 EXPORT_SYMBOL_GPL(mtd_erase_callback); 265 266 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len) 267 { 268 struct mtd_part *part = PART(mtd); 269 if ((len + ofs) > mtd->size) 270 return -EINVAL; 271 return part->master->lock(part->master, ofs + part->offset, len); 272 } 273 274 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len) 275 { 276 struct mtd_part *part = PART(mtd); 277 if ((len + ofs) > mtd->size) 278 return -EINVAL; 279 return part->master->unlock(part->master, ofs + part->offset, len); 280 } 281 282 static void part_sync(struct mtd_info *mtd) 283 { 284 struct mtd_part *part = PART(mtd); 285 part->master->sync(part->master); 286 } 287 288 static int part_suspend(struct mtd_info *mtd) 289 { 290 struct mtd_part *part = PART(mtd); 291 return part->master->suspend(part->master); 292 } 293 294 static void part_resume(struct mtd_info *mtd) 295 { 296 struct mtd_part *part = PART(mtd); 297 part->master->resume(part->master); 298 } 299 300 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs) 301 { 302 struct mtd_part *part = PART(mtd); 303 if (ofs >= mtd->size) 304 return -EINVAL; 305 ofs += part->offset; 306 return part->master->block_isbad(part->master, ofs); 307 } 308 309 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs) 310 { 311 struct mtd_part *part = PART(mtd); 312 if (!(mtd->flags & MTD_WRITEABLE)) 313 return -EROFS; 314 if (ofs >= mtd->size) 315 return -EINVAL; 316 ofs += part->offset; 317 return part->master->block_markbad(part->master, ofs); 318 } 319 320 /* 321 * This function unregisters and destroy all slave MTD objects which are 322 * attached to the given master MTD object. 323 */ 324 325 int del_mtd_partitions(struct mtd_info *master) 326 { 327 struct list_head *node; 328 struct mtd_part *slave; 329 330 for (node = mtd_partitions.next; 331 node != &mtd_partitions; 332 node = node->next) { 333 slave = list_entry(node, struct mtd_part, list); 334 if (slave->master == master) { 335 struct list_head *prev = node->prev; 336 __list_del(prev, node->next); 337 if(slave->registered) 338 del_mtd_device(&slave->mtd); 339 kfree(slave); 340 node = prev; 341 } 342 } 343 344 return 0; 345 } 346 347 /* 348 * This function, given a master MTD object and a partition table, creates 349 * and registers slave MTD objects which are bound to the master according to 350 * the partition definitions. 351 * (Q: should we register the master MTD object as well?) 352 */ 353 354 int add_mtd_partitions(struct mtd_info *master, 355 const struct mtd_partition *parts, 356 int nbparts) 357 { 358 struct mtd_part *slave; 359 u_int32_t cur_offset = 0; 360 int i; 361 362 printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 363 364 for (i = 0; i < nbparts; i++) { 365 366 /* allocate the partition structure */ 367 slave = kmalloc (sizeof(*slave), GFP_KERNEL); 368 if (!slave) { 369 printk ("memory allocation error while creating partitions for \"%s\"\n", 370 master->name); 371 del_mtd_partitions(master); 372 return -ENOMEM; 373 } 374 memset(slave, 0, sizeof(*slave)); 375 list_add(&slave->list, &mtd_partitions); 376 377 /* set up the MTD object for this partition */ 378 slave->mtd.type = master->type; 379 slave->mtd.flags = master->flags & ~parts[i].mask_flags; 380 slave->mtd.size = parts[i].size; 381 slave->mtd.oobblock = master->oobblock; 382 slave->mtd.oobsize = master->oobsize; 383 slave->mtd.ecctype = master->ecctype; 384 slave->mtd.eccsize = master->eccsize; 385 386 slave->mtd.name = parts[i].name; 387 slave->mtd.bank_size = master->bank_size; 388 slave->mtd.owner = master->owner; 389 390 slave->mtd.read = part_read; 391 slave->mtd.write = part_write; 392 393 if(master->point && master->unpoint){ 394 slave->mtd.point = part_point; 395 slave->mtd.unpoint = part_unpoint; 396 } 397 398 if (master->read_ecc) 399 slave->mtd.read_ecc = part_read_ecc; 400 if (master->write_ecc) 401 slave->mtd.write_ecc = part_write_ecc; 402 if (master->read_oob) 403 slave->mtd.read_oob = part_read_oob; 404 if (master->write_oob) 405 slave->mtd.write_oob = part_write_oob; 406 if(master->read_user_prot_reg) 407 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 408 if(master->read_fact_prot_reg) 409 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 410 if(master->write_user_prot_reg) 411 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 412 if (master->sync) 413 slave->mtd.sync = part_sync; 414 if (!i && master->suspend && master->resume) { 415 slave->mtd.suspend = part_suspend; 416 slave->mtd.resume = part_resume; 417 } 418 if (master->writev) 419 slave->mtd.writev = part_writev; 420 if (master->readv) 421 slave->mtd.readv = part_readv; 422 if (master->writev_ecc) 423 slave->mtd.writev_ecc = part_writev_ecc; 424 if (master->readv_ecc) 425 slave->mtd.readv_ecc = part_readv_ecc; 426 if (master->lock) 427 slave->mtd.lock = part_lock; 428 if (master->unlock) 429 slave->mtd.unlock = part_unlock; 430 if (master->block_isbad) 431 slave->mtd.block_isbad = part_block_isbad; 432 if (master->block_markbad) 433 slave->mtd.block_markbad = part_block_markbad; 434 slave->mtd.erase = part_erase; 435 slave->master = master; 436 slave->offset = parts[i].offset; 437 slave->index = i; 438 439 if (slave->offset == MTDPART_OFS_APPEND) 440 slave->offset = cur_offset; 441 if (slave->offset == MTDPART_OFS_NXTBLK) { 442 u_int32_t emask = master->erasesize-1; 443 slave->offset = (cur_offset + emask) & ~emask; 444 if (slave->offset != cur_offset) { 445 printk(KERN_NOTICE "Moving partition %d: " 446 "0x%08x -> 0x%08x\n", i, 447 cur_offset, slave->offset); 448 } 449 } 450 if (slave->mtd.size == MTDPART_SIZ_FULL) 451 slave->mtd.size = master->size - slave->offset; 452 cur_offset = slave->offset + slave->mtd.size; 453 454 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset, 455 slave->offset + slave->mtd.size, slave->mtd.name); 456 457 /* let's do some sanity checks */ 458 if (slave->offset >= master->size) { 459 /* let's register it anyway to preserve ordering */ 460 slave->offset = 0; 461 slave->mtd.size = 0; 462 printk ("mtd: partition \"%s\" is out of reach -- disabled\n", 463 parts[i].name); 464 } 465 if (slave->offset + slave->mtd.size > master->size) { 466 slave->mtd.size = master->size - slave->offset; 467 printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n", 468 parts[i].name, master->name, slave->mtd.size); 469 } 470 if (master->numeraseregions>1) { 471 /* Deal with variable erase size stuff */ 472 int i; 473 struct mtd_erase_region_info *regions = master->eraseregions; 474 475 /* Find the first erase regions which is part of this partition. */ 476 for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++) 477 ; 478 479 for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) { 480 if (slave->mtd.erasesize < regions[i].erasesize) { 481 slave->mtd.erasesize = regions[i].erasesize; 482 } 483 } 484 } else { 485 /* Single erase size */ 486 slave->mtd.erasesize = master->erasesize; 487 } 488 489 if ((slave->mtd.flags & MTD_WRITEABLE) && 490 (slave->offset % slave->mtd.erasesize)) { 491 /* Doesn't start on a boundary of major erase size */ 492 /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */ 493 slave->mtd.flags &= ~MTD_WRITEABLE; 494 printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 495 parts[i].name); 496 } 497 if ((slave->mtd.flags & MTD_WRITEABLE) && 498 (slave->mtd.size % slave->mtd.erasesize)) { 499 slave->mtd.flags &= ~MTD_WRITEABLE; 500 printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 501 parts[i].name); 502 } 503 504 /* copy oobinfo from master */ 505 memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo)); 506 507 if(parts[i].mtdp) 508 { /* store the object pointer (caller may or may not register it */ 509 *parts[i].mtdp = &slave->mtd; 510 slave->registered = 0; 511 } 512 else 513 { 514 /* register our partition */ 515 add_mtd_device(&slave->mtd); 516 slave->registered = 1; 517 } 518 } 519 520 return 0; 521 } 522 523 EXPORT_SYMBOL(add_mtd_partitions); 524 EXPORT_SYMBOL(del_mtd_partitions); 525 526 static DEFINE_SPINLOCK(part_parser_lock); 527 static LIST_HEAD(part_parsers); 528 529 static struct mtd_part_parser *get_partition_parser(const char *name) 530 { 531 struct list_head *this; 532 void *ret = NULL; 533 spin_lock(&part_parser_lock); 534 535 list_for_each(this, &part_parsers) { 536 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list); 537 538 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 539 ret = p; 540 break; 541 } 542 } 543 spin_unlock(&part_parser_lock); 544 545 return ret; 546 } 547 548 int register_mtd_parser(struct mtd_part_parser *p) 549 { 550 spin_lock(&part_parser_lock); 551 list_add(&p->list, &part_parsers); 552 spin_unlock(&part_parser_lock); 553 554 return 0; 555 } 556 557 int deregister_mtd_parser(struct mtd_part_parser *p) 558 { 559 spin_lock(&part_parser_lock); 560 list_del(&p->list); 561 spin_unlock(&part_parser_lock); 562 return 0; 563 } 564 565 int parse_mtd_partitions(struct mtd_info *master, const char **types, 566 struct mtd_partition **pparts, unsigned long origin) 567 { 568 struct mtd_part_parser *parser; 569 int ret = 0; 570 571 for ( ; ret <= 0 && *types; types++) { 572 parser = get_partition_parser(*types); 573 #ifdef CONFIG_KMOD 574 if (!parser && !request_module("%s", *types)) 575 parser = get_partition_parser(*types); 576 #endif 577 if (!parser) { 578 printk(KERN_NOTICE "%s partition parsing not available\n", 579 *types); 580 continue; 581 } 582 ret = (*parser->parse_fn)(master, pparts, origin); 583 if (ret > 0) { 584 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 585 ret, parser->name, master->name); 586 } 587 put_partition_parser(parser); 588 } 589 return ret; 590 } 591 592 EXPORT_SYMBOL_GPL(parse_mtd_partitions); 593 EXPORT_SYMBOL_GPL(register_mtd_parser); 594 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 595 596 MODULE_LICENSE("GPL"); 597 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>"); 598 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices"); 599 600