1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 #include <linux/kconfig.h> 34 35 #include "mtdcore.h" 36 37 /* Our partition linked list */ 38 static LIST_HEAD(mtd_partitions); 39 static DEFINE_MUTEX(mtd_partitions_mutex); 40 41 /* Our partition node structure */ 42 struct mtd_part { 43 struct mtd_info mtd; 44 struct mtd_info *master; 45 uint64_t offset; 46 struct list_head list; 47 }; 48 49 /* 50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 51 * the pointer to that structure. 52 */ 53 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd) 54 { 55 return container_of(mtd, struct mtd_part, mtd); 56 } 57 58 59 /* 60 * MTD methods which simply translate the effective address and pass through 61 * to the _real_ device. 62 */ 63 64 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 65 size_t *retlen, u_char *buf) 66 { 67 struct mtd_part *part = mtd_to_part(mtd); 68 struct mtd_ecc_stats stats; 69 int res; 70 71 stats = part->master->ecc_stats; 72 res = part->master->_read(part->master, from + part->offset, len, 73 retlen, buf); 74 if (unlikely(mtd_is_eccerr(res))) 75 mtd->ecc_stats.failed += 76 part->master->ecc_stats.failed - stats.failed; 77 else 78 mtd->ecc_stats.corrected += 79 part->master->ecc_stats.corrected - stats.corrected; 80 return res; 81 } 82 83 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 84 size_t *retlen, void **virt, resource_size_t *phys) 85 { 86 struct mtd_part *part = mtd_to_part(mtd); 87 88 return part->master->_point(part->master, from + part->offset, len, 89 retlen, virt, phys); 90 } 91 92 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 93 { 94 struct mtd_part *part = mtd_to_part(mtd); 95 96 return part->master->_unpoint(part->master, from + part->offset, len); 97 } 98 99 static unsigned long part_get_unmapped_area(struct mtd_info *mtd, 100 unsigned long len, 101 unsigned long offset, 102 unsigned long flags) 103 { 104 struct mtd_part *part = mtd_to_part(mtd); 105 106 offset += part->offset; 107 return part->master->_get_unmapped_area(part->master, len, offset, 108 flags); 109 } 110 111 static int part_read_oob(struct mtd_info *mtd, loff_t from, 112 struct mtd_oob_ops *ops) 113 { 114 struct mtd_part *part = mtd_to_part(mtd); 115 int res; 116 117 if (from >= mtd->size) 118 return -EINVAL; 119 if (ops->datbuf && from + ops->len > mtd->size) 120 return -EINVAL; 121 122 /* 123 * If OOB is also requested, make sure that we do not read past the end 124 * of this partition. 125 */ 126 if (ops->oobbuf) { 127 size_t len, pages; 128 129 len = mtd_oobavail(mtd, ops); 130 pages = mtd_div_by_ws(mtd->size, mtd); 131 pages -= mtd_div_by_ws(from, mtd); 132 if (ops->ooboffs + ops->ooblen > pages * len) 133 return -EINVAL; 134 } 135 136 res = part->master->_read_oob(part->master, from + part->offset, ops); 137 if (unlikely(res)) { 138 if (mtd_is_bitflip(res)) 139 mtd->ecc_stats.corrected++; 140 if (mtd_is_eccerr(res)) 141 mtd->ecc_stats.failed++; 142 } 143 return res; 144 } 145 146 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 147 size_t len, size_t *retlen, u_char *buf) 148 { 149 struct mtd_part *part = mtd_to_part(mtd); 150 return part->master->_read_user_prot_reg(part->master, from, len, 151 retlen, buf); 152 } 153 154 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 155 size_t *retlen, struct otp_info *buf) 156 { 157 struct mtd_part *part = mtd_to_part(mtd); 158 return part->master->_get_user_prot_info(part->master, len, retlen, 159 buf); 160 } 161 162 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 163 size_t len, size_t *retlen, u_char *buf) 164 { 165 struct mtd_part *part = mtd_to_part(mtd); 166 return part->master->_read_fact_prot_reg(part->master, from, len, 167 retlen, buf); 168 } 169 170 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 171 size_t *retlen, struct otp_info *buf) 172 { 173 struct mtd_part *part = mtd_to_part(mtd); 174 return part->master->_get_fact_prot_info(part->master, len, retlen, 175 buf); 176 } 177 178 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 179 size_t *retlen, const u_char *buf) 180 { 181 struct mtd_part *part = mtd_to_part(mtd); 182 return part->master->_write(part->master, to + part->offset, len, 183 retlen, buf); 184 } 185 186 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 187 size_t *retlen, const u_char *buf) 188 { 189 struct mtd_part *part = mtd_to_part(mtd); 190 return part->master->_panic_write(part->master, to + part->offset, len, 191 retlen, buf); 192 } 193 194 static int part_write_oob(struct mtd_info *mtd, loff_t to, 195 struct mtd_oob_ops *ops) 196 { 197 struct mtd_part *part = mtd_to_part(mtd); 198 199 if (to >= mtd->size) 200 return -EINVAL; 201 if (ops->datbuf && to + ops->len > mtd->size) 202 return -EINVAL; 203 return part->master->_write_oob(part->master, to + part->offset, ops); 204 } 205 206 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 207 size_t len, size_t *retlen, u_char *buf) 208 { 209 struct mtd_part *part = mtd_to_part(mtd); 210 return part->master->_write_user_prot_reg(part->master, from, len, 211 retlen, buf); 212 } 213 214 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 215 size_t len) 216 { 217 struct mtd_part *part = mtd_to_part(mtd); 218 return part->master->_lock_user_prot_reg(part->master, from, len); 219 } 220 221 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 222 unsigned long count, loff_t to, size_t *retlen) 223 { 224 struct mtd_part *part = mtd_to_part(mtd); 225 return part->master->_writev(part->master, vecs, count, 226 to + part->offset, retlen); 227 } 228 229 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 230 { 231 struct mtd_part *part = mtd_to_part(mtd); 232 int ret; 233 234 instr->addr += part->offset; 235 ret = part->master->_erase(part->master, instr); 236 if (ret) { 237 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 238 instr->fail_addr -= part->offset; 239 instr->addr -= part->offset; 240 } 241 return ret; 242 } 243 244 void mtd_erase_callback(struct erase_info *instr) 245 { 246 if (instr->mtd->_erase == part_erase) { 247 struct mtd_part *part = mtd_to_part(instr->mtd); 248 249 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 250 instr->fail_addr -= part->offset; 251 instr->addr -= part->offset; 252 } 253 if (instr->callback) 254 instr->callback(instr); 255 } 256 EXPORT_SYMBOL_GPL(mtd_erase_callback); 257 258 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 259 { 260 struct mtd_part *part = mtd_to_part(mtd); 261 return part->master->_lock(part->master, ofs + part->offset, len); 262 } 263 264 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 265 { 266 struct mtd_part *part = mtd_to_part(mtd); 267 return part->master->_unlock(part->master, ofs + part->offset, len); 268 } 269 270 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 271 { 272 struct mtd_part *part = mtd_to_part(mtd); 273 return part->master->_is_locked(part->master, ofs + part->offset, len); 274 } 275 276 static void part_sync(struct mtd_info *mtd) 277 { 278 struct mtd_part *part = mtd_to_part(mtd); 279 part->master->_sync(part->master); 280 } 281 282 static int part_suspend(struct mtd_info *mtd) 283 { 284 struct mtd_part *part = mtd_to_part(mtd); 285 return part->master->_suspend(part->master); 286 } 287 288 static void part_resume(struct mtd_info *mtd) 289 { 290 struct mtd_part *part = mtd_to_part(mtd); 291 part->master->_resume(part->master); 292 } 293 294 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 295 { 296 struct mtd_part *part = mtd_to_part(mtd); 297 ofs += part->offset; 298 return part->master->_block_isreserved(part->master, ofs); 299 } 300 301 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 302 { 303 struct mtd_part *part = mtd_to_part(mtd); 304 ofs += part->offset; 305 return part->master->_block_isbad(part->master, ofs); 306 } 307 308 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 309 { 310 struct mtd_part *part = mtd_to_part(mtd); 311 int res; 312 313 ofs += part->offset; 314 res = part->master->_block_markbad(part->master, ofs); 315 if (!res) 316 mtd->ecc_stats.badblocks++; 317 return res; 318 } 319 320 static inline void free_partition(struct mtd_part *p) 321 { 322 kfree(p->mtd.name); 323 kfree(p); 324 } 325 326 /* 327 * This function unregisters and destroy all slave MTD objects which are 328 * attached to the given master MTD object. 329 */ 330 331 int del_mtd_partitions(struct mtd_info *master) 332 { 333 struct mtd_part *slave, *next; 334 int ret, err = 0; 335 336 mutex_lock(&mtd_partitions_mutex); 337 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 338 if (slave->master == master) { 339 ret = del_mtd_device(&slave->mtd); 340 if (ret < 0) { 341 err = ret; 342 continue; 343 } 344 list_del(&slave->list); 345 free_partition(slave); 346 } 347 mutex_unlock(&mtd_partitions_mutex); 348 349 return err; 350 } 351 352 static struct mtd_part *allocate_partition(struct mtd_info *master, 353 const struct mtd_partition *part, int partno, 354 uint64_t cur_offset) 355 { 356 struct mtd_part *slave; 357 char *name; 358 359 /* allocate the partition structure */ 360 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 361 name = kstrdup(part->name, GFP_KERNEL); 362 if (!name || !slave) { 363 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 364 master->name); 365 kfree(name); 366 kfree(slave); 367 return ERR_PTR(-ENOMEM); 368 } 369 370 /* set up the MTD object for this partition */ 371 slave->mtd.type = master->type; 372 slave->mtd.flags = master->flags & ~part->mask_flags; 373 slave->mtd.size = part->size; 374 slave->mtd.writesize = master->writesize; 375 slave->mtd.writebufsize = master->writebufsize; 376 slave->mtd.oobsize = master->oobsize; 377 slave->mtd.oobavail = master->oobavail; 378 slave->mtd.subpage_sft = master->subpage_sft; 379 380 slave->mtd.name = name; 381 slave->mtd.owner = master->owner; 382 383 /* NOTE: Historically, we didn't arrange MTDs as a tree out of 384 * concern for showing the same data in multiple partitions. 385 * However, it is very useful to have the master node present, 386 * so the MTD_PARTITIONED_MASTER option allows that. The master 387 * will have device nodes etc only if this is set, so make the 388 * parent conditional on that option. Note, this is a way to 389 * distinguish between the master and the partition in sysfs. 390 */ 391 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ? 392 &master->dev : 393 master->dev.parent; 394 395 slave->mtd._read = part_read; 396 slave->mtd._write = part_write; 397 398 if (master->_panic_write) 399 slave->mtd._panic_write = part_panic_write; 400 401 if (master->_point && master->_unpoint) { 402 slave->mtd._point = part_point; 403 slave->mtd._unpoint = part_unpoint; 404 } 405 406 if (master->_get_unmapped_area) 407 slave->mtd._get_unmapped_area = part_get_unmapped_area; 408 if (master->_read_oob) 409 slave->mtd._read_oob = part_read_oob; 410 if (master->_write_oob) 411 slave->mtd._write_oob = part_write_oob; 412 if (master->_read_user_prot_reg) 413 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 414 if (master->_read_fact_prot_reg) 415 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 416 if (master->_write_user_prot_reg) 417 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 418 if (master->_lock_user_prot_reg) 419 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 420 if (master->_get_user_prot_info) 421 slave->mtd._get_user_prot_info = part_get_user_prot_info; 422 if (master->_get_fact_prot_info) 423 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 424 if (master->_sync) 425 slave->mtd._sync = part_sync; 426 if (!partno && !master->dev.class && master->_suspend && 427 master->_resume) { 428 slave->mtd._suspend = part_suspend; 429 slave->mtd._resume = part_resume; 430 } 431 if (master->_writev) 432 slave->mtd._writev = part_writev; 433 if (master->_lock) 434 slave->mtd._lock = part_lock; 435 if (master->_unlock) 436 slave->mtd._unlock = part_unlock; 437 if (master->_is_locked) 438 slave->mtd._is_locked = part_is_locked; 439 if (master->_block_isreserved) 440 slave->mtd._block_isreserved = part_block_isreserved; 441 if (master->_block_isbad) 442 slave->mtd._block_isbad = part_block_isbad; 443 if (master->_block_markbad) 444 slave->mtd._block_markbad = part_block_markbad; 445 slave->mtd._erase = part_erase; 446 slave->master = master; 447 slave->offset = part->offset; 448 449 if (slave->offset == MTDPART_OFS_APPEND) 450 slave->offset = cur_offset; 451 if (slave->offset == MTDPART_OFS_NXTBLK) { 452 slave->offset = cur_offset; 453 if (mtd_mod_by_eb(cur_offset, master) != 0) { 454 /* Round up to next erasesize */ 455 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize; 456 printk(KERN_NOTICE "Moving partition %d: " 457 "0x%012llx -> 0x%012llx\n", partno, 458 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 459 } 460 } 461 if (slave->offset == MTDPART_OFS_RETAIN) { 462 slave->offset = cur_offset; 463 if (master->size - slave->offset >= slave->mtd.size) { 464 slave->mtd.size = master->size - slave->offset 465 - slave->mtd.size; 466 } else { 467 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 468 part->name, master->size - slave->offset, 469 slave->mtd.size); 470 /* register to preserve ordering */ 471 goto out_register; 472 } 473 } 474 if (slave->mtd.size == MTDPART_SIZ_FULL) 475 slave->mtd.size = master->size - slave->offset; 476 477 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 478 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 479 480 /* let's do some sanity checks */ 481 if (slave->offset >= master->size) { 482 /* let's register it anyway to preserve ordering */ 483 slave->offset = 0; 484 slave->mtd.size = 0; 485 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 486 part->name); 487 goto out_register; 488 } 489 if (slave->offset + slave->mtd.size > master->size) { 490 slave->mtd.size = master->size - slave->offset; 491 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 492 part->name, master->name, (unsigned long long)slave->mtd.size); 493 } 494 if (master->numeraseregions > 1) { 495 /* Deal with variable erase size stuff */ 496 int i, max = master->numeraseregions; 497 u64 end = slave->offset + slave->mtd.size; 498 struct mtd_erase_region_info *regions = master->eraseregions; 499 500 /* Find the first erase regions which is part of this 501 * partition. */ 502 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 503 ; 504 /* The loop searched for the region _behind_ the first one */ 505 if (i > 0) 506 i--; 507 508 /* Pick biggest erasesize */ 509 for (; i < max && regions[i].offset < end; i++) { 510 if (slave->mtd.erasesize < regions[i].erasesize) { 511 slave->mtd.erasesize = regions[i].erasesize; 512 } 513 } 514 BUG_ON(slave->mtd.erasesize == 0); 515 } else { 516 /* Single erase size */ 517 slave->mtd.erasesize = master->erasesize; 518 } 519 520 if ((slave->mtd.flags & MTD_WRITEABLE) && 521 mtd_mod_by_eb(slave->offset, &slave->mtd)) { 522 /* Doesn't start on a boundary of major erase size */ 523 /* FIXME: Let it be writable if it is on a boundary of 524 * _minor_ erase size though */ 525 slave->mtd.flags &= ~MTD_WRITEABLE; 526 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", 527 part->name); 528 } 529 if ((slave->mtd.flags & MTD_WRITEABLE) && 530 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) { 531 slave->mtd.flags &= ~MTD_WRITEABLE; 532 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", 533 part->name); 534 } 535 536 slave->mtd.ecclayout = master->ecclayout; 537 slave->mtd.ecc_step_size = master->ecc_step_size; 538 slave->mtd.ecc_strength = master->ecc_strength; 539 slave->mtd.bitflip_threshold = master->bitflip_threshold; 540 541 if (master->_block_isbad) { 542 uint64_t offs = 0; 543 544 while (offs < slave->mtd.size) { 545 if (mtd_block_isreserved(master, offs + slave->offset)) 546 slave->mtd.ecc_stats.bbtblocks++; 547 else if (mtd_block_isbad(master, offs + slave->offset)) 548 slave->mtd.ecc_stats.badblocks++; 549 offs += slave->mtd.erasesize; 550 } 551 } 552 553 out_register: 554 return slave; 555 } 556 557 static ssize_t mtd_partition_offset_show(struct device *dev, 558 struct device_attribute *attr, char *buf) 559 { 560 struct mtd_info *mtd = dev_get_drvdata(dev); 561 struct mtd_part *part = mtd_to_part(mtd); 562 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset); 563 } 564 565 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL); 566 567 static const struct attribute *mtd_partition_attrs[] = { 568 &dev_attr_offset.attr, 569 NULL 570 }; 571 572 static int mtd_add_partition_attrs(struct mtd_part *new) 573 { 574 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs); 575 if (ret) 576 printk(KERN_WARNING 577 "mtd: failed to create partition attrs, err=%d\n", ret); 578 return ret; 579 } 580 581 int mtd_add_partition(struct mtd_info *master, const char *name, 582 long long offset, long long length) 583 { 584 struct mtd_partition part; 585 struct mtd_part *new; 586 int ret = 0; 587 588 /* the direct offset is expected */ 589 if (offset == MTDPART_OFS_APPEND || 590 offset == MTDPART_OFS_NXTBLK) 591 return -EINVAL; 592 593 if (length == MTDPART_SIZ_FULL) 594 length = master->size - offset; 595 596 if (length <= 0) 597 return -EINVAL; 598 599 memset(&part, 0, sizeof(part)); 600 part.name = name; 601 part.size = length; 602 part.offset = offset; 603 604 new = allocate_partition(master, &part, -1, offset); 605 if (IS_ERR(new)) 606 return PTR_ERR(new); 607 608 mutex_lock(&mtd_partitions_mutex); 609 list_add(&new->list, &mtd_partitions); 610 mutex_unlock(&mtd_partitions_mutex); 611 612 add_mtd_device(&new->mtd); 613 614 mtd_add_partition_attrs(new); 615 616 return ret; 617 } 618 EXPORT_SYMBOL_GPL(mtd_add_partition); 619 620 int mtd_del_partition(struct mtd_info *master, int partno) 621 { 622 struct mtd_part *slave, *next; 623 int ret = -EINVAL; 624 625 mutex_lock(&mtd_partitions_mutex); 626 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 627 if ((slave->master == master) && 628 (slave->mtd.index == partno)) { 629 sysfs_remove_files(&slave->mtd.dev.kobj, 630 mtd_partition_attrs); 631 ret = del_mtd_device(&slave->mtd); 632 if (ret < 0) 633 break; 634 635 list_del(&slave->list); 636 free_partition(slave); 637 break; 638 } 639 mutex_unlock(&mtd_partitions_mutex); 640 641 return ret; 642 } 643 EXPORT_SYMBOL_GPL(mtd_del_partition); 644 645 /* 646 * This function, given a master MTD object and a partition table, creates 647 * and registers slave MTD objects which are bound to the master according to 648 * the partition definitions. 649 * 650 * For historical reasons, this function's caller only registers the master 651 * if the MTD_PARTITIONED_MASTER config option is set. 652 */ 653 654 int add_mtd_partitions(struct mtd_info *master, 655 const struct mtd_partition *parts, 656 int nbparts) 657 { 658 struct mtd_part *slave; 659 uint64_t cur_offset = 0; 660 int i; 661 662 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 663 664 for (i = 0; i < nbparts; i++) { 665 slave = allocate_partition(master, parts + i, i, cur_offset); 666 if (IS_ERR(slave)) { 667 del_mtd_partitions(master); 668 return PTR_ERR(slave); 669 } 670 671 mutex_lock(&mtd_partitions_mutex); 672 list_add(&slave->list, &mtd_partitions); 673 mutex_unlock(&mtd_partitions_mutex); 674 675 add_mtd_device(&slave->mtd); 676 mtd_add_partition_attrs(slave); 677 678 cur_offset = slave->offset + slave->mtd.size; 679 } 680 681 return 0; 682 } 683 684 static DEFINE_SPINLOCK(part_parser_lock); 685 static LIST_HEAD(part_parsers); 686 687 static struct mtd_part_parser *mtd_part_parser_get(const char *name) 688 { 689 struct mtd_part_parser *p, *ret = NULL; 690 691 spin_lock(&part_parser_lock); 692 693 list_for_each_entry(p, &part_parsers, list) 694 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 695 ret = p; 696 break; 697 } 698 699 spin_unlock(&part_parser_lock); 700 701 return ret; 702 } 703 704 static inline void mtd_part_parser_put(const struct mtd_part_parser *p) 705 { 706 module_put(p->owner); 707 } 708 709 /* 710 * Many partition parsers just expected the core to kfree() all their data in 711 * one chunk. Do that by default. 712 */ 713 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, 714 int nr_parts) 715 { 716 kfree(pparts); 717 } 718 719 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) 720 { 721 p->owner = owner; 722 723 if (!p->cleanup) 724 p->cleanup = &mtd_part_parser_cleanup_default; 725 726 spin_lock(&part_parser_lock); 727 list_add(&p->list, &part_parsers); 728 spin_unlock(&part_parser_lock); 729 730 return 0; 731 } 732 EXPORT_SYMBOL_GPL(__register_mtd_parser); 733 734 void deregister_mtd_parser(struct mtd_part_parser *p) 735 { 736 spin_lock(&part_parser_lock); 737 list_del(&p->list); 738 spin_unlock(&part_parser_lock); 739 } 740 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 741 742 /* 743 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 744 * are changing this array! 745 */ 746 static const char * const default_mtd_part_types[] = { 747 "cmdlinepart", 748 "ofpart", 749 NULL 750 }; 751 752 /** 753 * parse_mtd_partitions - parse MTD partitions 754 * @master: the master partition (describes whole MTD device) 755 * @types: names of partition parsers to try or %NULL 756 * @pparts: info about partitions found is returned here 757 * @data: MTD partition parser-specific data 758 * 759 * This function tries to find partition on MTD device @master. It uses MTD 760 * partition parsers, specified in @types. However, if @types is %NULL, then 761 * the default list of parsers is used. The default list contains only the 762 * "cmdlinepart" and "ofpart" parsers ATM. 763 * Note: If there are more then one parser in @types, the kernel only takes the 764 * partitions parsed out by the first parser. 765 * 766 * This function may return: 767 * o a negative error code in case of failure 768 * o zero otherwise, and @pparts will describe the partitions, number of 769 * partitions, and the parser which parsed them. Caller must release 770 * resources with mtd_part_parser_cleanup() when finished with the returned 771 * data. 772 */ 773 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 774 struct mtd_partitions *pparts, 775 struct mtd_part_parser_data *data) 776 { 777 struct mtd_part_parser *parser; 778 int ret, err = 0; 779 780 if (!types) 781 types = default_mtd_part_types; 782 783 for ( ; *types; types++) { 784 pr_debug("%s: parsing partitions %s\n", master->name, *types); 785 parser = mtd_part_parser_get(*types); 786 if (!parser && !request_module("%s", *types)) 787 parser = mtd_part_parser_get(*types); 788 pr_debug("%s: got parser %s\n", master->name, 789 parser ? parser->name : NULL); 790 if (!parser) 791 continue; 792 ret = (*parser->parse_fn)(master, &pparts->parts, data); 793 pr_debug("%s: parser %s: %i\n", 794 master->name, parser->name, ret); 795 if (ret > 0) { 796 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n", 797 ret, parser->name, master->name); 798 pparts->nr_parts = ret; 799 pparts->parser = parser; 800 return 0; 801 } 802 mtd_part_parser_put(parser); 803 /* 804 * Stash the first error we see; only report it if no parser 805 * succeeds 806 */ 807 if (ret < 0 && !err) 808 err = ret; 809 } 810 return err; 811 } 812 813 void mtd_part_parser_cleanup(struct mtd_partitions *parts) 814 { 815 const struct mtd_part_parser *parser; 816 817 if (!parts) 818 return; 819 820 parser = parts->parser; 821 if (parser) { 822 if (parser->cleanup) 823 parser->cleanup(parts->parts, parts->nr_parts); 824 825 mtd_part_parser_put(parser); 826 } 827 } 828 829 int mtd_is_partition(const struct mtd_info *mtd) 830 { 831 struct mtd_part *part; 832 int ispart = 0; 833 834 mutex_lock(&mtd_partitions_mutex); 835 list_for_each_entry(part, &mtd_partitions, list) 836 if (&part->mtd == mtd) { 837 ispart = 1; 838 break; 839 } 840 mutex_unlock(&mtd_partitions_mutex); 841 842 return ispart; 843 } 844 EXPORT_SYMBOL_GPL(mtd_is_partition); 845 846 /* Returns the size of the entire flash chip */ 847 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 848 { 849 if (!mtd_is_partition(mtd)) 850 return mtd->size; 851 852 return mtd_to_part(mtd)->master->size; 853 } 854 EXPORT_SYMBOL_GPL(mtd_get_device_size); 855