1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 #include <linux/debugfs.h> 44 45 #include <linux/mtd/mtd.h> 46 #include <linux/mtd/partitions.h> 47 48 #include "mtdcore.h" 49 50 struct backing_dev_info *mtd_bdi; 51 52 #ifdef CONFIG_PM_SLEEP 53 54 static int mtd_cls_suspend(struct device *dev) 55 { 56 struct mtd_info *mtd = dev_get_drvdata(dev); 57 58 return mtd ? mtd_suspend(mtd) : 0; 59 } 60 61 static int mtd_cls_resume(struct device *dev) 62 { 63 struct mtd_info *mtd = dev_get_drvdata(dev); 64 65 if (mtd) 66 mtd_resume(mtd); 67 return 0; 68 } 69 70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 72 #else 73 #define MTD_CLS_PM_OPS NULL 74 #endif 75 76 static struct class mtd_class = { 77 .name = "mtd", 78 .owner = THIS_MODULE, 79 .pm = MTD_CLS_PM_OPS, 80 }; 81 82 static DEFINE_IDR(mtd_idr); 83 84 /* These are exported solely for the purpose of mtd_blkdevs.c. You 85 should not use them for _anything_ else */ 86 DEFINE_MUTEX(mtd_table_mutex); 87 EXPORT_SYMBOL_GPL(mtd_table_mutex); 88 89 struct mtd_info *__mtd_next_device(int i) 90 { 91 return idr_get_next(&mtd_idr, &i); 92 } 93 EXPORT_SYMBOL_GPL(__mtd_next_device); 94 95 static LIST_HEAD(mtd_notifiers); 96 97 98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 99 100 /* REVISIT once MTD uses the driver model better, whoever allocates 101 * the mtd_info will probably want to use the release() hook... 102 */ 103 static void mtd_release(struct device *dev) 104 { 105 struct mtd_info *mtd = dev_get_drvdata(dev); 106 dev_t index = MTD_DEVT(mtd->index); 107 108 /* remove /dev/mtdXro node */ 109 device_destroy(&mtd_class, index + 1); 110 } 111 112 static ssize_t mtd_type_show(struct device *dev, 113 struct device_attribute *attr, char *buf) 114 { 115 struct mtd_info *mtd = dev_get_drvdata(dev); 116 char *type; 117 118 switch (mtd->type) { 119 case MTD_ABSENT: 120 type = "absent"; 121 break; 122 case MTD_RAM: 123 type = "ram"; 124 break; 125 case MTD_ROM: 126 type = "rom"; 127 break; 128 case MTD_NORFLASH: 129 type = "nor"; 130 break; 131 case MTD_NANDFLASH: 132 type = "nand"; 133 break; 134 case MTD_DATAFLASH: 135 type = "dataflash"; 136 break; 137 case MTD_UBIVOLUME: 138 type = "ubi"; 139 break; 140 case MTD_MLCNANDFLASH: 141 type = "mlc-nand"; 142 break; 143 default: 144 type = "unknown"; 145 } 146 147 return snprintf(buf, PAGE_SIZE, "%s\n", type); 148 } 149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 150 151 static ssize_t mtd_flags_show(struct device *dev, 152 struct device_attribute *attr, char *buf) 153 { 154 struct mtd_info *mtd = dev_get_drvdata(dev); 155 156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 157 158 } 159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 160 161 static ssize_t mtd_size_show(struct device *dev, 162 struct device_attribute *attr, char *buf) 163 { 164 struct mtd_info *mtd = dev_get_drvdata(dev); 165 166 return snprintf(buf, PAGE_SIZE, "%llu\n", 167 (unsigned long long)mtd->size); 168 169 } 170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 171 172 static ssize_t mtd_erasesize_show(struct device *dev, 173 struct device_attribute *attr, char *buf) 174 { 175 struct mtd_info *mtd = dev_get_drvdata(dev); 176 177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 178 179 } 180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 181 182 static ssize_t mtd_writesize_show(struct device *dev, 183 struct device_attribute *attr, char *buf) 184 { 185 struct mtd_info *mtd = dev_get_drvdata(dev); 186 187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 188 189 } 190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 191 192 static ssize_t mtd_subpagesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 197 198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 199 200 } 201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 202 203 static ssize_t mtd_oobsize_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 209 210 } 211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 212 213 static ssize_t mtd_numeraseregions_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 219 220 } 221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 222 NULL); 223 224 static ssize_t mtd_name_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 struct mtd_info *mtd = dev_get_drvdata(dev); 228 229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 230 231 } 232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 233 234 static ssize_t mtd_ecc_strength_show(struct device *dev, 235 struct device_attribute *attr, char *buf) 236 { 237 struct mtd_info *mtd = dev_get_drvdata(dev); 238 239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 240 } 241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 242 243 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 244 struct device_attribute *attr, 245 char *buf) 246 { 247 struct mtd_info *mtd = dev_get_drvdata(dev); 248 249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 250 } 251 252 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 253 struct device_attribute *attr, 254 const char *buf, size_t count) 255 { 256 struct mtd_info *mtd = dev_get_drvdata(dev); 257 unsigned int bitflip_threshold; 258 int retval; 259 260 retval = kstrtouint(buf, 0, &bitflip_threshold); 261 if (retval) 262 return retval; 263 264 mtd->bitflip_threshold = bitflip_threshold; 265 return count; 266 } 267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 268 mtd_bitflip_threshold_show, 269 mtd_bitflip_threshold_store); 270 271 static ssize_t mtd_ecc_step_size_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 277 278 } 279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 280 281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 288 } 289 static DEVICE_ATTR(corrected_bits, S_IRUGO, 290 mtd_ecc_stats_corrected_show, NULL); 291 292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 297 298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 299 } 300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 301 302 static ssize_t mtd_badblocks_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 309 } 310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 311 312 static ssize_t mtd_bbtblocks_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 319 } 320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 321 322 static struct attribute *mtd_attrs[] = { 323 &dev_attr_type.attr, 324 &dev_attr_flags.attr, 325 &dev_attr_size.attr, 326 &dev_attr_erasesize.attr, 327 &dev_attr_writesize.attr, 328 &dev_attr_subpagesize.attr, 329 &dev_attr_oobsize.attr, 330 &dev_attr_numeraseregions.attr, 331 &dev_attr_name.attr, 332 &dev_attr_ecc_strength.attr, 333 &dev_attr_ecc_step_size.attr, 334 &dev_attr_corrected_bits.attr, 335 &dev_attr_ecc_failures.attr, 336 &dev_attr_bad_blocks.attr, 337 &dev_attr_bbt_blocks.attr, 338 &dev_attr_bitflip_threshold.attr, 339 NULL, 340 }; 341 ATTRIBUTE_GROUPS(mtd); 342 343 static const struct device_type mtd_devtype = { 344 .name = "mtd", 345 .groups = mtd_groups, 346 .release = mtd_release, 347 }; 348 349 #ifndef CONFIG_MMU 350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 351 { 352 switch (mtd->type) { 353 case MTD_RAM: 354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 355 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 356 case MTD_ROM: 357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 358 NOMMU_MAP_READ; 359 default: 360 return NOMMU_MAP_COPY; 361 } 362 } 363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 364 #endif 365 366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 367 void *cmd) 368 { 369 struct mtd_info *mtd; 370 371 mtd = container_of(n, struct mtd_info, reboot_notifier); 372 mtd->_reboot(mtd); 373 374 return NOTIFY_DONE; 375 } 376 377 /** 378 * mtd_wunit_to_pairing_info - get pairing information of a wunit 379 * @mtd: pointer to new MTD device info structure 380 * @wunit: write unit we are interested in 381 * @info: returned pairing information 382 * 383 * Retrieve pairing information associated to the wunit. 384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 385 * paired together, and where programming a page may influence the page it is 386 * paired with. 387 * The notion of page is replaced by the term wunit (write-unit) to stay 388 * consistent with the ->writesize field. 389 * 390 * The @wunit argument can be extracted from an absolute offset using 391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 392 * to @wunit. 393 * 394 * From the pairing info the MTD user can find all the wunits paired with 395 * @wunit using the following loop: 396 * 397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 398 * info.pair = i; 399 * mtd_pairing_info_to_wunit(mtd, &info); 400 * ... 401 * } 402 */ 403 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 404 struct mtd_pairing_info *info) 405 { 406 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 407 408 if (wunit < 0 || wunit >= npairs) 409 return -EINVAL; 410 411 if (mtd->pairing && mtd->pairing->get_info) 412 return mtd->pairing->get_info(mtd, wunit, info); 413 414 info->group = 0; 415 info->pair = wunit; 416 417 return 0; 418 } 419 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 420 421 /** 422 * mtd_wunit_to_pairing_info - get wunit from pairing information 423 * @mtd: pointer to new MTD device info structure 424 * @info: pairing information struct 425 * 426 * Returns a positive number representing the wunit associated to the info 427 * struct, or a negative error code. 428 * 429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 431 * doc). 432 * 433 * It can also be used to only program the first page of each pair (i.e. 434 * page attached to group 0), which allows one to use an MLC NAND in 435 * software-emulated SLC mode: 436 * 437 * info.group = 0; 438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 439 * for (info.pair = 0; info.pair < npairs; info.pair++) { 440 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 441 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 442 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 443 * } 444 */ 445 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 446 const struct mtd_pairing_info *info) 447 { 448 int ngroups = mtd_pairing_groups(mtd); 449 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 450 451 if (!info || info->pair < 0 || info->pair >= npairs || 452 info->group < 0 || info->group >= ngroups) 453 return -EINVAL; 454 455 if (mtd->pairing && mtd->pairing->get_wunit) 456 return mtd->pairing->get_wunit(mtd, info); 457 458 return info->pair; 459 } 460 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 461 462 /** 463 * mtd_pairing_groups - get the number of pairing groups 464 * @mtd: pointer to new MTD device info structure 465 * 466 * Returns the number of pairing groups. 467 * 468 * This number is usually equal to the number of bits exposed by a single 469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 470 * to iterate over all pages of a given pair. 471 */ 472 int mtd_pairing_groups(struct mtd_info *mtd) 473 { 474 if (!mtd->pairing || !mtd->pairing->ngroups) 475 return 1; 476 477 return mtd->pairing->ngroups; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 480 481 static struct dentry *dfs_dir_mtd; 482 483 /** 484 * add_mtd_device - register an MTD device 485 * @mtd: pointer to new MTD device info structure 486 * 487 * Add a device to the list of MTD devices present in the system, and 488 * notify each currently active MTD 'user' of its arrival. Returns 489 * zero on success or non-zero on failure. 490 */ 491 492 int add_mtd_device(struct mtd_info *mtd) 493 { 494 struct mtd_notifier *not; 495 int i, error; 496 497 /* 498 * May occur, for instance, on buggy drivers which call 499 * mtd_device_parse_register() multiple times on the same master MTD, 500 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 501 */ 502 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 503 return -EEXIST; 504 505 BUG_ON(mtd->writesize == 0); 506 507 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 508 !(mtd->flags & MTD_NO_ERASE))) 509 return -EINVAL; 510 511 mutex_lock(&mtd_table_mutex); 512 513 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 514 if (i < 0) { 515 error = i; 516 goto fail_locked; 517 } 518 519 mtd->index = i; 520 mtd->usecount = 0; 521 522 /* default value if not set by driver */ 523 if (mtd->bitflip_threshold == 0) 524 mtd->bitflip_threshold = mtd->ecc_strength; 525 526 if (is_power_of_2(mtd->erasesize)) 527 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 528 else 529 mtd->erasesize_shift = 0; 530 531 if (is_power_of_2(mtd->writesize)) 532 mtd->writesize_shift = ffs(mtd->writesize) - 1; 533 else 534 mtd->writesize_shift = 0; 535 536 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 537 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 538 539 /* Some chips always power up locked. Unlock them now */ 540 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 541 error = mtd_unlock(mtd, 0, mtd->size); 542 if (error && error != -EOPNOTSUPP) 543 printk(KERN_WARNING 544 "%s: unlock failed, writes may not work\n", 545 mtd->name); 546 /* Ignore unlock failures? */ 547 error = 0; 548 } 549 550 /* Caller should have set dev.parent to match the 551 * physical device, if appropriate. 552 */ 553 mtd->dev.type = &mtd_devtype; 554 mtd->dev.class = &mtd_class; 555 mtd->dev.devt = MTD_DEVT(i); 556 dev_set_name(&mtd->dev, "mtd%d", i); 557 dev_set_drvdata(&mtd->dev, mtd); 558 of_node_get(mtd_get_of_node(mtd)); 559 error = device_register(&mtd->dev); 560 if (error) 561 goto fail_added; 562 563 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 564 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 565 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 566 pr_debug("mtd device %s won't show data in debugfs\n", 567 dev_name(&mtd->dev)); 568 } 569 } 570 571 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 572 "mtd%dro", i); 573 574 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 575 /* No need to get a refcount on the module containing 576 the notifier, since we hold the mtd_table_mutex */ 577 list_for_each_entry(not, &mtd_notifiers, list) 578 not->add(mtd); 579 580 mutex_unlock(&mtd_table_mutex); 581 /* We _know_ we aren't being removed, because 582 our caller is still holding us here. So none 583 of this try_ nonsense, and no bitching about it 584 either. :) */ 585 __module_get(THIS_MODULE); 586 return 0; 587 588 fail_added: 589 of_node_put(mtd_get_of_node(mtd)); 590 idr_remove(&mtd_idr, i); 591 fail_locked: 592 mutex_unlock(&mtd_table_mutex); 593 return error; 594 } 595 596 /** 597 * del_mtd_device - unregister an MTD device 598 * @mtd: pointer to MTD device info structure 599 * 600 * Remove a device from the list of MTD devices present in the system, 601 * and notify each currently active MTD 'user' of its departure. 602 * Returns zero on success or 1 on failure, which currently will happen 603 * if the requested device does not appear to be present in the list. 604 */ 605 606 int del_mtd_device(struct mtd_info *mtd) 607 { 608 int ret; 609 struct mtd_notifier *not; 610 611 mutex_lock(&mtd_table_mutex); 612 613 debugfs_remove_recursive(mtd->dbg.dfs_dir); 614 615 if (idr_find(&mtd_idr, mtd->index) != mtd) { 616 ret = -ENODEV; 617 goto out_error; 618 } 619 620 /* No need to get a refcount on the module containing 621 the notifier, since we hold the mtd_table_mutex */ 622 list_for_each_entry(not, &mtd_notifiers, list) 623 not->remove(mtd); 624 625 if (mtd->usecount) { 626 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 627 mtd->index, mtd->name, mtd->usecount); 628 ret = -EBUSY; 629 } else { 630 device_unregister(&mtd->dev); 631 632 idr_remove(&mtd_idr, mtd->index); 633 of_node_put(mtd_get_of_node(mtd)); 634 635 module_put(THIS_MODULE); 636 ret = 0; 637 } 638 639 out_error: 640 mutex_unlock(&mtd_table_mutex); 641 return ret; 642 } 643 644 /* 645 * Set a few defaults based on the parent devices, if not provided by the 646 * driver 647 */ 648 static void mtd_set_dev_defaults(struct mtd_info *mtd) 649 { 650 if (mtd->dev.parent) { 651 if (!mtd->owner && mtd->dev.parent->driver) 652 mtd->owner = mtd->dev.parent->driver->owner; 653 if (!mtd->name) 654 mtd->name = dev_name(mtd->dev.parent); 655 } else { 656 pr_debug("mtd device won't show a device symlink in sysfs\n"); 657 } 658 } 659 660 /** 661 * mtd_device_parse_register - parse partitions and register an MTD device. 662 * 663 * @mtd: the MTD device to register 664 * @types: the list of MTD partition probes to try, see 665 * 'parse_mtd_partitions()' for more information 666 * @parser_data: MTD partition parser-specific data 667 * @parts: fallback partition information to register, if parsing fails; 668 * only valid if %nr_parts > %0 669 * @nr_parts: the number of partitions in parts, if zero then the full 670 * MTD device is registered if no partition info is found 671 * 672 * This function aggregates MTD partitions parsing (done by 673 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 674 * basically follows the most common pattern found in many MTD drivers: 675 * 676 * * It first tries to probe partitions on MTD device @mtd using parsers 677 * specified in @types (if @types is %NULL, then the default list of parsers 678 * is used, see 'parse_mtd_partitions()' for more information). If none are 679 * found this functions tries to fallback to information specified in 680 * @parts/@nr_parts. 681 * * If any partitioning info was found, this function registers the found 682 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 683 * as a whole is registered first. 684 * * If no partitions were found this function just registers the MTD device 685 * @mtd and exits. 686 * 687 * Returns zero in case of success and a negative error code in case of failure. 688 */ 689 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 690 struct mtd_part_parser_data *parser_data, 691 const struct mtd_partition *parts, 692 int nr_parts) 693 { 694 struct mtd_partitions parsed = { }; 695 int ret; 696 697 mtd_set_dev_defaults(mtd); 698 699 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 700 ret = add_mtd_device(mtd); 701 if (ret) 702 return ret; 703 } 704 705 /* Prefer parsed partitions over driver-provided fallback */ 706 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 707 if (!ret && parsed.nr_parts) { 708 parts = parsed.parts; 709 nr_parts = parsed.nr_parts; 710 } 711 712 if (nr_parts) 713 ret = add_mtd_partitions(mtd, parts, nr_parts); 714 else if (!device_is_registered(&mtd->dev)) 715 ret = add_mtd_device(mtd); 716 else 717 ret = 0; 718 719 if (ret) 720 goto out; 721 722 /* 723 * FIXME: some drivers unfortunately call this function more than once. 724 * So we have to check if we've already assigned the reboot notifier. 725 * 726 * Generally, we can make multiple calls work for most cases, but it 727 * does cause problems with parse_mtd_partitions() above (e.g., 728 * cmdlineparts will register partitions more than once). 729 */ 730 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 731 "MTD already registered\n"); 732 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 733 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 734 register_reboot_notifier(&mtd->reboot_notifier); 735 } 736 737 out: 738 /* Cleanup any parsed partitions */ 739 mtd_part_parser_cleanup(&parsed); 740 if (ret && device_is_registered(&mtd->dev)) 741 del_mtd_device(mtd); 742 743 return ret; 744 } 745 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 746 747 /** 748 * mtd_device_unregister - unregister an existing MTD device. 749 * 750 * @master: the MTD device to unregister. This will unregister both the master 751 * and any partitions if registered. 752 */ 753 int mtd_device_unregister(struct mtd_info *master) 754 { 755 int err; 756 757 if (master->_reboot) 758 unregister_reboot_notifier(&master->reboot_notifier); 759 760 err = del_mtd_partitions(master); 761 if (err) 762 return err; 763 764 if (!device_is_registered(&master->dev)) 765 return 0; 766 767 return del_mtd_device(master); 768 } 769 EXPORT_SYMBOL_GPL(mtd_device_unregister); 770 771 /** 772 * register_mtd_user - register a 'user' of MTD devices. 773 * @new: pointer to notifier info structure 774 * 775 * Registers a pair of callbacks function to be called upon addition 776 * or removal of MTD devices. Causes the 'add' callback to be immediately 777 * invoked for each MTD device currently present in the system. 778 */ 779 void register_mtd_user (struct mtd_notifier *new) 780 { 781 struct mtd_info *mtd; 782 783 mutex_lock(&mtd_table_mutex); 784 785 list_add(&new->list, &mtd_notifiers); 786 787 __module_get(THIS_MODULE); 788 789 mtd_for_each_device(mtd) 790 new->add(mtd); 791 792 mutex_unlock(&mtd_table_mutex); 793 } 794 EXPORT_SYMBOL_GPL(register_mtd_user); 795 796 /** 797 * unregister_mtd_user - unregister a 'user' of MTD devices. 798 * @old: pointer to notifier info structure 799 * 800 * Removes a callback function pair from the list of 'users' to be 801 * notified upon addition or removal of MTD devices. Causes the 802 * 'remove' callback to be immediately invoked for each MTD device 803 * currently present in the system. 804 */ 805 int unregister_mtd_user (struct mtd_notifier *old) 806 { 807 struct mtd_info *mtd; 808 809 mutex_lock(&mtd_table_mutex); 810 811 module_put(THIS_MODULE); 812 813 mtd_for_each_device(mtd) 814 old->remove(mtd); 815 816 list_del(&old->list); 817 mutex_unlock(&mtd_table_mutex); 818 return 0; 819 } 820 EXPORT_SYMBOL_GPL(unregister_mtd_user); 821 822 /** 823 * get_mtd_device - obtain a validated handle for an MTD device 824 * @mtd: last known address of the required MTD device 825 * @num: internal device number of the required MTD device 826 * 827 * Given a number and NULL address, return the num'th entry in the device 828 * table, if any. Given an address and num == -1, search the device table 829 * for a device with that address and return if it's still present. Given 830 * both, return the num'th driver only if its address matches. Return 831 * error code if not. 832 */ 833 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 834 { 835 struct mtd_info *ret = NULL, *other; 836 int err = -ENODEV; 837 838 mutex_lock(&mtd_table_mutex); 839 840 if (num == -1) { 841 mtd_for_each_device(other) { 842 if (other == mtd) { 843 ret = mtd; 844 break; 845 } 846 } 847 } else if (num >= 0) { 848 ret = idr_find(&mtd_idr, num); 849 if (mtd && mtd != ret) 850 ret = NULL; 851 } 852 853 if (!ret) { 854 ret = ERR_PTR(err); 855 goto out; 856 } 857 858 err = __get_mtd_device(ret); 859 if (err) 860 ret = ERR_PTR(err); 861 out: 862 mutex_unlock(&mtd_table_mutex); 863 return ret; 864 } 865 EXPORT_SYMBOL_GPL(get_mtd_device); 866 867 868 int __get_mtd_device(struct mtd_info *mtd) 869 { 870 int err; 871 872 if (!try_module_get(mtd->owner)) 873 return -ENODEV; 874 875 if (mtd->_get_device) { 876 err = mtd->_get_device(mtd); 877 878 if (err) { 879 module_put(mtd->owner); 880 return err; 881 } 882 } 883 mtd->usecount++; 884 return 0; 885 } 886 EXPORT_SYMBOL_GPL(__get_mtd_device); 887 888 /** 889 * get_mtd_device_nm - obtain a validated handle for an MTD device by 890 * device name 891 * @name: MTD device name to open 892 * 893 * This function returns MTD device description structure in case of 894 * success and an error code in case of failure. 895 */ 896 struct mtd_info *get_mtd_device_nm(const char *name) 897 { 898 int err = -ENODEV; 899 struct mtd_info *mtd = NULL, *other; 900 901 mutex_lock(&mtd_table_mutex); 902 903 mtd_for_each_device(other) { 904 if (!strcmp(name, other->name)) { 905 mtd = other; 906 break; 907 } 908 } 909 910 if (!mtd) 911 goto out_unlock; 912 913 err = __get_mtd_device(mtd); 914 if (err) 915 goto out_unlock; 916 917 mutex_unlock(&mtd_table_mutex); 918 return mtd; 919 920 out_unlock: 921 mutex_unlock(&mtd_table_mutex); 922 return ERR_PTR(err); 923 } 924 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 925 926 void put_mtd_device(struct mtd_info *mtd) 927 { 928 mutex_lock(&mtd_table_mutex); 929 __put_mtd_device(mtd); 930 mutex_unlock(&mtd_table_mutex); 931 932 } 933 EXPORT_SYMBOL_GPL(put_mtd_device); 934 935 void __put_mtd_device(struct mtd_info *mtd) 936 { 937 --mtd->usecount; 938 BUG_ON(mtd->usecount < 0); 939 940 if (mtd->_put_device) 941 mtd->_put_device(mtd); 942 943 module_put(mtd->owner); 944 } 945 EXPORT_SYMBOL_GPL(__put_mtd_device); 946 947 /* 948 * Erase is an synchronous operation. Device drivers are epected to return a 949 * negative error code if the operation failed and update instr->fail_addr 950 * to point the portion that was not properly erased. 951 */ 952 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 953 { 954 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 955 956 if (!mtd->erasesize || !mtd->_erase) 957 return -ENOTSUPP; 958 959 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 960 return -EINVAL; 961 if (!(mtd->flags & MTD_WRITEABLE)) 962 return -EROFS; 963 964 if (!instr->len) 965 return 0; 966 967 ledtrig_mtd_activity(); 968 return mtd->_erase(mtd, instr); 969 } 970 EXPORT_SYMBOL_GPL(mtd_erase); 971 972 /* 973 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 974 */ 975 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 976 void **virt, resource_size_t *phys) 977 { 978 *retlen = 0; 979 *virt = NULL; 980 if (phys) 981 *phys = 0; 982 if (!mtd->_point) 983 return -EOPNOTSUPP; 984 if (from < 0 || from >= mtd->size || len > mtd->size - from) 985 return -EINVAL; 986 if (!len) 987 return 0; 988 return mtd->_point(mtd, from, len, retlen, virt, phys); 989 } 990 EXPORT_SYMBOL_GPL(mtd_point); 991 992 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 993 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 994 { 995 if (!mtd->_unpoint) 996 return -EOPNOTSUPP; 997 if (from < 0 || from >= mtd->size || len > mtd->size - from) 998 return -EINVAL; 999 if (!len) 1000 return 0; 1001 return mtd->_unpoint(mtd, from, len); 1002 } 1003 EXPORT_SYMBOL_GPL(mtd_unpoint); 1004 1005 /* 1006 * Allow NOMMU mmap() to directly map the device (if not NULL) 1007 * - return the address to which the offset maps 1008 * - return -ENOSYS to indicate refusal to do the mapping 1009 */ 1010 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1011 unsigned long offset, unsigned long flags) 1012 { 1013 size_t retlen; 1014 void *virt; 1015 int ret; 1016 1017 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1018 if (ret) 1019 return ret; 1020 if (retlen != len) { 1021 mtd_unpoint(mtd, offset, retlen); 1022 return -ENOSYS; 1023 } 1024 return (unsigned long)virt; 1025 } 1026 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1027 1028 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1029 u_char *buf) 1030 { 1031 int ret_code; 1032 *retlen = 0; 1033 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1034 return -EINVAL; 1035 if (!len) 1036 return 0; 1037 1038 ledtrig_mtd_activity(); 1039 /* 1040 * In the absence of an error, drivers return a non-negative integer 1041 * representing the maximum number of bitflips that were corrected on 1042 * any one ecc region (if applicable; zero otherwise). 1043 */ 1044 if (mtd->_read) { 1045 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1046 } else if (mtd->_read_oob) { 1047 struct mtd_oob_ops ops = { 1048 .len = len, 1049 .datbuf = buf, 1050 }; 1051 1052 ret_code = mtd->_read_oob(mtd, from, &ops); 1053 *retlen = ops.retlen; 1054 } else { 1055 return -ENOTSUPP; 1056 } 1057 1058 if (unlikely(ret_code < 0)) 1059 return ret_code; 1060 if (mtd->ecc_strength == 0) 1061 return 0; /* device lacks ecc */ 1062 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1063 } 1064 EXPORT_SYMBOL_GPL(mtd_read); 1065 1066 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1067 const u_char *buf) 1068 { 1069 *retlen = 0; 1070 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1071 return -EINVAL; 1072 if ((!mtd->_write && !mtd->_write_oob) || 1073 !(mtd->flags & MTD_WRITEABLE)) 1074 return -EROFS; 1075 if (!len) 1076 return 0; 1077 ledtrig_mtd_activity(); 1078 1079 if (!mtd->_write) { 1080 struct mtd_oob_ops ops = { 1081 .len = len, 1082 .datbuf = (u8 *)buf, 1083 }; 1084 int ret; 1085 1086 ret = mtd->_write_oob(mtd, to, &ops); 1087 *retlen = ops.retlen; 1088 return ret; 1089 } 1090 1091 return mtd->_write(mtd, to, len, retlen, buf); 1092 } 1093 EXPORT_SYMBOL_GPL(mtd_write); 1094 1095 /* 1096 * In blackbox flight recorder like scenarios we want to make successful writes 1097 * in interrupt context. panic_write() is only intended to be called when its 1098 * known the kernel is about to panic and we need the write to succeed. Since 1099 * the kernel is not going to be running for much longer, this function can 1100 * break locks and delay to ensure the write succeeds (but not sleep). 1101 */ 1102 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1103 const u_char *buf) 1104 { 1105 *retlen = 0; 1106 if (!mtd->_panic_write) 1107 return -EOPNOTSUPP; 1108 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1109 return -EINVAL; 1110 if (!(mtd->flags & MTD_WRITEABLE)) 1111 return -EROFS; 1112 if (!len) 1113 return 0; 1114 return mtd->_panic_write(mtd, to, len, retlen, buf); 1115 } 1116 EXPORT_SYMBOL_GPL(mtd_panic_write); 1117 1118 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1119 struct mtd_oob_ops *ops) 1120 { 1121 /* 1122 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1123 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1124 * this case. 1125 */ 1126 if (!ops->datbuf) 1127 ops->len = 0; 1128 1129 if (!ops->oobbuf) 1130 ops->ooblen = 0; 1131 1132 if (offs < 0 || offs + ops->len > mtd->size) 1133 return -EINVAL; 1134 1135 if (ops->ooblen) { 1136 u64 maxooblen; 1137 1138 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1139 return -EINVAL; 1140 1141 maxooblen = ((mtd_div_by_ws(mtd->size, mtd) - 1142 mtd_div_by_ws(offs, mtd)) * 1143 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1144 if (ops->ooblen > maxooblen) 1145 return -EINVAL; 1146 } 1147 1148 return 0; 1149 } 1150 1151 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1152 { 1153 int ret_code; 1154 ops->retlen = ops->oobretlen = 0; 1155 if (!mtd->_read_oob) 1156 return -EOPNOTSUPP; 1157 1158 ret_code = mtd_check_oob_ops(mtd, from, ops); 1159 if (ret_code) 1160 return ret_code; 1161 1162 ledtrig_mtd_activity(); 1163 /* 1164 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1165 * similar to mtd->_read(), returning a non-negative integer 1166 * representing max bitflips. In other cases, mtd->_read_oob() may 1167 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1168 */ 1169 ret_code = mtd->_read_oob(mtd, from, ops); 1170 if (unlikely(ret_code < 0)) 1171 return ret_code; 1172 if (mtd->ecc_strength == 0) 1173 return 0; /* device lacks ecc */ 1174 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1175 } 1176 EXPORT_SYMBOL_GPL(mtd_read_oob); 1177 1178 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1179 struct mtd_oob_ops *ops) 1180 { 1181 int ret; 1182 1183 ops->retlen = ops->oobretlen = 0; 1184 if (!mtd->_write_oob) 1185 return -EOPNOTSUPP; 1186 if (!(mtd->flags & MTD_WRITEABLE)) 1187 return -EROFS; 1188 1189 ret = mtd_check_oob_ops(mtd, to, ops); 1190 if (ret) 1191 return ret; 1192 1193 ledtrig_mtd_activity(); 1194 return mtd->_write_oob(mtd, to, ops); 1195 } 1196 EXPORT_SYMBOL_GPL(mtd_write_oob); 1197 1198 /** 1199 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1200 * @mtd: MTD device structure 1201 * @section: ECC section. Depending on the layout you may have all the ECC 1202 * bytes stored in a single contiguous section, or one section 1203 * per ECC chunk (and sometime several sections for a single ECC 1204 * ECC chunk) 1205 * @oobecc: OOB region struct filled with the appropriate ECC position 1206 * information 1207 * 1208 * This function returns ECC section information in the OOB area. If you want 1209 * to get all the ECC bytes information, then you should call 1210 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1211 * 1212 * Returns zero on success, a negative error code otherwise. 1213 */ 1214 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1215 struct mtd_oob_region *oobecc) 1216 { 1217 memset(oobecc, 0, sizeof(*oobecc)); 1218 1219 if (!mtd || section < 0) 1220 return -EINVAL; 1221 1222 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1223 return -ENOTSUPP; 1224 1225 return mtd->ooblayout->ecc(mtd, section, oobecc); 1226 } 1227 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1228 1229 /** 1230 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1231 * section 1232 * @mtd: MTD device structure 1233 * @section: Free section you are interested in. Depending on the layout 1234 * you may have all the free bytes stored in a single contiguous 1235 * section, or one section per ECC chunk plus an extra section 1236 * for the remaining bytes (or other funky layout). 1237 * @oobfree: OOB region struct filled with the appropriate free position 1238 * information 1239 * 1240 * This function returns free bytes position in the OOB area. If you want 1241 * to get all the free bytes information, then you should call 1242 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1243 * 1244 * Returns zero on success, a negative error code otherwise. 1245 */ 1246 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1247 struct mtd_oob_region *oobfree) 1248 { 1249 memset(oobfree, 0, sizeof(*oobfree)); 1250 1251 if (!mtd || section < 0) 1252 return -EINVAL; 1253 1254 if (!mtd->ooblayout || !mtd->ooblayout->free) 1255 return -ENOTSUPP; 1256 1257 return mtd->ooblayout->free(mtd, section, oobfree); 1258 } 1259 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1260 1261 /** 1262 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1263 * @mtd: mtd info structure 1264 * @byte: the byte we are searching for 1265 * @sectionp: pointer where the section id will be stored 1266 * @oobregion: used to retrieve the ECC position 1267 * @iter: iterator function. Should be either mtd_ooblayout_free or 1268 * mtd_ooblayout_ecc depending on the region type you're searching for 1269 * 1270 * This function returns the section id and oobregion information of a 1271 * specific byte. For example, say you want to know where the 4th ECC byte is 1272 * stored, you'll use: 1273 * 1274 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1275 * 1276 * Returns zero on success, a negative error code otherwise. 1277 */ 1278 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1279 int *sectionp, struct mtd_oob_region *oobregion, 1280 int (*iter)(struct mtd_info *, 1281 int section, 1282 struct mtd_oob_region *oobregion)) 1283 { 1284 int pos = 0, ret, section = 0; 1285 1286 memset(oobregion, 0, sizeof(*oobregion)); 1287 1288 while (1) { 1289 ret = iter(mtd, section, oobregion); 1290 if (ret) 1291 return ret; 1292 1293 if (pos + oobregion->length > byte) 1294 break; 1295 1296 pos += oobregion->length; 1297 section++; 1298 } 1299 1300 /* 1301 * Adjust region info to make it start at the beginning at the 1302 * 'start' ECC byte. 1303 */ 1304 oobregion->offset += byte - pos; 1305 oobregion->length -= byte - pos; 1306 *sectionp = section; 1307 1308 return 0; 1309 } 1310 1311 /** 1312 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1313 * ECC byte 1314 * @mtd: mtd info structure 1315 * @eccbyte: the byte we are searching for 1316 * @sectionp: pointer where the section id will be stored 1317 * @oobregion: OOB region information 1318 * 1319 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1320 * byte. 1321 * 1322 * Returns zero on success, a negative error code otherwise. 1323 */ 1324 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1325 int *section, 1326 struct mtd_oob_region *oobregion) 1327 { 1328 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1329 mtd_ooblayout_ecc); 1330 } 1331 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1332 1333 /** 1334 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1335 * @mtd: mtd info structure 1336 * @buf: destination buffer to store OOB bytes 1337 * @oobbuf: OOB buffer 1338 * @start: first byte to retrieve 1339 * @nbytes: number of bytes to retrieve 1340 * @iter: section iterator 1341 * 1342 * Extract bytes attached to a specific category (ECC or free) 1343 * from the OOB buffer and copy them into buf. 1344 * 1345 * Returns zero on success, a negative error code otherwise. 1346 */ 1347 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1348 const u8 *oobbuf, int start, int nbytes, 1349 int (*iter)(struct mtd_info *, 1350 int section, 1351 struct mtd_oob_region *oobregion)) 1352 { 1353 struct mtd_oob_region oobregion; 1354 int section, ret; 1355 1356 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1357 &oobregion, iter); 1358 1359 while (!ret) { 1360 int cnt; 1361 1362 cnt = min_t(int, nbytes, oobregion.length); 1363 memcpy(buf, oobbuf + oobregion.offset, cnt); 1364 buf += cnt; 1365 nbytes -= cnt; 1366 1367 if (!nbytes) 1368 break; 1369 1370 ret = iter(mtd, ++section, &oobregion); 1371 } 1372 1373 return ret; 1374 } 1375 1376 /** 1377 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1378 * @mtd: mtd info structure 1379 * @buf: source buffer to get OOB bytes from 1380 * @oobbuf: OOB buffer 1381 * @start: first OOB byte to set 1382 * @nbytes: number of OOB bytes to set 1383 * @iter: section iterator 1384 * 1385 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1386 * is selected by passing the appropriate iterator. 1387 * 1388 * Returns zero on success, a negative error code otherwise. 1389 */ 1390 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1391 u8 *oobbuf, int start, int nbytes, 1392 int (*iter)(struct mtd_info *, 1393 int section, 1394 struct mtd_oob_region *oobregion)) 1395 { 1396 struct mtd_oob_region oobregion; 1397 int section, ret; 1398 1399 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1400 &oobregion, iter); 1401 1402 while (!ret) { 1403 int cnt; 1404 1405 cnt = min_t(int, nbytes, oobregion.length); 1406 memcpy(oobbuf + oobregion.offset, buf, cnt); 1407 buf += cnt; 1408 nbytes -= cnt; 1409 1410 if (!nbytes) 1411 break; 1412 1413 ret = iter(mtd, ++section, &oobregion); 1414 } 1415 1416 return ret; 1417 } 1418 1419 /** 1420 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1421 * @mtd: mtd info structure 1422 * @iter: category iterator 1423 * 1424 * Count the number of bytes in a given category. 1425 * 1426 * Returns a positive value on success, a negative error code otherwise. 1427 */ 1428 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1429 int (*iter)(struct mtd_info *, 1430 int section, 1431 struct mtd_oob_region *oobregion)) 1432 { 1433 struct mtd_oob_region oobregion; 1434 int section = 0, ret, nbytes = 0; 1435 1436 while (1) { 1437 ret = iter(mtd, section++, &oobregion); 1438 if (ret) { 1439 if (ret == -ERANGE) 1440 ret = nbytes; 1441 break; 1442 } 1443 1444 nbytes += oobregion.length; 1445 } 1446 1447 return ret; 1448 } 1449 1450 /** 1451 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1452 * @mtd: mtd info structure 1453 * @eccbuf: destination buffer to store ECC bytes 1454 * @oobbuf: OOB buffer 1455 * @start: first ECC byte to retrieve 1456 * @nbytes: number of ECC bytes to retrieve 1457 * 1458 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1459 * 1460 * Returns zero on success, a negative error code otherwise. 1461 */ 1462 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1463 const u8 *oobbuf, int start, int nbytes) 1464 { 1465 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1466 mtd_ooblayout_ecc); 1467 } 1468 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1469 1470 /** 1471 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1472 * @mtd: mtd info structure 1473 * @eccbuf: source buffer to get ECC bytes from 1474 * @oobbuf: OOB buffer 1475 * @start: first ECC byte to set 1476 * @nbytes: number of ECC bytes to set 1477 * 1478 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1479 * 1480 * Returns zero on success, a negative error code otherwise. 1481 */ 1482 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1483 u8 *oobbuf, int start, int nbytes) 1484 { 1485 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1486 mtd_ooblayout_ecc); 1487 } 1488 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1489 1490 /** 1491 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1492 * @mtd: mtd info structure 1493 * @databuf: destination buffer to store ECC bytes 1494 * @oobbuf: OOB buffer 1495 * @start: first ECC byte to retrieve 1496 * @nbytes: number of ECC bytes to retrieve 1497 * 1498 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1499 * 1500 * Returns zero on success, a negative error code otherwise. 1501 */ 1502 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1503 const u8 *oobbuf, int start, int nbytes) 1504 { 1505 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1506 mtd_ooblayout_free); 1507 } 1508 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1509 1510 /** 1511 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1512 * @mtd: mtd info structure 1513 * @eccbuf: source buffer to get data bytes from 1514 * @oobbuf: OOB buffer 1515 * @start: first ECC byte to set 1516 * @nbytes: number of ECC bytes to set 1517 * 1518 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1519 * 1520 * Returns zero on success, a negative error code otherwise. 1521 */ 1522 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1523 u8 *oobbuf, int start, int nbytes) 1524 { 1525 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1526 mtd_ooblayout_free); 1527 } 1528 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1529 1530 /** 1531 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1532 * @mtd: mtd info structure 1533 * 1534 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1535 * 1536 * Returns zero on success, a negative error code otherwise. 1537 */ 1538 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1539 { 1540 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1541 } 1542 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1543 1544 /** 1545 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1546 * @mtd: mtd info structure 1547 * 1548 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1549 * 1550 * Returns zero on success, a negative error code otherwise. 1551 */ 1552 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1553 { 1554 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1555 } 1556 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1557 1558 /* 1559 * Method to access the protection register area, present in some flash 1560 * devices. The user data is one time programmable but the factory data is read 1561 * only. 1562 */ 1563 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1564 struct otp_info *buf) 1565 { 1566 if (!mtd->_get_fact_prot_info) 1567 return -EOPNOTSUPP; 1568 if (!len) 1569 return 0; 1570 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1571 } 1572 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1573 1574 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1575 size_t *retlen, u_char *buf) 1576 { 1577 *retlen = 0; 1578 if (!mtd->_read_fact_prot_reg) 1579 return -EOPNOTSUPP; 1580 if (!len) 1581 return 0; 1582 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1583 } 1584 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1585 1586 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1587 struct otp_info *buf) 1588 { 1589 if (!mtd->_get_user_prot_info) 1590 return -EOPNOTSUPP; 1591 if (!len) 1592 return 0; 1593 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1594 } 1595 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1596 1597 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1598 size_t *retlen, u_char *buf) 1599 { 1600 *retlen = 0; 1601 if (!mtd->_read_user_prot_reg) 1602 return -EOPNOTSUPP; 1603 if (!len) 1604 return 0; 1605 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1606 } 1607 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1608 1609 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1610 size_t *retlen, u_char *buf) 1611 { 1612 int ret; 1613 1614 *retlen = 0; 1615 if (!mtd->_write_user_prot_reg) 1616 return -EOPNOTSUPP; 1617 if (!len) 1618 return 0; 1619 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1620 if (ret) 1621 return ret; 1622 1623 /* 1624 * If no data could be written at all, we are out of memory and 1625 * must return -ENOSPC. 1626 */ 1627 return (*retlen) ? 0 : -ENOSPC; 1628 } 1629 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1630 1631 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1632 { 1633 if (!mtd->_lock_user_prot_reg) 1634 return -EOPNOTSUPP; 1635 if (!len) 1636 return 0; 1637 return mtd->_lock_user_prot_reg(mtd, from, len); 1638 } 1639 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1640 1641 /* Chip-supported device locking */ 1642 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1643 { 1644 if (!mtd->_lock) 1645 return -EOPNOTSUPP; 1646 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1647 return -EINVAL; 1648 if (!len) 1649 return 0; 1650 return mtd->_lock(mtd, ofs, len); 1651 } 1652 EXPORT_SYMBOL_GPL(mtd_lock); 1653 1654 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1655 { 1656 if (!mtd->_unlock) 1657 return -EOPNOTSUPP; 1658 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1659 return -EINVAL; 1660 if (!len) 1661 return 0; 1662 return mtd->_unlock(mtd, ofs, len); 1663 } 1664 EXPORT_SYMBOL_GPL(mtd_unlock); 1665 1666 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1667 { 1668 if (!mtd->_is_locked) 1669 return -EOPNOTSUPP; 1670 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1671 return -EINVAL; 1672 if (!len) 1673 return 0; 1674 return mtd->_is_locked(mtd, ofs, len); 1675 } 1676 EXPORT_SYMBOL_GPL(mtd_is_locked); 1677 1678 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1679 { 1680 if (ofs < 0 || ofs >= mtd->size) 1681 return -EINVAL; 1682 if (!mtd->_block_isreserved) 1683 return 0; 1684 return mtd->_block_isreserved(mtd, ofs); 1685 } 1686 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1687 1688 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1689 { 1690 if (ofs < 0 || ofs >= mtd->size) 1691 return -EINVAL; 1692 if (!mtd->_block_isbad) 1693 return 0; 1694 return mtd->_block_isbad(mtd, ofs); 1695 } 1696 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1697 1698 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1699 { 1700 if (!mtd->_block_markbad) 1701 return -EOPNOTSUPP; 1702 if (ofs < 0 || ofs >= mtd->size) 1703 return -EINVAL; 1704 if (!(mtd->flags & MTD_WRITEABLE)) 1705 return -EROFS; 1706 return mtd->_block_markbad(mtd, ofs); 1707 } 1708 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1709 1710 /* 1711 * default_mtd_writev - the default writev method 1712 * @mtd: mtd device description object pointer 1713 * @vecs: the vectors to write 1714 * @count: count of vectors in @vecs 1715 * @to: the MTD device offset to write to 1716 * @retlen: on exit contains the count of bytes written to the MTD device. 1717 * 1718 * This function returns zero in case of success and a negative error code in 1719 * case of failure. 1720 */ 1721 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1722 unsigned long count, loff_t to, size_t *retlen) 1723 { 1724 unsigned long i; 1725 size_t totlen = 0, thislen; 1726 int ret = 0; 1727 1728 for (i = 0; i < count; i++) { 1729 if (!vecs[i].iov_len) 1730 continue; 1731 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1732 vecs[i].iov_base); 1733 totlen += thislen; 1734 if (ret || thislen != vecs[i].iov_len) 1735 break; 1736 to += vecs[i].iov_len; 1737 } 1738 *retlen = totlen; 1739 return ret; 1740 } 1741 1742 /* 1743 * mtd_writev - the vector-based MTD write method 1744 * @mtd: mtd device description object pointer 1745 * @vecs: the vectors to write 1746 * @count: count of vectors in @vecs 1747 * @to: the MTD device offset to write to 1748 * @retlen: on exit contains the count of bytes written to the MTD device. 1749 * 1750 * This function returns zero in case of success and a negative error code in 1751 * case of failure. 1752 */ 1753 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1754 unsigned long count, loff_t to, size_t *retlen) 1755 { 1756 *retlen = 0; 1757 if (!(mtd->flags & MTD_WRITEABLE)) 1758 return -EROFS; 1759 if (!mtd->_writev) 1760 return default_mtd_writev(mtd, vecs, count, to, retlen); 1761 return mtd->_writev(mtd, vecs, count, to, retlen); 1762 } 1763 EXPORT_SYMBOL_GPL(mtd_writev); 1764 1765 /** 1766 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1767 * @mtd: mtd device description object pointer 1768 * @size: a pointer to the ideal or maximum size of the allocation, points 1769 * to the actual allocation size on success. 1770 * 1771 * This routine attempts to allocate a contiguous kernel buffer up to 1772 * the specified size, backing off the size of the request exponentially 1773 * until the request succeeds or until the allocation size falls below 1774 * the system page size. This attempts to make sure it does not adversely 1775 * impact system performance, so when allocating more than one page, we 1776 * ask the memory allocator to avoid re-trying, swapping, writing back 1777 * or performing I/O. 1778 * 1779 * Note, this function also makes sure that the allocated buffer is aligned to 1780 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1781 * 1782 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1783 * to handle smaller (i.e. degraded) buffer allocations under low- or 1784 * fragmented-memory situations where such reduced allocations, from a 1785 * requested ideal, are allowed. 1786 * 1787 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1788 */ 1789 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1790 { 1791 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1792 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1793 void *kbuf; 1794 1795 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1796 1797 while (*size > min_alloc) { 1798 kbuf = kmalloc(*size, flags); 1799 if (kbuf) 1800 return kbuf; 1801 1802 *size >>= 1; 1803 *size = ALIGN(*size, mtd->writesize); 1804 } 1805 1806 /* 1807 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1808 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1809 */ 1810 return kmalloc(*size, GFP_KERNEL); 1811 } 1812 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1813 1814 #ifdef CONFIG_PROC_FS 1815 1816 /*====================================================================*/ 1817 /* Support for /proc/mtd */ 1818 1819 static int mtd_proc_show(struct seq_file *m, void *v) 1820 { 1821 struct mtd_info *mtd; 1822 1823 seq_puts(m, "dev: size erasesize name\n"); 1824 mutex_lock(&mtd_table_mutex); 1825 mtd_for_each_device(mtd) { 1826 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1827 mtd->index, (unsigned long long)mtd->size, 1828 mtd->erasesize, mtd->name); 1829 } 1830 mutex_unlock(&mtd_table_mutex); 1831 return 0; 1832 } 1833 1834 static int mtd_proc_open(struct inode *inode, struct file *file) 1835 { 1836 return single_open(file, mtd_proc_show, NULL); 1837 } 1838 1839 static const struct file_operations mtd_proc_ops = { 1840 .open = mtd_proc_open, 1841 .read = seq_read, 1842 .llseek = seq_lseek, 1843 .release = single_release, 1844 }; 1845 #endif /* CONFIG_PROC_FS */ 1846 1847 /*====================================================================*/ 1848 /* Init code */ 1849 1850 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1851 { 1852 struct backing_dev_info *bdi; 1853 int ret; 1854 1855 bdi = bdi_alloc(GFP_KERNEL); 1856 if (!bdi) 1857 return ERR_PTR(-ENOMEM); 1858 1859 bdi->name = name; 1860 /* 1861 * We put '-0' suffix to the name to get the same name format as we 1862 * used to get. Since this is called only once, we get a unique name. 1863 */ 1864 ret = bdi_register(bdi, "%.28s-0", name); 1865 if (ret) 1866 bdi_put(bdi); 1867 1868 return ret ? ERR_PTR(ret) : bdi; 1869 } 1870 1871 static struct proc_dir_entry *proc_mtd; 1872 1873 static int __init init_mtd(void) 1874 { 1875 int ret; 1876 1877 ret = class_register(&mtd_class); 1878 if (ret) 1879 goto err_reg; 1880 1881 mtd_bdi = mtd_bdi_init("mtd"); 1882 if (IS_ERR(mtd_bdi)) { 1883 ret = PTR_ERR(mtd_bdi); 1884 goto err_bdi; 1885 } 1886 1887 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1888 1889 ret = init_mtdchar(); 1890 if (ret) 1891 goto out_procfs; 1892 1893 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1894 1895 return 0; 1896 1897 out_procfs: 1898 if (proc_mtd) 1899 remove_proc_entry("mtd", NULL); 1900 bdi_put(mtd_bdi); 1901 err_bdi: 1902 class_unregister(&mtd_class); 1903 err_reg: 1904 pr_err("Error registering mtd class or bdi: %d\n", ret); 1905 return ret; 1906 } 1907 1908 static void __exit cleanup_mtd(void) 1909 { 1910 debugfs_remove_recursive(dfs_dir_mtd); 1911 cleanup_mtdchar(); 1912 if (proc_mtd) 1913 remove_proc_entry("mtd", NULL); 1914 class_unregister(&mtd_class); 1915 bdi_put(mtd_bdi); 1916 idr_destroy(&mtd_idr); 1917 } 1918 1919 module_init(init_mtd); 1920 module_exit(cleanup_mtd); 1921 1922 MODULE_LICENSE("GPL"); 1923 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1924 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1925