xref: /linux/drivers/mtd/mtdcore.c (revision fb7399cf2d0b33825b8039f95c45395c7deba25c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 #include <linux/error-injection.h>
34 
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 struct backing_dev_info *mtd_bdi;
41 
42 #ifdef CONFIG_PM_SLEEP
43 
44 static int mtd_cls_suspend(struct device *dev)
45 {
46 	struct mtd_info *mtd = dev_get_drvdata(dev);
47 
48 	return mtd ? mtd_suspend(mtd) : 0;
49 }
50 
51 static int mtd_cls_resume(struct device *dev)
52 {
53 	struct mtd_info *mtd = dev_get_drvdata(dev);
54 
55 	if (mtd)
56 		mtd_resume(mtd);
57 	return 0;
58 }
59 
60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62 #else
63 #define MTD_CLS_PM_OPS NULL
64 #endif
65 
66 static struct class mtd_class = {
67 	.name = "mtd",
68 	.pm = MTD_CLS_PM_OPS,
69 };
70 
71 static struct class mtd_master_class = {
72 	.name = "mtd_master",
73 	.pm = MTD_CLS_PM_OPS,
74 };
75 
76 static DEFINE_IDR(mtd_idr);
77 static DEFINE_IDR(mtd_master_idr);
78 
79 /* These are exported solely for the purpose of mtd_blkdevs.c. You
80    should not use them for _anything_ else */
81 DEFINE_MUTEX(mtd_table_mutex);
82 EXPORT_SYMBOL_GPL(mtd_table_mutex);
83 
84 struct mtd_info *__mtd_next_device(int i)
85 {
86 	return idr_get_next(&mtd_idr, &i);
87 }
88 EXPORT_SYMBOL_GPL(__mtd_next_device);
89 
90 static LIST_HEAD(mtd_notifiers);
91 
92 #define MTD_MASTER_DEVS 255
93 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
94 static dev_t mtd_master_devt;
95 
96 /* REVISIT once MTD uses the driver model better, whoever allocates
97  * the mtd_info will probably want to use the release() hook...
98  */
99 static void mtd_release(struct device *dev)
100 {
101 	struct mtd_info *mtd = dev_get_drvdata(dev);
102 	dev_t index = MTD_DEVT(mtd->index);
103 
104 	idr_remove(&mtd_idr, mtd->index);
105 	of_node_put(mtd_get_of_node(mtd));
106 
107 	if (mtd_is_partition(mtd))
108 		release_mtd_partition(mtd);
109 
110 	/* remove /dev/mtdXro node */
111 	device_destroy(&mtd_class, index + 1);
112 }
113 
114 static void mtd_master_release(struct device *dev)
115 {
116 	struct mtd_info *mtd = dev_get_drvdata(dev);
117 
118 	idr_remove(&mtd_master_idr, mtd->index);
119 	of_node_put(mtd_get_of_node(mtd));
120 
121 	if (mtd_is_partition(mtd))
122 		release_mtd_partition(mtd);
123 }
124 
125 static void mtd_device_release(struct kref *kref)
126 {
127 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
128 	bool is_partition = mtd_is_partition(mtd);
129 
130 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
131 
132 	/* Try to remove the NVMEM provider */
133 	nvmem_unregister(mtd->nvmem);
134 
135 	device_unregister(&mtd->dev);
136 
137 	/*
138 	 *  Clear dev so mtd can be safely re-registered later if desired.
139 	 *  Should not be done for partition,
140 	 *  as it was already destroyed in device_unregister().
141 	 */
142 	if (!is_partition)
143 		memset(&mtd->dev, 0, sizeof(mtd->dev));
144 
145 	module_put(THIS_MODULE);
146 }
147 
148 #define MTD_DEVICE_ATTR_RO(name) \
149 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
150 
151 #define MTD_DEVICE_ATTR_RW(name) \
152 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
153 
154 static ssize_t mtd_type_show(struct device *dev,
155 		struct device_attribute *attr, char *buf)
156 {
157 	struct mtd_info *mtd = dev_get_drvdata(dev);
158 	char *type;
159 
160 	switch (mtd->type) {
161 	case MTD_ABSENT:
162 		type = "absent";
163 		break;
164 	case MTD_RAM:
165 		type = "ram";
166 		break;
167 	case MTD_ROM:
168 		type = "rom";
169 		break;
170 	case MTD_NORFLASH:
171 		type = "nor";
172 		break;
173 	case MTD_NANDFLASH:
174 		type = "nand";
175 		break;
176 	case MTD_DATAFLASH:
177 		type = "dataflash";
178 		break;
179 	case MTD_UBIVOLUME:
180 		type = "ubi";
181 		break;
182 	case MTD_MLCNANDFLASH:
183 		type = "mlc-nand";
184 		break;
185 	default:
186 		type = "unknown";
187 	}
188 
189 	return sysfs_emit(buf, "%s\n", type);
190 }
191 MTD_DEVICE_ATTR_RO(type);
192 
193 static ssize_t mtd_flags_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 
198 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
199 }
200 MTD_DEVICE_ATTR_RO(flags);
201 
202 static ssize_t mtd_size_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
208 }
209 MTD_DEVICE_ATTR_RO(size);
210 
211 static ssize_t mtd_erasesize_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct mtd_info *mtd = dev_get_drvdata(dev);
215 
216 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
217 }
218 MTD_DEVICE_ATTR_RO(erasesize);
219 
220 static ssize_t mtd_writesize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
226 }
227 MTD_DEVICE_ATTR_RO(writesize);
228 
229 static ssize_t mtd_subpagesize_show(struct device *dev,
230 		struct device_attribute *attr, char *buf)
231 {
232 	struct mtd_info *mtd = dev_get_drvdata(dev);
233 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
234 
235 	return sysfs_emit(buf, "%u\n", subpagesize);
236 }
237 MTD_DEVICE_ATTR_RO(subpagesize);
238 
239 static ssize_t mtd_oobsize_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct mtd_info *mtd = dev_get_drvdata(dev);
243 
244 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
245 }
246 MTD_DEVICE_ATTR_RO(oobsize);
247 
248 static ssize_t mtd_oobavail_show(struct device *dev,
249 				 struct device_attribute *attr, char *buf)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 
253 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
254 }
255 MTD_DEVICE_ATTR_RO(oobavail);
256 
257 static ssize_t mtd_numeraseregions_show(struct device *dev,
258 		struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
263 }
264 MTD_DEVICE_ATTR_RO(numeraseregions);
265 
266 static ssize_t mtd_name_show(struct device *dev,
267 		struct device_attribute *attr, char *buf)
268 {
269 	struct mtd_info *mtd = dev_get_drvdata(dev);
270 
271 	return sysfs_emit(buf, "%s\n", mtd->name);
272 }
273 MTD_DEVICE_ATTR_RO(name);
274 
275 static ssize_t mtd_ecc_strength_show(struct device *dev,
276 				     struct device_attribute *attr, char *buf)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 
280 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
281 }
282 MTD_DEVICE_ATTR_RO(ecc_strength);
283 
284 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
285 					  struct device_attribute *attr,
286 					  char *buf)
287 {
288 	struct mtd_info *mtd = dev_get_drvdata(dev);
289 
290 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
291 }
292 
293 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
294 					   struct device_attribute *attr,
295 					   const char *buf, size_t count)
296 {
297 	struct mtd_info *mtd = dev_get_drvdata(dev);
298 	unsigned int bitflip_threshold;
299 	int retval;
300 
301 	retval = kstrtouint(buf, 0, &bitflip_threshold);
302 	if (retval)
303 		return retval;
304 
305 	mtd->bitflip_threshold = bitflip_threshold;
306 	return count;
307 }
308 MTD_DEVICE_ATTR_RW(bitflip_threshold);
309 
310 static ssize_t mtd_ecc_step_size_show(struct device *dev,
311 		struct device_attribute *attr, char *buf)
312 {
313 	struct mtd_info *mtd = dev_get_drvdata(dev);
314 
315 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
316 
317 }
318 MTD_DEVICE_ATTR_RO(ecc_step_size);
319 
320 static ssize_t mtd_corrected_bits_show(struct device *dev,
321 		struct device_attribute *attr, char *buf)
322 {
323 	struct mtd_info *mtd = dev_get_drvdata(dev);
324 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
325 
326 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
327 }
328 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
329 
330 static ssize_t mtd_ecc_failures_show(struct device *dev,
331 		struct device_attribute *attr, char *buf)
332 {
333 	struct mtd_info *mtd = dev_get_drvdata(dev);
334 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
335 
336 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
337 }
338 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
339 
340 static ssize_t mtd_bad_blocks_show(struct device *dev,
341 		struct device_attribute *attr, char *buf)
342 {
343 	struct mtd_info *mtd = dev_get_drvdata(dev);
344 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
345 
346 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
347 }
348 MTD_DEVICE_ATTR_RO(bad_blocks);
349 
350 static ssize_t mtd_bbt_blocks_show(struct device *dev,
351 		struct device_attribute *attr, char *buf)
352 {
353 	struct mtd_info *mtd = dev_get_drvdata(dev);
354 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
355 
356 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
357 }
358 MTD_DEVICE_ATTR_RO(bbt_blocks);
359 
360 static struct attribute *mtd_attrs[] = {
361 	&dev_attr_type.attr,
362 	&dev_attr_flags.attr,
363 	&dev_attr_size.attr,
364 	&dev_attr_erasesize.attr,
365 	&dev_attr_writesize.attr,
366 	&dev_attr_subpagesize.attr,
367 	&dev_attr_oobsize.attr,
368 	&dev_attr_oobavail.attr,
369 	&dev_attr_numeraseregions.attr,
370 	&dev_attr_name.attr,
371 	&dev_attr_ecc_strength.attr,
372 	&dev_attr_ecc_step_size.attr,
373 	&dev_attr_corrected_bits.attr,
374 	&dev_attr_ecc_failures.attr,
375 	&dev_attr_bad_blocks.attr,
376 	&dev_attr_bbt_blocks.attr,
377 	&dev_attr_bitflip_threshold.attr,
378 	NULL,
379 };
380 ATTRIBUTE_GROUPS(mtd);
381 
382 static const struct device_type mtd_devtype = {
383 	.name		= "mtd",
384 	.groups		= mtd_groups,
385 	.release	= mtd_release,
386 };
387 
388 static const struct device_type mtd_master_devtype = {
389 	.name		= "mtd_master",
390 	.release	= mtd_master_release,
391 };
392 
393 static bool mtd_expert_analysis_mode;
394 
395 #ifdef CONFIG_DEBUG_FS
396 bool mtd_check_expert_analysis_mode(void)
397 {
398 	const char *mtd_expert_analysis_warning =
399 		"Bad block checks have been entirely disabled.\n"
400 		"This is only reserved for post-mortem forensics and debug purposes.\n"
401 		"Never enable this mode if you do not know what you are doing!\n";
402 
403 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
404 }
405 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
406 #endif
407 
408 static struct dentry *dfs_dir_mtd;
409 
410 static void mtd_debugfs_populate(struct mtd_info *mtd)
411 {
412 	struct device *dev = &mtd->dev;
413 
414 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
415 		return;
416 
417 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
418 }
419 
420 #ifndef CONFIG_MMU
421 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
422 {
423 	switch (mtd->type) {
424 	case MTD_RAM:
425 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
426 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
427 	case MTD_ROM:
428 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
429 			NOMMU_MAP_READ;
430 	default:
431 		return NOMMU_MAP_COPY;
432 	}
433 }
434 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
435 #endif
436 
437 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
438 			       void *cmd)
439 {
440 	struct mtd_info *mtd;
441 
442 	mtd = container_of(n, struct mtd_info, reboot_notifier);
443 	mtd->_reboot(mtd);
444 
445 	return NOTIFY_DONE;
446 }
447 
448 /**
449  * mtd_wunit_to_pairing_info - get pairing information of a wunit
450  * @mtd: pointer to new MTD device info structure
451  * @wunit: write unit we are interested in
452  * @info: returned pairing information
453  *
454  * Retrieve pairing information associated to the wunit.
455  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
456  * paired together, and where programming a page may influence the page it is
457  * paired with.
458  * The notion of page is replaced by the term wunit (write-unit) to stay
459  * consistent with the ->writesize field.
460  *
461  * The @wunit argument can be extracted from an absolute offset using
462  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
463  * to @wunit.
464  *
465  * From the pairing info the MTD user can find all the wunits paired with
466  * @wunit using the following loop:
467  *
468  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
469  *	info.pair = i;
470  *	mtd_pairing_info_to_wunit(mtd, &info);
471  *	...
472  * }
473  */
474 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
475 			      struct mtd_pairing_info *info)
476 {
477 	struct mtd_info *master = mtd_get_master(mtd);
478 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
479 
480 	if (wunit < 0 || wunit >= npairs)
481 		return -EINVAL;
482 
483 	if (master->pairing && master->pairing->get_info)
484 		return master->pairing->get_info(master, wunit, info);
485 
486 	info->group = 0;
487 	info->pair = wunit;
488 
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
492 
493 /**
494  * mtd_pairing_info_to_wunit - get wunit from pairing information
495  * @mtd: pointer to new MTD device info structure
496  * @info: pairing information struct
497  *
498  * Returns a positive number representing the wunit associated to the info
499  * struct, or a negative error code.
500  *
501  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
502  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
503  * doc).
504  *
505  * It can also be used to only program the first page of each pair (i.e.
506  * page attached to group 0), which allows one to use an MLC NAND in
507  * software-emulated SLC mode:
508  *
509  * info.group = 0;
510  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
511  * for (info.pair = 0; info.pair < npairs; info.pair++) {
512  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
513  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
514  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
515  * }
516  */
517 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
518 			      const struct mtd_pairing_info *info)
519 {
520 	struct mtd_info *master = mtd_get_master(mtd);
521 	int ngroups = mtd_pairing_groups(master);
522 	int npairs = mtd_wunit_per_eb(master) / ngroups;
523 
524 	if (!info || info->pair < 0 || info->pair >= npairs ||
525 	    info->group < 0 || info->group >= ngroups)
526 		return -EINVAL;
527 
528 	if (master->pairing && master->pairing->get_wunit)
529 		return mtd->pairing->get_wunit(master, info);
530 
531 	return info->pair;
532 }
533 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
534 
535 /**
536  * mtd_pairing_groups - get the number of pairing groups
537  * @mtd: pointer to new MTD device info structure
538  *
539  * Returns the number of pairing groups.
540  *
541  * This number is usually equal to the number of bits exposed by a single
542  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
543  * to iterate over all pages of a given pair.
544  */
545 int mtd_pairing_groups(struct mtd_info *mtd)
546 {
547 	struct mtd_info *master = mtd_get_master(mtd);
548 
549 	if (!master->pairing || !master->pairing->ngroups)
550 		return 1;
551 
552 	return master->pairing->ngroups;
553 }
554 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
555 
556 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
557 			      void *val, size_t bytes)
558 {
559 	struct mtd_info *mtd = priv;
560 	size_t retlen;
561 	int err;
562 
563 	err = mtd_read(mtd, offset, bytes, &retlen, val);
564 	if (err && err != -EUCLEAN)
565 		return err;
566 
567 	return retlen == bytes ? 0 : -EIO;
568 }
569 
570 static int mtd_nvmem_add(struct mtd_info *mtd)
571 {
572 	struct device_node *node = mtd_get_of_node(mtd);
573 	struct nvmem_config config = {};
574 
575 	config.id = NVMEM_DEVID_NONE;
576 	config.dev = &mtd->dev;
577 	config.name = dev_name(&mtd->dev);
578 	config.owner = THIS_MODULE;
579 	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
580 	config.reg_read = mtd_nvmem_reg_read;
581 	config.size = mtd->size;
582 	config.word_size = 1;
583 	config.stride = 1;
584 	config.read_only = true;
585 	config.root_only = true;
586 	config.ignore_wp = true;
587 	config.priv = mtd;
588 
589 	mtd->nvmem = nvmem_register(&config);
590 	if (IS_ERR(mtd->nvmem)) {
591 		/* Just ignore if there is no NVMEM support in the kernel */
592 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
593 			mtd->nvmem = NULL;
594 		else
595 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
596 					     "Failed to register NVMEM device\n");
597 	}
598 
599 	return 0;
600 }
601 
602 static void mtd_check_of_node(struct mtd_info *mtd)
603 {
604 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
605 	const char *pname, *prefix = "partition-";
606 	int plen, mtd_name_len, offset, prefix_len;
607 
608 	/* Check if MTD already has a device node */
609 	if (mtd_get_of_node(mtd))
610 		return;
611 
612 	if (!mtd_is_partition(mtd))
613 		return;
614 
615 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
616 	if (!parent_dn)
617 		return;
618 
619 	if (mtd_is_partition(mtd->parent))
620 		partitions = of_node_get(parent_dn);
621 	else
622 		partitions = of_get_child_by_name(parent_dn, "partitions");
623 	if (!partitions)
624 		goto exit_parent;
625 
626 	prefix_len = strlen(prefix);
627 	mtd_name_len = strlen(mtd->name);
628 
629 	/* Search if a partition is defined with the same name */
630 	for_each_child_of_node(partitions, mtd_dn) {
631 		/* Skip partition with no/wrong prefix */
632 		if (!of_node_name_prefix(mtd_dn, prefix))
633 			continue;
634 
635 		/* Label have priority. Check that first */
636 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
637 			offset = 0;
638 		} else {
639 			pname = mtd_dn->name;
640 			offset = prefix_len;
641 		}
642 
643 		plen = strlen(pname) - offset;
644 		if (plen == mtd_name_len &&
645 		    !strncmp(mtd->name, pname + offset, plen)) {
646 			mtd_set_of_node(mtd, mtd_dn);
647 			of_node_put(mtd_dn);
648 			break;
649 		}
650 	}
651 
652 	of_node_put(partitions);
653 exit_parent:
654 	of_node_put(parent_dn);
655 }
656 
657 /**
658  *	add_mtd_device - register an MTD device
659  *	@mtd: pointer to new MTD device info structure
660  *	@partitioned: create partitioned device
661  *
662  *	Add a device to the list of MTD devices present in the system, and
663  *	notify each currently active MTD 'user' of its arrival. Returns
664  *	zero on success or non-zero on failure.
665  */
666 int add_mtd_device(struct mtd_info *mtd, bool partitioned)
667 {
668 	struct device_node *np = mtd_get_of_node(mtd);
669 	struct mtd_info *master = mtd_get_master(mtd);
670 	struct mtd_notifier *not;
671 	int i, error, ofidx;
672 
673 	/*
674 	 * May occur, for instance, on buggy drivers which call
675 	 * mtd_device_parse_register() multiple times on the same master MTD,
676 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
677 	 */
678 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
679 		return -EEXIST;
680 
681 	BUG_ON(mtd->writesize == 0);
682 
683 	/*
684 	 * MTD drivers should implement ->_{write,read}() or
685 	 * ->_{write,read}_oob(), but not both.
686 	 */
687 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
688 		    (mtd->_read && mtd->_read_oob)))
689 		return -EINVAL;
690 
691 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
692 		    !(mtd->flags & MTD_NO_ERASE)))
693 		return -EINVAL;
694 
695 	/*
696 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
697 	 * master is an MLC NAND and has a proper pairing scheme defined.
698 	 * We also reject masters that implement ->_writev() for now, because
699 	 * NAND controller drivers don't implement this hook, and adding the
700 	 * SLC -> MLC address/length conversion to this path is useless if we
701 	 * don't have a user.
702 	 */
703 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
704 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
705 	     !master->pairing || master->_writev))
706 		return -EINVAL;
707 
708 	mutex_lock(&mtd_table_mutex);
709 
710 	ofidx = -1;
711 	if (np)
712 		ofidx = of_alias_get_id(np, "mtd");
713 	if (partitioned) {
714 		if (ofidx >= 0)
715 			i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
716 		else
717 			i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
718 	} else {
719 		if (ofidx >= 0)
720 			i = idr_alloc(&mtd_master_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
721 		else
722 			i = idr_alloc(&mtd_master_idr, mtd, 0, 0, GFP_KERNEL);
723 	}
724 	if (i < 0) {
725 		error = i;
726 		goto fail_locked;
727 	}
728 
729 	mtd->index = i;
730 	kref_init(&mtd->refcnt);
731 
732 	/* default value if not set by driver */
733 	if (mtd->bitflip_threshold == 0)
734 		mtd->bitflip_threshold = mtd->ecc_strength;
735 
736 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
737 		int ngroups = mtd_pairing_groups(master);
738 
739 		mtd->erasesize /= ngroups;
740 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
741 			    mtd->erasesize;
742 	}
743 
744 	if (is_power_of_2(mtd->erasesize))
745 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
746 	else
747 		mtd->erasesize_shift = 0;
748 
749 	if (is_power_of_2(mtd->writesize))
750 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
751 	else
752 		mtd->writesize_shift = 0;
753 
754 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
755 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
756 
757 	/* Some chips always power up locked. Unlock them now */
758 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
759 		error = mtd_unlock(mtd, 0, mtd->size);
760 		if (error && error != -EOPNOTSUPP)
761 			printk(KERN_WARNING
762 			       "%s: unlock failed, writes may not work\n",
763 			       mtd->name);
764 		/* Ignore unlock failures? */
765 		error = 0;
766 	}
767 
768 	/* Caller should have set dev.parent to match the
769 	 * physical device, if appropriate.
770 	 */
771 	if (partitioned) {
772 		mtd->dev.type = &mtd_devtype;
773 		mtd->dev.class = &mtd_class;
774 		mtd->dev.devt = MTD_DEVT(i);
775 		dev_set_name(&mtd->dev, "mtd%d", i);
776 		error = dev_set_name(&mtd->dev, "mtd%d", i);
777 	} else {
778 		mtd->dev.type = &mtd_master_devtype;
779 		mtd->dev.class = &mtd_master_class;
780 		mtd->dev.devt = MKDEV(MAJOR(mtd_master_devt), i);
781 		error = dev_set_name(&mtd->dev, "mtd_master%d", i);
782 	}
783 	if (error)
784 		goto fail_devname;
785 	dev_set_drvdata(&mtd->dev, mtd);
786 	mtd_check_of_node(mtd);
787 	of_node_get(mtd_get_of_node(mtd));
788 	error = device_register(&mtd->dev);
789 	if (error) {
790 		pr_err("mtd: %s device_register fail %d\n", mtd->name, error);
791 		put_device(&mtd->dev);
792 		goto fail_added;
793 	}
794 
795 	/* Add the nvmem provider */
796 	error = mtd_nvmem_add(mtd);
797 	if (error)
798 		goto fail_nvmem_add;
799 
800 	mtd_debugfs_populate(mtd);
801 
802 	if (partitioned) {
803 		device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
804 			      "mtd%dro", i);
805 	}
806 
807 	pr_debug("mtd: Giving out %spartitioned device %d to %s\n",
808 		 partitioned ? "" : "un-", i, mtd->name);
809 	/* No need to get a refcount on the module containing
810 	   the notifier, since we hold the mtd_table_mutex */
811 	list_for_each_entry(not, &mtd_notifiers, list)
812 		not->add(mtd);
813 
814 	mutex_unlock(&mtd_table_mutex);
815 
816 	if (partitioned) {
817 		if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
818 			if (IS_BUILTIN(CONFIG_MTD)) {
819 				pr_info("mtd: setting mtd%d (%s) as root device\n",
820 					mtd->index, mtd->name);
821 				ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
822 			} else {
823 				pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
824 					mtd->index, mtd->name);
825 			}
826 		}
827 	}
828 
829 	/* We _know_ we aren't being removed, because
830 	   our caller is still holding us here. So none
831 	   of this try_ nonsense, and no bitching about it
832 	   either. :) */
833 	__module_get(THIS_MODULE);
834 	return 0;
835 
836 fail_nvmem_add:
837 	device_unregister(&mtd->dev);
838 fail_added:
839 	of_node_put(mtd_get_of_node(mtd));
840 fail_devname:
841 	if (partitioned)
842 		idr_remove(&mtd_idr, i);
843 	else
844 		idr_remove(&mtd_master_idr, i);
845 fail_locked:
846 	mutex_unlock(&mtd_table_mutex);
847 	return error;
848 }
849 
850 /**
851  *	del_mtd_device - unregister an MTD device
852  *	@mtd: pointer to MTD device info structure
853  *
854  *	Remove a device from the list of MTD devices present in the system,
855  *	and notify each currently active MTD 'user' of its departure.
856  *	Returns zero on success or 1 on failure, which currently will happen
857  *	if the requested device does not appear to be present in the list.
858  */
859 
860 int del_mtd_device(struct mtd_info *mtd)
861 {
862 	struct mtd_notifier *not;
863 	struct idr *idr;
864 	int ret;
865 
866 	mutex_lock(&mtd_table_mutex);
867 
868 	idr = mtd->dev.class == &mtd_class ? &mtd_idr : &mtd_master_idr;
869 	if (idr_find(idr, mtd->index) != mtd) {
870 		ret = -ENODEV;
871 		goto out_error;
872 	}
873 
874 	/* No need to get a refcount on the module containing
875 		the notifier, since we hold the mtd_table_mutex */
876 	list_for_each_entry(not, &mtd_notifiers, list)
877 		not->remove(mtd);
878 
879 	kref_put(&mtd->refcnt, mtd_device_release);
880 	ret = 0;
881 
882 out_error:
883 	mutex_unlock(&mtd_table_mutex);
884 	return ret;
885 }
886 
887 /*
888  * Set a few defaults based on the parent devices, if not provided by the
889  * driver
890  */
891 static void mtd_set_dev_defaults(struct mtd_info *mtd)
892 {
893 	if (mtd->dev.parent) {
894 		if (!mtd->owner && mtd->dev.parent->driver)
895 			mtd->owner = mtd->dev.parent->driver->owner;
896 		if (!mtd->name)
897 			mtd->name = dev_name(mtd->dev.parent);
898 	} else {
899 		pr_debug("mtd device won't show a device symlink in sysfs\n");
900 	}
901 
902 	INIT_LIST_HEAD(&mtd->partitions);
903 	mutex_init(&mtd->master.partitions_lock);
904 	mutex_init(&mtd->master.chrdev_lock);
905 }
906 
907 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
908 {
909 	struct otp_info *info;
910 	ssize_t size = 0;
911 	unsigned int i;
912 	size_t retlen;
913 	int ret;
914 
915 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
916 	if (!info)
917 		return -ENOMEM;
918 
919 	if (is_user)
920 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
921 	else
922 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
923 	if (ret)
924 		goto err;
925 
926 	for (i = 0; i < retlen / sizeof(*info); i++)
927 		size += info[i].length;
928 
929 	kfree(info);
930 	return size;
931 
932 err:
933 	kfree(info);
934 
935 	/* ENODATA means there is no OTP region. */
936 	return ret == -ENODATA ? 0 : ret;
937 }
938 
939 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
940 						   const char *compatible,
941 						   int size,
942 						   nvmem_reg_read_t reg_read)
943 {
944 	struct nvmem_device *nvmem = NULL;
945 	struct nvmem_config config = {};
946 	struct device_node *np;
947 
948 	/* DT binding is optional */
949 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
950 
951 	/* OTP nvmem will be registered on the physical device */
952 	config.dev = mtd->dev.parent;
953 	config.name = compatible;
954 	config.id = NVMEM_DEVID_AUTO;
955 	config.owner = THIS_MODULE;
956 	config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd);
957 	config.type = NVMEM_TYPE_OTP;
958 	config.root_only = true;
959 	config.ignore_wp = true;
960 	config.reg_read = reg_read;
961 	config.size = size;
962 	config.of_node = np;
963 	config.priv = mtd;
964 
965 	nvmem = nvmem_register(&config);
966 	/* Just ignore if there is no NVMEM support in the kernel */
967 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
968 		nvmem = NULL;
969 
970 	of_node_put(np);
971 
972 	return nvmem;
973 }
974 
975 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
976 				       void *val, size_t bytes)
977 {
978 	struct mtd_info *mtd = priv;
979 	size_t retlen;
980 	int ret;
981 
982 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
983 	if (ret)
984 		return ret;
985 
986 	return retlen == bytes ? 0 : -EIO;
987 }
988 
989 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
990 				       void *val, size_t bytes)
991 {
992 	struct mtd_info *mtd = priv;
993 	size_t retlen;
994 	int ret;
995 
996 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
997 	if (ret)
998 		return ret;
999 
1000 	return retlen == bytes ? 0 : -EIO;
1001 }
1002 
1003 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
1004 {
1005 	struct device *dev = mtd->dev.parent;
1006 	struct nvmem_device *nvmem;
1007 	ssize_t size;
1008 	int err;
1009 
1010 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
1011 		size = mtd_otp_size(mtd, true);
1012 		if (size < 0) {
1013 			err = size;
1014 			goto err;
1015 		}
1016 
1017 		if (size > 0) {
1018 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
1019 						       mtd_nvmem_user_otp_reg_read);
1020 			if (IS_ERR(nvmem)) {
1021 				err = PTR_ERR(nvmem);
1022 				goto err;
1023 			}
1024 			mtd->otp_user_nvmem = nvmem;
1025 		}
1026 	}
1027 
1028 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
1029 		size = mtd_otp_size(mtd, false);
1030 		if (size < 0) {
1031 			err = size;
1032 			goto err;
1033 		}
1034 
1035 		if (size > 0) {
1036 			/*
1037 			 * The factory OTP contains thing such as a unique serial
1038 			 * number and is small, so let's read it out and put it
1039 			 * into the entropy pool.
1040 			 */
1041 			void *otp;
1042 
1043 			otp = kmalloc(size, GFP_KERNEL);
1044 			if (!otp) {
1045 				err = -ENOMEM;
1046 				goto err;
1047 			}
1048 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
1049 			if (err < 0) {
1050 				kfree(otp);
1051 				goto err;
1052 			}
1053 			add_device_randomness(otp, err);
1054 			kfree(otp);
1055 
1056 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1057 						       mtd_nvmem_fact_otp_reg_read);
1058 			if (IS_ERR(nvmem)) {
1059 				err = PTR_ERR(nvmem);
1060 				goto err;
1061 			}
1062 			mtd->otp_factory_nvmem = nvmem;
1063 		}
1064 	}
1065 
1066 	return 0;
1067 
1068 err:
1069 	nvmem_unregister(mtd->otp_user_nvmem);
1070 	/* Don't report error if OTP is not supported. */
1071 	if (err == -EOPNOTSUPP)
1072 		return 0;
1073 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1074 }
1075 
1076 /**
1077  * mtd_device_parse_register - parse partitions and register an MTD device.
1078  *
1079  * @mtd: the MTD device to register
1080  * @types: the list of MTD partition probes to try, see
1081  *         'parse_mtd_partitions()' for more information
1082  * @parser_data: MTD partition parser-specific data
1083  * @parts: fallback partition information to register, if parsing fails;
1084  *         only valid if %nr_parts > %0
1085  * @nr_parts: the number of partitions in parts, if zero then the full
1086  *            MTD device is registered if no partition info is found
1087  *
1088  * This function aggregates MTD partitions parsing (done by
1089  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1090  * basically follows the most common pattern found in many MTD drivers:
1091  *
1092  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1093  *   registered first.
1094  * * Then It tries to probe partitions on MTD device @mtd using parsers
1095  *   specified in @types (if @types is %NULL, then the default list of parsers
1096  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1097  *   found this functions tries to fallback to information specified in
1098  *   @parts/@nr_parts.
1099  * * If no partitions were found this function just registers the MTD device
1100  *   @mtd and exits.
1101  *
1102  * Returns zero in case of success and a negative error code in case of failure.
1103  */
1104 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1105 			      struct mtd_part_parser_data *parser_data,
1106 			      const struct mtd_partition *parts,
1107 			      int nr_parts)
1108 {
1109 	struct mtd_info *parent;
1110 	int ret, err;
1111 
1112 	mtd_set_dev_defaults(mtd);
1113 
1114 	ret = mtd_otp_nvmem_add(mtd);
1115 	if (ret)
1116 		goto out;
1117 
1118 	ret = add_mtd_device(mtd, false);
1119 	if (ret)
1120 		goto out;
1121 
1122 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1123 		ret = mtd_add_partition(mtd, mtd->name, 0, MTDPART_SIZ_FULL, &parent);
1124 		if (ret)
1125 			goto out;
1126 
1127 	} else {
1128 		parent = mtd;
1129 	}
1130 
1131 	/* Prefer parsed partitions over driver-provided fallback */
1132 	ret = parse_mtd_partitions(parent, types, parser_data);
1133 	if (ret == -EPROBE_DEFER)
1134 		goto out;
1135 
1136 	if (ret > 0)
1137 		ret = 0;
1138 	else if (nr_parts)
1139 		ret = add_mtd_partitions(parent, parts, nr_parts);
1140 	else if (!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1141 		ret = mtd_add_partition(parent, mtd->name, 0, MTDPART_SIZ_FULL, NULL);
1142 
1143 	if (ret)
1144 		goto out;
1145 
1146 	/*
1147 	 * FIXME: some drivers unfortunately call this function more than once.
1148 	 * So we have to check if we've already assigned the reboot notifier.
1149 	 *
1150 	 * Generally, we can make multiple calls work for most cases, but it
1151 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1152 	 * cmdlineparts will register partitions more than once).
1153 	 */
1154 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1155 		  "MTD already registered\n");
1156 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1157 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1158 		register_reboot_notifier(&mtd->reboot_notifier);
1159 	}
1160 
1161 	return 0;
1162 out:
1163 	nvmem_unregister(mtd->otp_user_nvmem);
1164 	nvmem_unregister(mtd->otp_factory_nvmem);
1165 
1166 	del_mtd_partitions(mtd);
1167 
1168 	if (device_is_registered(&mtd->dev)) {
1169 		err = del_mtd_device(mtd);
1170 		if (err)
1171 			pr_err("Error when deleting MTD device (%d)\n", err);
1172 	}
1173 
1174 	return ret;
1175 }
1176 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1177 
1178 /**
1179  * mtd_device_unregister - unregister an existing MTD device.
1180  *
1181  * @master: the MTD device to unregister.  This will unregister both the master
1182  *          and any partitions if registered.
1183  */
1184 int mtd_device_unregister(struct mtd_info *master)
1185 {
1186 	int err;
1187 
1188 	if (master->_reboot) {
1189 		unregister_reboot_notifier(&master->reboot_notifier);
1190 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1191 	}
1192 
1193 	nvmem_unregister(master->otp_user_nvmem);
1194 	nvmem_unregister(master->otp_factory_nvmem);
1195 
1196 	err = del_mtd_partitions(master);
1197 	if (err)
1198 		return err;
1199 
1200 	if (!device_is_registered(&master->dev))
1201 		return 0;
1202 
1203 	return del_mtd_device(master);
1204 }
1205 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1206 
1207 /**
1208  *	register_mtd_user - register a 'user' of MTD devices.
1209  *	@new: pointer to notifier info structure
1210  *
1211  *	Registers a pair of callbacks function to be called upon addition
1212  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1213  *	invoked for each MTD device currently present in the system.
1214  */
1215 void register_mtd_user (struct mtd_notifier *new)
1216 {
1217 	struct mtd_info *mtd;
1218 
1219 	mutex_lock(&mtd_table_mutex);
1220 
1221 	list_add(&new->list, &mtd_notifiers);
1222 
1223 	__module_get(THIS_MODULE);
1224 
1225 	mtd_for_each_device(mtd)
1226 		new->add(mtd);
1227 
1228 	mutex_unlock(&mtd_table_mutex);
1229 }
1230 EXPORT_SYMBOL_GPL(register_mtd_user);
1231 
1232 /**
1233  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1234  *	@old: pointer to notifier info structure
1235  *
1236  *	Removes a callback function pair from the list of 'users' to be
1237  *	notified upon addition or removal of MTD devices. Causes the
1238  *	'remove' callback to be immediately invoked for each MTD device
1239  *	currently present in the system.
1240  */
1241 int unregister_mtd_user (struct mtd_notifier *old)
1242 {
1243 	struct mtd_info *mtd;
1244 
1245 	mutex_lock(&mtd_table_mutex);
1246 
1247 	module_put(THIS_MODULE);
1248 
1249 	mtd_for_each_device(mtd)
1250 		old->remove(mtd);
1251 
1252 	list_del(&old->list);
1253 	mutex_unlock(&mtd_table_mutex);
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1257 
1258 /**
1259  *	get_mtd_device - obtain a validated handle for an MTD device
1260  *	@mtd: last known address of the required MTD device
1261  *	@num: internal device number of the required MTD device
1262  *
1263  *	Given a number and NULL address, return the num'th entry in the device
1264  *	table, if any.	Given an address and num == -1, search the device table
1265  *	for a device with that address and return if it's still present. Given
1266  *	both, return the num'th driver only if its address matches. Return
1267  *	error code if not.
1268  */
1269 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1270 {
1271 	struct mtd_info *ret = NULL, *other;
1272 	int err = -ENODEV;
1273 
1274 	mutex_lock(&mtd_table_mutex);
1275 
1276 	if (num == -1) {
1277 		mtd_for_each_device(other) {
1278 			if (other == mtd) {
1279 				ret = mtd;
1280 				break;
1281 			}
1282 		}
1283 	} else if (num >= 0) {
1284 		ret = idr_find(&mtd_idr, num);
1285 		if (mtd && mtd != ret)
1286 			ret = NULL;
1287 	}
1288 
1289 	if (!ret) {
1290 		ret = ERR_PTR(err);
1291 		goto out;
1292 	}
1293 
1294 	err = __get_mtd_device(ret);
1295 	if (err)
1296 		ret = ERR_PTR(err);
1297 out:
1298 	mutex_unlock(&mtd_table_mutex);
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(get_mtd_device);
1302 
1303 
1304 int __get_mtd_device(struct mtd_info *mtd)
1305 {
1306 	struct mtd_info *master = mtd_get_master(mtd);
1307 	int err;
1308 
1309 	if (master->_get_device) {
1310 		err = master->_get_device(mtd);
1311 		if (err)
1312 			return err;
1313 	}
1314 
1315 	if (!try_module_get(master->owner)) {
1316 		if (master->_put_device)
1317 			master->_put_device(master);
1318 		return -ENODEV;
1319 	}
1320 
1321 	while (mtd) {
1322 		if (mtd != master)
1323 			kref_get(&mtd->refcnt);
1324 		mtd = mtd->parent;
1325 	}
1326 
1327 	kref_get(&master->refcnt);
1328 
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(__get_mtd_device);
1332 
1333 /**
1334  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1335  *
1336  * @np: device tree node
1337  */
1338 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1339 {
1340 	struct mtd_info *mtd = NULL;
1341 	struct mtd_info *tmp;
1342 	int err;
1343 
1344 	mutex_lock(&mtd_table_mutex);
1345 
1346 	err = -EPROBE_DEFER;
1347 	mtd_for_each_device(tmp) {
1348 		if (mtd_get_of_node(tmp) == np) {
1349 			mtd = tmp;
1350 			err = __get_mtd_device(mtd);
1351 			break;
1352 		}
1353 	}
1354 
1355 	mutex_unlock(&mtd_table_mutex);
1356 
1357 	return err ? ERR_PTR(err) : mtd;
1358 }
1359 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1360 
1361 /**
1362  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1363  *	device name
1364  *	@name: MTD device name to open
1365  *
1366  * 	This function returns MTD device description structure in case of
1367  * 	success and an error code in case of failure.
1368  */
1369 struct mtd_info *get_mtd_device_nm(const char *name)
1370 {
1371 	int err = -ENODEV;
1372 	struct mtd_info *mtd = NULL, *other;
1373 
1374 	mutex_lock(&mtd_table_mutex);
1375 
1376 	mtd_for_each_device(other) {
1377 		if (!strcmp(name, other->name)) {
1378 			mtd = other;
1379 			break;
1380 		}
1381 	}
1382 
1383 	if (!mtd)
1384 		goto out_unlock;
1385 
1386 	err = __get_mtd_device(mtd);
1387 	if (err)
1388 		goto out_unlock;
1389 
1390 	mutex_unlock(&mtd_table_mutex);
1391 	return mtd;
1392 
1393 out_unlock:
1394 	mutex_unlock(&mtd_table_mutex);
1395 	return ERR_PTR(err);
1396 }
1397 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1398 
1399 void put_mtd_device(struct mtd_info *mtd)
1400 {
1401 	mutex_lock(&mtd_table_mutex);
1402 	__put_mtd_device(mtd);
1403 	mutex_unlock(&mtd_table_mutex);
1404 
1405 }
1406 EXPORT_SYMBOL_GPL(put_mtd_device);
1407 
1408 void __put_mtd_device(struct mtd_info *mtd)
1409 {
1410 	struct mtd_info *master = mtd_get_master(mtd);
1411 
1412 	while (mtd) {
1413 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1414 		struct mtd_info *parent = mtd->parent;
1415 
1416 		if (mtd != master)
1417 			kref_put(&mtd->refcnt, mtd_device_release);
1418 		mtd = parent;
1419 	}
1420 
1421 	kref_put(&master->refcnt, mtd_device_release);
1422 
1423 	module_put(master->owner);
1424 
1425 	/* must be the last as master can be freed in the _put_device */
1426 	if (master->_put_device)
1427 		master->_put_device(master);
1428 }
1429 EXPORT_SYMBOL_GPL(__put_mtd_device);
1430 
1431 /*
1432  * Erase is an synchronous operation. Device drivers are epected to return a
1433  * negative error code if the operation failed and update instr->fail_addr
1434  * to point the portion that was not properly erased.
1435  */
1436 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1437 {
1438 	struct mtd_info *master = mtd_get_master(mtd);
1439 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1440 	struct erase_info adjinstr;
1441 	int ret;
1442 
1443 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1444 	adjinstr = *instr;
1445 
1446 	if (!mtd->erasesize || !master->_erase)
1447 		return -ENOTSUPP;
1448 
1449 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1450 		return -EINVAL;
1451 	if (!(mtd->flags & MTD_WRITEABLE))
1452 		return -EROFS;
1453 
1454 	if (!instr->len)
1455 		return 0;
1456 
1457 	ledtrig_mtd_activity();
1458 
1459 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1460 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1461 				master->erasesize;
1462 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1463 				master->erasesize) -
1464 			       adjinstr.addr;
1465 	}
1466 
1467 	adjinstr.addr += mst_ofs;
1468 
1469 	ret = master->_erase(master, &adjinstr);
1470 
1471 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1472 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1473 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1474 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1475 							 master);
1476 			instr->fail_addr *= mtd->erasesize;
1477 		}
1478 	}
1479 
1480 	return ret;
1481 }
1482 EXPORT_SYMBOL_GPL(mtd_erase);
1483 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1484 
1485 /*
1486  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1487  */
1488 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1489 	      void **virt, resource_size_t *phys)
1490 {
1491 	struct mtd_info *master = mtd_get_master(mtd);
1492 
1493 	*retlen = 0;
1494 	*virt = NULL;
1495 	if (phys)
1496 		*phys = 0;
1497 	if (!master->_point)
1498 		return -EOPNOTSUPP;
1499 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1500 		return -EINVAL;
1501 	if (!len)
1502 		return 0;
1503 
1504 	from = mtd_get_master_ofs(mtd, from);
1505 	return master->_point(master, from, len, retlen, virt, phys);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_point);
1508 
1509 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1510 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1511 {
1512 	struct mtd_info *master = mtd_get_master(mtd);
1513 
1514 	if (!master->_unpoint)
1515 		return -EOPNOTSUPP;
1516 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1517 		return -EINVAL;
1518 	if (!len)
1519 		return 0;
1520 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1521 }
1522 EXPORT_SYMBOL_GPL(mtd_unpoint);
1523 
1524 /*
1525  * Allow NOMMU mmap() to directly map the device (if not NULL)
1526  * - return the address to which the offset maps
1527  * - return -ENOSYS to indicate refusal to do the mapping
1528  */
1529 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1530 				    unsigned long offset, unsigned long flags)
1531 {
1532 	size_t retlen;
1533 	void *virt;
1534 	int ret;
1535 
1536 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1537 	if (ret)
1538 		return ret;
1539 	if (retlen != len) {
1540 		mtd_unpoint(mtd, offset, retlen);
1541 		return -ENOSYS;
1542 	}
1543 	return (unsigned long)virt;
1544 }
1545 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1546 
1547 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1548 				 const struct mtd_ecc_stats *old_stats)
1549 {
1550 	struct mtd_ecc_stats diff;
1551 
1552 	if (master == mtd)
1553 		return;
1554 
1555 	diff = master->ecc_stats;
1556 	diff.failed -= old_stats->failed;
1557 	diff.corrected -= old_stats->corrected;
1558 
1559 	while (mtd->parent) {
1560 		mtd->ecc_stats.failed += diff.failed;
1561 		mtd->ecc_stats.corrected += diff.corrected;
1562 		mtd = mtd->parent;
1563 	}
1564 }
1565 
1566 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1567 	     u_char *buf)
1568 {
1569 	struct mtd_oob_ops ops = {
1570 		.len = len,
1571 		.datbuf = buf,
1572 	};
1573 	int ret;
1574 
1575 	ret = mtd_read_oob(mtd, from, &ops);
1576 	*retlen = ops.retlen;
1577 
1578 	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1579 
1580 	return ret;
1581 }
1582 EXPORT_SYMBOL_GPL(mtd_read);
1583 ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1584 
1585 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1586 	      const u_char *buf)
1587 {
1588 	struct mtd_oob_ops ops = {
1589 		.len = len,
1590 		.datbuf = (u8 *)buf,
1591 	};
1592 	int ret;
1593 
1594 	ret = mtd_write_oob(mtd, to, &ops);
1595 	*retlen = ops.retlen;
1596 
1597 	return ret;
1598 }
1599 EXPORT_SYMBOL_GPL(mtd_write);
1600 ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1601 
1602 /*
1603  * In blackbox flight recorder like scenarios we want to make successful writes
1604  * in interrupt context. panic_write() is only intended to be called when its
1605  * known the kernel is about to panic and we need the write to succeed. Since
1606  * the kernel is not going to be running for much longer, this function can
1607  * break locks and delay to ensure the write succeeds (but not sleep).
1608  */
1609 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1610 		    const u_char *buf)
1611 {
1612 	struct mtd_info *master = mtd_get_master(mtd);
1613 
1614 	*retlen = 0;
1615 	if (!master->_panic_write)
1616 		return -EOPNOTSUPP;
1617 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1618 		return -EINVAL;
1619 	if (!(mtd->flags & MTD_WRITEABLE))
1620 		return -EROFS;
1621 	if (!len)
1622 		return 0;
1623 	if (!master->oops_panic_write)
1624 		master->oops_panic_write = true;
1625 
1626 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1627 				    retlen, buf);
1628 }
1629 EXPORT_SYMBOL_GPL(mtd_panic_write);
1630 
1631 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1632 			     struct mtd_oob_ops *ops)
1633 {
1634 	/*
1635 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1636 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1637 	 *  this case.
1638 	 */
1639 	if (!ops->datbuf)
1640 		ops->len = 0;
1641 
1642 	if (!ops->oobbuf)
1643 		ops->ooblen = 0;
1644 
1645 	if (offs < 0 || offs + ops->len > mtd->size)
1646 		return -EINVAL;
1647 
1648 	if (ops->ooblen) {
1649 		size_t maxooblen;
1650 
1651 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1652 			return -EINVAL;
1653 
1654 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1655 				      mtd_div_by_ws(offs, mtd)) *
1656 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1657 		if (ops->ooblen > maxooblen)
1658 			return -EINVAL;
1659 	}
1660 
1661 	return 0;
1662 }
1663 
1664 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1665 			    struct mtd_oob_ops *ops)
1666 {
1667 	struct mtd_info *master = mtd_get_master(mtd);
1668 	int ret;
1669 
1670 	from = mtd_get_master_ofs(mtd, from);
1671 	if (master->_read_oob)
1672 		ret = master->_read_oob(master, from, ops);
1673 	else
1674 		ret = master->_read(master, from, ops->len, &ops->retlen,
1675 				    ops->datbuf);
1676 
1677 	return ret;
1678 }
1679 
1680 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1681 			     struct mtd_oob_ops *ops)
1682 {
1683 	struct mtd_info *master = mtd_get_master(mtd);
1684 	int ret;
1685 
1686 	to = mtd_get_master_ofs(mtd, to);
1687 	if (master->_write_oob)
1688 		ret = master->_write_oob(master, to, ops);
1689 	else
1690 		ret = master->_write(master, to, ops->len, &ops->retlen,
1691 				     ops->datbuf);
1692 
1693 	return ret;
1694 }
1695 
1696 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1697 			       struct mtd_oob_ops *ops)
1698 {
1699 	struct mtd_info *master = mtd_get_master(mtd);
1700 	int ngroups = mtd_pairing_groups(master);
1701 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1702 	struct mtd_oob_ops adjops = *ops;
1703 	unsigned int wunit, oobavail;
1704 	struct mtd_pairing_info info;
1705 	int max_bitflips = 0;
1706 	u32 ebofs, pageofs;
1707 	loff_t base, pos;
1708 
1709 	ebofs = mtd_mod_by_eb(start, mtd);
1710 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1711 	info.group = 0;
1712 	info.pair = mtd_div_by_ws(ebofs, mtd);
1713 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1714 	oobavail = mtd_oobavail(mtd, ops);
1715 
1716 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1717 		int ret;
1718 
1719 		if (info.pair >= npairs) {
1720 			info.pair = 0;
1721 			base += master->erasesize;
1722 		}
1723 
1724 		wunit = mtd_pairing_info_to_wunit(master, &info);
1725 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1726 
1727 		adjops.len = ops->len - ops->retlen;
1728 		if (adjops.len > mtd->writesize - pageofs)
1729 			adjops.len = mtd->writesize - pageofs;
1730 
1731 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1732 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1733 			adjops.ooblen = oobavail - adjops.ooboffs;
1734 
1735 		if (read) {
1736 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1737 			if (ret > 0)
1738 				max_bitflips = max(max_bitflips, ret);
1739 		} else {
1740 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1741 		}
1742 
1743 		if (ret < 0)
1744 			return ret;
1745 
1746 		max_bitflips = max(max_bitflips, ret);
1747 		ops->retlen += adjops.retlen;
1748 		ops->oobretlen += adjops.oobretlen;
1749 		adjops.datbuf += adjops.retlen;
1750 		adjops.oobbuf += adjops.oobretlen;
1751 		adjops.ooboffs = 0;
1752 		pageofs = 0;
1753 		info.pair++;
1754 	}
1755 
1756 	return max_bitflips;
1757 }
1758 
1759 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1760 {
1761 	struct mtd_info *master = mtd_get_master(mtd);
1762 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1763 	int ret_code;
1764 
1765 	ops->retlen = ops->oobretlen = 0;
1766 
1767 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1768 	if (ret_code)
1769 		return ret_code;
1770 
1771 	ledtrig_mtd_activity();
1772 
1773 	/* Check the validity of a potential fallback on mtd->_read */
1774 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1775 		return -EOPNOTSUPP;
1776 
1777 	if (ops->stats)
1778 		memset(ops->stats, 0, sizeof(*ops->stats));
1779 
1780 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1781 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1782 	else
1783 		ret_code = mtd_read_oob_std(mtd, from, ops);
1784 
1785 	mtd_update_ecc_stats(mtd, master, &old_stats);
1786 
1787 	/*
1788 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1789 	 * similar to mtd->_read(), returning a non-negative integer
1790 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1791 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1792 	 */
1793 	if (unlikely(ret_code < 0))
1794 		return ret_code;
1795 	if (mtd->ecc_strength == 0)
1796 		return 0;	/* device lacks ecc */
1797 	if (ops->stats)
1798 		ops->stats->max_bitflips = ret_code;
1799 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1800 }
1801 EXPORT_SYMBOL_GPL(mtd_read_oob);
1802 
1803 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1804 				struct mtd_oob_ops *ops)
1805 {
1806 	struct mtd_info *master = mtd_get_master(mtd);
1807 	int ret;
1808 
1809 	ops->retlen = ops->oobretlen = 0;
1810 
1811 	if (!(mtd->flags & MTD_WRITEABLE))
1812 		return -EROFS;
1813 
1814 	ret = mtd_check_oob_ops(mtd, to, ops);
1815 	if (ret)
1816 		return ret;
1817 
1818 	ledtrig_mtd_activity();
1819 
1820 	/* Check the validity of a potential fallback on mtd->_write */
1821 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1822 		return -EOPNOTSUPP;
1823 
1824 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1825 		return mtd_io_emulated_slc(mtd, to, false, ops);
1826 
1827 	return mtd_write_oob_std(mtd, to, ops);
1828 }
1829 EXPORT_SYMBOL_GPL(mtd_write_oob);
1830 
1831 /**
1832  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1833  * @mtd: MTD device structure
1834  * @section: ECC section. Depending on the layout you may have all the ECC
1835  *	     bytes stored in a single contiguous section, or one section
1836  *	     per ECC chunk (and sometime several sections for a single ECC
1837  *	     ECC chunk)
1838  * @oobecc: OOB region struct filled with the appropriate ECC position
1839  *	    information
1840  *
1841  * This function returns ECC section information in the OOB area. If you want
1842  * to get all the ECC bytes information, then you should call
1843  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1844  *
1845  * Returns zero on success, a negative error code otherwise.
1846  */
1847 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1848 		      struct mtd_oob_region *oobecc)
1849 {
1850 	struct mtd_info *master = mtd_get_master(mtd);
1851 
1852 	memset(oobecc, 0, sizeof(*oobecc));
1853 
1854 	if (!master || section < 0)
1855 		return -EINVAL;
1856 
1857 	if (!master->ooblayout || !master->ooblayout->ecc)
1858 		return -ENOTSUPP;
1859 
1860 	return master->ooblayout->ecc(master, section, oobecc);
1861 }
1862 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1863 
1864 /**
1865  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1866  *			section
1867  * @mtd: MTD device structure
1868  * @section: Free section you are interested in. Depending on the layout
1869  *	     you may have all the free bytes stored in a single contiguous
1870  *	     section, or one section per ECC chunk plus an extra section
1871  *	     for the remaining bytes (or other funky layout).
1872  * @oobfree: OOB region struct filled with the appropriate free position
1873  *	     information
1874  *
1875  * This function returns free bytes position in the OOB area. If you want
1876  * to get all the free bytes information, then you should call
1877  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1878  *
1879  * Returns zero on success, a negative error code otherwise.
1880  */
1881 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1882 		       struct mtd_oob_region *oobfree)
1883 {
1884 	struct mtd_info *master = mtd_get_master(mtd);
1885 
1886 	memset(oobfree, 0, sizeof(*oobfree));
1887 
1888 	if (!master || section < 0)
1889 		return -EINVAL;
1890 
1891 	if (!master->ooblayout || !master->ooblayout->free)
1892 		return -ENOTSUPP;
1893 
1894 	return master->ooblayout->free(master, section, oobfree);
1895 }
1896 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1897 
1898 /**
1899  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1900  * @mtd: mtd info structure
1901  * @byte: the byte we are searching for
1902  * @sectionp: pointer where the section id will be stored
1903  * @oobregion: used to retrieve the ECC position
1904  * @iter: iterator function. Should be either mtd_ooblayout_free or
1905  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1906  *
1907  * This function returns the section id and oobregion information of a
1908  * specific byte. For example, say you want to know where the 4th ECC byte is
1909  * stored, you'll use:
1910  *
1911  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1912  *
1913  * Returns zero on success, a negative error code otherwise.
1914  */
1915 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1916 				int *sectionp, struct mtd_oob_region *oobregion,
1917 				int (*iter)(struct mtd_info *,
1918 					    int section,
1919 					    struct mtd_oob_region *oobregion))
1920 {
1921 	int pos = 0, ret, section = 0;
1922 
1923 	memset(oobregion, 0, sizeof(*oobregion));
1924 
1925 	while (1) {
1926 		ret = iter(mtd, section, oobregion);
1927 		if (ret)
1928 			return ret;
1929 
1930 		if (pos + oobregion->length > byte)
1931 			break;
1932 
1933 		pos += oobregion->length;
1934 		section++;
1935 	}
1936 
1937 	/*
1938 	 * Adjust region info to make it start at the beginning at the
1939 	 * 'start' ECC byte.
1940 	 */
1941 	oobregion->offset += byte - pos;
1942 	oobregion->length -= byte - pos;
1943 	*sectionp = section;
1944 
1945 	return 0;
1946 }
1947 
1948 /**
1949  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1950  *				  ECC byte
1951  * @mtd: mtd info structure
1952  * @eccbyte: the byte we are searching for
1953  * @section: pointer where the section id will be stored
1954  * @oobregion: OOB region information
1955  *
1956  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1957  * byte.
1958  *
1959  * Returns zero on success, a negative error code otherwise.
1960  */
1961 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1962 				 int *section,
1963 				 struct mtd_oob_region *oobregion)
1964 {
1965 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1966 					 mtd_ooblayout_ecc);
1967 }
1968 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1969 
1970 /**
1971  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1972  * @mtd: mtd info structure
1973  * @buf: destination buffer to store OOB bytes
1974  * @oobbuf: OOB buffer
1975  * @start: first byte to retrieve
1976  * @nbytes: number of bytes to retrieve
1977  * @iter: section iterator
1978  *
1979  * Extract bytes attached to a specific category (ECC or free)
1980  * from the OOB buffer and copy them into buf.
1981  *
1982  * Returns zero on success, a negative error code otherwise.
1983  */
1984 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1985 				const u8 *oobbuf, int start, int nbytes,
1986 				int (*iter)(struct mtd_info *,
1987 					    int section,
1988 					    struct mtd_oob_region *oobregion))
1989 {
1990 	struct mtd_oob_region oobregion;
1991 	int section, ret;
1992 
1993 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1994 					&oobregion, iter);
1995 
1996 	while (!ret) {
1997 		int cnt;
1998 
1999 		cnt = min_t(int, nbytes, oobregion.length);
2000 		memcpy(buf, oobbuf + oobregion.offset, cnt);
2001 		buf += cnt;
2002 		nbytes -= cnt;
2003 
2004 		if (!nbytes)
2005 			break;
2006 
2007 		ret = iter(mtd, ++section, &oobregion);
2008 	}
2009 
2010 	return ret;
2011 }
2012 
2013 /**
2014  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
2015  * @mtd: mtd info structure
2016  * @buf: source buffer to get OOB bytes from
2017  * @oobbuf: OOB buffer
2018  * @start: first OOB byte to set
2019  * @nbytes: number of OOB bytes to set
2020  * @iter: section iterator
2021  *
2022  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
2023  * is selected by passing the appropriate iterator.
2024  *
2025  * Returns zero on success, a negative error code otherwise.
2026  */
2027 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
2028 				u8 *oobbuf, int start, int nbytes,
2029 				int (*iter)(struct mtd_info *,
2030 					    int section,
2031 					    struct mtd_oob_region *oobregion))
2032 {
2033 	struct mtd_oob_region oobregion;
2034 	int section, ret;
2035 
2036 	ret = mtd_ooblayout_find_region(mtd, start, &section,
2037 					&oobregion, iter);
2038 
2039 	while (!ret) {
2040 		int cnt;
2041 
2042 		cnt = min_t(int, nbytes, oobregion.length);
2043 		memcpy(oobbuf + oobregion.offset, buf, cnt);
2044 		buf += cnt;
2045 		nbytes -= cnt;
2046 
2047 		if (!nbytes)
2048 			break;
2049 
2050 		ret = iter(mtd, ++section, &oobregion);
2051 	}
2052 
2053 	return ret;
2054 }
2055 
2056 /**
2057  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
2058  * @mtd: mtd info structure
2059  * @iter: category iterator
2060  *
2061  * Count the number of bytes in a given category.
2062  *
2063  * Returns a positive value on success, a negative error code otherwise.
2064  */
2065 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2066 				int (*iter)(struct mtd_info *,
2067 					    int section,
2068 					    struct mtd_oob_region *oobregion))
2069 {
2070 	struct mtd_oob_region oobregion;
2071 	int section = 0, ret, nbytes = 0;
2072 
2073 	while (1) {
2074 		ret = iter(mtd, section++, &oobregion);
2075 		if (ret) {
2076 			if (ret == -ERANGE)
2077 				ret = nbytes;
2078 			break;
2079 		}
2080 
2081 		nbytes += oobregion.length;
2082 	}
2083 
2084 	return ret;
2085 }
2086 
2087 /**
2088  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2089  * @mtd: mtd info structure
2090  * @eccbuf: destination buffer to store ECC bytes
2091  * @oobbuf: OOB buffer
2092  * @start: first ECC byte to retrieve
2093  * @nbytes: number of ECC bytes to retrieve
2094  *
2095  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2096  *
2097  * Returns zero on success, a negative error code otherwise.
2098  */
2099 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2100 			       const u8 *oobbuf, int start, int nbytes)
2101 {
2102 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2103 				       mtd_ooblayout_ecc);
2104 }
2105 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2106 
2107 /**
2108  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2109  * @mtd: mtd info structure
2110  * @eccbuf: source buffer to get ECC bytes from
2111  * @oobbuf: OOB buffer
2112  * @start: first ECC byte to set
2113  * @nbytes: number of ECC bytes to set
2114  *
2115  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2116  *
2117  * Returns zero on success, a negative error code otherwise.
2118  */
2119 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2120 			       u8 *oobbuf, int start, int nbytes)
2121 {
2122 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2123 				       mtd_ooblayout_ecc);
2124 }
2125 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2126 
2127 /**
2128  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2129  * @mtd: mtd info structure
2130  * @databuf: destination buffer to store ECC bytes
2131  * @oobbuf: OOB buffer
2132  * @start: first ECC byte to retrieve
2133  * @nbytes: number of ECC bytes to retrieve
2134  *
2135  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2136  *
2137  * Returns zero on success, a negative error code otherwise.
2138  */
2139 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2140 				const u8 *oobbuf, int start, int nbytes)
2141 {
2142 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2143 				       mtd_ooblayout_free);
2144 }
2145 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2146 
2147 /**
2148  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2149  * @mtd: mtd info structure
2150  * @databuf: source buffer to get data bytes from
2151  * @oobbuf: OOB buffer
2152  * @start: first ECC byte to set
2153  * @nbytes: number of ECC bytes to set
2154  *
2155  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2156  *
2157  * Returns zero on success, a negative error code otherwise.
2158  */
2159 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2160 				u8 *oobbuf, int start, int nbytes)
2161 {
2162 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2163 				       mtd_ooblayout_free);
2164 }
2165 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2166 
2167 /**
2168  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2169  * @mtd: mtd info structure
2170  *
2171  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2172  *
2173  * Returns zero on success, a negative error code otherwise.
2174  */
2175 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2176 {
2177 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2178 }
2179 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2180 
2181 /**
2182  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2183  * @mtd: mtd info structure
2184  *
2185  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2186  *
2187  * Returns zero on success, a negative error code otherwise.
2188  */
2189 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2190 {
2191 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2192 }
2193 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2194 
2195 /*
2196  * Method to access the protection register area, present in some flash
2197  * devices. The user data is one time programmable but the factory data is read
2198  * only.
2199  */
2200 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2201 			   struct otp_info *buf)
2202 {
2203 	struct mtd_info *master = mtd_get_master(mtd);
2204 
2205 	if (!master->_get_fact_prot_info)
2206 		return -EOPNOTSUPP;
2207 	if (!len)
2208 		return 0;
2209 	return master->_get_fact_prot_info(master, len, retlen, buf);
2210 }
2211 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2212 
2213 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2214 			   size_t *retlen, u_char *buf)
2215 {
2216 	struct mtd_info *master = mtd_get_master(mtd);
2217 
2218 	*retlen = 0;
2219 	if (!master->_read_fact_prot_reg)
2220 		return -EOPNOTSUPP;
2221 	if (!len)
2222 		return 0;
2223 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2224 }
2225 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2226 
2227 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2228 			   struct otp_info *buf)
2229 {
2230 	struct mtd_info *master = mtd_get_master(mtd);
2231 
2232 	if (!master->_get_user_prot_info)
2233 		return -EOPNOTSUPP;
2234 	if (!len)
2235 		return 0;
2236 	return master->_get_user_prot_info(master, len, retlen, buf);
2237 }
2238 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2239 
2240 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2241 			   size_t *retlen, u_char *buf)
2242 {
2243 	struct mtd_info *master = mtd_get_master(mtd);
2244 
2245 	*retlen = 0;
2246 	if (!master->_read_user_prot_reg)
2247 		return -EOPNOTSUPP;
2248 	if (!len)
2249 		return 0;
2250 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2251 }
2252 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2253 
2254 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2255 			    size_t *retlen, const u_char *buf)
2256 {
2257 	struct mtd_info *master = mtd_get_master(mtd);
2258 	int ret;
2259 
2260 	*retlen = 0;
2261 	if (!master->_write_user_prot_reg)
2262 		return -EOPNOTSUPP;
2263 	if (!len)
2264 		return 0;
2265 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2266 	if (ret)
2267 		return ret;
2268 
2269 	/*
2270 	 * If no data could be written at all, we are out of memory and
2271 	 * must return -ENOSPC.
2272 	 */
2273 	return (*retlen) ? 0 : -ENOSPC;
2274 }
2275 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2276 
2277 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2278 {
2279 	struct mtd_info *master = mtd_get_master(mtd);
2280 
2281 	if (!master->_lock_user_prot_reg)
2282 		return -EOPNOTSUPP;
2283 	if (!len)
2284 		return 0;
2285 	return master->_lock_user_prot_reg(master, from, len);
2286 }
2287 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2288 
2289 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2290 {
2291 	struct mtd_info *master = mtd_get_master(mtd);
2292 
2293 	if (!master->_erase_user_prot_reg)
2294 		return -EOPNOTSUPP;
2295 	if (!len)
2296 		return 0;
2297 	return master->_erase_user_prot_reg(master, from, len);
2298 }
2299 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2300 
2301 /* Chip-supported device locking */
2302 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2303 {
2304 	struct mtd_info *master = mtd_get_master(mtd);
2305 
2306 	if (!master->_lock)
2307 		return -EOPNOTSUPP;
2308 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2309 		return -EINVAL;
2310 	if (!len)
2311 		return 0;
2312 
2313 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2314 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2315 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2316 	}
2317 
2318 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2319 }
2320 EXPORT_SYMBOL_GPL(mtd_lock);
2321 
2322 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2323 {
2324 	struct mtd_info *master = mtd_get_master(mtd);
2325 
2326 	if (!master->_unlock)
2327 		return -EOPNOTSUPP;
2328 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2329 		return -EINVAL;
2330 	if (!len)
2331 		return 0;
2332 
2333 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2334 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2335 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2336 	}
2337 
2338 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2339 }
2340 EXPORT_SYMBOL_GPL(mtd_unlock);
2341 
2342 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2343 {
2344 	struct mtd_info *master = mtd_get_master(mtd);
2345 
2346 	if (!master->_is_locked)
2347 		return -EOPNOTSUPP;
2348 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2349 		return -EINVAL;
2350 	if (!len)
2351 		return 0;
2352 
2353 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2354 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2355 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2356 	}
2357 
2358 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2359 }
2360 EXPORT_SYMBOL_GPL(mtd_is_locked);
2361 
2362 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2363 {
2364 	struct mtd_info *master = mtd_get_master(mtd);
2365 
2366 	if (ofs < 0 || ofs >= mtd->size)
2367 		return -EINVAL;
2368 	if (!master->_block_isreserved)
2369 		return 0;
2370 
2371 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2372 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2373 
2374 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2375 }
2376 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2377 
2378 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2379 {
2380 	struct mtd_info *master = mtd_get_master(mtd);
2381 
2382 	if (ofs < 0 || ofs >= mtd->size)
2383 		return -EINVAL;
2384 	if (!master->_block_isbad)
2385 		return 0;
2386 
2387 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2388 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2389 
2390 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2391 }
2392 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2393 
2394 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2395 {
2396 	struct mtd_info *master = mtd_get_master(mtd);
2397 	int ret;
2398 
2399 	if (!master->_block_markbad)
2400 		return -EOPNOTSUPP;
2401 	if (ofs < 0 || ofs >= mtd->size)
2402 		return -EINVAL;
2403 	if (!(mtd->flags & MTD_WRITEABLE))
2404 		return -EROFS;
2405 
2406 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2407 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2408 
2409 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2410 	if (ret)
2411 		return ret;
2412 
2413 	while (mtd->parent) {
2414 		mtd->ecc_stats.badblocks++;
2415 		mtd = mtd->parent;
2416 	}
2417 
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2421 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2422 
2423 /*
2424  * default_mtd_writev - the default writev method
2425  * @mtd: mtd device description object pointer
2426  * @vecs: the vectors to write
2427  * @count: count of vectors in @vecs
2428  * @to: the MTD device offset to write to
2429  * @retlen: on exit contains the count of bytes written to the MTD device.
2430  *
2431  * This function returns zero in case of success and a negative error code in
2432  * case of failure.
2433  */
2434 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2435 			      unsigned long count, loff_t to, size_t *retlen)
2436 {
2437 	unsigned long i;
2438 	size_t totlen = 0, thislen;
2439 	int ret = 0;
2440 
2441 	for (i = 0; i < count; i++) {
2442 		if (!vecs[i].iov_len)
2443 			continue;
2444 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2445 				vecs[i].iov_base);
2446 		totlen += thislen;
2447 		if (ret || thislen != vecs[i].iov_len)
2448 			break;
2449 		to += vecs[i].iov_len;
2450 	}
2451 	*retlen = totlen;
2452 	return ret;
2453 }
2454 
2455 /*
2456  * mtd_writev - the vector-based MTD write method
2457  * @mtd: mtd device description object pointer
2458  * @vecs: the vectors to write
2459  * @count: count of vectors in @vecs
2460  * @to: the MTD device offset to write to
2461  * @retlen: on exit contains the count of bytes written to the MTD device.
2462  *
2463  * This function returns zero in case of success and a negative error code in
2464  * case of failure.
2465  */
2466 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2467 	       unsigned long count, loff_t to, size_t *retlen)
2468 {
2469 	struct mtd_info *master = mtd_get_master(mtd);
2470 
2471 	*retlen = 0;
2472 	if (!(mtd->flags & MTD_WRITEABLE))
2473 		return -EROFS;
2474 
2475 	if (!master->_writev)
2476 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2477 
2478 	return master->_writev(master, vecs, count,
2479 			       mtd_get_master_ofs(mtd, to), retlen);
2480 }
2481 EXPORT_SYMBOL_GPL(mtd_writev);
2482 
2483 /**
2484  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2485  * @mtd: mtd device description object pointer
2486  * @size: a pointer to the ideal or maximum size of the allocation, points
2487  *        to the actual allocation size on success.
2488  *
2489  * This routine attempts to allocate a contiguous kernel buffer up to
2490  * the specified size, backing off the size of the request exponentially
2491  * until the request succeeds or until the allocation size falls below
2492  * the system page size. This attempts to make sure it does not adversely
2493  * impact system performance, so when allocating more than one page, we
2494  * ask the memory allocator to avoid re-trying, swapping, writing back
2495  * or performing I/O.
2496  *
2497  * Note, this function also makes sure that the allocated buffer is aligned to
2498  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2499  *
2500  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2501  * to handle smaller (i.e. degraded) buffer allocations under low- or
2502  * fragmented-memory situations where such reduced allocations, from a
2503  * requested ideal, are allowed.
2504  *
2505  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2506  */
2507 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2508 {
2509 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2510 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2511 	void *kbuf;
2512 
2513 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2514 
2515 	while (*size > min_alloc) {
2516 		kbuf = kmalloc(*size, flags);
2517 		if (kbuf)
2518 			return kbuf;
2519 
2520 		*size >>= 1;
2521 		*size = ALIGN(*size, mtd->writesize);
2522 	}
2523 
2524 	/*
2525 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2526 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2527 	 */
2528 	return kmalloc(*size, GFP_KERNEL);
2529 }
2530 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2531 
2532 #ifdef CONFIG_PROC_FS
2533 
2534 /*====================================================================*/
2535 /* Support for /proc/mtd */
2536 
2537 static int mtd_proc_show(struct seq_file *m, void *v)
2538 {
2539 	struct mtd_info *mtd;
2540 
2541 	seq_puts(m, "dev:    size   erasesize  name\n");
2542 	mutex_lock(&mtd_table_mutex);
2543 	mtd_for_each_device(mtd) {
2544 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2545 			   mtd->index, (unsigned long long)mtd->size,
2546 			   mtd->erasesize, mtd->name);
2547 	}
2548 	mutex_unlock(&mtd_table_mutex);
2549 	return 0;
2550 }
2551 #endif /* CONFIG_PROC_FS */
2552 
2553 /*====================================================================*/
2554 /* Init code */
2555 
2556 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2557 {
2558 	struct backing_dev_info *bdi;
2559 	int ret;
2560 
2561 	bdi = bdi_alloc(NUMA_NO_NODE);
2562 	if (!bdi)
2563 		return ERR_PTR(-ENOMEM);
2564 	bdi->ra_pages = 0;
2565 	bdi->io_pages = 0;
2566 
2567 	/*
2568 	 * We put '-0' suffix to the name to get the same name format as we
2569 	 * used to get. Since this is called only once, we get a unique name.
2570 	 */
2571 	ret = bdi_register(bdi, "%.28s-0", name);
2572 	if (ret)
2573 		bdi_put(bdi);
2574 
2575 	return ret ? ERR_PTR(ret) : bdi;
2576 }
2577 
2578 static struct proc_dir_entry *proc_mtd;
2579 
2580 static int __init init_mtd(void)
2581 {
2582 	int ret;
2583 
2584 	ret = class_register(&mtd_class);
2585 	if (ret)
2586 		goto err_reg;
2587 
2588 	ret = class_register(&mtd_master_class);
2589 	if (ret)
2590 		goto err_reg2;
2591 
2592 	ret = alloc_chrdev_region(&mtd_master_devt, 0, MTD_MASTER_DEVS, "mtd_master");
2593 	if (ret < 0) {
2594 		pr_err("unable to allocate char dev region\n");
2595 		goto err_chrdev;
2596 	}
2597 
2598 	mtd_bdi = mtd_bdi_init("mtd");
2599 	if (IS_ERR(mtd_bdi)) {
2600 		ret = PTR_ERR(mtd_bdi);
2601 		goto err_bdi;
2602 	}
2603 
2604 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2605 
2606 	ret = init_mtdchar();
2607 	if (ret)
2608 		goto out_procfs;
2609 
2610 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2611 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2612 			    &mtd_expert_analysis_mode);
2613 
2614 	return 0;
2615 
2616 out_procfs:
2617 	if (proc_mtd)
2618 		remove_proc_entry("mtd", NULL);
2619 	bdi_unregister(mtd_bdi);
2620 	bdi_put(mtd_bdi);
2621 err_bdi:
2622 	unregister_chrdev_region(mtd_master_devt, MTD_MASTER_DEVS);
2623 err_chrdev:
2624 	class_unregister(&mtd_master_class);
2625 err_reg2:
2626 	class_unregister(&mtd_class);
2627 err_reg:
2628 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2629 	return ret;
2630 }
2631 
2632 static void __exit cleanup_mtd(void)
2633 {
2634 	debugfs_remove_recursive(dfs_dir_mtd);
2635 	cleanup_mtdchar();
2636 	if (proc_mtd)
2637 		remove_proc_entry("mtd", NULL);
2638 	class_unregister(&mtd_class);
2639 	class_unregister(&mtd_master_class);
2640 	unregister_chrdev_region(mtd_master_devt, MTD_MASTER_DEVS);
2641 	bdi_unregister(mtd_bdi);
2642 	bdi_put(mtd_bdi);
2643 	idr_destroy(&mtd_idr);
2644 	idr_destroy(&mtd_master_idr);
2645 }
2646 
2647 module_init(init_mtd);
2648 module_exit(cleanup_mtd);
2649 
2650 MODULE_LICENSE("GPL");
2651 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2652 MODULE_DESCRIPTION("Core MTD registration and access routines");
2653