1 /* 2 * Simple MTD partitioning layer 3 * 4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net> 5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de> 6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/kmod.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/err.h> 33 #include <linux/of.h> 34 35 #include "mtdcore.h" 36 37 /* Our partition linked list */ 38 static LIST_HEAD(mtd_partitions); 39 static DEFINE_MUTEX(mtd_partitions_mutex); 40 41 /** 42 * struct mtd_part - our partition node structure 43 * 44 * @mtd: struct holding partition details 45 * @parent: parent mtd - flash device or another partition 46 * @offset: partition offset relative to the *flash device* 47 */ 48 struct mtd_part { 49 struct mtd_info mtd; 50 struct mtd_info *parent; 51 uint64_t offset; 52 struct list_head list; 53 }; 54 55 /* 56 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve 57 * the pointer to that structure. 58 */ 59 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd) 60 { 61 return container_of(mtd, struct mtd_part, mtd); 62 } 63 64 static u64 part_absolute_offset(struct mtd_info *mtd) 65 { 66 struct mtd_part *part = mtd_to_part(mtd); 67 68 if (!mtd_is_partition(mtd)) 69 return 0; 70 71 return part_absolute_offset(part->parent) + part->offset; 72 } 73 74 /* 75 * MTD methods which simply translate the effective address and pass through 76 * to the _real_ device. 77 */ 78 79 static int part_read(struct mtd_info *mtd, loff_t from, size_t len, 80 size_t *retlen, u_char *buf) 81 { 82 struct mtd_part *part = mtd_to_part(mtd); 83 struct mtd_ecc_stats stats; 84 int res; 85 86 stats = part->parent->ecc_stats; 87 res = part->parent->_read(part->parent, from + part->offset, len, 88 retlen, buf); 89 if (unlikely(mtd_is_eccerr(res))) 90 mtd->ecc_stats.failed += 91 part->parent->ecc_stats.failed - stats.failed; 92 else 93 mtd->ecc_stats.corrected += 94 part->parent->ecc_stats.corrected - stats.corrected; 95 return res; 96 } 97 98 static int part_point(struct mtd_info *mtd, loff_t from, size_t len, 99 size_t *retlen, void **virt, resource_size_t *phys) 100 { 101 struct mtd_part *part = mtd_to_part(mtd); 102 103 return part->parent->_point(part->parent, from + part->offset, len, 104 retlen, virt, phys); 105 } 106 107 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 108 { 109 struct mtd_part *part = mtd_to_part(mtd); 110 111 return part->parent->_unpoint(part->parent, from + part->offset, len); 112 } 113 114 static int part_read_oob(struct mtd_info *mtd, loff_t from, 115 struct mtd_oob_ops *ops) 116 { 117 struct mtd_part *part = mtd_to_part(mtd); 118 struct mtd_ecc_stats stats; 119 int res; 120 121 stats = part->parent->ecc_stats; 122 res = part->parent->_read_oob(part->parent, from + part->offset, ops); 123 if (unlikely(mtd_is_eccerr(res))) 124 mtd->ecc_stats.failed += 125 part->parent->ecc_stats.failed - stats.failed; 126 else 127 mtd->ecc_stats.corrected += 128 part->parent->ecc_stats.corrected - stats.corrected; 129 return res; 130 } 131 132 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 133 size_t len, size_t *retlen, u_char *buf) 134 { 135 struct mtd_part *part = mtd_to_part(mtd); 136 return part->parent->_read_user_prot_reg(part->parent, from, len, 137 retlen, buf); 138 } 139 140 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len, 141 size_t *retlen, struct otp_info *buf) 142 { 143 struct mtd_part *part = mtd_to_part(mtd); 144 return part->parent->_get_user_prot_info(part->parent, len, retlen, 145 buf); 146 } 147 148 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 149 size_t len, size_t *retlen, u_char *buf) 150 { 151 struct mtd_part *part = mtd_to_part(mtd); 152 return part->parent->_read_fact_prot_reg(part->parent, from, len, 153 retlen, buf); 154 } 155 156 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len, 157 size_t *retlen, struct otp_info *buf) 158 { 159 struct mtd_part *part = mtd_to_part(mtd); 160 return part->parent->_get_fact_prot_info(part->parent, len, retlen, 161 buf); 162 } 163 164 static int part_write(struct mtd_info *mtd, loff_t to, size_t len, 165 size_t *retlen, const u_char *buf) 166 { 167 struct mtd_part *part = mtd_to_part(mtd); 168 return part->parent->_write(part->parent, to + part->offset, len, 169 retlen, buf); 170 } 171 172 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 173 size_t *retlen, const u_char *buf) 174 { 175 struct mtd_part *part = mtd_to_part(mtd); 176 return part->parent->_panic_write(part->parent, to + part->offset, len, 177 retlen, buf); 178 } 179 180 static int part_write_oob(struct mtd_info *mtd, loff_t to, 181 struct mtd_oob_ops *ops) 182 { 183 struct mtd_part *part = mtd_to_part(mtd); 184 185 return part->parent->_write_oob(part->parent, to + part->offset, ops); 186 } 187 188 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from, 189 size_t len, size_t *retlen, u_char *buf) 190 { 191 struct mtd_part *part = mtd_to_part(mtd); 192 return part->parent->_write_user_prot_reg(part->parent, from, len, 193 retlen, buf); 194 } 195 196 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 197 size_t len) 198 { 199 struct mtd_part *part = mtd_to_part(mtd); 200 return part->parent->_lock_user_prot_reg(part->parent, from, len); 201 } 202 203 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs, 204 unsigned long count, loff_t to, size_t *retlen) 205 { 206 struct mtd_part *part = mtd_to_part(mtd); 207 return part->parent->_writev(part->parent, vecs, count, 208 to + part->offset, retlen); 209 } 210 211 static int part_erase(struct mtd_info *mtd, struct erase_info *instr) 212 { 213 struct mtd_part *part = mtd_to_part(mtd); 214 int ret; 215 216 instr->addr += part->offset; 217 ret = part->parent->_erase(part->parent, instr); 218 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 219 instr->fail_addr -= part->offset; 220 instr->addr -= part->offset; 221 222 return ret; 223 } 224 225 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 226 { 227 struct mtd_part *part = mtd_to_part(mtd); 228 return part->parent->_lock(part->parent, ofs + part->offset, len); 229 } 230 231 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 232 { 233 struct mtd_part *part = mtd_to_part(mtd); 234 return part->parent->_unlock(part->parent, ofs + part->offset, len); 235 } 236 237 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 238 { 239 struct mtd_part *part = mtd_to_part(mtd); 240 return part->parent->_is_locked(part->parent, ofs + part->offset, len); 241 } 242 243 static void part_sync(struct mtd_info *mtd) 244 { 245 struct mtd_part *part = mtd_to_part(mtd); 246 part->parent->_sync(part->parent); 247 } 248 249 static int part_suspend(struct mtd_info *mtd) 250 { 251 struct mtd_part *part = mtd_to_part(mtd); 252 return part->parent->_suspend(part->parent); 253 } 254 255 static void part_resume(struct mtd_info *mtd) 256 { 257 struct mtd_part *part = mtd_to_part(mtd); 258 part->parent->_resume(part->parent); 259 } 260 261 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs) 262 { 263 struct mtd_part *part = mtd_to_part(mtd); 264 ofs += part->offset; 265 return part->parent->_block_isreserved(part->parent, ofs); 266 } 267 268 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs) 269 { 270 struct mtd_part *part = mtd_to_part(mtd); 271 ofs += part->offset; 272 return part->parent->_block_isbad(part->parent, ofs); 273 } 274 275 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs) 276 { 277 struct mtd_part *part = mtd_to_part(mtd); 278 int res; 279 280 ofs += part->offset; 281 res = part->parent->_block_markbad(part->parent, ofs); 282 if (!res) 283 mtd->ecc_stats.badblocks++; 284 return res; 285 } 286 287 static int part_get_device(struct mtd_info *mtd) 288 { 289 struct mtd_part *part = mtd_to_part(mtd); 290 return part->parent->_get_device(part->parent); 291 } 292 293 static void part_put_device(struct mtd_info *mtd) 294 { 295 struct mtd_part *part = mtd_to_part(mtd); 296 part->parent->_put_device(part->parent); 297 } 298 299 static int part_ooblayout_ecc(struct mtd_info *mtd, int section, 300 struct mtd_oob_region *oobregion) 301 { 302 struct mtd_part *part = mtd_to_part(mtd); 303 304 return mtd_ooblayout_ecc(part->parent, section, oobregion); 305 } 306 307 static int part_ooblayout_free(struct mtd_info *mtd, int section, 308 struct mtd_oob_region *oobregion) 309 { 310 struct mtd_part *part = mtd_to_part(mtd); 311 312 return mtd_ooblayout_free(part->parent, section, oobregion); 313 } 314 315 static const struct mtd_ooblayout_ops part_ooblayout_ops = { 316 .ecc = part_ooblayout_ecc, 317 .free = part_ooblayout_free, 318 }; 319 320 static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) 321 { 322 struct mtd_part *part = mtd_to_part(mtd); 323 324 return part->parent->_max_bad_blocks(part->parent, 325 ofs + part->offset, len); 326 } 327 328 static inline void free_partition(struct mtd_part *p) 329 { 330 kfree(p->mtd.name); 331 kfree(p); 332 } 333 334 static struct mtd_part *allocate_partition(struct mtd_info *parent, 335 const struct mtd_partition *part, int partno, 336 uint64_t cur_offset) 337 { 338 int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize : 339 parent->erasesize; 340 struct mtd_part *slave; 341 u32 remainder; 342 char *name; 343 u64 tmp; 344 345 /* allocate the partition structure */ 346 slave = kzalloc(sizeof(*slave), GFP_KERNEL); 347 name = kstrdup(part->name, GFP_KERNEL); 348 if (!name || !slave) { 349 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n", 350 parent->name); 351 kfree(name); 352 kfree(slave); 353 return ERR_PTR(-ENOMEM); 354 } 355 356 /* set up the MTD object for this partition */ 357 slave->mtd.type = parent->type; 358 slave->mtd.flags = parent->orig_flags & ~part->mask_flags; 359 slave->mtd.orig_flags = slave->mtd.flags; 360 slave->mtd.size = part->size; 361 slave->mtd.writesize = parent->writesize; 362 slave->mtd.writebufsize = parent->writebufsize; 363 slave->mtd.oobsize = parent->oobsize; 364 slave->mtd.oobavail = parent->oobavail; 365 slave->mtd.subpage_sft = parent->subpage_sft; 366 slave->mtd.pairing = parent->pairing; 367 368 slave->mtd.name = name; 369 slave->mtd.owner = parent->owner; 370 371 /* NOTE: Historically, we didn't arrange MTDs as a tree out of 372 * concern for showing the same data in multiple partitions. 373 * However, it is very useful to have the master node present, 374 * so the MTD_PARTITIONED_MASTER option allows that. The master 375 * will have device nodes etc only if this is set, so make the 376 * parent conditional on that option. Note, this is a way to 377 * distinguish between the master and the partition in sysfs. 378 */ 379 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ? 380 &parent->dev : 381 parent->dev.parent; 382 slave->mtd.dev.of_node = part->of_node; 383 384 if (parent->_read) 385 slave->mtd._read = part_read; 386 if (parent->_write) 387 slave->mtd._write = part_write; 388 389 if (parent->_panic_write) 390 slave->mtd._panic_write = part_panic_write; 391 392 if (parent->_point && parent->_unpoint) { 393 slave->mtd._point = part_point; 394 slave->mtd._unpoint = part_unpoint; 395 } 396 397 if (parent->_read_oob) 398 slave->mtd._read_oob = part_read_oob; 399 if (parent->_write_oob) 400 slave->mtd._write_oob = part_write_oob; 401 if (parent->_read_user_prot_reg) 402 slave->mtd._read_user_prot_reg = part_read_user_prot_reg; 403 if (parent->_read_fact_prot_reg) 404 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg; 405 if (parent->_write_user_prot_reg) 406 slave->mtd._write_user_prot_reg = part_write_user_prot_reg; 407 if (parent->_lock_user_prot_reg) 408 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg; 409 if (parent->_get_user_prot_info) 410 slave->mtd._get_user_prot_info = part_get_user_prot_info; 411 if (parent->_get_fact_prot_info) 412 slave->mtd._get_fact_prot_info = part_get_fact_prot_info; 413 if (parent->_sync) 414 slave->mtd._sync = part_sync; 415 if (!partno && !parent->dev.class && parent->_suspend && 416 parent->_resume) { 417 slave->mtd._suspend = part_suspend; 418 slave->mtd._resume = part_resume; 419 } 420 if (parent->_writev) 421 slave->mtd._writev = part_writev; 422 if (parent->_lock) 423 slave->mtd._lock = part_lock; 424 if (parent->_unlock) 425 slave->mtd._unlock = part_unlock; 426 if (parent->_is_locked) 427 slave->mtd._is_locked = part_is_locked; 428 if (parent->_block_isreserved) 429 slave->mtd._block_isreserved = part_block_isreserved; 430 if (parent->_block_isbad) 431 slave->mtd._block_isbad = part_block_isbad; 432 if (parent->_block_markbad) 433 slave->mtd._block_markbad = part_block_markbad; 434 if (parent->_max_bad_blocks) 435 slave->mtd._max_bad_blocks = part_max_bad_blocks; 436 437 if (parent->_get_device) 438 slave->mtd._get_device = part_get_device; 439 if (parent->_put_device) 440 slave->mtd._put_device = part_put_device; 441 442 slave->mtd._erase = part_erase; 443 slave->parent = parent; 444 slave->offset = part->offset; 445 446 if (slave->offset == MTDPART_OFS_APPEND) 447 slave->offset = cur_offset; 448 if (slave->offset == MTDPART_OFS_NXTBLK) { 449 tmp = cur_offset; 450 slave->offset = cur_offset; 451 remainder = do_div(tmp, wr_alignment); 452 if (remainder) { 453 slave->offset += wr_alignment - remainder; 454 printk(KERN_NOTICE "Moving partition %d: " 455 "0x%012llx -> 0x%012llx\n", partno, 456 (unsigned long long)cur_offset, (unsigned long long)slave->offset); 457 } 458 } 459 if (slave->offset == MTDPART_OFS_RETAIN) { 460 slave->offset = cur_offset; 461 if (parent->size - slave->offset >= slave->mtd.size) { 462 slave->mtd.size = parent->size - slave->offset 463 - slave->mtd.size; 464 } else { 465 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n", 466 part->name, parent->size - slave->offset, 467 slave->mtd.size); 468 /* register to preserve ordering */ 469 goto out_register; 470 } 471 } 472 if (slave->mtd.size == MTDPART_SIZ_FULL) 473 slave->mtd.size = parent->size - slave->offset; 474 475 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset, 476 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name); 477 478 /* let's do some sanity checks */ 479 if (slave->offset >= parent->size) { 480 /* let's register it anyway to preserve ordering */ 481 slave->offset = 0; 482 slave->mtd.size = 0; 483 484 /* Initialize ->erasesize to make add_mtd_device() happy. */ 485 slave->mtd.erasesize = parent->erasesize; 486 487 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n", 488 part->name); 489 goto out_register; 490 } 491 if (slave->offset + slave->mtd.size > parent->size) { 492 slave->mtd.size = parent->size - slave->offset; 493 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n", 494 part->name, parent->name, (unsigned long long)slave->mtd.size); 495 } 496 if (parent->numeraseregions > 1) { 497 /* Deal with variable erase size stuff */ 498 int i, max = parent->numeraseregions; 499 u64 end = slave->offset + slave->mtd.size; 500 struct mtd_erase_region_info *regions = parent->eraseregions; 501 502 /* Find the first erase regions which is part of this 503 * partition. */ 504 for (i = 0; i < max && regions[i].offset <= slave->offset; i++) 505 ; 506 /* The loop searched for the region _behind_ the first one */ 507 if (i > 0) 508 i--; 509 510 /* Pick biggest erasesize */ 511 for (; i < max && regions[i].offset < end; i++) { 512 if (slave->mtd.erasesize < regions[i].erasesize) { 513 slave->mtd.erasesize = regions[i].erasesize; 514 } 515 } 516 BUG_ON(slave->mtd.erasesize == 0); 517 } else { 518 /* Single erase size */ 519 slave->mtd.erasesize = parent->erasesize; 520 } 521 522 /* 523 * Slave erasesize might differ from the master one if the master 524 * exposes several regions with different erasesize. Adjust 525 * wr_alignment accordingly. 526 */ 527 if (!(slave->mtd.flags & MTD_NO_ERASE)) 528 wr_alignment = slave->mtd.erasesize; 529 530 tmp = part_absolute_offset(parent) + slave->offset; 531 remainder = do_div(tmp, wr_alignment); 532 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { 533 /* Doesn't start on a boundary of major erase size */ 534 /* FIXME: Let it be writable if it is on a boundary of 535 * _minor_ erase size though */ 536 slave->mtd.flags &= ~MTD_WRITEABLE; 537 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n", 538 part->name); 539 } 540 541 tmp = part_absolute_offset(parent) + slave->mtd.size; 542 remainder = do_div(tmp, wr_alignment); 543 if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) { 544 slave->mtd.flags &= ~MTD_WRITEABLE; 545 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n", 546 part->name); 547 } 548 549 mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops); 550 slave->mtd.ecc_step_size = parent->ecc_step_size; 551 slave->mtd.ecc_strength = parent->ecc_strength; 552 slave->mtd.bitflip_threshold = parent->bitflip_threshold; 553 554 if (parent->_block_isbad) { 555 uint64_t offs = 0; 556 557 while (offs < slave->mtd.size) { 558 if (mtd_block_isreserved(parent, offs + slave->offset)) 559 slave->mtd.ecc_stats.bbtblocks++; 560 else if (mtd_block_isbad(parent, offs + slave->offset)) 561 slave->mtd.ecc_stats.badblocks++; 562 offs += slave->mtd.erasesize; 563 } 564 } 565 566 out_register: 567 return slave; 568 } 569 570 static ssize_t mtd_partition_offset_show(struct device *dev, 571 struct device_attribute *attr, char *buf) 572 { 573 struct mtd_info *mtd = dev_get_drvdata(dev); 574 struct mtd_part *part = mtd_to_part(mtd); 575 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset); 576 } 577 578 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL); 579 580 static const struct attribute *mtd_partition_attrs[] = { 581 &dev_attr_offset.attr, 582 NULL 583 }; 584 585 static int mtd_add_partition_attrs(struct mtd_part *new) 586 { 587 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs); 588 if (ret) 589 printk(KERN_WARNING 590 "mtd: failed to create partition attrs, err=%d\n", ret); 591 return ret; 592 } 593 594 int mtd_add_partition(struct mtd_info *parent, const char *name, 595 long long offset, long long length) 596 { 597 struct mtd_partition part; 598 struct mtd_part *new; 599 int ret = 0; 600 601 /* the direct offset is expected */ 602 if (offset == MTDPART_OFS_APPEND || 603 offset == MTDPART_OFS_NXTBLK) 604 return -EINVAL; 605 606 if (length == MTDPART_SIZ_FULL) 607 length = parent->size - offset; 608 609 if (length <= 0) 610 return -EINVAL; 611 612 memset(&part, 0, sizeof(part)); 613 part.name = name; 614 part.size = length; 615 part.offset = offset; 616 617 new = allocate_partition(parent, &part, -1, offset); 618 if (IS_ERR(new)) 619 return PTR_ERR(new); 620 621 mutex_lock(&mtd_partitions_mutex); 622 list_add(&new->list, &mtd_partitions); 623 mutex_unlock(&mtd_partitions_mutex); 624 625 ret = add_mtd_device(&new->mtd); 626 if (ret) 627 goto err_remove_part; 628 629 mtd_add_partition_attrs(new); 630 631 return 0; 632 633 err_remove_part: 634 mutex_lock(&mtd_partitions_mutex); 635 list_del(&new->list); 636 mutex_unlock(&mtd_partitions_mutex); 637 638 free_partition(new); 639 640 return ret; 641 } 642 EXPORT_SYMBOL_GPL(mtd_add_partition); 643 644 /** 645 * __mtd_del_partition - delete MTD partition 646 * 647 * @priv: internal MTD struct for partition to be deleted 648 * 649 * This function must be called with the partitions mutex locked. 650 */ 651 static int __mtd_del_partition(struct mtd_part *priv) 652 { 653 struct mtd_part *child, *next; 654 int err; 655 656 list_for_each_entry_safe(child, next, &mtd_partitions, list) { 657 if (child->parent == &priv->mtd) { 658 err = __mtd_del_partition(child); 659 if (err) 660 return err; 661 } 662 } 663 664 sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs); 665 666 err = del_mtd_device(&priv->mtd); 667 if (err) 668 return err; 669 670 list_del(&priv->list); 671 free_partition(priv); 672 673 return 0; 674 } 675 676 /* 677 * This function unregisters and destroy all slave MTD objects which are 678 * attached to the given MTD object. 679 */ 680 int del_mtd_partitions(struct mtd_info *mtd) 681 { 682 struct mtd_part *slave, *next; 683 int ret, err = 0; 684 685 mutex_lock(&mtd_partitions_mutex); 686 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 687 if (slave->parent == mtd) { 688 ret = __mtd_del_partition(slave); 689 if (ret < 0) 690 err = ret; 691 } 692 mutex_unlock(&mtd_partitions_mutex); 693 694 return err; 695 } 696 697 int mtd_del_partition(struct mtd_info *mtd, int partno) 698 { 699 struct mtd_part *slave, *next; 700 int ret = -EINVAL; 701 702 mutex_lock(&mtd_partitions_mutex); 703 list_for_each_entry_safe(slave, next, &mtd_partitions, list) 704 if ((slave->parent == mtd) && 705 (slave->mtd.index == partno)) { 706 ret = __mtd_del_partition(slave); 707 break; 708 } 709 mutex_unlock(&mtd_partitions_mutex); 710 711 return ret; 712 } 713 EXPORT_SYMBOL_GPL(mtd_del_partition); 714 715 /* 716 * This function, given a master MTD object and a partition table, creates 717 * and registers slave MTD objects which are bound to the master according to 718 * the partition definitions. 719 * 720 * For historical reasons, this function's caller only registers the master 721 * if the MTD_PARTITIONED_MASTER config option is set. 722 */ 723 724 int add_mtd_partitions(struct mtd_info *master, 725 const struct mtd_partition *parts, 726 int nbparts) 727 { 728 struct mtd_part *slave; 729 uint64_t cur_offset = 0; 730 int i, ret; 731 732 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name); 733 734 for (i = 0; i < nbparts; i++) { 735 slave = allocate_partition(master, parts + i, i, cur_offset); 736 if (IS_ERR(slave)) { 737 ret = PTR_ERR(slave); 738 goto err_del_partitions; 739 } 740 741 mutex_lock(&mtd_partitions_mutex); 742 list_add(&slave->list, &mtd_partitions); 743 mutex_unlock(&mtd_partitions_mutex); 744 745 ret = add_mtd_device(&slave->mtd); 746 if (ret) { 747 mutex_lock(&mtd_partitions_mutex); 748 list_del(&slave->list); 749 mutex_unlock(&mtd_partitions_mutex); 750 751 free_partition(slave); 752 goto err_del_partitions; 753 } 754 755 mtd_add_partition_attrs(slave); 756 /* Look for subpartitions */ 757 parse_mtd_partitions(&slave->mtd, parts[i].types, NULL); 758 759 cur_offset = slave->offset + slave->mtd.size; 760 } 761 762 return 0; 763 764 err_del_partitions: 765 del_mtd_partitions(master); 766 767 return ret; 768 } 769 770 static DEFINE_SPINLOCK(part_parser_lock); 771 static LIST_HEAD(part_parsers); 772 773 static struct mtd_part_parser *mtd_part_parser_get(const char *name) 774 { 775 struct mtd_part_parser *p, *ret = NULL; 776 777 spin_lock(&part_parser_lock); 778 779 list_for_each_entry(p, &part_parsers, list) 780 if (!strcmp(p->name, name) && try_module_get(p->owner)) { 781 ret = p; 782 break; 783 } 784 785 spin_unlock(&part_parser_lock); 786 787 return ret; 788 } 789 790 static inline void mtd_part_parser_put(const struct mtd_part_parser *p) 791 { 792 module_put(p->owner); 793 } 794 795 /* 796 * Many partition parsers just expected the core to kfree() all their data in 797 * one chunk. Do that by default. 798 */ 799 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts, 800 int nr_parts) 801 { 802 kfree(pparts); 803 } 804 805 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner) 806 { 807 p->owner = owner; 808 809 if (!p->cleanup) 810 p->cleanup = &mtd_part_parser_cleanup_default; 811 812 spin_lock(&part_parser_lock); 813 list_add(&p->list, &part_parsers); 814 spin_unlock(&part_parser_lock); 815 816 return 0; 817 } 818 EXPORT_SYMBOL_GPL(__register_mtd_parser); 819 820 void deregister_mtd_parser(struct mtd_part_parser *p) 821 { 822 spin_lock(&part_parser_lock); 823 list_del(&p->list); 824 spin_unlock(&part_parser_lock); 825 } 826 EXPORT_SYMBOL_GPL(deregister_mtd_parser); 827 828 /* 829 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you 830 * are changing this array! 831 */ 832 static const char * const default_mtd_part_types[] = { 833 "cmdlinepart", 834 "ofpart", 835 NULL 836 }; 837 838 /* Check DT only when looking for subpartitions. */ 839 static const char * const default_subpartition_types[] = { 840 "ofpart", 841 NULL 842 }; 843 844 static int mtd_part_do_parse(struct mtd_part_parser *parser, 845 struct mtd_info *master, 846 struct mtd_partitions *pparts, 847 struct mtd_part_parser_data *data) 848 { 849 int ret; 850 851 ret = (*parser->parse_fn)(master, &pparts->parts, data); 852 pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret); 853 if (ret <= 0) 854 return ret; 855 856 pr_notice("%d %s partitions found on MTD device %s\n", ret, 857 parser->name, master->name); 858 859 pparts->nr_parts = ret; 860 pparts->parser = parser; 861 862 return ret; 863 } 864 865 /** 866 * mtd_part_get_compatible_parser - find MTD parser by a compatible string 867 * 868 * @compat: compatible string describing partitions in a device tree 869 * 870 * MTD parsers can specify supported partitions by providing a table of 871 * compatibility strings. This function finds a parser that advertises support 872 * for a passed value of "compatible". 873 */ 874 static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat) 875 { 876 struct mtd_part_parser *p, *ret = NULL; 877 878 spin_lock(&part_parser_lock); 879 880 list_for_each_entry(p, &part_parsers, list) { 881 const struct of_device_id *matches; 882 883 matches = p->of_match_table; 884 if (!matches) 885 continue; 886 887 for (; matches->compatible[0]; matches++) { 888 if (!strcmp(matches->compatible, compat) && 889 try_module_get(p->owner)) { 890 ret = p; 891 break; 892 } 893 } 894 895 if (ret) 896 break; 897 } 898 899 spin_unlock(&part_parser_lock); 900 901 return ret; 902 } 903 904 static int mtd_part_of_parse(struct mtd_info *master, 905 struct mtd_partitions *pparts) 906 { 907 struct mtd_part_parser *parser; 908 struct device_node *np; 909 struct property *prop; 910 const char *compat; 911 const char *fixed = "fixed-partitions"; 912 int ret, err = 0; 913 914 np = mtd_get_of_node(master); 915 if (mtd_is_partition(master)) 916 of_node_get(np); 917 else 918 np = of_get_child_by_name(np, "partitions"); 919 920 of_property_for_each_string(np, "compatible", prop, compat) { 921 parser = mtd_part_get_compatible_parser(compat); 922 if (!parser) 923 continue; 924 ret = mtd_part_do_parse(parser, master, pparts, NULL); 925 if (ret > 0) { 926 of_node_put(np); 927 return ret; 928 } 929 mtd_part_parser_put(parser); 930 if (ret < 0 && !err) 931 err = ret; 932 } 933 of_node_put(np); 934 935 /* 936 * For backward compatibility we have to try the "fixed-partitions" 937 * parser. It supports old DT format with partitions specified as a 938 * direct subnodes of a flash device DT node without any compatibility 939 * specified we could match. 940 */ 941 parser = mtd_part_parser_get(fixed); 942 if (!parser && !request_module("%s", fixed)) 943 parser = mtd_part_parser_get(fixed); 944 if (parser) { 945 ret = mtd_part_do_parse(parser, master, pparts, NULL); 946 if (ret > 0) 947 return ret; 948 mtd_part_parser_put(parser); 949 if (ret < 0 && !err) 950 err = ret; 951 } 952 953 return err; 954 } 955 956 /** 957 * parse_mtd_partitions - parse and register MTD partitions 958 * 959 * @master: the master partition (describes whole MTD device) 960 * @types: names of partition parsers to try or %NULL 961 * @data: MTD partition parser-specific data 962 * 963 * This function tries to find & register partitions on MTD device @master. It 964 * uses MTD partition parsers, specified in @types. However, if @types is %NULL, 965 * then the default list of parsers is used. The default list contains only the 966 * "cmdlinepart" and "ofpart" parsers ATM. 967 * Note: If there are more then one parser in @types, the kernel only takes the 968 * partitions parsed out by the first parser. 969 * 970 * This function may return: 971 * o a negative error code in case of failure 972 * o number of found partitions otherwise 973 */ 974 int parse_mtd_partitions(struct mtd_info *master, const char *const *types, 975 struct mtd_part_parser_data *data) 976 { 977 struct mtd_partitions pparts = { }; 978 struct mtd_part_parser *parser; 979 int ret, err = 0; 980 981 if (!types) 982 types = mtd_is_partition(master) ? default_subpartition_types : 983 default_mtd_part_types; 984 985 for ( ; *types; types++) { 986 /* 987 * ofpart is a special type that means OF partitioning info 988 * should be used. It requires a bit different logic so it is 989 * handled in a separated function. 990 */ 991 if (!strcmp(*types, "ofpart")) { 992 ret = mtd_part_of_parse(master, &pparts); 993 } else { 994 pr_debug("%s: parsing partitions %s\n", master->name, 995 *types); 996 parser = mtd_part_parser_get(*types); 997 if (!parser && !request_module("%s", *types)) 998 parser = mtd_part_parser_get(*types); 999 pr_debug("%s: got parser %s\n", master->name, 1000 parser ? parser->name : NULL); 1001 if (!parser) 1002 continue; 1003 ret = mtd_part_do_parse(parser, master, &pparts, data); 1004 if (ret <= 0) 1005 mtd_part_parser_put(parser); 1006 } 1007 /* Found partitions! */ 1008 if (ret > 0) { 1009 err = add_mtd_partitions(master, pparts.parts, 1010 pparts.nr_parts); 1011 mtd_part_parser_cleanup(&pparts); 1012 return err ? err : pparts.nr_parts; 1013 } 1014 /* 1015 * Stash the first error we see; only report it if no parser 1016 * succeeds 1017 */ 1018 if (ret < 0 && !err) 1019 err = ret; 1020 } 1021 return err; 1022 } 1023 1024 void mtd_part_parser_cleanup(struct mtd_partitions *parts) 1025 { 1026 const struct mtd_part_parser *parser; 1027 1028 if (!parts) 1029 return; 1030 1031 parser = parts->parser; 1032 if (parser) { 1033 if (parser->cleanup) 1034 parser->cleanup(parts->parts, parts->nr_parts); 1035 1036 mtd_part_parser_put(parser); 1037 } 1038 } 1039 1040 int mtd_is_partition(const struct mtd_info *mtd) 1041 { 1042 struct mtd_part *part; 1043 int ispart = 0; 1044 1045 mutex_lock(&mtd_partitions_mutex); 1046 list_for_each_entry(part, &mtd_partitions, list) 1047 if (&part->mtd == mtd) { 1048 ispart = 1; 1049 break; 1050 } 1051 mutex_unlock(&mtd_partitions_mutex); 1052 1053 return ispart; 1054 } 1055 EXPORT_SYMBOL_GPL(mtd_is_partition); 1056 1057 /* Returns the size of the entire flash chip */ 1058 uint64_t mtd_get_device_size(const struct mtd_info *mtd) 1059 { 1060 if (!mtd_is_partition(mtd)) 1061 return mtd->size; 1062 1063 return mtd_get_device_size(mtd_to_part(mtd)->parent); 1064 } 1065 EXPORT_SYMBOL_GPL(mtd_get_device_size); 1066