1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 34 #include "mtdcore.h" 35 36 /* Our partition linked list */ 37 static LIST_HEAD(mtd_partitions); 38 static DEFINE_MUTEX(mtd_partitions_mutex); 39 40 /* Our partition node structure */ 41 struct mtd_part { 42 struct mtd_info mtd; 43 struct mtd_info *master; 44 uint64_t offset; 45 struct list_head list; 46 }; 47 48 /* 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 50 * the pointer to that structure with this macro. 51 */ 52 #define PART(x) ((struct mtd_part *)(x)) 53 54 55 /* 56 * MTD methods which simply translate the effective address and pass through 57 * to the _real_ device. 58 */ 59 60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 61 size_t *retlen, u_char *buf) 62 { 63 struct mtd_part *part = PART(mtd); 64 struct mtd_ecc_stats stats; 65 int res; 66 67 stats = part->master->ecc_stats; 68 69 if (from >= mtd->size) 70 len = 0; 71 else if (from + len > mtd->size) 72 len = mtd->size - from; 73 res = part->master->read(part->master, from + part->offset, 74 len, retlen, buf); 75 if (unlikely(res)) { 76 if (mtd_is_bitflip(res)) 77 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected; 78 if (mtd_is_eccerr(res)) 79 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed; 80 } 81 return res; 82 } 83 84 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 85 size_t *retlen, void **virt, resource_size_t *phys) 86 { 87 struct mtd_part *part = PART(mtd); 88 if (from >= mtd->size) 89 len = 0; 90 else if (from + len > mtd->size) 91 len = mtd->size - from; 92 return part->master->point (part->master, from + part->offset, 93 len, retlen, virt, phys); 94 } 95 96 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 97 { 98 struct mtd_part *part = PART(mtd); 99 100 part->master->unpoint(part->master, from + part->offset, len); 101 } 102 103 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 104 unsigned long len, 105 unsigned long offset, 106 unsigned long flags) 107 { 108 struct mtd_part *part = PART(mtd); 109 110 offset += part->offset; 111 return part->master->get_unmapped_area(part->master, len, offset, 112 flags); 113 } 114 115 static int part_read_oob(struct mtd_info *mtd, loff_t from, 116 struct mtd_oob_ops *ops) 117 { 118 struct mtd_part *part = PART(mtd); 119 int res; 120 121 if (from >= mtd->size) 122 return -EINVAL; 123 if (ops->datbuf && from + ops->len > mtd->size) 124 return -EINVAL; 125 126 /* 127 * If OOB is also requested, make sure that we do not read past the end 128 * of this partition. 129 */ 130 if (ops->oobbuf) { 131 size_t len, pages; 132 133 if (ops->mode == MTD_OPS_AUTO_OOB) 134 len = mtd->oobavail; 135 else 136 len = mtd->oobsize; 137 pages = mtd_div_by_ws(mtd->size, mtd); 138 pages -= mtd_div_by_ws(from, mtd); 139 if (ops->ooboffs + ops->ooblen > pages * len) 140 return -EINVAL; 141 } 142 143 res = part->master->read_oob(part->master, from + part->offset, ops); 144 if (unlikely(res)) { 145 if (mtd_is_bitflip(res)) 146 mtd->ecc_stats.corrected++; 147 if (mtd_is_eccerr(res)) 148 mtd->ecc_stats.failed++; 149 } 150 return res; 151 } 152 153 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 154 size_t len, size_t *retlen, u_char *buf) 155 { 156 struct mtd_part *part = PART(mtd); 157 return part->master->read_user_prot_reg(part->master, from, 158 len, retlen, buf); 159 } 160 161 static int part_get_user_prot_info(struct mtd_info *mtd, 162 struct otp_info *buf, size_t len) 163 { 164 struct mtd_part *part = PART(mtd); 165 return part->master->get_user_prot_info(part->master, buf, len); 166 } 167 168 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 169 size_t len, size_t *retlen, u_char *buf) 170 { 171 struct mtd_part *part = PART(mtd); 172 return part->master->read_fact_prot_reg(part->master, from, 173 len, retlen, buf); 174 } 175 176 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf, 177 size_t len) 178 { 179 struct mtd_part *part = PART(mtd); 180 return part->master->get_fact_prot_info(part->master, buf, len); 181 } 182 183 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 184 size_t *retlen, const u_char *buf) 185 { 186 struct mtd_part *part = PART(mtd); 187 if (!(mtd->flags & MTD_WRITEABLE)) 188 return -EROFS; 189 if (to >= mtd->size) 190 len = 0; 191 else if (to + len > mtd->size) 192 len = mtd->size - to; 193 return part->master->write(part->master, to + part->offset, 194 len, retlen, buf); 195 } 196 197 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 198 size_t *retlen, const u_char *buf) 199 { 200 struct mtd_part *part = PART(mtd); 201 if (!(mtd->flags & MTD_WRITEABLE)) 202 return -EROFS; 203 if (to >= mtd->size) 204 len = 0; 205 else if (to + len > mtd->size) 206 len = mtd->size - to; 207 return part->master->panic_write(part->master, to + part->offset, 208 len, retlen, buf); 209 } 210 211 static int part_write_oob(struct mtd_info *mtd, loff_t to, 212 struct mtd_oob_ops *ops) 213 { 214 struct mtd_part *part = PART(mtd); 215 216 if (!(mtd->flags & MTD_WRITEABLE)) 217 return -EROFS; 218 219 if (to >= mtd->size) 220 return -EINVAL; 221 if (ops->datbuf && to + ops->len > mtd->size) 222 return -EINVAL; 223 return part->master->write_oob(part->master, to + part->offset, ops); 224 } 225 226 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 227 size_t len, size_t *retlen, u_char *buf) 228 { 229 struct mtd_part *part = PART(mtd); 230 return part->master->write_user_prot_reg(part->master, from, 231 len, retlen, buf); 232 } 233 234 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 235 size_t len) 236 { 237 struct mtd_part *part = PART(mtd); 238 return part->master->lock_user_prot_reg(part->master, from, len); 239 } 240 241 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 242 unsigned long count, loff_t to, size_t *retlen) 243 { 244 struct mtd_part *part = PART(mtd); 245 if (!(mtd->flags & MTD_WRITEABLE)) 246 return -EROFS; 247 return part->master->writev(part->master, vecs, count, 248 to + part->offset, retlen); 249 } 250 251 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 252 { 253 struct mtd_part *part = PART(mtd); 254 int ret; 255 if (!(mtd->flags & MTD_WRITEABLE)) 256 return -EROFS; 257 if (instr->addr >= mtd->size) 258 return -EINVAL; 259 instr->addr += part->offset; 260 ret = part->master->erase(part->master, instr); 261 if (ret) { 262 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 263 instr->fail_addr -= part->offset; 264 instr->addr -= part->offset; 265 } 266 return ret; 267 } 268 269 void mtd_erase_callback(struct erase_info *instr) 270 { 271 if (instr->mtd->erase == part_erase) { 272 struct mtd_part *part = PART(instr->mtd); 273 274 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 275 instr->fail_addr -= part->offset; 276 instr->addr -= part->offset; 277 } 278 if (instr->callback) 279 instr->callback(instr); 280 } 281 EXPORT_SYMBOL_GPL(mtd_erase_callback); 282 283 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 284 { 285 struct mtd_part *part = PART(mtd); 286 if ((len + ofs) > mtd->size) 287 return -EINVAL; 288 return part->master->lock(part->master, ofs + part->offset, len); 289 } 290 291 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 292 { 293 struct mtd_part *part = PART(mtd); 294 if ((len + ofs) > mtd->size) 295 return -EINVAL; 296 return part->master->unlock(part->master, ofs + part->offset, len); 297 } 298 299 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 300 { 301 struct mtd_part *part = PART(mtd); 302 if ((len + ofs) > mtd->size) 303 return -EINVAL; 304 return part->master->is_locked(part->master, ofs + part->offset, len); 305 } 306 307 static void part_sync(struct mtd_info *mtd) 308 { 309 struct mtd_part *part = PART(mtd); 310 part->master->sync(part->master); 311 } 312 313 static int part_suspend(struct mtd_info *mtd) 314 { 315 struct mtd_part *part = PART(mtd); 316 return part->master->suspend(part->master); 317 } 318 319 static void part_resume(struct mtd_info *mtd) 320 { 321 struct mtd_part *part = PART(mtd); 322 part->master->resume(part->master); 323 } 324 325 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 326 { 327 struct mtd_part *part = PART(mtd); 328 if (ofs >= mtd->size) 329 return -EINVAL; 330 ofs += part->offset; 331 return part->master->block_isbad(part->master, ofs); 332 } 333 334 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 335 { 336 struct mtd_part *part = PART(mtd); 337 int res; 338 339 if (!(mtd->flags & MTD_WRITEABLE)) 340 return -EROFS; 341 if (ofs >= mtd->size) 342 return -EINVAL; 343 ofs += part->offset; 344 res = part->master->block_markbad(part->master, ofs); 345 if (!res) 346 mtd->ecc_stats.badblocks++; 347 return res; 348 } 349 350 static inline void free_partition(struct mtd_part *p) 351 { 352 kfree(p->mtd.name); 353 kfree(p); 354 } 355 356 /* 357 * This function unregisters and destroy all slave MTD objects which are 358 * attached to the given master MTD object. 359 */ 360 361 int del_mtd_partitions(struct mtd_info *master) 362 { 363 struct mtd_part *slave, *next; 364 int ret, err = 0; 365 366 mutex_lock(&mtd_partitions_mutex); 367 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 368 if (slave->master == master) { 369 ret = del_mtd_device(&slave->mtd); 370 if (ret < 0) { 371 err = ret; 372 continue; 373 } 374 list_del(&slave->list); 375 free_partition(slave); 376 } 377 mutex_unlock(&mtd_partitions_mutex); 378 379 return err; 380 } 381 382 static struct mtd_part *allocate_partition(struct mtd_info *master, 383 const struct mtd_partition *part, int partno, 384 uint64_t cur_offset) 385 { 386 struct mtd_part *slave; 387 char *name; 388 389 /* allocate the partition structure */ 390 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 391 name = kstrdup(part->name, GFP_KERNEL); 392 if (!name || !slave) { 393 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 394 master->name); 395 kfree(name); 396 kfree(slave); 397 return ERR_PTR(-ENOMEM); 398 } 399 400 /* set up the MTD object for this partition */ 401 slave->mtd.type = master->type; 402 slave->mtd.flags = master->flags & ~part->mask_flags; 403 slave->mtd.size = part->size; 404 slave->mtd.writesize = master->writesize; 405 slave->mtd.writebufsize = master->writebufsize; 406 slave->mtd.oobsize = master->oobsize; 407 slave->mtd.oobavail = master->oobavail; 408 slave->mtd.subpage_sft = master->subpage_sft; 409 410 slave->mtd.name = name; 411 slave->mtd.owner = master->owner; 412 slave->mtd.backing_dev_info = master->backing_dev_info; 413 414 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone 415 * to have the same data be in two different partitions. 416 */ 417 slave->mtd.dev.parent = master->dev.parent; 418 419 slave->mtd.read = part_read; 420 slave->mtd.write = part_write; 421 422 if (master->panic_write) 423 slave->mtd.panic_write = part_panic_write; 424 425 if (master->point && master->unpoint) { 426 slave->mtd.point = part_point; 427 slave->mtd.unpoint = part_unpoint; 428 } 429 430 if (master->get_unmapped_area) 431 slave->mtd.get_unmapped_area = part_get_unmapped_area; 432 if (master->read_oob) 433 slave->mtd.read_oob = part_read_oob; 434 if (master->write_oob) 435 slave->mtd.write_oob = part_write_oob; 436 if (master->read_user_prot_reg) 437 slave->mtd.read_user_prot_reg = part_read_user_prot_reg; 438 if (master->read_fact_prot_reg) 439 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg; 440 if (master->write_user_prot_reg) 441 slave->mtd.write_user_prot_reg = part_write_user_prot_reg; 442 if (master->lock_user_prot_reg) 443 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg; 444 if (master->get_user_prot_info) 445 slave->mtd.get_user_prot_info = part_get_user_prot_info; 446 if (master->get_fact_prot_info) 447 slave->mtd.get_fact_prot_info = part_get_fact_prot_info; 448 if (master->sync) 449 slave->mtd.sync = part_sync; 450 if (!partno && !master->dev.class && master->suspend && master->resume) { 451 slave->mtd.suspend = part_suspend; 452 slave->mtd.resume = part_resume; 453 } 454 if (master->writev) 455 slave->mtd.writev = part_writev; 456 if (master->lock) 457 slave->mtd.lock = part_lock; 458 if (master->unlock) 459 slave->mtd.unlock = part_unlock; 460 if (master->is_locked) 461 slave->mtd.is_locked = part_is_locked; 462 if (master->block_isbad) 463 slave->mtd.block_isbad = part_block_isbad; 464 if (master->block_markbad) 465 slave->mtd.block_markbad = part_block_markbad; 466 slave->mtd.erase = part_erase; 467 slave->master = master; 468 slave->offset = part->offset; 469 470 if (slave->offset == MTDPART_OFS_APPEND) 471 slave->offset = cur_offset; 472 if (slave->offset == MTDPART_OFS_NXTBLK) { 473 slave->offset = cur_offset; 474 if (mtd_mod_by_eb(cur_offset, master) != 0) { 475 /* Round up to next erasesize */ 476 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 477 printk(KERN_NOTICE "Moving partition %d: " 478 "0x%012llx -> 0x%012llx\n", partno, 479 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 480 } 481 } 482 if (slave->offset == MTDPART_OFS_RETAIN) { 483 slave->offset = cur_offset; 484 if (master->size - slave->offset >= slave->mtd.size) { 485 slave->mtd.size = master->size - slave->offset 486 - slave->mtd.size; 487 } else { 488 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 489 part->name, master->size - slave->offset, 490 slave->mtd.size); 491 /* register to preserve ordering */ 492 goto out_register; 493 } 494 } 495 if (slave->mtd.size == MTDPART_SIZ_FULL) 496 slave->mtd.size = master->size - slave->offset; 497 498 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 499 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 500 501 /* let's do some sanity checks */ 502 if (slave->offset >= master->size) { 503 /* let's register it anyway to preserve ordering */ 504 slave->offset = 0; 505 slave->mtd.size = 0; 506 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 507 part->name); 508 goto out_register; 509 } 510 if (slave->offset + slave->mtd.size > master->size) { 511 slave->mtd.size = master->size - slave->offset; 512 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 513 part->name, master->name, (unsigned long long)slave->mtd.size); 514 } 515 if (master->numeraseregions > 1) { 516 /* Deal with variable erase size stuff */ 517 int i, max = master->numeraseregions; 518 u64 end = slave->offset + slave->mtd.size; 519 struct mtd_erase_region_info *regions = master->eraseregions; 520 521 /* Find the first erase regions which is part of this 522 * partition. */ 523 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 524 ; 525 /* The loop searched for the region _behind_ the first one */ 526 if (i > 0) 527 i--; 528 529 /* Pick biggest erasesize */ 530 for (; i < max && regions[i].offset < end; i++) { 531 if (slave->mtd.erasesize < regions[i].erasesize) { 532 slave->mtd.erasesize = regions[i].erasesize; 533 } 534 } 535 BUG_ON(slave->mtd.erasesize == 0); 536 } else { 537 /* Single erase size */ 538 slave->mtd.erasesize = master->erasesize; 539 } 540 541 if ((slave->mtd.flags & MTD_WRITEABLE) && 542 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 543 /* Doesn't start on a boundary of major erase size */ 544 /* FIXME: Let it be writable if it is on a boundary of 545 * _minor_ erase size though */ 546 slave->mtd.flags &= ~MTD_WRITEABLE; 547 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 548 part->name); 549 } 550 if ((slave->mtd.flags & MTD_WRITEABLE) && 551 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 552 slave->mtd.flags &= ~MTD_WRITEABLE; 553 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 554 part->name); 555 } 556 557 slave->mtd.ecclayout = master->ecclayout; 558 if (master->block_isbad) { 559 uint64_t offs = 0; 560 561 while (offs < slave->mtd.size) { 562 if (master->block_isbad(master, 563 offs + slave->offset)) 564 slave->mtd.ecc_stats.badblocks++; 565 offs += slave->mtd.erasesize; 566 } 567 } 568 569 out_register: 570 return slave; 571 } 572 573 int mtd_add_partition(struct mtd_info *master, char *name, 574 long long offset, long long length) 575 { 576 struct mtd_partition part; 577 struct mtd_part *p, *new; 578 uint64_t start, end; 579 int ret = 0; 580 581 /* the direct offset is expected */ 582 if (offset == MTDPART_OFS_APPEND || 583 offset == MTDPART_OFS_NXTBLK) 584 return -EINVAL; 585 586 if (length == MTDPART_SIZ_FULL) 587 length = master->size - offset; 588 589 if (length <= 0) 590 return -EINVAL; 591 592 part.name = name; 593 part.size = length; 594 part.offset = offset; 595 part.mask_flags = 0; 596 part.ecclayout = NULL; 597 598 new = allocate_partition(master, &part, -1, offset); 599 if (IS_ERR(new)) 600 return PTR_ERR(new); 601 602 start = offset; 603 end = offset + length; 604 605 mutex_lock(&mtd_partitions_mutex); 606 list_for_each_entry(p, &mtd_partitions, list) 607 if (p->master == master) { 608 if ((start >= p->offset) && 609 (start < (p->offset + p->mtd.size))) 610 goto err_inv; 611 612 if ((end >= p->offset) && 613 (end < (p->offset + p->mtd.size))) 614 goto err_inv; 615 } 616 617 list_add(&new->list, &mtd_partitions); 618 mutex_unlock(&mtd_partitions_mutex); 619 620 add_mtd_device(&new->mtd); 621 622 return ret; 623 err_inv: 624 mutex_unlock(&mtd_partitions_mutex); 625 free_partition(new); 626 return -EINVAL; 627 } 628 EXPORT_SYMBOL_GPL(mtd_add_partition); 629 630 int mtd_del_partition(struct mtd_info *master, int partno) 631 { 632 struct mtd_part *slave, *next; 633 int ret = -EINVAL; 634 635 mutex_lock(&mtd_partitions_mutex); 636 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 637 if ((slave->master == master) && 638 (slave->mtd.index == partno)) { 639 ret = del_mtd_device(&slave->mtd); 640 if (ret < 0) 641 break; 642 643 list_del(&slave->list); 644 free_partition(slave); 645 break; 646 } 647 mutex_unlock(&mtd_partitions_mutex); 648 649 return ret; 650 } 651 EXPORT_SYMBOL_GPL(mtd_del_partition); 652 653 /* 654 * This function, given a master MTD object and a partition table, creates 655 * and registers slave MTD objects which are bound to the master according to 656 * the partition definitions. 657 * 658 * We don't register the master, or expect the caller to have done so, 659 * for reasons of data integrity. 660 */ 661 662 int add_mtd_partitions(struct mtd_info *master, 663 const struct mtd_partition *parts, 664 int nbparts) 665 { 666 struct mtd_part *slave; 667 uint64_t cur_offset = 0; 668 int i; 669 670 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 671 672 for (i = 0; i < nbparts; i++) { 673 slave = allocate_partition(master, parts + i, i, cur_offset); 674 if (IS_ERR(slave)) 675 return PTR_ERR(slave); 676 677 mutex_lock(&mtd_partitions_mutex); 678 list_add(&slave->list, &mtd_partitions); 679 mutex_unlock(&mtd_partitions_mutex); 680 681 add_mtd_device(&slave->mtd); 682 683 cur_offset = slave->offset + slave->mtd.size; 684 } 685 686 return 0; 687 } 688 689 static DEFINE_SPINLOCK(part_parser_lock); 690 static LIST_HEAD(part_parsers); 691 692 static struct mtd_part_parser *get_partition_parser(const char *name) 693 { 694 struct mtd_part_parser *p, *ret = NULL; 695 696 spin_lock(&part_parser_lock); 697 698 list_for_each_entry(p, &part_parsers, list) 699 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 700 ret = p; 701 break; 702 } 703 704 spin_unlock(&part_parser_lock); 705 706 return ret; 707 } 708 709 #define put_partition_parser(p) do { module_put((p)->owner); } while (0) 710 711 int register_mtd_parser(struct mtd_part_parser *p) 712 { 713 spin_lock(&part_parser_lock); 714 list_add(&p->list, &part_parsers); 715 spin_unlock(&part_parser_lock); 716 717 return 0; 718 } 719 EXPORT_SYMBOL_GPL(register_mtd_parser); 720 721 int deregister_mtd_parser(struct mtd_part_parser *p) 722 { 723 spin_lock(&part_parser_lock); 724 list_del(&p->list); 725 spin_unlock(&part_parser_lock); 726 return 0; 727 } 728 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 729 730 /* 731 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 732 * are changing this array! 733 */ 734 static const char *default_mtd_part_types[] = { 735 "cmdlinepart", 736 "ofpart", 737 NULL 738 }; 739 740 /** 741 * parse_mtd_partitions - parse MTD partitions 742 * @master: the master partition (describes whole MTD device) 743 * @types: names of partition parsers to try or %NULL 744 * @pparts: array of partitions found is returned here 745 * @data: MTD partition parser-specific data 746 * 747 * This function tries to find partition on MTD device @master. It uses MTD 748 * partition parsers, specified in @types. However, if @types is %NULL, then 749 * the default list of parsers is used. The default list contains only the 750 * "cmdlinepart" and "ofpart" parsers ATM. 751 * 752 * This function may return: 753 * o a negative error code in case of failure 754 * o zero if no partitions were found 755 * o a positive number of found partitions, in which case on exit @pparts will 756 * point to an array containing this number of &struct mtd_info objects. 757 */ 758 int parse_mtd_partitions(struct mtd_info *master, const char **types, 759 struct mtd_partition **pparts, 760 struct mtd_part_parser_data *data) 761 { 762 struct mtd_part_parser *parser; 763 int ret = 0; 764 765 if (!types) 766 types = default_mtd_part_types; 767 768 for ( ; ret <= 0 && *types; types++) { 769 parser = get_partition_parser(*types); 770 if (!parser && !request_module("%s", *types)) 771 parser = get_partition_parser(*types); 772 if (!parser) 773 continue; 774 ret = (*parser->parse_fn)(master, pparts, data); 775 if (ret > 0) { 776 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 777 ret, parser->name, master->name); 778 } 779 put_partition_parser(parser); 780 } 781 return ret; 782 } 783 784 int mtd_is_partition(struct mtd_info *mtd) 785 { 786 struct mtd_part *part; 787 int ispart = 0; 788 789 mutex_lock(&mtd_partitions_mutex); 790 list_for_each_entry(part, &mtd_partitions, list) 791 if (&part->mtd == mtd) { 792 ispart = 1; 793 break; 794 } 795 mutex_unlock(&mtd_partitions_mutex); 796 797 return ispart; 798 } 799 EXPORT_SYMBOL_GPL(mtd_is_partition); 800