1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/of.h> 36 #include <linux/proc_fs.h> 37 #include <linux/idr.h> 38 #include <linux/backing-dev.h> 39 #include <linux/gfp.h> 40 #include <linux/slab.h> 41 #include <linux/reboot.h> 42 #include <linux/leds.h> 43 44 #include <linux/mtd/mtd.h> 45 #include <linux/mtd/partitions.h> 46 47 #include "mtdcore.h" 48 49 static struct backing_dev_info *mtd_bdi; 50 51 #ifdef CONFIG_PM_SLEEP 52 53 static int mtd_cls_suspend(struct device *dev) 54 { 55 struct mtd_info *mtd = dev_get_drvdata(dev); 56 57 return mtd ? mtd_suspend(mtd) : 0; 58 } 59 60 static int mtd_cls_resume(struct device *dev) 61 { 62 struct mtd_info *mtd = dev_get_drvdata(dev); 63 64 if (mtd) 65 mtd_resume(mtd); 66 return 0; 67 } 68 69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 71 #else 72 #define MTD_CLS_PM_OPS NULL 73 #endif 74 75 static struct class mtd_class = { 76 .name = "mtd", 77 .owner = THIS_MODULE, 78 .pm = MTD_CLS_PM_OPS, 79 }; 80 81 static DEFINE_IDR(mtd_idr); 82 83 /* These are exported solely for the purpose of mtd_blkdevs.c. You 84 should not use them for _anything_ else */ 85 DEFINE_MUTEX(mtd_table_mutex); 86 EXPORT_SYMBOL_GPL(mtd_table_mutex); 87 88 struct mtd_info *__mtd_next_device(int i) 89 { 90 return idr_get_next(&mtd_idr, &i); 91 } 92 EXPORT_SYMBOL_GPL(__mtd_next_device); 93 94 static LIST_HEAD(mtd_notifiers); 95 96 97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 98 99 /* REVISIT once MTD uses the driver model better, whoever allocates 100 * the mtd_info will probably want to use the release() hook... 101 */ 102 static void mtd_release(struct device *dev) 103 { 104 struct mtd_info *mtd = dev_get_drvdata(dev); 105 dev_t index = MTD_DEVT(mtd->index); 106 107 /* remove /dev/mtdXro node */ 108 device_destroy(&mtd_class, index + 1); 109 } 110 111 static ssize_t mtd_type_show(struct device *dev, 112 struct device_attribute *attr, char *buf) 113 { 114 struct mtd_info *mtd = dev_get_drvdata(dev); 115 char *type; 116 117 switch (mtd->type) { 118 case MTD_ABSENT: 119 type = "absent"; 120 break; 121 case MTD_RAM: 122 type = "ram"; 123 break; 124 case MTD_ROM: 125 type = "rom"; 126 break; 127 case MTD_NORFLASH: 128 type = "nor"; 129 break; 130 case MTD_NANDFLASH: 131 type = "nand"; 132 break; 133 case MTD_DATAFLASH: 134 type = "dataflash"; 135 break; 136 case MTD_UBIVOLUME: 137 type = "ubi"; 138 break; 139 case MTD_MLCNANDFLASH: 140 type = "mlc-nand"; 141 break; 142 default: 143 type = "unknown"; 144 } 145 146 return snprintf(buf, PAGE_SIZE, "%s\n", type); 147 } 148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 149 150 static ssize_t mtd_flags_show(struct device *dev, 151 struct device_attribute *attr, char *buf) 152 { 153 struct mtd_info *mtd = dev_get_drvdata(dev); 154 155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 156 157 } 158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 159 160 static ssize_t mtd_size_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct mtd_info *mtd = dev_get_drvdata(dev); 164 165 return snprintf(buf, PAGE_SIZE, "%llu\n", 166 (unsigned long long)mtd->size); 167 168 } 169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 170 171 static ssize_t mtd_erasesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 177 178 } 179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 180 181 static ssize_t mtd_writesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 187 188 } 189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 190 191 static ssize_t mtd_subpagesize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 196 197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 198 199 } 200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 201 202 static ssize_t mtd_oobsize_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct mtd_info *mtd = dev_get_drvdata(dev); 206 207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 208 209 } 210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 211 212 static ssize_t mtd_numeraseregions_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 struct mtd_info *mtd = dev_get_drvdata(dev); 216 217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 218 219 } 220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 221 NULL); 222 223 static ssize_t mtd_name_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 struct mtd_info *mtd = dev_get_drvdata(dev); 227 228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 229 230 } 231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 232 233 static ssize_t mtd_ecc_strength_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct mtd_info *mtd = dev_get_drvdata(dev); 237 238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 239 } 240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 241 242 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 243 struct device_attribute *attr, 244 char *buf) 245 { 246 struct mtd_info *mtd = dev_get_drvdata(dev); 247 248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 249 } 250 251 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 252 struct device_attribute *attr, 253 const char *buf, size_t count) 254 { 255 struct mtd_info *mtd = dev_get_drvdata(dev); 256 unsigned int bitflip_threshold; 257 int retval; 258 259 retval = kstrtouint(buf, 0, &bitflip_threshold); 260 if (retval) 261 return retval; 262 263 mtd->bitflip_threshold = bitflip_threshold; 264 return count; 265 } 266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 267 mtd_bitflip_threshold_show, 268 mtd_bitflip_threshold_store); 269 270 static ssize_t mtd_ecc_step_size_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct mtd_info *mtd = dev_get_drvdata(dev); 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 276 277 } 278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 279 280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 287 } 288 static DEVICE_ATTR(corrected_bits, S_IRUGO, 289 mtd_ecc_stats_corrected_show, NULL); 290 291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 298 } 299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 300 301 static ssize_t mtd_badblocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 308 } 309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 310 311 static ssize_t mtd_bbtblocks_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct mtd_info *mtd = dev_get_drvdata(dev); 315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 316 317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 318 } 319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 320 321 static struct attribute *mtd_attrs[] = { 322 &dev_attr_type.attr, 323 &dev_attr_flags.attr, 324 &dev_attr_size.attr, 325 &dev_attr_erasesize.attr, 326 &dev_attr_writesize.attr, 327 &dev_attr_subpagesize.attr, 328 &dev_attr_oobsize.attr, 329 &dev_attr_numeraseregions.attr, 330 &dev_attr_name.attr, 331 &dev_attr_ecc_strength.attr, 332 &dev_attr_ecc_step_size.attr, 333 &dev_attr_corrected_bits.attr, 334 &dev_attr_ecc_failures.attr, 335 &dev_attr_bad_blocks.attr, 336 &dev_attr_bbt_blocks.attr, 337 &dev_attr_bitflip_threshold.attr, 338 NULL, 339 }; 340 ATTRIBUTE_GROUPS(mtd); 341 342 static struct device_type mtd_devtype = { 343 .name = "mtd", 344 .groups = mtd_groups, 345 .release = mtd_release, 346 }; 347 348 #ifndef CONFIG_MMU 349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 350 { 351 switch (mtd->type) { 352 case MTD_RAM: 353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 354 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 355 case MTD_ROM: 356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 357 NOMMU_MAP_READ; 358 default: 359 return NOMMU_MAP_COPY; 360 } 361 } 362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 363 #endif 364 365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 366 void *cmd) 367 { 368 struct mtd_info *mtd; 369 370 mtd = container_of(n, struct mtd_info, reboot_notifier); 371 mtd->_reboot(mtd); 372 373 return NOTIFY_DONE; 374 } 375 376 /** 377 * mtd_wunit_to_pairing_info - get pairing information of a wunit 378 * @mtd: pointer to new MTD device info structure 379 * @wunit: write unit we are interested in 380 * @info: returned pairing information 381 * 382 * Retrieve pairing information associated to the wunit. 383 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 384 * paired together, and where programming a page may influence the page it is 385 * paired with. 386 * The notion of page is replaced by the term wunit (write-unit) to stay 387 * consistent with the ->writesize field. 388 * 389 * The @wunit argument can be extracted from an absolute offset using 390 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 391 * to @wunit. 392 * 393 * From the pairing info the MTD user can find all the wunits paired with 394 * @wunit using the following loop: 395 * 396 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 397 * info.pair = i; 398 * mtd_pairing_info_to_wunit(mtd, &info); 399 * ... 400 * } 401 */ 402 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 403 struct mtd_pairing_info *info) 404 { 405 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 406 407 if (wunit < 0 || wunit >= npairs) 408 return -EINVAL; 409 410 if (mtd->pairing && mtd->pairing->get_info) 411 return mtd->pairing->get_info(mtd, wunit, info); 412 413 info->group = 0; 414 info->pair = wunit; 415 416 return 0; 417 } 418 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 419 420 /** 421 * mtd_wunit_to_pairing_info - get wunit from pairing information 422 * @mtd: pointer to new MTD device info structure 423 * @info: pairing information struct 424 * 425 * Returns a positive number representing the wunit associated to the info 426 * struct, or a negative error code. 427 * 428 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 429 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 430 * doc). 431 * 432 * It can also be used to only program the first page of each pair (i.e. 433 * page attached to group 0), which allows one to use an MLC NAND in 434 * software-emulated SLC mode: 435 * 436 * info.group = 0; 437 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 438 * for (info.pair = 0; info.pair < npairs; info.pair++) { 439 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 440 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 441 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 442 * } 443 */ 444 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 445 const struct mtd_pairing_info *info) 446 { 447 int ngroups = mtd_pairing_groups(mtd); 448 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 449 450 if (!info || info->pair < 0 || info->pair >= npairs || 451 info->group < 0 || info->group >= ngroups) 452 return -EINVAL; 453 454 if (mtd->pairing && mtd->pairing->get_wunit) 455 return mtd->pairing->get_wunit(mtd, info); 456 457 return info->pair; 458 } 459 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 460 461 /** 462 * mtd_pairing_groups - get the number of pairing groups 463 * @mtd: pointer to new MTD device info structure 464 * 465 * Returns the number of pairing groups. 466 * 467 * This number is usually equal to the number of bits exposed by a single 468 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 469 * to iterate over all pages of a given pair. 470 */ 471 int mtd_pairing_groups(struct mtd_info *mtd) 472 { 473 if (!mtd->pairing || !mtd->pairing->ngroups) 474 return 1; 475 476 return mtd->pairing->ngroups; 477 } 478 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 479 480 /** 481 * add_mtd_device - register an MTD device 482 * @mtd: pointer to new MTD device info structure 483 * 484 * Add a device to the list of MTD devices present in the system, and 485 * notify each currently active MTD 'user' of its arrival. Returns 486 * zero on success or non-zero on failure. 487 */ 488 489 int add_mtd_device(struct mtd_info *mtd) 490 { 491 struct mtd_notifier *not; 492 int i, error; 493 494 /* 495 * May occur, for instance, on buggy drivers which call 496 * mtd_device_parse_register() multiple times on the same master MTD, 497 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 498 */ 499 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n")) 500 return -EEXIST; 501 502 mtd->backing_dev_info = mtd_bdi; 503 504 BUG_ON(mtd->writesize == 0); 505 mutex_lock(&mtd_table_mutex); 506 507 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 508 if (i < 0) { 509 error = i; 510 goto fail_locked; 511 } 512 513 mtd->index = i; 514 mtd->usecount = 0; 515 516 /* default value if not set by driver */ 517 if (mtd->bitflip_threshold == 0) 518 mtd->bitflip_threshold = mtd->ecc_strength; 519 520 if (is_power_of_2(mtd->erasesize)) 521 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 522 else 523 mtd->erasesize_shift = 0; 524 525 if (is_power_of_2(mtd->writesize)) 526 mtd->writesize_shift = ffs(mtd->writesize) - 1; 527 else 528 mtd->writesize_shift = 0; 529 530 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 531 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 532 533 /* Some chips always power up locked. Unlock them now */ 534 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 535 error = mtd_unlock(mtd, 0, mtd->size); 536 if (error && error != -EOPNOTSUPP) 537 printk(KERN_WARNING 538 "%s: unlock failed, writes may not work\n", 539 mtd->name); 540 /* Ignore unlock failures? */ 541 error = 0; 542 } 543 544 /* Caller should have set dev.parent to match the 545 * physical device, if appropriate. 546 */ 547 mtd->dev.type = &mtd_devtype; 548 mtd->dev.class = &mtd_class; 549 mtd->dev.devt = MTD_DEVT(i); 550 dev_set_name(&mtd->dev, "mtd%d", i); 551 dev_set_drvdata(&mtd->dev, mtd); 552 of_node_get(mtd_get_of_node(mtd)); 553 error = device_register(&mtd->dev); 554 if (error) 555 goto fail_added; 556 557 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 558 "mtd%dro", i); 559 560 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 561 /* No need to get a refcount on the module containing 562 the notifier, since we hold the mtd_table_mutex */ 563 list_for_each_entry(not, &mtd_notifiers, list) 564 not->add(mtd); 565 566 mutex_unlock(&mtd_table_mutex); 567 /* We _know_ we aren't being removed, because 568 our caller is still holding us here. So none 569 of this try_ nonsense, and no bitching about it 570 either. :) */ 571 __module_get(THIS_MODULE); 572 return 0; 573 574 fail_added: 575 of_node_put(mtd_get_of_node(mtd)); 576 idr_remove(&mtd_idr, i); 577 fail_locked: 578 mutex_unlock(&mtd_table_mutex); 579 return error; 580 } 581 582 /** 583 * del_mtd_device - unregister an MTD device 584 * @mtd: pointer to MTD device info structure 585 * 586 * Remove a device from the list of MTD devices present in the system, 587 * and notify each currently active MTD 'user' of its departure. 588 * Returns zero on success or 1 on failure, which currently will happen 589 * if the requested device does not appear to be present in the list. 590 */ 591 592 int del_mtd_device(struct mtd_info *mtd) 593 { 594 int ret; 595 struct mtd_notifier *not; 596 597 mutex_lock(&mtd_table_mutex); 598 599 if (idr_find(&mtd_idr, mtd->index) != mtd) { 600 ret = -ENODEV; 601 goto out_error; 602 } 603 604 /* No need to get a refcount on the module containing 605 the notifier, since we hold the mtd_table_mutex */ 606 list_for_each_entry(not, &mtd_notifiers, list) 607 not->remove(mtd); 608 609 if (mtd->usecount) { 610 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 611 mtd->index, mtd->name, mtd->usecount); 612 ret = -EBUSY; 613 } else { 614 device_unregister(&mtd->dev); 615 616 idr_remove(&mtd_idr, mtd->index); 617 of_node_put(mtd_get_of_node(mtd)); 618 619 module_put(THIS_MODULE); 620 ret = 0; 621 } 622 623 out_error: 624 mutex_unlock(&mtd_table_mutex); 625 return ret; 626 } 627 628 static int mtd_add_device_partitions(struct mtd_info *mtd, 629 struct mtd_partitions *parts) 630 { 631 const struct mtd_partition *real_parts = parts->parts; 632 int nbparts = parts->nr_parts; 633 int ret; 634 635 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 636 ret = add_mtd_device(mtd); 637 if (ret) 638 return ret; 639 } 640 641 if (nbparts > 0) { 642 ret = add_mtd_partitions(mtd, real_parts, nbparts); 643 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 644 del_mtd_device(mtd); 645 return ret; 646 } 647 648 return 0; 649 } 650 651 /* 652 * Set a few defaults based on the parent devices, if not provided by the 653 * driver 654 */ 655 static void mtd_set_dev_defaults(struct mtd_info *mtd) 656 { 657 if (mtd->dev.parent) { 658 if (!mtd->owner && mtd->dev.parent->driver) 659 mtd->owner = mtd->dev.parent->driver->owner; 660 if (!mtd->name) 661 mtd->name = dev_name(mtd->dev.parent); 662 } else { 663 pr_debug("mtd device won't show a device symlink in sysfs\n"); 664 } 665 } 666 667 /** 668 * mtd_device_parse_register - parse partitions and register an MTD device. 669 * 670 * @mtd: the MTD device to register 671 * @types: the list of MTD partition probes to try, see 672 * 'parse_mtd_partitions()' for more information 673 * @parser_data: MTD partition parser-specific data 674 * @parts: fallback partition information to register, if parsing fails; 675 * only valid if %nr_parts > %0 676 * @nr_parts: the number of partitions in parts, if zero then the full 677 * MTD device is registered if no partition info is found 678 * 679 * This function aggregates MTD partitions parsing (done by 680 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 681 * basically follows the most common pattern found in many MTD drivers: 682 * 683 * * It first tries to probe partitions on MTD device @mtd using parsers 684 * specified in @types (if @types is %NULL, then the default list of parsers 685 * is used, see 'parse_mtd_partitions()' for more information). If none are 686 * found this functions tries to fallback to information specified in 687 * @parts/@nr_parts. 688 * * If any partitioning info was found, this function registers the found 689 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 690 * as a whole is registered first. 691 * * If no partitions were found this function just registers the MTD device 692 * @mtd and exits. 693 * 694 * Returns zero in case of success and a negative error code in case of failure. 695 */ 696 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 697 struct mtd_part_parser_data *parser_data, 698 const struct mtd_partition *parts, 699 int nr_parts) 700 { 701 struct mtd_partitions parsed; 702 int ret; 703 704 mtd_set_dev_defaults(mtd); 705 706 memset(&parsed, 0, sizeof(parsed)); 707 708 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); 709 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { 710 /* Fall back to driver-provided partitions */ 711 parsed = (struct mtd_partitions){ 712 .parts = parts, 713 .nr_parts = nr_parts, 714 }; 715 } else if (ret < 0) { 716 /* Didn't come up with parsed OR fallback partitions */ 717 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", 718 ret); 719 /* Don't abort on errors; we can still use unpartitioned MTD */ 720 memset(&parsed, 0, sizeof(parsed)); 721 } 722 723 ret = mtd_add_device_partitions(mtd, &parsed); 724 if (ret) 725 goto out; 726 727 /* 728 * FIXME: some drivers unfortunately call this function more than once. 729 * So we have to check if we've already assigned the reboot notifier. 730 * 731 * Generally, we can make multiple calls work for most cases, but it 732 * does cause problems with parse_mtd_partitions() above (e.g., 733 * cmdlineparts will register partitions more than once). 734 */ 735 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 736 "MTD already registered\n"); 737 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 738 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 739 register_reboot_notifier(&mtd->reboot_notifier); 740 } 741 742 out: 743 /* Cleanup any parsed partitions */ 744 mtd_part_parser_cleanup(&parsed); 745 return ret; 746 } 747 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 748 749 /** 750 * mtd_device_unregister - unregister an existing MTD device. 751 * 752 * @master: the MTD device to unregister. This will unregister both the master 753 * and any partitions if registered. 754 */ 755 int mtd_device_unregister(struct mtd_info *master) 756 { 757 int err; 758 759 if (master->_reboot) 760 unregister_reboot_notifier(&master->reboot_notifier); 761 762 err = del_mtd_partitions(master); 763 if (err) 764 return err; 765 766 if (!device_is_registered(&master->dev)) 767 return 0; 768 769 return del_mtd_device(master); 770 } 771 EXPORT_SYMBOL_GPL(mtd_device_unregister); 772 773 /** 774 * register_mtd_user - register a 'user' of MTD devices. 775 * @new: pointer to notifier info structure 776 * 777 * Registers a pair of callbacks function to be called upon addition 778 * or removal of MTD devices. Causes the 'add' callback to be immediately 779 * invoked for each MTD device currently present in the system. 780 */ 781 void register_mtd_user (struct mtd_notifier *new) 782 { 783 struct mtd_info *mtd; 784 785 mutex_lock(&mtd_table_mutex); 786 787 list_add(&new->list, &mtd_notifiers); 788 789 __module_get(THIS_MODULE); 790 791 mtd_for_each_device(mtd) 792 new->add(mtd); 793 794 mutex_unlock(&mtd_table_mutex); 795 } 796 EXPORT_SYMBOL_GPL(register_mtd_user); 797 798 /** 799 * unregister_mtd_user - unregister a 'user' of MTD devices. 800 * @old: pointer to notifier info structure 801 * 802 * Removes a callback function pair from the list of 'users' to be 803 * notified upon addition or removal of MTD devices. Causes the 804 * 'remove' callback to be immediately invoked for each MTD device 805 * currently present in the system. 806 */ 807 int unregister_mtd_user (struct mtd_notifier *old) 808 { 809 struct mtd_info *mtd; 810 811 mutex_lock(&mtd_table_mutex); 812 813 module_put(THIS_MODULE); 814 815 mtd_for_each_device(mtd) 816 old->remove(mtd); 817 818 list_del(&old->list); 819 mutex_unlock(&mtd_table_mutex); 820 return 0; 821 } 822 EXPORT_SYMBOL_GPL(unregister_mtd_user); 823 824 /** 825 * get_mtd_device - obtain a validated handle for an MTD device 826 * @mtd: last known address of the required MTD device 827 * @num: internal device number of the required MTD device 828 * 829 * Given a number and NULL address, return the num'th entry in the device 830 * table, if any. Given an address and num == -1, search the device table 831 * for a device with that address and return if it's still present. Given 832 * both, return the num'th driver only if its address matches. Return 833 * error code if not. 834 */ 835 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 836 { 837 struct mtd_info *ret = NULL, *other; 838 int err = -ENODEV; 839 840 mutex_lock(&mtd_table_mutex); 841 842 if (num == -1) { 843 mtd_for_each_device(other) { 844 if (other == mtd) { 845 ret = mtd; 846 break; 847 } 848 } 849 } else if (num >= 0) { 850 ret = idr_find(&mtd_idr, num); 851 if (mtd && mtd != ret) 852 ret = NULL; 853 } 854 855 if (!ret) { 856 ret = ERR_PTR(err); 857 goto out; 858 } 859 860 err = __get_mtd_device(ret); 861 if (err) 862 ret = ERR_PTR(err); 863 out: 864 mutex_unlock(&mtd_table_mutex); 865 return ret; 866 } 867 EXPORT_SYMBOL_GPL(get_mtd_device); 868 869 870 int __get_mtd_device(struct mtd_info *mtd) 871 { 872 int err; 873 874 if (!try_module_get(mtd->owner)) 875 return -ENODEV; 876 877 if (mtd->_get_device) { 878 err = mtd->_get_device(mtd); 879 880 if (err) { 881 module_put(mtd->owner); 882 return err; 883 } 884 } 885 mtd->usecount++; 886 return 0; 887 } 888 EXPORT_SYMBOL_GPL(__get_mtd_device); 889 890 /** 891 * get_mtd_device_nm - obtain a validated handle for an MTD device by 892 * device name 893 * @name: MTD device name to open 894 * 895 * This function returns MTD device description structure in case of 896 * success and an error code in case of failure. 897 */ 898 struct mtd_info *get_mtd_device_nm(const char *name) 899 { 900 int err = -ENODEV; 901 struct mtd_info *mtd = NULL, *other; 902 903 mutex_lock(&mtd_table_mutex); 904 905 mtd_for_each_device(other) { 906 if (!strcmp(name, other->name)) { 907 mtd = other; 908 break; 909 } 910 } 911 912 if (!mtd) 913 goto out_unlock; 914 915 err = __get_mtd_device(mtd); 916 if (err) 917 goto out_unlock; 918 919 mutex_unlock(&mtd_table_mutex); 920 return mtd; 921 922 out_unlock: 923 mutex_unlock(&mtd_table_mutex); 924 return ERR_PTR(err); 925 } 926 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 927 928 void put_mtd_device(struct mtd_info *mtd) 929 { 930 mutex_lock(&mtd_table_mutex); 931 __put_mtd_device(mtd); 932 mutex_unlock(&mtd_table_mutex); 933 934 } 935 EXPORT_SYMBOL_GPL(put_mtd_device); 936 937 void __put_mtd_device(struct mtd_info *mtd) 938 { 939 --mtd->usecount; 940 BUG_ON(mtd->usecount < 0); 941 942 if (mtd->_put_device) 943 mtd->_put_device(mtd); 944 945 module_put(mtd->owner); 946 } 947 EXPORT_SYMBOL_GPL(__put_mtd_device); 948 949 /* 950 * Erase is an asynchronous operation. Device drivers are supposed 951 * to call instr->callback() whenever the operation completes, even 952 * if it completes with a failure. 953 * Callers are supposed to pass a callback function and wait for it 954 * to be called before writing to the block. 955 */ 956 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 957 { 958 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 959 return -EINVAL; 960 if (!(mtd->flags & MTD_WRITEABLE)) 961 return -EROFS; 962 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 963 if (!instr->len) { 964 instr->state = MTD_ERASE_DONE; 965 mtd_erase_callback(instr); 966 return 0; 967 } 968 ledtrig_mtd_activity(); 969 return mtd->_erase(mtd, instr); 970 } 971 EXPORT_SYMBOL_GPL(mtd_erase); 972 973 /* 974 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 975 */ 976 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 977 void **virt, resource_size_t *phys) 978 { 979 *retlen = 0; 980 *virt = NULL; 981 if (phys) 982 *phys = 0; 983 if (!mtd->_point) 984 return -EOPNOTSUPP; 985 if (from < 0 || from >= mtd->size || len > mtd->size - from) 986 return -EINVAL; 987 if (!len) 988 return 0; 989 return mtd->_point(mtd, from, len, retlen, virt, phys); 990 } 991 EXPORT_SYMBOL_GPL(mtd_point); 992 993 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 994 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 995 { 996 if (!mtd->_point) 997 return -EOPNOTSUPP; 998 if (from < 0 || from >= mtd->size || len > mtd->size - from) 999 return -EINVAL; 1000 if (!len) 1001 return 0; 1002 return mtd->_unpoint(mtd, from, len); 1003 } 1004 EXPORT_SYMBOL_GPL(mtd_unpoint); 1005 1006 /* 1007 * Allow NOMMU mmap() to directly map the device (if not NULL) 1008 * - return the address to which the offset maps 1009 * - return -ENOSYS to indicate refusal to do the mapping 1010 */ 1011 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1012 unsigned long offset, unsigned long flags) 1013 { 1014 if (!mtd->_get_unmapped_area) 1015 return -EOPNOTSUPP; 1016 if (offset >= mtd->size || len > mtd->size - offset) 1017 return -EINVAL; 1018 return mtd->_get_unmapped_area(mtd, len, offset, flags); 1019 } 1020 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1021 1022 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1023 u_char *buf) 1024 { 1025 int ret_code; 1026 *retlen = 0; 1027 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1028 return -EINVAL; 1029 if (!len) 1030 return 0; 1031 1032 ledtrig_mtd_activity(); 1033 /* 1034 * In the absence of an error, drivers return a non-negative integer 1035 * representing the maximum number of bitflips that were corrected on 1036 * any one ecc region (if applicable; zero otherwise). 1037 */ 1038 ret_code = mtd->_read(mtd, from, len, retlen, buf); 1039 if (unlikely(ret_code < 0)) 1040 return ret_code; 1041 if (mtd->ecc_strength == 0) 1042 return 0; /* device lacks ecc */ 1043 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1044 } 1045 EXPORT_SYMBOL_GPL(mtd_read); 1046 1047 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1048 const u_char *buf) 1049 { 1050 *retlen = 0; 1051 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1052 return -EINVAL; 1053 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 1054 return -EROFS; 1055 if (!len) 1056 return 0; 1057 ledtrig_mtd_activity(); 1058 return mtd->_write(mtd, to, len, retlen, buf); 1059 } 1060 EXPORT_SYMBOL_GPL(mtd_write); 1061 1062 /* 1063 * In blackbox flight recorder like scenarios we want to make successful writes 1064 * in interrupt context. panic_write() is only intended to be called when its 1065 * known the kernel is about to panic and we need the write to succeed. Since 1066 * the kernel is not going to be running for much longer, this function can 1067 * break locks and delay to ensure the write succeeds (but not sleep). 1068 */ 1069 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1070 const u_char *buf) 1071 { 1072 *retlen = 0; 1073 if (!mtd->_panic_write) 1074 return -EOPNOTSUPP; 1075 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1076 return -EINVAL; 1077 if (!(mtd->flags & MTD_WRITEABLE)) 1078 return -EROFS; 1079 if (!len) 1080 return 0; 1081 return mtd->_panic_write(mtd, to, len, retlen, buf); 1082 } 1083 EXPORT_SYMBOL_GPL(mtd_panic_write); 1084 1085 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1086 { 1087 int ret_code; 1088 ops->retlen = ops->oobretlen = 0; 1089 if (!mtd->_read_oob) 1090 return -EOPNOTSUPP; 1091 1092 ledtrig_mtd_activity(); 1093 /* 1094 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1095 * similar to mtd->_read(), returning a non-negative integer 1096 * representing max bitflips. In other cases, mtd->_read_oob() may 1097 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1098 */ 1099 ret_code = mtd->_read_oob(mtd, from, ops); 1100 if (unlikely(ret_code < 0)) 1101 return ret_code; 1102 if (mtd->ecc_strength == 0) 1103 return 0; /* device lacks ecc */ 1104 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1105 } 1106 EXPORT_SYMBOL_GPL(mtd_read_oob); 1107 1108 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1109 struct mtd_oob_ops *ops) 1110 { 1111 ops->retlen = ops->oobretlen = 0; 1112 if (!mtd->_write_oob) 1113 return -EOPNOTSUPP; 1114 if (!(mtd->flags & MTD_WRITEABLE)) 1115 return -EROFS; 1116 ledtrig_mtd_activity(); 1117 return mtd->_write_oob(mtd, to, ops); 1118 } 1119 EXPORT_SYMBOL_GPL(mtd_write_oob); 1120 1121 /** 1122 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1123 * @mtd: MTD device structure 1124 * @section: ECC section. Depending on the layout you may have all the ECC 1125 * bytes stored in a single contiguous section, or one section 1126 * per ECC chunk (and sometime several sections for a single ECC 1127 * ECC chunk) 1128 * @oobecc: OOB region struct filled with the appropriate ECC position 1129 * information 1130 * 1131 * This function returns ECC section information in the OOB area. If you want 1132 * to get all the ECC bytes information, then you should call 1133 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1134 * 1135 * Returns zero on success, a negative error code otherwise. 1136 */ 1137 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1138 struct mtd_oob_region *oobecc) 1139 { 1140 memset(oobecc, 0, sizeof(*oobecc)); 1141 1142 if (!mtd || section < 0) 1143 return -EINVAL; 1144 1145 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1146 return -ENOTSUPP; 1147 1148 return mtd->ooblayout->ecc(mtd, section, oobecc); 1149 } 1150 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1151 1152 /** 1153 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1154 * section 1155 * @mtd: MTD device structure 1156 * @section: Free section you are interested in. Depending on the layout 1157 * you may have all the free bytes stored in a single contiguous 1158 * section, or one section per ECC chunk plus an extra section 1159 * for the remaining bytes (or other funky layout). 1160 * @oobfree: OOB region struct filled with the appropriate free position 1161 * information 1162 * 1163 * This function returns free bytes position in the OOB area. If you want 1164 * to get all the free bytes information, then you should call 1165 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1166 * 1167 * Returns zero on success, a negative error code otherwise. 1168 */ 1169 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1170 struct mtd_oob_region *oobfree) 1171 { 1172 memset(oobfree, 0, sizeof(*oobfree)); 1173 1174 if (!mtd || section < 0) 1175 return -EINVAL; 1176 1177 if (!mtd->ooblayout || !mtd->ooblayout->free) 1178 return -ENOTSUPP; 1179 1180 return mtd->ooblayout->free(mtd, section, oobfree); 1181 } 1182 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1183 1184 /** 1185 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1186 * @mtd: mtd info structure 1187 * @byte: the byte we are searching for 1188 * @sectionp: pointer where the section id will be stored 1189 * @oobregion: used to retrieve the ECC position 1190 * @iter: iterator function. Should be either mtd_ooblayout_free or 1191 * mtd_ooblayout_ecc depending on the region type you're searching for 1192 * 1193 * This function returns the section id and oobregion information of a 1194 * specific byte. For example, say you want to know where the 4th ECC byte is 1195 * stored, you'll use: 1196 * 1197 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1198 * 1199 * Returns zero on success, a negative error code otherwise. 1200 */ 1201 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1202 int *sectionp, struct mtd_oob_region *oobregion, 1203 int (*iter)(struct mtd_info *, 1204 int section, 1205 struct mtd_oob_region *oobregion)) 1206 { 1207 int pos = 0, ret, section = 0; 1208 1209 memset(oobregion, 0, sizeof(*oobregion)); 1210 1211 while (1) { 1212 ret = iter(mtd, section, oobregion); 1213 if (ret) 1214 return ret; 1215 1216 if (pos + oobregion->length > byte) 1217 break; 1218 1219 pos += oobregion->length; 1220 section++; 1221 } 1222 1223 /* 1224 * Adjust region info to make it start at the beginning at the 1225 * 'start' ECC byte. 1226 */ 1227 oobregion->offset += byte - pos; 1228 oobregion->length -= byte - pos; 1229 *sectionp = section; 1230 1231 return 0; 1232 } 1233 1234 /** 1235 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1236 * ECC byte 1237 * @mtd: mtd info structure 1238 * @eccbyte: the byte we are searching for 1239 * @sectionp: pointer where the section id will be stored 1240 * @oobregion: OOB region information 1241 * 1242 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1243 * byte. 1244 * 1245 * Returns zero on success, a negative error code otherwise. 1246 */ 1247 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1248 int *section, 1249 struct mtd_oob_region *oobregion) 1250 { 1251 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1252 mtd_ooblayout_ecc); 1253 } 1254 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1255 1256 /** 1257 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1258 * @mtd: mtd info structure 1259 * @buf: destination buffer to store OOB bytes 1260 * @oobbuf: OOB buffer 1261 * @start: first byte to retrieve 1262 * @nbytes: number of bytes to retrieve 1263 * @iter: section iterator 1264 * 1265 * Extract bytes attached to a specific category (ECC or free) 1266 * from the OOB buffer and copy them into buf. 1267 * 1268 * Returns zero on success, a negative error code otherwise. 1269 */ 1270 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1271 const u8 *oobbuf, int start, int nbytes, 1272 int (*iter)(struct mtd_info *, 1273 int section, 1274 struct mtd_oob_region *oobregion)) 1275 { 1276 struct mtd_oob_region oobregion; 1277 int section, ret; 1278 1279 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1280 &oobregion, iter); 1281 1282 while (!ret) { 1283 int cnt; 1284 1285 cnt = min_t(int, nbytes, oobregion.length); 1286 memcpy(buf, oobbuf + oobregion.offset, cnt); 1287 buf += cnt; 1288 nbytes -= cnt; 1289 1290 if (!nbytes) 1291 break; 1292 1293 ret = iter(mtd, ++section, &oobregion); 1294 } 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1301 * @mtd: mtd info structure 1302 * @buf: source buffer to get OOB bytes from 1303 * @oobbuf: OOB buffer 1304 * @start: first OOB byte to set 1305 * @nbytes: number of OOB bytes to set 1306 * @iter: section iterator 1307 * 1308 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1309 * is selected by passing the appropriate iterator. 1310 * 1311 * Returns zero on success, a negative error code otherwise. 1312 */ 1313 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1314 u8 *oobbuf, int start, int nbytes, 1315 int (*iter)(struct mtd_info *, 1316 int section, 1317 struct mtd_oob_region *oobregion)) 1318 { 1319 struct mtd_oob_region oobregion; 1320 int section, ret; 1321 1322 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1323 &oobregion, iter); 1324 1325 while (!ret) { 1326 int cnt; 1327 1328 cnt = min_t(int, nbytes, oobregion.length); 1329 memcpy(oobbuf + oobregion.offset, buf, cnt); 1330 buf += cnt; 1331 nbytes -= cnt; 1332 1333 if (!nbytes) 1334 break; 1335 1336 ret = iter(mtd, ++section, &oobregion); 1337 } 1338 1339 return ret; 1340 } 1341 1342 /** 1343 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1344 * @mtd: mtd info structure 1345 * @iter: category iterator 1346 * 1347 * Count the number of bytes in a given category. 1348 * 1349 * Returns a positive value on success, a negative error code otherwise. 1350 */ 1351 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1352 int (*iter)(struct mtd_info *, 1353 int section, 1354 struct mtd_oob_region *oobregion)) 1355 { 1356 struct mtd_oob_region oobregion; 1357 int section = 0, ret, nbytes = 0; 1358 1359 while (1) { 1360 ret = iter(mtd, section++, &oobregion); 1361 if (ret) { 1362 if (ret == -ERANGE) 1363 ret = nbytes; 1364 break; 1365 } 1366 1367 nbytes += oobregion.length; 1368 } 1369 1370 return ret; 1371 } 1372 1373 /** 1374 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1375 * @mtd: mtd info structure 1376 * @eccbuf: destination buffer to store ECC bytes 1377 * @oobbuf: OOB buffer 1378 * @start: first ECC byte to retrieve 1379 * @nbytes: number of ECC bytes to retrieve 1380 * 1381 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1382 * 1383 * Returns zero on success, a negative error code otherwise. 1384 */ 1385 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1386 const u8 *oobbuf, int start, int nbytes) 1387 { 1388 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1389 mtd_ooblayout_ecc); 1390 } 1391 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1392 1393 /** 1394 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1395 * @mtd: mtd info structure 1396 * @eccbuf: source buffer to get ECC bytes from 1397 * @oobbuf: OOB buffer 1398 * @start: first ECC byte to set 1399 * @nbytes: number of ECC bytes to set 1400 * 1401 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1402 * 1403 * Returns zero on success, a negative error code otherwise. 1404 */ 1405 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1406 u8 *oobbuf, int start, int nbytes) 1407 { 1408 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1409 mtd_ooblayout_ecc); 1410 } 1411 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1412 1413 /** 1414 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1415 * @mtd: mtd info structure 1416 * @databuf: destination buffer to store ECC bytes 1417 * @oobbuf: OOB buffer 1418 * @start: first ECC byte to retrieve 1419 * @nbytes: number of ECC bytes to retrieve 1420 * 1421 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1422 * 1423 * Returns zero on success, a negative error code otherwise. 1424 */ 1425 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1426 const u8 *oobbuf, int start, int nbytes) 1427 { 1428 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1429 mtd_ooblayout_free); 1430 } 1431 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1432 1433 /** 1434 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer 1435 * @mtd: mtd info structure 1436 * @eccbuf: source buffer to get data bytes from 1437 * @oobbuf: OOB buffer 1438 * @start: first ECC byte to set 1439 * @nbytes: number of ECC bytes to set 1440 * 1441 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1442 * 1443 * Returns zero on success, a negative error code otherwise. 1444 */ 1445 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1446 u8 *oobbuf, int start, int nbytes) 1447 { 1448 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1449 mtd_ooblayout_free); 1450 } 1451 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1452 1453 /** 1454 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1455 * @mtd: mtd info structure 1456 * 1457 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1458 * 1459 * Returns zero on success, a negative error code otherwise. 1460 */ 1461 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1462 { 1463 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1464 } 1465 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1466 1467 /** 1468 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB 1469 * @mtd: mtd info structure 1470 * 1471 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1472 * 1473 * Returns zero on success, a negative error code otherwise. 1474 */ 1475 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1476 { 1477 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1478 } 1479 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1480 1481 /* 1482 * Method to access the protection register area, present in some flash 1483 * devices. The user data is one time programmable but the factory data is read 1484 * only. 1485 */ 1486 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1487 struct otp_info *buf) 1488 { 1489 if (!mtd->_get_fact_prot_info) 1490 return -EOPNOTSUPP; 1491 if (!len) 1492 return 0; 1493 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1494 } 1495 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1496 1497 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1498 size_t *retlen, u_char *buf) 1499 { 1500 *retlen = 0; 1501 if (!mtd->_read_fact_prot_reg) 1502 return -EOPNOTSUPP; 1503 if (!len) 1504 return 0; 1505 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1506 } 1507 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1508 1509 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1510 struct otp_info *buf) 1511 { 1512 if (!mtd->_get_user_prot_info) 1513 return -EOPNOTSUPP; 1514 if (!len) 1515 return 0; 1516 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1517 } 1518 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1519 1520 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1521 size_t *retlen, u_char *buf) 1522 { 1523 *retlen = 0; 1524 if (!mtd->_read_user_prot_reg) 1525 return -EOPNOTSUPP; 1526 if (!len) 1527 return 0; 1528 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1529 } 1530 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1531 1532 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1533 size_t *retlen, u_char *buf) 1534 { 1535 int ret; 1536 1537 *retlen = 0; 1538 if (!mtd->_write_user_prot_reg) 1539 return -EOPNOTSUPP; 1540 if (!len) 1541 return 0; 1542 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1543 if (ret) 1544 return ret; 1545 1546 /* 1547 * If no data could be written at all, we are out of memory and 1548 * must return -ENOSPC. 1549 */ 1550 return (*retlen) ? 0 : -ENOSPC; 1551 } 1552 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1553 1554 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1555 { 1556 if (!mtd->_lock_user_prot_reg) 1557 return -EOPNOTSUPP; 1558 if (!len) 1559 return 0; 1560 return mtd->_lock_user_prot_reg(mtd, from, len); 1561 } 1562 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1563 1564 /* Chip-supported device locking */ 1565 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1566 { 1567 if (!mtd->_lock) 1568 return -EOPNOTSUPP; 1569 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1570 return -EINVAL; 1571 if (!len) 1572 return 0; 1573 return mtd->_lock(mtd, ofs, len); 1574 } 1575 EXPORT_SYMBOL_GPL(mtd_lock); 1576 1577 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1578 { 1579 if (!mtd->_unlock) 1580 return -EOPNOTSUPP; 1581 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1582 return -EINVAL; 1583 if (!len) 1584 return 0; 1585 return mtd->_unlock(mtd, ofs, len); 1586 } 1587 EXPORT_SYMBOL_GPL(mtd_unlock); 1588 1589 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1590 { 1591 if (!mtd->_is_locked) 1592 return -EOPNOTSUPP; 1593 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1594 return -EINVAL; 1595 if (!len) 1596 return 0; 1597 return mtd->_is_locked(mtd, ofs, len); 1598 } 1599 EXPORT_SYMBOL_GPL(mtd_is_locked); 1600 1601 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1602 { 1603 if (ofs < 0 || ofs >= mtd->size) 1604 return -EINVAL; 1605 if (!mtd->_block_isreserved) 1606 return 0; 1607 return mtd->_block_isreserved(mtd, ofs); 1608 } 1609 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1610 1611 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1612 { 1613 if (ofs < 0 || ofs >= mtd->size) 1614 return -EINVAL; 1615 if (!mtd->_block_isbad) 1616 return 0; 1617 return mtd->_block_isbad(mtd, ofs); 1618 } 1619 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1620 1621 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1622 { 1623 if (!mtd->_block_markbad) 1624 return -EOPNOTSUPP; 1625 if (ofs < 0 || ofs >= mtd->size) 1626 return -EINVAL; 1627 if (!(mtd->flags & MTD_WRITEABLE)) 1628 return -EROFS; 1629 return mtd->_block_markbad(mtd, ofs); 1630 } 1631 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1632 1633 /* 1634 * default_mtd_writev - the default writev method 1635 * @mtd: mtd device description object pointer 1636 * @vecs: the vectors to write 1637 * @count: count of vectors in @vecs 1638 * @to: the MTD device offset to write to 1639 * @retlen: on exit contains the count of bytes written to the MTD device. 1640 * 1641 * This function returns zero in case of success and a negative error code in 1642 * case of failure. 1643 */ 1644 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1645 unsigned long count, loff_t to, size_t *retlen) 1646 { 1647 unsigned long i; 1648 size_t totlen = 0, thislen; 1649 int ret = 0; 1650 1651 for (i = 0; i < count; i++) { 1652 if (!vecs[i].iov_len) 1653 continue; 1654 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1655 vecs[i].iov_base); 1656 totlen += thislen; 1657 if (ret || thislen != vecs[i].iov_len) 1658 break; 1659 to += vecs[i].iov_len; 1660 } 1661 *retlen = totlen; 1662 return ret; 1663 } 1664 1665 /* 1666 * mtd_writev - the vector-based MTD write method 1667 * @mtd: mtd device description object pointer 1668 * @vecs: the vectors to write 1669 * @count: count of vectors in @vecs 1670 * @to: the MTD device offset to write to 1671 * @retlen: on exit contains the count of bytes written to the MTD device. 1672 * 1673 * This function returns zero in case of success and a negative error code in 1674 * case of failure. 1675 */ 1676 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1677 unsigned long count, loff_t to, size_t *retlen) 1678 { 1679 *retlen = 0; 1680 if (!(mtd->flags & MTD_WRITEABLE)) 1681 return -EROFS; 1682 if (!mtd->_writev) 1683 return default_mtd_writev(mtd, vecs, count, to, retlen); 1684 return mtd->_writev(mtd, vecs, count, to, retlen); 1685 } 1686 EXPORT_SYMBOL_GPL(mtd_writev); 1687 1688 /** 1689 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1690 * @mtd: mtd device description object pointer 1691 * @size: a pointer to the ideal or maximum size of the allocation, points 1692 * to the actual allocation size on success. 1693 * 1694 * This routine attempts to allocate a contiguous kernel buffer up to 1695 * the specified size, backing off the size of the request exponentially 1696 * until the request succeeds or until the allocation size falls below 1697 * the system page size. This attempts to make sure it does not adversely 1698 * impact system performance, so when allocating more than one page, we 1699 * ask the memory allocator to avoid re-trying, swapping, writing back 1700 * or performing I/O. 1701 * 1702 * Note, this function also makes sure that the allocated buffer is aligned to 1703 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1704 * 1705 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1706 * to handle smaller (i.e. degraded) buffer allocations under low- or 1707 * fragmented-memory situations where such reduced allocations, from a 1708 * requested ideal, are allowed. 1709 * 1710 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1711 */ 1712 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1713 { 1714 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1715 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1716 void *kbuf; 1717 1718 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1719 1720 while (*size > min_alloc) { 1721 kbuf = kmalloc(*size, flags); 1722 if (kbuf) 1723 return kbuf; 1724 1725 *size >>= 1; 1726 *size = ALIGN(*size, mtd->writesize); 1727 } 1728 1729 /* 1730 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1731 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1732 */ 1733 return kmalloc(*size, GFP_KERNEL); 1734 } 1735 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1736 1737 #ifdef CONFIG_PROC_FS 1738 1739 /*====================================================================*/ 1740 /* Support for /proc/mtd */ 1741 1742 static int mtd_proc_show(struct seq_file *m, void *v) 1743 { 1744 struct mtd_info *mtd; 1745 1746 seq_puts(m, "dev: size erasesize name\n"); 1747 mutex_lock(&mtd_table_mutex); 1748 mtd_for_each_device(mtd) { 1749 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1750 mtd->index, (unsigned long long)mtd->size, 1751 mtd->erasesize, mtd->name); 1752 } 1753 mutex_unlock(&mtd_table_mutex); 1754 return 0; 1755 } 1756 1757 static int mtd_proc_open(struct inode *inode, struct file *file) 1758 { 1759 return single_open(file, mtd_proc_show, NULL); 1760 } 1761 1762 static const struct file_operations mtd_proc_ops = { 1763 .open = mtd_proc_open, 1764 .read = seq_read, 1765 .llseek = seq_lseek, 1766 .release = single_release, 1767 }; 1768 #endif /* CONFIG_PROC_FS */ 1769 1770 /*====================================================================*/ 1771 /* Init code */ 1772 1773 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1774 { 1775 struct backing_dev_info *bdi; 1776 int ret; 1777 1778 bdi = kzalloc(sizeof(*bdi), GFP_KERNEL); 1779 if (!bdi) 1780 return ERR_PTR(-ENOMEM); 1781 1782 ret = bdi_setup_and_register(bdi, name); 1783 if (ret) 1784 kfree(bdi); 1785 1786 return ret ? ERR_PTR(ret) : bdi; 1787 } 1788 1789 static struct proc_dir_entry *proc_mtd; 1790 1791 static int __init init_mtd(void) 1792 { 1793 int ret; 1794 1795 ret = class_register(&mtd_class); 1796 if (ret) 1797 goto err_reg; 1798 1799 mtd_bdi = mtd_bdi_init("mtd"); 1800 if (IS_ERR(mtd_bdi)) { 1801 ret = PTR_ERR(mtd_bdi); 1802 goto err_bdi; 1803 } 1804 1805 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1806 1807 ret = init_mtdchar(); 1808 if (ret) 1809 goto out_procfs; 1810 1811 return 0; 1812 1813 out_procfs: 1814 if (proc_mtd) 1815 remove_proc_entry("mtd", NULL); 1816 bdi_destroy(mtd_bdi); 1817 kfree(mtd_bdi); 1818 err_bdi: 1819 class_unregister(&mtd_class); 1820 err_reg: 1821 pr_err("Error registering mtd class or bdi: %d\n", ret); 1822 return ret; 1823 } 1824 1825 static void __exit cleanup_mtd(void) 1826 { 1827 cleanup_mtdchar(); 1828 if (proc_mtd) 1829 remove_proc_entry("mtd", NULL); 1830 class_unregister(&mtd_class); 1831 bdi_destroy(mtd_bdi); 1832 kfree(mtd_bdi); 1833 idr_destroy(&mtd_idr); 1834 } 1835 1836 module_init(init_mtd); 1837 module_exit(cleanup_mtd); 1838 1839 MODULE_LICENSE("GPL"); 1840 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1841 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1842