1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/proc_fs.h> 36 #include <linux/idr.h> 37 #include <linux/backing-dev.h> 38 #include <linux/gfp.h> 39 40 #include <linux/mtd/mtd.h> 41 #include <linux/mtd/partitions.h> 42 43 #include "mtdcore.h" 44 /* 45 * backing device capabilities for non-mappable devices (such as NAND flash) 46 * - permits private mappings, copies are taken of the data 47 */ 48 static struct backing_dev_info mtd_bdi_unmappable = { 49 .capabilities = BDI_CAP_MAP_COPY, 50 }; 51 52 /* 53 * backing device capabilities for R/O mappable devices (such as ROM) 54 * - permits private mappings, copies are taken of the data 55 * - permits non-writable shared mappings 56 */ 57 static struct backing_dev_info mtd_bdi_ro_mappable = { 58 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 59 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP), 60 }; 61 62 /* 63 * backing device capabilities for writable mappable devices (such as RAM) 64 * - permits private mappings, copies are taken of the data 65 * - permits non-writable shared mappings 66 */ 67 static struct backing_dev_info mtd_bdi_rw_mappable = { 68 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT | 69 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP | 70 BDI_CAP_WRITE_MAP), 71 }; 72 73 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 74 static int mtd_cls_resume(struct device *dev); 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .suspend = mtd_cls_suspend, 80 .resume = mtd_cls_resume, 81 }; 82 83 static DEFINE_IDR(mtd_idr); 84 85 /* These are exported solely for the purpose of mtd_blkdevs.c. You 86 should not use them for _anything_ else */ 87 DEFINE_MUTEX(mtd_table_mutex); 88 EXPORT_SYMBOL_GPL(mtd_table_mutex); 89 90 struct mtd_info *__mtd_next_device(int i) 91 { 92 return idr_get_next(&mtd_idr, &i); 93 } 94 EXPORT_SYMBOL_GPL(__mtd_next_device); 95 96 static LIST_HEAD(mtd_notifiers); 97 98 99 #if defined(CONFIG_MTD_CHAR) || defined(CONFIG_MTD_CHAR_MODULE) 100 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 101 #else 102 #define MTD_DEVT(index) 0 103 #endif 104 105 /* REVISIT once MTD uses the driver model better, whoever allocates 106 * the mtd_info will probably want to use the release() hook... 107 */ 108 static void mtd_release(struct device *dev) 109 { 110 dev_t index = MTD_DEVT(dev_to_mtd(dev)->index); 111 112 /* remove /dev/mtdXro node if needed */ 113 if (index) 114 device_destroy(&mtd_class, index + 1); 115 } 116 117 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 118 { 119 struct mtd_info *mtd = dev_to_mtd(dev); 120 121 if (mtd && mtd->suspend) 122 return mtd->suspend(mtd); 123 else 124 return 0; 125 } 126 127 static int mtd_cls_resume(struct device *dev) 128 { 129 struct mtd_info *mtd = dev_to_mtd(dev); 130 131 if (mtd && mtd->resume) 132 mtd->resume(mtd); 133 return 0; 134 } 135 136 static ssize_t mtd_type_show(struct device *dev, 137 struct device_attribute *attr, char *buf) 138 { 139 struct mtd_info *mtd = dev_to_mtd(dev); 140 char *type; 141 142 switch (mtd->type) { 143 case MTD_ABSENT: 144 type = "absent"; 145 break; 146 case MTD_RAM: 147 type = "ram"; 148 break; 149 case MTD_ROM: 150 type = "rom"; 151 break; 152 case MTD_NORFLASH: 153 type = "nor"; 154 break; 155 case MTD_NANDFLASH: 156 type = "nand"; 157 break; 158 case MTD_DATAFLASH: 159 type = "dataflash"; 160 break; 161 case MTD_UBIVOLUME: 162 type = "ubi"; 163 break; 164 default: 165 type = "unknown"; 166 } 167 168 return snprintf(buf, PAGE_SIZE, "%s\n", type); 169 } 170 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 171 172 static ssize_t mtd_flags_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_to_mtd(dev); 176 177 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 178 179 } 180 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 181 182 static ssize_t mtd_size_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_to_mtd(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%llu\n", 188 (unsigned long long)mtd->size); 189 190 } 191 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 192 193 static ssize_t mtd_erasesize_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_to_mtd(dev); 197 198 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 199 200 } 201 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 202 203 static ssize_t mtd_writesize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_to_mtd(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 209 210 } 211 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 212 213 static ssize_t mtd_subpagesize_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_to_mtd(dev); 217 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 218 219 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 220 221 } 222 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 223 224 static ssize_t mtd_oobsize_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 struct mtd_info *mtd = dev_to_mtd(dev); 228 229 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 230 231 } 232 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 233 234 static ssize_t mtd_numeraseregions_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_to_mtd(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 240 241 } 242 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 243 NULL); 244 245 static ssize_t mtd_name_show(struct device *dev, 246 struct device_attribute *attr, char *buf) 247 { 248 struct mtd_info *mtd = dev_to_mtd(dev); 249 250 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 251 252 } 253 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 254 255 static struct attribute *mtd_attrs[] = { 256 &dev_attr_type.attr, 257 &dev_attr_flags.attr, 258 &dev_attr_size.attr, 259 &dev_attr_erasesize.attr, 260 &dev_attr_writesize.attr, 261 &dev_attr_subpagesize.attr, 262 &dev_attr_oobsize.attr, 263 &dev_attr_numeraseregions.attr, 264 &dev_attr_name.attr, 265 NULL, 266 }; 267 268 static struct attribute_group mtd_group = { 269 .attrs = mtd_attrs, 270 }; 271 272 static const struct attribute_group *mtd_groups[] = { 273 &mtd_group, 274 NULL, 275 }; 276 277 static struct device_type mtd_devtype = { 278 .name = "mtd", 279 .groups = mtd_groups, 280 .release = mtd_release, 281 }; 282 283 /** 284 * add_mtd_device - register an MTD device 285 * @mtd: pointer to new MTD device info structure 286 * 287 * Add a device to the list of MTD devices present in the system, and 288 * notify each currently active MTD 'user' of its arrival. Returns 289 * zero on success or 1 on failure, which currently will only happen 290 * if there is insufficient memory or a sysfs error. 291 */ 292 293 int add_mtd_device(struct mtd_info *mtd) 294 { 295 struct mtd_notifier *not; 296 int i, error; 297 298 if (!mtd->backing_dev_info) { 299 switch (mtd->type) { 300 case MTD_RAM: 301 mtd->backing_dev_info = &mtd_bdi_rw_mappable; 302 break; 303 case MTD_ROM: 304 mtd->backing_dev_info = &mtd_bdi_ro_mappable; 305 break; 306 default: 307 mtd->backing_dev_info = &mtd_bdi_unmappable; 308 break; 309 } 310 } 311 312 BUG_ON(mtd->writesize == 0); 313 mutex_lock(&mtd_table_mutex); 314 315 do { 316 if (!idr_pre_get(&mtd_idr, GFP_KERNEL)) 317 goto fail_locked; 318 error = idr_get_new(&mtd_idr, mtd, &i); 319 } while (error == -EAGAIN); 320 321 if (error) 322 goto fail_locked; 323 324 mtd->index = i; 325 mtd->usecount = 0; 326 327 if (is_power_of_2(mtd->erasesize)) 328 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 329 else 330 mtd->erasesize_shift = 0; 331 332 if (is_power_of_2(mtd->writesize)) 333 mtd->writesize_shift = ffs(mtd->writesize) - 1; 334 else 335 mtd->writesize_shift = 0; 336 337 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 338 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 339 340 /* Some chips always power up locked. Unlock them now */ 341 if ((mtd->flags & MTD_WRITEABLE) 342 && (mtd->flags & MTD_POWERUP_LOCK) && mtd->unlock) { 343 if (mtd->unlock(mtd, 0, mtd->size)) 344 printk(KERN_WARNING 345 "%s: unlock failed, writes may not work\n", 346 mtd->name); 347 } 348 349 /* Caller should have set dev.parent to match the 350 * physical device. 351 */ 352 mtd->dev.type = &mtd_devtype; 353 mtd->dev.class = &mtd_class; 354 mtd->dev.devt = MTD_DEVT(i); 355 dev_set_name(&mtd->dev, "mtd%d", i); 356 dev_set_drvdata(&mtd->dev, mtd); 357 if (device_register(&mtd->dev) != 0) 358 goto fail_added; 359 360 if (MTD_DEVT(i)) 361 device_create(&mtd_class, mtd->dev.parent, 362 MTD_DEVT(i) + 1, 363 NULL, "mtd%dro", i); 364 365 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 366 /* No need to get a refcount on the module containing 367 the notifier, since we hold the mtd_table_mutex */ 368 list_for_each_entry(not, &mtd_notifiers, list) 369 not->add(mtd); 370 371 mutex_unlock(&mtd_table_mutex); 372 /* We _know_ we aren't being removed, because 373 our caller is still holding us here. So none 374 of this try_ nonsense, and no bitching about it 375 either. :) */ 376 __module_get(THIS_MODULE); 377 return 0; 378 379 fail_added: 380 idr_remove(&mtd_idr, i); 381 fail_locked: 382 mutex_unlock(&mtd_table_mutex); 383 return 1; 384 } 385 386 /** 387 * del_mtd_device - unregister an MTD device 388 * @mtd: pointer to MTD device info structure 389 * 390 * Remove a device from the list of MTD devices present in the system, 391 * and notify each currently active MTD 'user' of its departure. 392 * Returns zero on success or 1 on failure, which currently will happen 393 * if the requested device does not appear to be present in the list. 394 */ 395 396 int del_mtd_device(struct mtd_info *mtd) 397 { 398 int ret; 399 struct mtd_notifier *not; 400 401 mutex_lock(&mtd_table_mutex); 402 403 if (idr_find(&mtd_idr, mtd->index) != mtd) { 404 ret = -ENODEV; 405 goto out_error; 406 } 407 408 /* No need to get a refcount on the module containing 409 the notifier, since we hold the mtd_table_mutex */ 410 list_for_each_entry(not, &mtd_notifiers, list) 411 not->remove(mtd); 412 413 if (mtd->usecount) { 414 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 415 mtd->index, mtd->name, mtd->usecount); 416 ret = -EBUSY; 417 } else { 418 device_unregister(&mtd->dev); 419 420 idr_remove(&mtd_idr, mtd->index); 421 422 module_put(THIS_MODULE); 423 ret = 0; 424 } 425 426 out_error: 427 mutex_unlock(&mtd_table_mutex); 428 return ret; 429 } 430 431 /** 432 * mtd_device_parse_register - parse partitions and register an MTD device. 433 * 434 * @mtd: the MTD device to register 435 * @types: the list of MTD partition probes to try, see 436 * 'parse_mtd_partitions()' for more information 437 * @parser_data: MTD partition parser-specific data 438 * @parts: fallback partition information to register, if parsing fails; 439 * only valid if %nr_parts > %0 440 * @nr_parts: the number of partitions in parts, if zero then the full 441 * MTD device is registered if no partition info is found 442 * 443 * This function aggregates MTD partitions parsing (done by 444 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 445 * basically follows the most common pattern found in many MTD drivers: 446 * 447 * * It first tries to probe partitions on MTD device @mtd using parsers 448 * specified in @types (if @types is %NULL, then the default list of parsers 449 * is used, see 'parse_mtd_partitions()' for more information). If none are 450 * found this functions tries to fallback to information specified in 451 * @parts/@nr_parts. 452 * * If any partitioning info was found, this function registers the found 453 * partitions. 454 * * If no partitions were found this function just registers the MTD device 455 * @mtd and exits. 456 * 457 * Returns zero in case of success and a negative error code in case of failure. 458 */ 459 int mtd_device_parse_register(struct mtd_info *mtd, const char **types, 460 struct mtd_part_parser_data *parser_data, 461 const struct mtd_partition *parts, 462 int nr_parts) 463 { 464 int err; 465 struct mtd_partition *real_parts; 466 467 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 468 if (err <= 0 && nr_parts && parts) { 469 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 470 GFP_KERNEL); 471 if (!real_parts) 472 err = -ENOMEM; 473 else 474 err = nr_parts; 475 } 476 477 if (err > 0) { 478 err = add_mtd_partitions(mtd, real_parts, err); 479 kfree(real_parts); 480 } else if (err == 0) { 481 err = add_mtd_device(mtd); 482 if (err == 1) 483 err = -ENODEV; 484 } 485 486 return err; 487 } 488 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 489 490 /** 491 * mtd_device_unregister - unregister an existing MTD device. 492 * 493 * @master: the MTD device to unregister. This will unregister both the master 494 * and any partitions if registered. 495 */ 496 int mtd_device_unregister(struct mtd_info *master) 497 { 498 int err; 499 500 err = del_mtd_partitions(master); 501 if (err) 502 return err; 503 504 if (!device_is_registered(&master->dev)) 505 return 0; 506 507 return del_mtd_device(master); 508 } 509 EXPORT_SYMBOL_GPL(mtd_device_unregister); 510 511 /** 512 * register_mtd_user - register a 'user' of MTD devices. 513 * @new: pointer to notifier info structure 514 * 515 * Registers a pair of callbacks function to be called upon addition 516 * or removal of MTD devices. Causes the 'add' callback to be immediately 517 * invoked for each MTD device currently present in the system. 518 */ 519 520 void register_mtd_user (struct mtd_notifier *new) 521 { 522 struct mtd_info *mtd; 523 524 mutex_lock(&mtd_table_mutex); 525 526 list_add(&new->list, &mtd_notifiers); 527 528 __module_get(THIS_MODULE); 529 530 mtd_for_each_device(mtd) 531 new->add(mtd); 532 533 mutex_unlock(&mtd_table_mutex); 534 } 535 536 /** 537 * unregister_mtd_user - unregister a 'user' of MTD devices. 538 * @old: pointer to notifier info structure 539 * 540 * Removes a callback function pair from the list of 'users' to be 541 * notified upon addition or removal of MTD devices. Causes the 542 * 'remove' callback to be immediately invoked for each MTD device 543 * currently present in the system. 544 */ 545 546 int unregister_mtd_user (struct mtd_notifier *old) 547 { 548 struct mtd_info *mtd; 549 550 mutex_lock(&mtd_table_mutex); 551 552 module_put(THIS_MODULE); 553 554 mtd_for_each_device(mtd) 555 old->remove(mtd); 556 557 list_del(&old->list); 558 mutex_unlock(&mtd_table_mutex); 559 return 0; 560 } 561 562 563 /** 564 * get_mtd_device - obtain a validated handle for an MTD device 565 * @mtd: last known address of the required MTD device 566 * @num: internal device number of the required MTD device 567 * 568 * Given a number and NULL address, return the num'th entry in the device 569 * table, if any. Given an address and num == -1, search the device table 570 * for a device with that address and return if it's still present. Given 571 * both, return the num'th driver only if its address matches. Return 572 * error code if not. 573 */ 574 575 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 576 { 577 struct mtd_info *ret = NULL, *other; 578 int err = -ENODEV; 579 580 mutex_lock(&mtd_table_mutex); 581 582 if (num == -1) { 583 mtd_for_each_device(other) { 584 if (other == mtd) { 585 ret = mtd; 586 break; 587 } 588 } 589 } else if (num >= 0) { 590 ret = idr_find(&mtd_idr, num); 591 if (mtd && mtd != ret) 592 ret = NULL; 593 } 594 595 if (!ret) { 596 ret = ERR_PTR(err); 597 goto out; 598 } 599 600 err = __get_mtd_device(ret); 601 if (err) 602 ret = ERR_PTR(err); 603 out: 604 mutex_unlock(&mtd_table_mutex); 605 return ret; 606 } 607 608 609 int __get_mtd_device(struct mtd_info *mtd) 610 { 611 int err; 612 613 if (!try_module_get(mtd->owner)) 614 return -ENODEV; 615 616 if (mtd->get_device) { 617 err = mtd->get_device(mtd); 618 619 if (err) { 620 module_put(mtd->owner); 621 return err; 622 } 623 } 624 mtd->usecount++; 625 return 0; 626 } 627 628 /** 629 * get_mtd_device_nm - obtain a validated handle for an MTD device by 630 * device name 631 * @name: MTD device name to open 632 * 633 * This function returns MTD device description structure in case of 634 * success and an error code in case of failure. 635 */ 636 637 struct mtd_info *get_mtd_device_nm(const char *name) 638 { 639 int err = -ENODEV; 640 struct mtd_info *mtd = NULL, *other; 641 642 mutex_lock(&mtd_table_mutex); 643 644 mtd_for_each_device(other) { 645 if (!strcmp(name, other->name)) { 646 mtd = other; 647 break; 648 } 649 } 650 651 if (!mtd) 652 goto out_unlock; 653 654 err = __get_mtd_device(mtd); 655 if (err) 656 goto out_unlock; 657 658 mutex_unlock(&mtd_table_mutex); 659 return mtd; 660 661 out_unlock: 662 mutex_unlock(&mtd_table_mutex); 663 return ERR_PTR(err); 664 } 665 666 void put_mtd_device(struct mtd_info *mtd) 667 { 668 mutex_lock(&mtd_table_mutex); 669 __put_mtd_device(mtd); 670 mutex_unlock(&mtd_table_mutex); 671 672 } 673 674 void __put_mtd_device(struct mtd_info *mtd) 675 { 676 --mtd->usecount; 677 BUG_ON(mtd->usecount < 0); 678 679 if (mtd->put_device) 680 mtd->put_device(mtd); 681 682 module_put(mtd->owner); 683 } 684 685 /* default_mtd_writev - default mtd writev method for MTD devices that 686 * don't implement their own 687 */ 688 689 int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 690 unsigned long count, loff_t to, size_t *retlen) 691 { 692 unsigned long i; 693 size_t totlen = 0, thislen; 694 int ret = 0; 695 696 if(!mtd->write) { 697 ret = -EROFS; 698 } else { 699 for (i=0; i<count; i++) { 700 if (!vecs[i].iov_len) 701 continue; 702 ret = mtd->write(mtd, to, vecs[i].iov_len, &thislen, vecs[i].iov_base); 703 totlen += thislen; 704 if (ret || thislen != vecs[i].iov_len) 705 break; 706 to += vecs[i].iov_len; 707 } 708 } 709 if (retlen) 710 *retlen = totlen; 711 return ret; 712 } 713 714 /** 715 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 716 * @size: A pointer to the ideal or maximum size of the allocation. Points 717 * to the actual allocation size on success. 718 * 719 * This routine attempts to allocate a contiguous kernel buffer up to 720 * the specified size, backing off the size of the request exponentially 721 * until the request succeeds or until the allocation size falls below 722 * the system page size. This attempts to make sure it does not adversely 723 * impact system performance, so when allocating more than one page, we 724 * ask the memory allocator to avoid re-trying, swapping, writing back 725 * or performing I/O. 726 * 727 * Note, this function also makes sure that the allocated buffer is aligned to 728 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 729 * 730 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 731 * to handle smaller (i.e. degraded) buffer allocations under low- or 732 * fragmented-memory situations where such reduced allocations, from a 733 * requested ideal, are allowed. 734 * 735 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 736 */ 737 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 738 { 739 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 740 __GFP_NORETRY | __GFP_NO_KSWAPD; 741 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 742 void *kbuf; 743 744 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 745 746 while (*size > min_alloc) { 747 kbuf = kmalloc(*size, flags); 748 if (kbuf) 749 return kbuf; 750 751 *size >>= 1; 752 *size = ALIGN(*size, mtd->writesize); 753 } 754 755 /* 756 * For the last resort allocation allow 'kmalloc()' to do all sorts of 757 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 758 */ 759 return kmalloc(*size, GFP_KERNEL); 760 } 761 762 EXPORT_SYMBOL_GPL(get_mtd_device); 763 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 764 EXPORT_SYMBOL_GPL(__get_mtd_device); 765 EXPORT_SYMBOL_GPL(put_mtd_device); 766 EXPORT_SYMBOL_GPL(__put_mtd_device); 767 EXPORT_SYMBOL_GPL(register_mtd_user); 768 EXPORT_SYMBOL_GPL(unregister_mtd_user); 769 EXPORT_SYMBOL_GPL(default_mtd_writev); 770 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 771 772 #ifdef CONFIG_PROC_FS 773 774 /*====================================================================*/ 775 /* Support for /proc/mtd */ 776 777 static struct proc_dir_entry *proc_mtd; 778 779 static int mtd_proc_show(struct seq_file *m, void *v) 780 { 781 struct mtd_info *mtd; 782 783 seq_puts(m, "dev: size erasesize name\n"); 784 mutex_lock(&mtd_table_mutex); 785 mtd_for_each_device(mtd) { 786 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 787 mtd->index, (unsigned long long)mtd->size, 788 mtd->erasesize, mtd->name); 789 } 790 mutex_unlock(&mtd_table_mutex); 791 return 0; 792 } 793 794 static int mtd_proc_open(struct inode *inode, struct file *file) 795 { 796 return single_open(file, mtd_proc_show, NULL); 797 } 798 799 static const struct file_operations mtd_proc_ops = { 800 .open = mtd_proc_open, 801 .read = seq_read, 802 .llseek = seq_lseek, 803 .release = single_release, 804 }; 805 #endif /* CONFIG_PROC_FS */ 806 807 /*====================================================================*/ 808 /* Init code */ 809 810 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 811 { 812 int ret; 813 814 ret = bdi_init(bdi); 815 if (!ret) 816 ret = bdi_register(bdi, NULL, name); 817 818 if (ret) 819 bdi_destroy(bdi); 820 821 return ret; 822 } 823 824 static int __init init_mtd(void) 825 { 826 int ret; 827 828 ret = class_register(&mtd_class); 829 if (ret) 830 goto err_reg; 831 832 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap"); 833 if (ret) 834 goto err_bdi1; 835 836 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap"); 837 if (ret) 838 goto err_bdi2; 839 840 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap"); 841 if (ret) 842 goto err_bdi3; 843 844 #ifdef CONFIG_PROC_FS 845 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 846 #endif /* CONFIG_PROC_FS */ 847 return 0; 848 849 err_bdi3: 850 bdi_destroy(&mtd_bdi_ro_mappable); 851 err_bdi2: 852 bdi_destroy(&mtd_bdi_unmappable); 853 err_bdi1: 854 class_unregister(&mtd_class); 855 err_reg: 856 pr_err("Error registering mtd class or bdi: %d\n", ret); 857 return ret; 858 } 859 860 static void __exit cleanup_mtd(void) 861 { 862 #ifdef CONFIG_PROC_FS 863 if (proc_mtd) 864 remove_proc_entry( "mtd", NULL); 865 #endif /* CONFIG_PROC_FS */ 866 class_unregister(&mtd_class); 867 bdi_destroy(&mtd_bdi_unmappable); 868 bdi_destroy(&mtd_bdi_ro_mappable); 869 bdi_destroy(&mtd_bdi_rw_mappable); 870 } 871 872 module_init(init_mtd); 873 module_exit(cleanup_mtd); 874 875 MODULE_LICENSE("GPL"); 876 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 877 MODULE_DESCRIPTION("Core MTD registration and access routines"); 878