xref: /linux/drivers/mtd/mtdcore.c (revision e7bfb3fdbde3bfeeeb64e2d73ac6babe59519c9e)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include "mtdcore.h"
49 
50 struct backing_dev_info *mtd_bdi;
51 
52 #ifdef CONFIG_PM_SLEEP
53 
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 	struct mtd_info *mtd = dev_get_drvdata(dev);
57 
58 	return mtd ? mtd_suspend(mtd) : 0;
59 }
60 
61 static int mtd_cls_resume(struct device *dev)
62 {
63 	struct mtd_info *mtd = dev_get_drvdata(dev);
64 
65 	if (mtd)
66 		mtd_resume(mtd);
67 	return 0;
68 }
69 
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75 
76 static struct class mtd_class = {
77 	.name = "mtd",
78 	.owner = THIS_MODULE,
79 	.pm = MTD_CLS_PM_OPS,
80 };
81 
82 static DEFINE_IDR(mtd_idr);
83 
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85    should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88 
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 	return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94 
95 static LIST_HEAD(mtd_notifiers);
96 
97 
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99 
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101  * the mtd_info will probably want to use the release() hook...
102  */
103 static void mtd_release(struct device *dev)
104 {
105 	struct mtd_info *mtd = dev_get_drvdata(dev);
106 	dev_t index = MTD_DEVT(mtd->index);
107 
108 	/* remove /dev/mtdXro node */
109 	device_destroy(&mtd_class, index + 1);
110 }
111 
112 static ssize_t mtd_type_show(struct device *dev,
113 		struct device_attribute *attr, char *buf)
114 {
115 	struct mtd_info *mtd = dev_get_drvdata(dev);
116 	char *type;
117 
118 	switch (mtd->type) {
119 	case MTD_ABSENT:
120 		type = "absent";
121 		break;
122 	case MTD_RAM:
123 		type = "ram";
124 		break;
125 	case MTD_ROM:
126 		type = "rom";
127 		break;
128 	case MTD_NORFLASH:
129 		type = "nor";
130 		break;
131 	case MTD_NANDFLASH:
132 		type = "nand";
133 		break;
134 	case MTD_DATAFLASH:
135 		type = "dataflash";
136 		break;
137 	case MTD_UBIVOLUME:
138 		type = "ubi";
139 		break;
140 	case MTD_MLCNANDFLASH:
141 		type = "mlc-nand";
142 		break;
143 	default:
144 		type = "unknown";
145 	}
146 
147 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150 
151 static ssize_t mtd_flags_show(struct device *dev,
152 		struct device_attribute *attr, char *buf)
153 {
154 	struct mtd_info *mtd = dev_get_drvdata(dev);
155 
156 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157 
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171 
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178 
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181 
182 static ssize_t mtd_writesize_show(struct device *dev,
183 		struct device_attribute *attr, char *buf)
184 {
185 	struct mtd_info *mtd = dev_get_drvdata(dev);
186 
187 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188 
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191 
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197 
198 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199 
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202 
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209 
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212 
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219 
220 }
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 	NULL);
223 
224 static ssize_t mtd_name_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	struct mtd_info *mtd = dev_get_drvdata(dev);
228 
229 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230 
231 }
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
233 
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 				     struct device_attribute *attr, char *buf)
236 {
237 	struct mtd_info *mtd = dev_get_drvdata(dev);
238 
239 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240 }
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242 
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 					  struct device_attribute *attr,
245 					  char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250 }
251 
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 					   struct device_attribute *attr,
254 					   const char *buf, size_t count)
255 {
256 	struct mtd_info *mtd = dev_get_drvdata(dev);
257 	unsigned int bitflip_threshold;
258 	int retval;
259 
260 	retval = kstrtouint(buf, 0, &bitflip_threshold);
261 	if (retval)
262 		return retval;
263 
264 	mtd->bitflip_threshold = bitflip_threshold;
265 	return count;
266 }
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 		   mtd_bitflip_threshold_show,
269 		   mtd_bitflip_threshold_store);
270 
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 
276 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277 
278 }
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280 
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288 }
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 		   mtd_ecc_stats_corrected_show, NULL);
291 
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299 }
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301 
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309 }
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311 
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319 }
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321 
322 static struct attribute *mtd_attrs[] = {
323 	&dev_attr_type.attr,
324 	&dev_attr_flags.attr,
325 	&dev_attr_size.attr,
326 	&dev_attr_erasesize.attr,
327 	&dev_attr_writesize.attr,
328 	&dev_attr_subpagesize.attr,
329 	&dev_attr_oobsize.attr,
330 	&dev_attr_numeraseregions.attr,
331 	&dev_attr_name.attr,
332 	&dev_attr_ecc_strength.attr,
333 	&dev_attr_ecc_step_size.attr,
334 	&dev_attr_corrected_bits.attr,
335 	&dev_attr_ecc_failures.attr,
336 	&dev_attr_bad_blocks.attr,
337 	&dev_attr_bbt_blocks.attr,
338 	&dev_attr_bitflip_threshold.attr,
339 	NULL,
340 };
341 ATTRIBUTE_GROUPS(mtd);
342 
343 static const struct device_type mtd_devtype = {
344 	.name		= "mtd",
345 	.groups		= mtd_groups,
346 	.release	= mtd_release,
347 };
348 
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351 {
352 	switch (mtd->type) {
353 	case MTD_RAM:
354 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 	case MTD_ROM:
357 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 			NOMMU_MAP_READ;
359 	default:
360 		return NOMMU_MAP_COPY;
361 	}
362 }
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
365 
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 			       void *cmd)
368 {
369 	struct mtd_info *mtd;
370 
371 	mtd = container_of(n, struct mtd_info, reboot_notifier);
372 	mtd->_reboot(mtd);
373 
374 	return NOTIFY_DONE;
375 }
376 
377 /**
378  * mtd_wunit_to_pairing_info - get pairing information of a wunit
379  * @mtd: pointer to new MTD device info structure
380  * @wunit: write unit we are interested in
381  * @info: returned pairing information
382  *
383  * Retrieve pairing information associated to the wunit.
384  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
385  * paired together, and where programming a page may influence the page it is
386  * paired with.
387  * The notion of page is replaced by the term wunit (write-unit) to stay
388  * consistent with the ->writesize field.
389  *
390  * The @wunit argument can be extracted from an absolute offset using
391  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
392  * to @wunit.
393  *
394  * From the pairing info the MTD user can find all the wunits paired with
395  * @wunit using the following loop:
396  *
397  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
398  *	info.pair = i;
399  *	mtd_pairing_info_to_wunit(mtd, &info);
400  *	...
401  * }
402  */
403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
404 			      struct mtd_pairing_info *info)
405 {
406 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
407 
408 	if (wunit < 0 || wunit >= npairs)
409 		return -EINVAL;
410 
411 	if (mtd->pairing && mtd->pairing->get_info)
412 		return mtd->pairing->get_info(mtd, wunit, info);
413 
414 	info->group = 0;
415 	info->pair = wunit;
416 
417 	return 0;
418 }
419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
420 
421 /**
422  * mtd_wunit_to_pairing_info - get wunit from pairing information
423  * @mtd: pointer to new MTD device info structure
424  * @info: pairing information struct
425  *
426  * Returns a positive number representing the wunit associated to the info
427  * struct, or a negative error code.
428  *
429  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
430  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
431  * doc).
432  *
433  * It can also be used to only program the first page of each pair (i.e.
434  * page attached to group 0), which allows one to use an MLC NAND in
435  * software-emulated SLC mode:
436  *
437  * info.group = 0;
438  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
439  * for (info.pair = 0; info.pair < npairs; info.pair++) {
440  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
441  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
442  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
443  * }
444  */
445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
446 			      const struct mtd_pairing_info *info)
447 {
448 	int ngroups = mtd_pairing_groups(mtd);
449 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
450 
451 	if (!info || info->pair < 0 || info->pair >= npairs ||
452 	    info->group < 0 || info->group >= ngroups)
453 		return -EINVAL;
454 
455 	if (mtd->pairing && mtd->pairing->get_wunit)
456 		return mtd->pairing->get_wunit(mtd, info);
457 
458 	return info->pair;
459 }
460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
461 
462 /**
463  * mtd_pairing_groups - get the number of pairing groups
464  * @mtd: pointer to new MTD device info structure
465  *
466  * Returns the number of pairing groups.
467  *
468  * This number is usually equal to the number of bits exposed by a single
469  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
470  * to iterate over all pages of a given pair.
471  */
472 int mtd_pairing_groups(struct mtd_info *mtd)
473 {
474 	if (!mtd->pairing || !mtd->pairing->ngroups)
475 		return 1;
476 
477 	return mtd->pairing->ngroups;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
480 
481 static struct dentry *dfs_dir_mtd;
482 
483 /**
484  *	add_mtd_device - register an MTD device
485  *	@mtd: pointer to new MTD device info structure
486  *
487  *	Add a device to the list of MTD devices present in the system, and
488  *	notify each currently active MTD 'user' of its arrival. Returns
489  *	zero on success or non-zero on failure.
490  */
491 
492 int add_mtd_device(struct mtd_info *mtd)
493 {
494 	struct mtd_notifier *not;
495 	int i, error;
496 
497 	/*
498 	 * May occur, for instance, on buggy drivers which call
499 	 * mtd_device_parse_register() multiple times on the same master MTD,
500 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
501 	 */
502 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
503 		return -EEXIST;
504 
505 	BUG_ON(mtd->writesize == 0);
506 
507 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
508 		    !(mtd->flags & MTD_NO_ERASE)))
509 		return -EINVAL;
510 
511 	mutex_lock(&mtd_table_mutex);
512 
513 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
514 	if (i < 0) {
515 		error = i;
516 		goto fail_locked;
517 	}
518 
519 	mtd->index = i;
520 	mtd->usecount = 0;
521 
522 	/* default value if not set by driver */
523 	if (mtd->bitflip_threshold == 0)
524 		mtd->bitflip_threshold = mtd->ecc_strength;
525 
526 	if (is_power_of_2(mtd->erasesize))
527 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
528 	else
529 		mtd->erasesize_shift = 0;
530 
531 	if (is_power_of_2(mtd->writesize))
532 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
533 	else
534 		mtd->writesize_shift = 0;
535 
536 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
537 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
538 
539 	/* Some chips always power up locked. Unlock them now */
540 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
541 		error = mtd_unlock(mtd, 0, mtd->size);
542 		if (error && error != -EOPNOTSUPP)
543 			printk(KERN_WARNING
544 			       "%s: unlock failed, writes may not work\n",
545 			       mtd->name);
546 		/* Ignore unlock failures? */
547 		error = 0;
548 	}
549 
550 	/* Caller should have set dev.parent to match the
551 	 * physical device, if appropriate.
552 	 */
553 	mtd->dev.type = &mtd_devtype;
554 	mtd->dev.class = &mtd_class;
555 	mtd->dev.devt = MTD_DEVT(i);
556 	dev_set_name(&mtd->dev, "mtd%d", i);
557 	dev_set_drvdata(&mtd->dev, mtd);
558 	of_node_get(mtd_get_of_node(mtd));
559 	error = device_register(&mtd->dev);
560 	if (error)
561 		goto fail_added;
562 
563 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
564 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
565 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
566 			pr_debug("mtd device %s won't show data in debugfs\n",
567 				 dev_name(&mtd->dev));
568 		}
569 	}
570 
571 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
572 		      "mtd%dro", i);
573 
574 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
575 	/* No need to get a refcount on the module containing
576 	   the notifier, since we hold the mtd_table_mutex */
577 	list_for_each_entry(not, &mtd_notifiers, list)
578 		not->add(mtd);
579 
580 	mutex_unlock(&mtd_table_mutex);
581 	/* We _know_ we aren't being removed, because
582 	   our caller is still holding us here. So none
583 	   of this try_ nonsense, and no bitching about it
584 	   either. :) */
585 	__module_get(THIS_MODULE);
586 	return 0;
587 
588 fail_added:
589 	of_node_put(mtd_get_of_node(mtd));
590 	idr_remove(&mtd_idr, i);
591 fail_locked:
592 	mutex_unlock(&mtd_table_mutex);
593 	return error;
594 }
595 
596 /**
597  *	del_mtd_device - unregister an MTD device
598  *	@mtd: pointer to MTD device info structure
599  *
600  *	Remove a device from the list of MTD devices present in the system,
601  *	and notify each currently active MTD 'user' of its departure.
602  *	Returns zero on success or 1 on failure, which currently will happen
603  *	if the requested device does not appear to be present in the list.
604  */
605 
606 int del_mtd_device(struct mtd_info *mtd)
607 {
608 	int ret;
609 	struct mtd_notifier *not;
610 
611 	mutex_lock(&mtd_table_mutex);
612 
613 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
614 
615 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
616 		ret = -ENODEV;
617 		goto out_error;
618 	}
619 
620 	/* No need to get a refcount on the module containing
621 		the notifier, since we hold the mtd_table_mutex */
622 	list_for_each_entry(not, &mtd_notifiers, list)
623 		not->remove(mtd);
624 
625 	if (mtd->usecount) {
626 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
627 		       mtd->index, mtd->name, mtd->usecount);
628 		ret = -EBUSY;
629 	} else {
630 		device_unregister(&mtd->dev);
631 
632 		idr_remove(&mtd_idr, mtd->index);
633 		of_node_put(mtd_get_of_node(mtd));
634 
635 		module_put(THIS_MODULE);
636 		ret = 0;
637 	}
638 
639 out_error:
640 	mutex_unlock(&mtd_table_mutex);
641 	return ret;
642 }
643 
644 /*
645  * Set a few defaults based on the parent devices, if not provided by the
646  * driver
647  */
648 static void mtd_set_dev_defaults(struct mtd_info *mtd)
649 {
650 	if (mtd->dev.parent) {
651 		if (!mtd->owner && mtd->dev.parent->driver)
652 			mtd->owner = mtd->dev.parent->driver->owner;
653 		if (!mtd->name)
654 			mtd->name = dev_name(mtd->dev.parent);
655 	} else {
656 		pr_debug("mtd device won't show a device symlink in sysfs\n");
657 	}
658 }
659 
660 /**
661  * mtd_device_parse_register - parse partitions and register an MTD device.
662  *
663  * @mtd: the MTD device to register
664  * @types: the list of MTD partition probes to try, see
665  *         'parse_mtd_partitions()' for more information
666  * @parser_data: MTD partition parser-specific data
667  * @parts: fallback partition information to register, if parsing fails;
668  *         only valid if %nr_parts > %0
669  * @nr_parts: the number of partitions in parts, if zero then the full
670  *            MTD device is registered if no partition info is found
671  *
672  * This function aggregates MTD partitions parsing (done by
673  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
674  * basically follows the most common pattern found in many MTD drivers:
675  *
676  * * It first tries to probe partitions on MTD device @mtd using parsers
677  *   specified in @types (if @types is %NULL, then the default list of parsers
678  *   is used, see 'parse_mtd_partitions()' for more information). If none are
679  *   found this functions tries to fallback to information specified in
680  *   @parts/@nr_parts.
681  * * If any partitioning info was found, this function registers the found
682  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
683  *   as a whole is registered first.
684  * * If no partitions were found this function just registers the MTD device
685  *   @mtd and exits.
686  *
687  * Returns zero in case of success and a negative error code in case of failure.
688  */
689 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
690 			      struct mtd_part_parser_data *parser_data,
691 			      const struct mtd_partition *parts,
692 			      int nr_parts)
693 {
694 	struct mtd_partitions parsed = { };
695 	int ret;
696 
697 	mtd_set_dev_defaults(mtd);
698 
699 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
700 		ret = add_mtd_device(mtd);
701 		if (ret)
702 			return ret;
703 	}
704 
705 	/* Prefer parsed partitions over driver-provided fallback */
706 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
707 	if (!ret && parsed.nr_parts) {
708 		parts = parsed.parts;
709 		nr_parts = parsed.nr_parts;
710 	}
711 
712 	if (nr_parts)
713 		ret = add_mtd_partitions(mtd, parts, nr_parts);
714 	else if (!device_is_registered(&mtd->dev))
715 		ret = add_mtd_device(mtd);
716 	else
717 		ret = 0;
718 
719 	if (ret)
720 		goto out;
721 
722 	/*
723 	 * FIXME: some drivers unfortunately call this function more than once.
724 	 * So we have to check if we've already assigned the reboot notifier.
725 	 *
726 	 * Generally, we can make multiple calls work for most cases, but it
727 	 * does cause problems with parse_mtd_partitions() above (e.g.,
728 	 * cmdlineparts will register partitions more than once).
729 	 */
730 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
731 		  "MTD already registered\n");
732 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
733 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
734 		register_reboot_notifier(&mtd->reboot_notifier);
735 	}
736 
737 out:
738 	/* Cleanup any parsed partitions */
739 	mtd_part_parser_cleanup(&parsed);
740 	if (ret && device_is_registered(&mtd->dev))
741 		del_mtd_device(mtd);
742 
743 	return ret;
744 }
745 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
746 
747 /**
748  * mtd_device_unregister - unregister an existing MTD device.
749  *
750  * @master: the MTD device to unregister.  This will unregister both the master
751  *          and any partitions if registered.
752  */
753 int mtd_device_unregister(struct mtd_info *master)
754 {
755 	int err;
756 
757 	if (master->_reboot)
758 		unregister_reboot_notifier(&master->reboot_notifier);
759 
760 	err = del_mtd_partitions(master);
761 	if (err)
762 		return err;
763 
764 	if (!device_is_registered(&master->dev))
765 		return 0;
766 
767 	return del_mtd_device(master);
768 }
769 EXPORT_SYMBOL_GPL(mtd_device_unregister);
770 
771 /**
772  *	register_mtd_user - register a 'user' of MTD devices.
773  *	@new: pointer to notifier info structure
774  *
775  *	Registers a pair of callbacks function to be called upon addition
776  *	or removal of MTD devices. Causes the 'add' callback to be immediately
777  *	invoked for each MTD device currently present in the system.
778  */
779 void register_mtd_user (struct mtd_notifier *new)
780 {
781 	struct mtd_info *mtd;
782 
783 	mutex_lock(&mtd_table_mutex);
784 
785 	list_add(&new->list, &mtd_notifiers);
786 
787 	__module_get(THIS_MODULE);
788 
789 	mtd_for_each_device(mtd)
790 		new->add(mtd);
791 
792 	mutex_unlock(&mtd_table_mutex);
793 }
794 EXPORT_SYMBOL_GPL(register_mtd_user);
795 
796 /**
797  *	unregister_mtd_user - unregister a 'user' of MTD devices.
798  *	@old: pointer to notifier info structure
799  *
800  *	Removes a callback function pair from the list of 'users' to be
801  *	notified upon addition or removal of MTD devices. Causes the
802  *	'remove' callback to be immediately invoked for each MTD device
803  *	currently present in the system.
804  */
805 int unregister_mtd_user (struct mtd_notifier *old)
806 {
807 	struct mtd_info *mtd;
808 
809 	mutex_lock(&mtd_table_mutex);
810 
811 	module_put(THIS_MODULE);
812 
813 	mtd_for_each_device(mtd)
814 		old->remove(mtd);
815 
816 	list_del(&old->list);
817 	mutex_unlock(&mtd_table_mutex);
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(unregister_mtd_user);
821 
822 /**
823  *	get_mtd_device - obtain a validated handle for an MTD device
824  *	@mtd: last known address of the required MTD device
825  *	@num: internal device number of the required MTD device
826  *
827  *	Given a number and NULL address, return the num'th entry in the device
828  *	table, if any.	Given an address and num == -1, search the device table
829  *	for a device with that address and return if it's still present. Given
830  *	both, return the num'th driver only if its address matches. Return
831  *	error code if not.
832  */
833 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
834 {
835 	struct mtd_info *ret = NULL, *other;
836 	int err = -ENODEV;
837 
838 	mutex_lock(&mtd_table_mutex);
839 
840 	if (num == -1) {
841 		mtd_for_each_device(other) {
842 			if (other == mtd) {
843 				ret = mtd;
844 				break;
845 			}
846 		}
847 	} else if (num >= 0) {
848 		ret = idr_find(&mtd_idr, num);
849 		if (mtd && mtd != ret)
850 			ret = NULL;
851 	}
852 
853 	if (!ret) {
854 		ret = ERR_PTR(err);
855 		goto out;
856 	}
857 
858 	err = __get_mtd_device(ret);
859 	if (err)
860 		ret = ERR_PTR(err);
861 out:
862 	mutex_unlock(&mtd_table_mutex);
863 	return ret;
864 }
865 EXPORT_SYMBOL_GPL(get_mtd_device);
866 
867 
868 int __get_mtd_device(struct mtd_info *mtd)
869 {
870 	int err;
871 
872 	if (!try_module_get(mtd->owner))
873 		return -ENODEV;
874 
875 	if (mtd->_get_device) {
876 		err = mtd->_get_device(mtd);
877 
878 		if (err) {
879 			module_put(mtd->owner);
880 			return err;
881 		}
882 	}
883 	mtd->usecount++;
884 	return 0;
885 }
886 EXPORT_SYMBOL_GPL(__get_mtd_device);
887 
888 /**
889  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
890  *	device name
891  *	@name: MTD device name to open
892  *
893  * 	This function returns MTD device description structure in case of
894  * 	success and an error code in case of failure.
895  */
896 struct mtd_info *get_mtd_device_nm(const char *name)
897 {
898 	int err = -ENODEV;
899 	struct mtd_info *mtd = NULL, *other;
900 
901 	mutex_lock(&mtd_table_mutex);
902 
903 	mtd_for_each_device(other) {
904 		if (!strcmp(name, other->name)) {
905 			mtd = other;
906 			break;
907 		}
908 	}
909 
910 	if (!mtd)
911 		goto out_unlock;
912 
913 	err = __get_mtd_device(mtd);
914 	if (err)
915 		goto out_unlock;
916 
917 	mutex_unlock(&mtd_table_mutex);
918 	return mtd;
919 
920 out_unlock:
921 	mutex_unlock(&mtd_table_mutex);
922 	return ERR_PTR(err);
923 }
924 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
925 
926 void put_mtd_device(struct mtd_info *mtd)
927 {
928 	mutex_lock(&mtd_table_mutex);
929 	__put_mtd_device(mtd);
930 	mutex_unlock(&mtd_table_mutex);
931 
932 }
933 EXPORT_SYMBOL_GPL(put_mtd_device);
934 
935 void __put_mtd_device(struct mtd_info *mtd)
936 {
937 	--mtd->usecount;
938 	BUG_ON(mtd->usecount < 0);
939 
940 	if (mtd->_put_device)
941 		mtd->_put_device(mtd);
942 
943 	module_put(mtd->owner);
944 }
945 EXPORT_SYMBOL_GPL(__put_mtd_device);
946 
947 /*
948  * Erase is an synchronous operation. Device drivers are epected to return a
949  * negative error code if the operation failed and update instr->fail_addr
950  * to point the portion that was not properly erased.
951  */
952 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
953 {
954 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
955 
956 	if (!mtd->erasesize || !mtd->_erase)
957 		return -ENOTSUPP;
958 
959 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
960 		return -EINVAL;
961 	if (!(mtd->flags & MTD_WRITEABLE))
962 		return -EROFS;
963 
964 	if (!instr->len)
965 		return 0;
966 
967 	ledtrig_mtd_activity();
968 	return mtd->_erase(mtd, instr);
969 }
970 EXPORT_SYMBOL_GPL(mtd_erase);
971 
972 /*
973  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
974  */
975 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
976 	      void **virt, resource_size_t *phys)
977 {
978 	*retlen = 0;
979 	*virt = NULL;
980 	if (phys)
981 		*phys = 0;
982 	if (!mtd->_point)
983 		return -EOPNOTSUPP;
984 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
985 		return -EINVAL;
986 	if (!len)
987 		return 0;
988 	return mtd->_point(mtd, from, len, retlen, virt, phys);
989 }
990 EXPORT_SYMBOL_GPL(mtd_point);
991 
992 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
993 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
994 {
995 	if (!mtd->_unpoint)
996 		return -EOPNOTSUPP;
997 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
998 		return -EINVAL;
999 	if (!len)
1000 		return 0;
1001 	return mtd->_unpoint(mtd, from, len);
1002 }
1003 EXPORT_SYMBOL_GPL(mtd_unpoint);
1004 
1005 /*
1006  * Allow NOMMU mmap() to directly map the device (if not NULL)
1007  * - return the address to which the offset maps
1008  * - return -ENOSYS to indicate refusal to do the mapping
1009  */
1010 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1011 				    unsigned long offset, unsigned long flags)
1012 {
1013 	size_t retlen;
1014 	void *virt;
1015 	int ret;
1016 
1017 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1018 	if (ret)
1019 		return ret;
1020 	if (retlen != len) {
1021 		mtd_unpoint(mtd, offset, retlen);
1022 		return -ENOSYS;
1023 	}
1024 	return (unsigned long)virt;
1025 }
1026 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1027 
1028 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1029 	     u_char *buf)
1030 {
1031 	int ret_code;
1032 	*retlen = 0;
1033 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1034 		return -EINVAL;
1035 	if (!len)
1036 		return 0;
1037 
1038 	ledtrig_mtd_activity();
1039 	/*
1040 	 * In the absence of an error, drivers return a non-negative integer
1041 	 * representing the maximum number of bitflips that were corrected on
1042 	 * any one ecc region (if applicable; zero otherwise).
1043 	 */
1044 	if (mtd->_read) {
1045 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
1046 	} else if (mtd->_read_oob) {
1047 		struct mtd_oob_ops ops = {
1048 			.len = len,
1049 			.datbuf = buf,
1050 		};
1051 
1052 		ret_code = mtd->_read_oob(mtd, from, &ops);
1053 		*retlen = ops.retlen;
1054 	} else {
1055 		return -ENOTSUPP;
1056 	}
1057 
1058 	if (unlikely(ret_code < 0))
1059 		return ret_code;
1060 	if (mtd->ecc_strength == 0)
1061 		return 0;	/* device lacks ecc */
1062 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1063 }
1064 EXPORT_SYMBOL_GPL(mtd_read);
1065 
1066 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1067 	      const u_char *buf)
1068 {
1069 	*retlen = 0;
1070 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1071 		return -EINVAL;
1072 	if ((!mtd->_write && !mtd->_write_oob) ||
1073 	    !(mtd->flags & MTD_WRITEABLE))
1074 		return -EROFS;
1075 	if (!len)
1076 		return 0;
1077 	ledtrig_mtd_activity();
1078 
1079 	if (!mtd->_write) {
1080 		struct mtd_oob_ops ops = {
1081 			.len = len,
1082 			.datbuf = (u8 *)buf,
1083 		};
1084 		int ret;
1085 
1086 		ret = mtd->_write_oob(mtd, to, &ops);
1087 		*retlen = ops.retlen;
1088 		return ret;
1089 	}
1090 
1091 	return mtd->_write(mtd, to, len, retlen, buf);
1092 }
1093 EXPORT_SYMBOL_GPL(mtd_write);
1094 
1095 /*
1096  * In blackbox flight recorder like scenarios we want to make successful writes
1097  * in interrupt context. panic_write() is only intended to be called when its
1098  * known the kernel is about to panic and we need the write to succeed. Since
1099  * the kernel is not going to be running for much longer, this function can
1100  * break locks and delay to ensure the write succeeds (but not sleep).
1101  */
1102 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1103 		    const u_char *buf)
1104 {
1105 	*retlen = 0;
1106 	if (!mtd->_panic_write)
1107 		return -EOPNOTSUPP;
1108 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1109 		return -EINVAL;
1110 	if (!(mtd->flags & MTD_WRITEABLE))
1111 		return -EROFS;
1112 	if (!len)
1113 		return 0;
1114 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1115 }
1116 EXPORT_SYMBOL_GPL(mtd_panic_write);
1117 
1118 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1119 			     struct mtd_oob_ops *ops)
1120 {
1121 	/*
1122 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1123 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1124 	 *  this case.
1125 	 */
1126 	if (!ops->datbuf)
1127 		ops->len = 0;
1128 
1129 	if (!ops->oobbuf)
1130 		ops->ooblen = 0;
1131 
1132 	if (offs < 0 || offs + ops->len > mtd->size)
1133 		return -EINVAL;
1134 
1135 	if (ops->ooblen) {
1136 		u64 maxooblen;
1137 
1138 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1139 			return -EINVAL;
1140 
1141 		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1142 			      mtd_div_by_ws(offs, mtd)) *
1143 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1144 		if (ops->ooblen > maxooblen)
1145 			return -EINVAL;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1152 {
1153 	int ret_code;
1154 	ops->retlen = ops->oobretlen = 0;
1155 	if (!mtd->_read_oob)
1156 		return -EOPNOTSUPP;
1157 
1158 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1159 	if (ret_code)
1160 		return ret_code;
1161 
1162 	ledtrig_mtd_activity();
1163 	/*
1164 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1165 	 * similar to mtd->_read(), returning a non-negative integer
1166 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1167 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1168 	 */
1169 	ret_code = mtd->_read_oob(mtd, from, ops);
1170 	if (unlikely(ret_code < 0))
1171 		return ret_code;
1172 	if (mtd->ecc_strength == 0)
1173 		return 0;	/* device lacks ecc */
1174 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1175 }
1176 EXPORT_SYMBOL_GPL(mtd_read_oob);
1177 
1178 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1179 				struct mtd_oob_ops *ops)
1180 {
1181 	int ret;
1182 
1183 	ops->retlen = ops->oobretlen = 0;
1184 	if (!mtd->_write_oob)
1185 		return -EOPNOTSUPP;
1186 	if (!(mtd->flags & MTD_WRITEABLE))
1187 		return -EROFS;
1188 
1189 	ret = mtd_check_oob_ops(mtd, to, ops);
1190 	if (ret)
1191 		return ret;
1192 
1193 	ledtrig_mtd_activity();
1194 	return mtd->_write_oob(mtd, to, ops);
1195 }
1196 EXPORT_SYMBOL_GPL(mtd_write_oob);
1197 
1198 /**
1199  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1200  * @mtd: MTD device structure
1201  * @section: ECC section. Depending on the layout you may have all the ECC
1202  *	     bytes stored in a single contiguous section, or one section
1203  *	     per ECC chunk (and sometime several sections for a single ECC
1204  *	     ECC chunk)
1205  * @oobecc: OOB region struct filled with the appropriate ECC position
1206  *	    information
1207  *
1208  * This function returns ECC section information in the OOB area. If you want
1209  * to get all the ECC bytes information, then you should call
1210  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1211  *
1212  * Returns zero on success, a negative error code otherwise.
1213  */
1214 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1215 		      struct mtd_oob_region *oobecc)
1216 {
1217 	memset(oobecc, 0, sizeof(*oobecc));
1218 
1219 	if (!mtd || section < 0)
1220 		return -EINVAL;
1221 
1222 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1223 		return -ENOTSUPP;
1224 
1225 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1226 }
1227 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1228 
1229 /**
1230  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1231  *			section
1232  * @mtd: MTD device structure
1233  * @section: Free section you are interested in. Depending on the layout
1234  *	     you may have all the free bytes stored in a single contiguous
1235  *	     section, or one section per ECC chunk plus an extra section
1236  *	     for the remaining bytes (or other funky layout).
1237  * @oobfree: OOB region struct filled with the appropriate free position
1238  *	     information
1239  *
1240  * This function returns free bytes position in the OOB area. If you want
1241  * to get all the free bytes information, then you should call
1242  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1243  *
1244  * Returns zero on success, a negative error code otherwise.
1245  */
1246 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1247 		       struct mtd_oob_region *oobfree)
1248 {
1249 	memset(oobfree, 0, sizeof(*oobfree));
1250 
1251 	if (!mtd || section < 0)
1252 		return -EINVAL;
1253 
1254 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1255 		return -ENOTSUPP;
1256 
1257 	return mtd->ooblayout->free(mtd, section, oobfree);
1258 }
1259 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1260 
1261 /**
1262  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1263  * @mtd: mtd info structure
1264  * @byte: the byte we are searching for
1265  * @sectionp: pointer where the section id will be stored
1266  * @oobregion: used to retrieve the ECC position
1267  * @iter: iterator function. Should be either mtd_ooblayout_free or
1268  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1269  *
1270  * This function returns the section id and oobregion information of a
1271  * specific byte. For example, say you want to know where the 4th ECC byte is
1272  * stored, you'll use:
1273  *
1274  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1275  *
1276  * Returns zero on success, a negative error code otherwise.
1277  */
1278 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1279 				int *sectionp, struct mtd_oob_region *oobregion,
1280 				int (*iter)(struct mtd_info *,
1281 					    int section,
1282 					    struct mtd_oob_region *oobregion))
1283 {
1284 	int pos = 0, ret, section = 0;
1285 
1286 	memset(oobregion, 0, sizeof(*oobregion));
1287 
1288 	while (1) {
1289 		ret = iter(mtd, section, oobregion);
1290 		if (ret)
1291 			return ret;
1292 
1293 		if (pos + oobregion->length > byte)
1294 			break;
1295 
1296 		pos += oobregion->length;
1297 		section++;
1298 	}
1299 
1300 	/*
1301 	 * Adjust region info to make it start at the beginning at the
1302 	 * 'start' ECC byte.
1303 	 */
1304 	oobregion->offset += byte - pos;
1305 	oobregion->length -= byte - pos;
1306 	*sectionp = section;
1307 
1308 	return 0;
1309 }
1310 
1311 /**
1312  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1313  *				  ECC byte
1314  * @mtd: mtd info structure
1315  * @eccbyte: the byte we are searching for
1316  * @sectionp: pointer where the section id will be stored
1317  * @oobregion: OOB region information
1318  *
1319  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1320  * byte.
1321  *
1322  * Returns zero on success, a negative error code otherwise.
1323  */
1324 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1325 				 int *section,
1326 				 struct mtd_oob_region *oobregion)
1327 {
1328 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1329 					 mtd_ooblayout_ecc);
1330 }
1331 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1332 
1333 /**
1334  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1335  * @mtd: mtd info structure
1336  * @buf: destination buffer to store OOB bytes
1337  * @oobbuf: OOB buffer
1338  * @start: first byte to retrieve
1339  * @nbytes: number of bytes to retrieve
1340  * @iter: section iterator
1341  *
1342  * Extract bytes attached to a specific category (ECC or free)
1343  * from the OOB buffer and copy them into buf.
1344  *
1345  * Returns zero on success, a negative error code otherwise.
1346  */
1347 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1348 				const u8 *oobbuf, int start, int nbytes,
1349 				int (*iter)(struct mtd_info *,
1350 					    int section,
1351 					    struct mtd_oob_region *oobregion))
1352 {
1353 	struct mtd_oob_region oobregion;
1354 	int section, ret;
1355 
1356 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1357 					&oobregion, iter);
1358 
1359 	while (!ret) {
1360 		int cnt;
1361 
1362 		cnt = min_t(int, nbytes, oobregion.length);
1363 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1364 		buf += cnt;
1365 		nbytes -= cnt;
1366 
1367 		if (!nbytes)
1368 			break;
1369 
1370 		ret = iter(mtd, ++section, &oobregion);
1371 	}
1372 
1373 	return ret;
1374 }
1375 
1376 /**
1377  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1378  * @mtd: mtd info structure
1379  * @buf: source buffer to get OOB bytes from
1380  * @oobbuf: OOB buffer
1381  * @start: first OOB byte to set
1382  * @nbytes: number of OOB bytes to set
1383  * @iter: section iterator
1384  *
1385  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1386  * is selected by passing the appropriate iterator.
1387  *
1388  * Returns zero on success, a negative error code otherwise.
1389  */
1390 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1391 				u8 *oobbuf, int start, int nbytes,
1392 				int (*iter)(struct mtd_info *,
1393 					    int section,
1394 					    struct mtd_oob_region *oobregion))
1395 {
1396 	struct mtd_oob_region oobregion;
1397 	int section, ret;
1398 
1399 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1400 					&oobregion, iter);
1401 
1402 	while (!ret) {
1403 		int cnt;
1404 
1405 		cnt = min_t(int, nbytes, oobregion.length);
1406 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1407 		buf += cnt;
1408 		nbytes -= cnt;
1409 
1410 		if (!nbytes)
1411 			break;
1412 
1413 		ret = iter(mtd, ++section, &oobregion);
1414 	}
1415 
1416 	return ret;
1417 }
1418 
1419 /**
1420  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1421  * @mtd: mtd info structure
1422  * @iter: category iterator
1423  *
1424  * Count the number of bytes in a given category.
1425  *
1426  * Returns a positive value on success, a negative error code otherwise.
1427  */
1428 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1429 				int (*iter)(struct mtd_info *,
1430 					    int section,
1431 					    struct mtd_oob_region *oobregion))
1432 {
1433 	struct mtd_oob_region oobregion;
1434 	int section = 0, ret, nbytes = 0;
1435 
1436 	while (1) {
1437 		ret = iter(mtd, section++, &oobregion);
1438 		if (ret) {
1439 			if (ret == -ERANGE)
1440 				ret = nbytes;
1441 			break;
1442 		}
1443 
1444 		nbytes += oobregion.length;
1445 	}
1446 
1447 	return ret;
1448 }
1449 
1450 /**
1451  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1452  * @mtd: mtd info structure
1453  * @eccbuf: destination buffer to store ECC bytes
1454  * @oobbuf: OOB buffer
1455  * @start: first ECC byte to retrieve
1456  * @nbytes: number of ECC bytes to retrieve
1457  *
1458  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1459  *
1460  * Returns zero on success, a negative error code otherwise.
1461  */
1462 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1463 			       const u8 *oobbuf, int start, int nbytes)
1464 {
1465 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1466 				       mtd_ooblayout_ecc);
1467 }
1468 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1469 
1470 /**
1471  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1472  * @mtd: mtd info structure
1473  * @eccbuf: source buffer to get ECC bytes from
1474  * @oobbuf: OOB buffer
1475  * @start: first ECC byte to set
1476  * @nbytes: number of ECC bytes to set
1477  *
1478  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1479  *
1480  * Returns zero on success, a negative error code otherwise.
1481  */
1482 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1483 			       u8 *oobbuf, int start, int nbytes)
1484 {
1485 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1486 				       mtd_ooblayout_ecc);
1487 }
1488 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1489 
1490 /**
1491  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1492  * @mtd: mtd info structure
1493  * @databuf: destination buffer to store ECC bytes
1494  * @oobbuf: OOB buffer
1495  * @start: first ECC byte to retrieve
1496  * @nbytes: number of ECC bytes to retrieve
1497  *
1498  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1499  *
1500  * Returns zero on success, a negative error code otherwise.
1501  */
1502 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1503 				const u8 *oobbuf, int start, int nbytes)
1504 {
1505 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1506 				       mtd_ooblayout_free);
1507 }
1508 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1509 
1510 /**
1511  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1512  * @mtd: mtd info structure
1513  * @eccbuf: source buffer to get data bytes from
1514  * @oobbuf: OOB buffer
1515  * @start: first ECC byte to set
1516  * @nbytes: number of ECC bytes to set
1517  *
1518  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1519  *
1520  * Returns zero on success, a negative error code otherwise.
1521  */
1522 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1523 				u8 *oobbuf, int start, int nbytes)
1524 {
1525 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1526 				       mtd_ooblayout_free);
1527 }
1528 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1529 
1530 /**
1531  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1532  * @mtd: mtd info structure
1533  *
1534  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1535  *
1536  * Returns zero on success, a negative error code otherwise.
1537  */
1538 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1539 {
1540 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1541 }
1542 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1543 
1544 /**
1545  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1546  * @mtd: mtd info structure
1547  *
1548  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1549  *
1550  * Returns zero on success, a negative error code otherwise.
1551  */
1552 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1553 {
1554 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1555 }
1556 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1557 
1558 /*
1559  * Method to access the protection register area, present in some flash
1560  * devices. The user data is one time programmable but the factory data is read
1561  * only.
1562  */
1563 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1564 			   struct otp_info *buf)
1565 {
1566 	if (!mtd->_get_fact_prot_info)
1567 		return -EOPNOTSUPP;
1568 	if (!len)
1569 		return 0;
1570 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1571 }
1572 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1573 
1574 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1575 			   size_t *retlen, u_char *buf)
1576 {
1577 	*retlen = 0;
1578 	if (!mtd->_read_fact_prot_reg)
1579 		return -EOPNOTSUPP;
1580 	if (!len)
1581 		return 0;
1582 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1583 }
1584 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1585 
1586 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1587 			   struct otp_info *buf)
1588 {
1589 	if (!mtd->_get_user_prot_info)
1590 		return -EOPNOTSUPP;
1591 	if (!len)
1592 		return 0;
1593 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1594 }
1595 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1596 
1597 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1598 			   size_t *retlen, u_char *buf)
1599 {
1600 	*retlen = 0;
1601 	if (!mtd->_read_user_prot_reg)
1602 		return -EOPNOTSUPP;
1603 	if (!len)
1604 		return 0;
1605 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1606 }
1607 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1608 
1609 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1610 			    size_t *retlen, u_char *buf)
1611 {
1612 	int ret;
1613 
1614 	*retlen = 0;
1615 	if (!mtd->_write_user_prot_reg)
1616 		return -EOPNOTSUPP;
1617 	if (!len)
1618 		return 0;
1619 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1620 	if (ret)
1621 		return ret;
1622 
1623 	/*
1624 	 * If no data could be written at all, we are out of memory and
1625 	 * must return -ENOSPC.
1626 	 */
1627 	return (*retlen) ? 0 : -ENOSPC;
1628 }
1629 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1630 
1631 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1632 {
1633 	if (!mtd->_lock_user_prot_reg)
1634 		return -EOPNOTSUPP;
1635 	if (!len)
1636 		return 0;
1637 	return mtd->_lock_user_prot_reg(mtd, from, len);
1638 }
1639 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1640 
1641 /* Chip-supported device locking */
1642 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1643 {
1644 	if (!mtd->_lock)
1645 		return -EOPNOTSUPP;
1646 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1647 		return -EINVAL;
1648 	if (!len)
1649 		return 0;
1650 	return mtd->_lock(mtd, ofs, len);
1651 }
1652 EXPORT_SYMBOL_GPL(mtd_lock);
1653 
1654 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1655 {
1656 	if (!mtd->_unlock)
1657 		return -EOPNOTSUPP;
1658 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1659 		return -EINVAL;
1660 	if (!len)
1661 		return 0;
1662 	return mtd->_unlock(mtd, ofs, len);
1663 }
1664 EXPORT_SYMBOL_GPL(mtd_unlock);
1665 
1666 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1667 {
1668 	if (!mtd->_is_locked)
1669 		return -EOPNOTSUPP;
1670 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1671 		return -EINVAL;
1672 	if (!len)
1673 		return 0;
1674 	return mtd->_is_locked(mtd, ofs, len);
1675 }
1676 EXPORT_SYMBOL_GPL(mtd_is_locked);
1677 
1678 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1679 {
1680 	if (ofs < 0 || ofs >= mtd->size)
1681 		return -EINVAL;
1682 	if (!mtd->_block_isreserved)
1683 		return 0;
1684 	return mtd->_block_isreserved(mtd, ofs);
1685 }
1686 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1687 
1688 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1689 {
1690 	if (ofs < 0 || ofs >= mtd->size)
1691 		return -EINVAL;
1692 	if (!mtd->_block_isbad)
1693 		return 0;
1694 	return mtd->_block_isbad(mtd, ofs);
1695 }
1696 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1697 
1698 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1699 {
1700 	if (!mtd->_block_markbad)
1701 		return -EOPNOTSUPP;
1702 	if (ofs < 0 || ofs >= mtd->size)
1703 		return -EINVAL;
1704 	if (!(mtd->flags & MTD_WRITEABLE))
1705 		return -EROFS;
1706 	return mtd->_block_markbad(mtd, ofs);
1707 }
1708 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1709 
1710 /*
1711  * default_mtd_writev - the default writev method
1712  * @mtd: mtd device description object pointer
1713  * @vecs: the vectors to write
1714  * @count: count of vectors in @vecs
1715  * @to: the MTD device offset to write to
1716  * @retlen: on exit contains the count of bytes written to the MTD device.
1717  *
1718  * This function returns zero in case of success and a negative error code in
1719  * case of failure.
1720  */
1721 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1722 			      unsigned long count, loff_t to, size_t *retlen)
1723 {
1724 	unsigned long i;
1725 	size_t totlen = 0, thislen;
1726 	int ret = 0;
1727 
1728 	for (i = 0; i < count; i++) {
1729 		if (!vecs[i].iov_len)
1730 			continue;
1731 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1732 				vecs[i].iov_base);
1733 		totlen += thislen;
1734 		if (ret || thislen != vecs[i].iov_len)
1735 			break;
1736 		to += vecs[i].iov_len;
1737 	}
1738 	*retlen = totlen;
1739 	return ret;
1740 }
1741 
1742 /*
1743  * mtd_writev - the vector-based MTD write method
1744  * @mtd: mtd device description object pointer
1745  * @vecs: the vectors to write
1746  * @count: count of vectors in @vecs
1747  * @to: the MTD device offset to write to
1748  * @retlen: on exit contains the count of bytes written to the MTD device.
1749  *
1750  * This function returns zero in case of success and a negative error code in
1751  * case of failure.
1752  */
1753 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1754 	       unsigned long count, loff_t to, size_t *retlen)
1755 {
1756 	*retlen = 0;
1757 	if (!(mtd->flags & MTD_WRITEABLE))
1758 		return -EROFS;
1759 	if (!mtd->_writev)
1760 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1761 	return mtd->_writev(mtd, vecs, count, to, retlen);
1762 }
1763 EXPORT_SYMBOL_GPL(mtd_writev);
1764 
1765 /**
1766  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1767  * @mtd: mtd device description object pointer
1768  * @size: a pointer to the ideal or maximum size of the allocation, points
1769  *        to the actual allocation size on success.
1770  *
1771  * This routine attempts to allocate a contiguous kernel buffer up to
1772  * the specified size, backing off the size of the request exponentially
1773  * until the request succeeds or until the allocation size falls below
1774  * the system page size. This attempts to make sure it does not adversely
1775  * impact system performance, so when allocating more than one page, we
1776  * ask the memory allocator to avoid re-trying, swapping, writing back
1777  * or performing I/O.
1778  *
1779  * Note, this function also makes sure that the allocated buffer is aligned to
1780  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1781  *
1782  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1783  * to handle smaller (i.e. degraded) buffer allocations under low- or
1784  * fragmented-memory situations where such reduced allocations, from a
1785  * requested ideal, are allowed.
1786  *
1787  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1788  */
1789 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1790 {
1791 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1792 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1793 	void *kbuf;
1794 
1795 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1796 
1797 	while (*size > min_alloc) {
1798 		kbuf = kmalloc(*size, flags);
1799 		if (kbuf)
1800 			return kbuf;
1801 
1802 		*size >>= 1;
1803 		*size = ALIGN(*size, mtd->writesize);
1804 	}
1805 
1806 	/*
1807 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1808 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1809 	 */
1810 	return kmalloc(*size, GFP_KERNEL);
1811 }
1812 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1813 
1814 #ifdef CONFIG_PROC_FS
1815 
1816 /*====================================================================*/
1817 /* Support for /proc/mtd */
1818 
1819 static int mtd_proc_show(struct seq_file *m, void *v)
1820 {
1821 	struct mtd_info *mtd;
1822 
1823 	seq_puts(m, "dev:    size   erasesize  name\n");
1824 	mutex_lock(&mtd_table_mutex);
1825 	mtd_for_each_device(mtd) {
1826 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1827 			   mtd->index, (unsigned long long)mtd->size,
1828 			   mtd->erasesize, mtd->name);
1829 	}
1830 	mutex_unlock(&mtd_table_mutex);
1831 	return 0;
1832 }
1833 
1834 static int mtd_proc_open(struct inode *inode, struct file *file)
1835 {
1836 	return single_open(file, mtd_proc_show, NULL);
1837 }
1838 
1839 static const struct file_operations mtd_proc_ops = {
1840 	.open		= mtd_proc_open,
1841 	.read		= seq_read,
1842 	.llseek		= seq_lseek,
1843 	.release	= single_release,
1844 };
1845 #endif /* CONFIG_PROC_FS */
1846 
1847 /*====================================================================*/
1848 /* Init code */
1849 
1850 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1851 {
1852 	struct backing_dev_info *bdi;
1853 	int ret;
1854 
1855 	bdi = bdi_alloc(GFP_KERNEL);
1856 	if (!bdi)
1857 		return ERR_PTR(-ENOMEM);
1858 
1859 	bdi->name = name;
1860 	/*
1861 	 * We put '-0' suffix to the name to get the same name format as we
1862 	 * used to get. Since this is called only once, we get a unique name.
1863 	 */
1864 	ret = bdi_register(bdi, "%.28s-0", name);
1865 	if (ret)
1866 		bdi_put(bdi);
1867 
1868 	return ret ? ERR_PTR(ret) : bdi;
1869 }
1870 
1871 static struct proc_dir_entry *proc_mtd;
1872 
1873 static int __init init_mtd(void)
1874 {
1875 	int ret;
1876 
1877 	ret = class_register(&mtd_class);
1878 	if (ret)
1879 		goto err_reg;
1880 
1881 	mtd_bdi = mtd_bdi_init("mtd");
1882 	if (IS_ERR(mtd_bdi)) {
1883 		ret = PTR_ERR(mtd_bdi);
1884 		goto err_bdi;
1885 	}
1886 
1887 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1888 
1889 	ret = init_mtdchar();
1890 	if (ret)
1891 		goto out_procfs;
1892 
1893 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1894 
1895 	return 0;
1896 
1897 out_procfs:
1898 	if (proc_mtd)
1899 		remove_proc_entry("mtd", NULL);
1900 	bdi_put(mtd_bdi);
1901 err_bdi:
1902 	class_unregister(&mtd_class);
1903 err_reg:
1904 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1905 	return ret;
1906 }
1907 
1908 static void __exit cleanup_mtd(void)
1909 {
1910 	debugfs_remove_recursive(dfs_dir_mtd);
1911 	cleanup_mtdchar();
1912 	if (proc_mtd)
1913 		remove_proc_entry("mtd", NULL);
1914 	class_unregister(&mtd_class);
1915 	bdi_put(mtd_bdi);
1916 	idr_destroy(&mtd_idr);
1917 }
1918 
1919 module_init(init_mtd);
1920 module_exit(cleanup_mtd);
1921 
1922 MODULE_LICENSE("GPL");
1923 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1924 MODULE_DESCRIPTION("Core MTD registration and access routines");
1925