xref: /linux/drivers/mtd/mtdcore.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
46 
47 #include "mtdcore.h"
48 
49 static struct backing_dev_info *mtd_bdi;
50 
51 #ifdef CONFIG_PM_SLEEP
52 
53 static int mtd_cls_suspend(struct device *dev)
54 {
55 	struct mtd_info *mtd = dev_get_drvdata(dev);
56 
57 	return mtd ? mtd_suspend(mtd) : 0;
58 }
59 
60 static int mtd_cls_resume(struct device *dev)
61 {
62 	struct mtd_info *mtd = dev_get_drvdata(dev);
63 
64 	if (mtd)
65 		mtd_resume(mtd);
66 	return 0;
67 }
68 
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74 
75 static struct class mtd_class = {
76 	.name = "mtd",
77 	.owner = THIS_MODULE,
78 	.pm = MTD_CLS_PM_OPS,
79 };
80 
81 static DEFINE_IDR(mtd_idr);
82 
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84    should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87 
88 struct mtd_info *__mtd_next_device(int i)
89 {
90 	return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93 
94 static LIST_HEAD(mtd_notifiers);
95 
96 
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98 
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100  * the mtd_info will probably want to use the release() hook...
101  */
102 static void mtd_release(struct device *dev)
103 {
104 	struct mtd_info *mtd = dev_get_drvdata(dev);
105 	dev_t index = MTD_DEVT(mtd->index);
106 
107 	/* remove /dev/mtdXro node */
108 	device_destroy(&mtd_class, index + 1);
109 }
110 
111 static ssize_t mtd_type_show(struct device *dev,
112 		struct device_attribute *attr, char *buf)
113 {
114 	struct mtd_info *mtd = dev_get_drvdata(dev);
115 	char *type;
116 
117 	switch (mtd->type) {
118 	case MTD_ABSENT:
119 		type = "absent";
120 		break;
121 	case MTD_RAM:
122 		type = "ram";
123 		break;
124 	case MTD_ROM:
125 		type = "rom";
126 		break;
127 	case MTD_NORFLASH:
128 		type = "nor";
129 		break;
130 	case MTD_NANDFLASH:
131 		type = "nand";
132 		break;
133 	case MTD_DATAFLASH:
134 		type = "dataflash";
135 		break;
136 	case MTD_UBIVOLUME:
137 		type = "ubi";
138 		break;
139 	case MTD_MLCNANDFLASH:
140 		type = "mlc-nand";
141 		break;
142 	default:
143 		type = "unknown";
144 	}
145 
146 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149 
150 static ssize_t mtd_flags_show(struct device *dev,
151 		struct device_attribute *attr, char *buf)
152 {
153 	struct mtd_info *mtd = dev_get_drvdata(dev);
154 
155 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156 
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159 
160 static ssize_t mtd_size_show(struct device *dev,
161 		struct device_attribute *attr, char *buf)
162 {
163 	struct mtd_info *mtd = dev_get_drvdata(dev);
164 
165 	return snprintf(buf, PAGE_SIZE, "%llu\n",
166 		(unsigned long long)mtd->size);
167 
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170 
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177 
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180 
181 static ssize_t mtd_writesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187 
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190 
191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196 
197 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198 
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201 
202 static ssize_t mtd_oobsize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208 
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211 
212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 
217 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218 
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 	NULL);
222 
223 static ssize_t mtd_name_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229 
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232 
233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 				     struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241 
242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 					  struct device_attribute *attr,
244 					  char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250 
251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 					   struct device_attribute *attr,
253 					   const char *buf, size_t count)
254 {
255 	struct mtd_info *mtd = dev_get_drvdata(dev);
256 	unsigned int bitflip_threshold;
257 	int retval;
258 
259 	retval = kstrtouint(buf, 0, &bitflip_threshold);
260 	if (retval)
261 		return retval;
262 
263 	mtd->bitflip_threshold = bitflip_threshold;
264 	return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 		   mtd_bitflip_threshold_show,
268 		   mtd_bitflip_threshold_store);
269 
270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	struct mtd_info *mtd = dev_get_drvdata(dev);
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276 
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 		   mtd_ecc_stats_corrected_show, NULL);
290 
291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300 
301 static ssize_t mtd_badblocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310 
311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320 
321 static struct attribute *mtd_attrs[] = {
322 	&dev_attr_type.attr,
323 	&dev_attr_flags.attr,
324 	&dev_attr_size.attr,
325 	&dev_attr_erasesize.attr,
326 	&dev_attr_writesize.attr,
327 	&dev_attr_subpagesize.attr,
328 	&dev_attr_oobsize.attr,
329 	&dev_attr_numeraseregions.attr,
330 	&dev_attr_name.attr,
331 	&dev_attr_ecc_strength.attr,
332 	&dev_attr_ecc_step_size.attr,
333 	&dev_attr_corrected_bits.attr,
334 	&dev_attr_ecc_failures.attr,
335 	&dev_attr_bad_blocks.attr,
336 	&dev_attr_bbt_blocks.attr,
337 	&dev_attr_bitflip_threshold.attr,
338 	NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341 
342 static struct device_type mtd_devtype = {
343 	.name		= "mtd",
344 	.groups		= mtd_groups,
345 	.release	= mtd_release,
346 };
347 
348 #ifndef CONFIG_MMU
349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 	switch (mtd->type) {
352 	case MTD_RAM:
353 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 	case MTD_ROM:
356 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 			NOMMU_MAP_READ;
358 	default:
359 		return NOMMU_MAP_COPY;
360 	}
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364 
365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 			       void *cmd)
367 {
368 	struct mtd_info *mtd;
369 
370 	mtd = container_of(n, struct mtd_info, reboot_notifier);
371 	mtd->_reboot(mtd);
372 
373 	return NOTIFY_DONE;
374 }
375 
376 /**
377  * mtd_wunit_to_pairing_info - get pairing information of a wunit
378  * @mtd: pointer to new MTD device info structure
379  * @wunit: write unit we are interested in
380  * @info: returned pairing information
381  *
382  * Retrieve pairing information associated to the wunit.
383  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
384  * paired together, and where programming a page may influence the page it is
385  * paired with.
386  * The notion of page is replaced by the term wunit (write-unit) to stay
387  * consistent with the ->writesize field.
388  *
389  * The @wunit argument can be extracted from an absolute offset using
390  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
391  * to @wunit.
392  *
393  * From the pairing info the MTD user can find all the wunits paired with
394  * @wunit using the following loop:
395  *
396  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
397  *	info.pair = i;
398  *	mtd_pairing_info_to_wunit(mtd, &info);
399  *	...
400  * }
401  */
402 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
403 			      struct mtd_pairing_info *info)
404 {
405 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
406 
407 	if (wunit < 0 || wunit >= npairs)
408 		return -EINVAL;
409 
410 	if (mtd->pairing && mtd->pairing->get_info)
411 		return mtd->pairing->get_info(mtd, wunit, info);
412 
413 	info->group = 0;
414 	info->pair = wunit;
415 
416 	return 0;
417 }
418 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
419 
420 /**
421  * mtd_wunit_to_pairing_info - get wunit from pairing information
422  * @mtd: pointer to new MTD device info structure
423  * @info: pairing information struct
424  *
425  * Returns a positive number representing the wunit associated to the info
426  * struct, or a negative error code.
427  *
428  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
429  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
430  * doc).
431  *
432  * It can also be used to only program the first page of each pair (i.e.
433  * page attached to group 0), which allows one to use an MLC NAND in
434  * software-emulated SLC mode:
435  *
436  * info.group = 0;
437  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
438  * for (info.pair = 0; info.pair < npairs; info.pair++) {
439  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
440  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
441  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
442  * }
443  */
444 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
445 			      const struct mtd_pairing_info *info)
446 {
447 	int ngroups = mtd_pairing_groups(mtd);
448 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
449 
450 	if (!info || info->pair < 0 || info->pair >= npairs ||
451 	    info->group < 0 || info->group >= ngroups)
452 		return -EINVAL;
453 
454 	if (mtd->pairing && mtd->pairing->get_wunit)
455 		return mtd->pairing->get_wunit(mtd, info);
456 
457 	return info->pair;
458 }
459 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
460 
461 /**
462  * mtd_pairing_groups - get the number of pairing groups
463  * @mtd: pointer to new MTD device info structure
464  *
465  * Returns the number of pairing groups.
466  *
467  * This number is usually equal to the number of bits exposed by a single
468  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
469  * to iterate over all pages of a given pair.
470  */
471 int mtd_pairing_groups(struct mtd_info *mtd)
472 {
473 	if (!mtd->pairing || !mtd->pairing->ngroups)
474 		return 1;
475 
476 	return mtd->pairing->ngroups;
477 }
478 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
479 
480 /**
481  *	add_mtd_device - register an MTD device
482  *	@mtd: pointer to new MTD device info structure
483  *
484  *	Add a device to the list of MTD devices present in the system, and
485  *	notify each currently active MTD 'user' of its arrival. Returns
486  *	zero on success or non-zero on failure.
487  */
488 
489 int add_mtd_device(struct mtd_info *mtd)
490 {
491 	struct mtd_notifier *not;
492 	int i, error;
493 
494 	/*
495 	 * May occur, for instance, on buggy drivers which call
496 	 * mtd_device_parse_register() multiple times on the same master MTD,
497 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
498 	 */
499 	if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
500 		return -EEXIST;
501 
502 	mtd->backing_dev_info = mtd_bdi;
503 
504 	BUG_ON(mtd->writesize == 0);
505 	mutex_lock(&mtd_table_mutex);
506 
507 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
508 	if (i < 0) {
509 		error = i;
510 		goto fail_locked;
511 	}
512 
513 	mtd->index = i;
514 	mtd->usecount = 0;
515 
516 	/* default value if not set by driver */
517 	if (mtd->bitflip_threshold == 0)
518 		mtd->bitflip_threshold = mtd->ecc_strength;
519 
520 	if (is_power_of_2(mtd->erasesize))
521 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
522 	else
523 		mtd->erasesize_shift = 0;
524 
525 	if (is_power_of_2(mtd->writesize))
526 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
527 	else
528 		mtd->writesize_shift = 0;
529 
530 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
531 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
532 
533 	/* Some chips always power up locked. Unlock them now */
534 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
535 		error = mtd_unlock(mtd, 0, mtd->size);
536 		if (error && error != -EOPNOTSUPP)
537 			printk(KERN_WARNING
538 			       "%s: unlock failed, writes may not work\n",
539 			       mtd->name);
540 		/* Ignore unlock failures? */
541 		error = 0;
542 	}
543 
544 	/* Caller should have set dev.parent to match the
545 	 * physical device, if appropriate.
546 	 */
547 	mtd->dev.type = &mtd_devtype;
548 	mtd->dev.class = &mtd_class;
549 	mtd->dev.devt = MTD_DEVT(i);
550 	dev_set_name(&mtd->dev, "mtd%d", i);
551 	dev_set_drvdata(&mtd->dev, mtd);
552 	of_node_get(mtd_get_of_node(mtd));
553 	error = device_register(&mtd->dev);
554 	if (error)
555 		goto fail_added;
556 
557 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
558 		      "mtd%dro", i);
559 
560 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
561 	/* No need to get a refcount on the module containing
562 	   the notifier, since we hold the mtd_table_mutex */
563 	list_for_each_entry(not, &mtd_notifiers, list)
564 		not->add(mtd);
565 
566 	mutex_unlock(&mtd_table_mutex);
567 	/* We _know_ we aren't being removed, because
568 	   our caller is still holding us here. So none
569 	   of this try_ nonsense, and no bitching about it
570 	   either. :) */
571 	__module_get(THIS_MODULE);
572 	return 0;
573 
574 fail_added:
575 	of_node_put(mtd_get_of_node(mtd));
576 	idr_remove(&mtd_idr, i);
577 fail_locked:
578 	mutex_unlock(&mtd_table_mutex);
579 	return error;
580 }
581 
582 /**
583  *	del_mtd_device - unregister an MTD device
584  *	@mtd: pointer to MTD device info structure
585  *
586  *	Remove a device from the list of MTD devices present in the system,
587  *	and notify each currently active MTD 'user' of its departure.
588  *	Returns zero on success or 1 on failure, which currently will happen
589  *	if the requested device does not appear to be present in the list.
590  */
591 
592 int del_mtd_device(struct mtd_info *mtd)
593 {
594 	int ret;
595 	struct mtd_notifier *not;
596 
597 	mutex_lock(&mtd_table_mutex);
598 
599 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
600 		ret = -ENODEV;
601 		goto out_error;
602 	}
603 
604 	/* No need to get a refcount on the module containing
605 		the notifier, since we hold the mtd_table_mutex */
606 	list_for_each_entry(not, &mtd_notifiers, list)
607 		not->remove(mtd);
608 
609 	if (mtd->usecount) {
610 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
611 		       mtd->index, mtd->name, mtd->usecount);
612 		ret = -EBUSY;
613 	} else {
614 		device_unregister(&mtd->dev);
615 
616 		idr_remove(&mtd_idr, mtd->index);
617 		of_node_put(mtd_get_of_node(mtd));
618 
619 		module_put(THIS_MODULE);
620 		ret = 0;
621 	}
622 
623 out_error:
624 	mutex_unlock(&mtd_table_mutex);
625 	return ret;
626 }
627 
628 static int mtd_add_device_partitions(struct mtd_info *mtd,
629 				     struct mtd_partitions *parts)
630 {
631 	const struct mtd_partition *real_parts = parts->parts;
632 	int nbparts = parts->nr_parts;
633 	int ret;
634 
635 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
636 		ret = add_mtd_device(mtd);
637 		if (ret)
638 			return ret;
639 	}
640 
641 	if (nbparts > 0) {
642 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
643 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
644 			del_mtd_device(mtd);
645 		return ret;
646 	}
647 
648 	return 0;
649 }
650 
651 /*
652  * Set a few defaults based on the parent devices, if not provided by the
653  * driver
654  */
655 static void mtd_set_dev_defaults(struct mtd_info *mtd)
656 {
657 	if (mtd->dev.parent) {
658 		if (!mtd->owner && mtd->dev.parent->driver)
659 			mtd->owner = mtd->dev.parent->driver->owner;
660 		if (!mtd->name)
661 			mtd->name = dev_name(mtd->dev.parent);
662 	} else {
663 		pr_debug("mtd device won't show a device symlink in sysfs\n");
664 	}
665 }
666 
667 /**
668  * mtd_device_parse_register - parse partitions and register an MTD device.
669  *
670  * @mtd: the MTD device to register
671  * @types: the list of MTD partition probes to try, see
672  *         'parse_mtd_partitions()' for more information
673  * @parser_data: MTD partition parser-specific data
674  * @parts: fallback partition information to register, if parsing fails;
675  *         only valid if %nr_parts > %0
676  * @nr_parts: the number of partitions in parts, if zero then the full
677  *            MTD device is registered if no partition info is found
678  *
679  * This function aggregates MTD partitions parsing (done by
680  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
681  * basically follows the most common pattern found in many MTD drivers:
682  *
683  * * It first tries to probe partitions on MTD device @mtd using parsers
684  *   specified in @types (if @types is %NULL, then the default list of parsers
685  *   is used, see 'parse_mtd_partitions()' for more information). If none are
686  *   found this functions tries to fallback to information specified in
687  *   @parts/@nr_parts.
688  * * If any partitioning info was found, this function registers the found
689  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
690  *   as a whole is registered first.
691  * * If no partitions were found this function just registers the MTD device
692  *   @mtd and exits.
693  *
694  * Returns zero in case of success and a negative error code in case of failure.
695  */
696 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
697 			      struct mtd_part_parser_data *parser_data,
698 			      const struct mtd_partition *parts,
699 			      int nr_parts)
700 {
701 	struct mtd_partitions parsed;
702 	int ret;
703 
704 	mtd_set_dev_defaults(mtd);
705 
706 	memset(&parsed, 0, sizeof(parsed));
707 
708 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
709 	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
710 		/* Fall back to driver-provided partitions */
711 		parsed = (struct mtd_partitions){
712 			.parts		= parts,
713 			.nr_parts	= nr_parts,
714 		};
715 	} else if (ret < 0) {
716 		/* Didn't come up with parsed OR fallback partitions */
717 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
718 			ret);
719 		/* Don't abort on errors; we can still use unpartitioned MTD */
720 		memset(&parsed, 0, sizeof(parsed));
721 	}
722 
723 	ret = mtd_add_device_partitions(mtd, &parsed);
724 	if (ret)
725 		goto out;
726 
727 	/*
728 	 * FIXME: some drivers unfortunately call this function more than once.
729 	 * So we have to check if we've already assigned the reboot notifier.
730 	 *
731 	 * Generally, we can make multiple calls work for most cases, but it
732 	 * does cause problems with parse_mtd_partitions() above (e.g.,
733 	 * cmdlineparts will register partitions more than once).
734 	 */
735 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
736 		  "MTD already registered\n");
737 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
738 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
739 		register_reboot_notifier(&mtd->reboot_notifier);
740 	}
741 
742 out:
743 	/* Cleanup any parsed partitions */
744 	mtd_part_parser_cleanup(&parsed);
745 	return ret;
746 }
747 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
748 
749 /**
750  * mtd_device_unregister - unregister an existing MTD device.
751  *
752  * @master: the MTD device to unregister.  This will unregister both the master
753  *          and any partitions if registered.
754  */
755 int mtd_device_unregister(struct mtd_info *master)
756 {
757 	int err;
758 
759 	if (master->_reboot)
760 		unregister_reboot_notifier(&master->reboot_notifier);
761 
762 	err = del_mtd_partitions(master);
763 	if (err)
764 		return err;
765 
766 	if (!device_is_registered(&master->dev))
767 		return 0;
768 
769 	return del_mtd_device(master);
770 }
771 EXPORT_SYMBOL_GPL(mtd_device_unregister);
772 
773 /**
774  *	register_mtd_user - register a 'user' of MTD devices.
775  *	@new: pointer to notifier info structure
776  *
777  *	Registers a pair of callbacks function to be called upon addition
778  *	or removal of MTD devices. Causes the 'add' callback to be immediately
779  *	invoked for each MTD device currently present in the system.
780  */
781 void register_mtd_user (struct mtd_notifier *new)
782 {
783 	struct mtd_info *mtd;
784 
785 	mutex_lock(&mtd_table_mutex);
786 
787 	list_add(&new->list, &mtd_notifiers);
788 
789 	__module_get(THIS_MODULE);
790 
791 	mtd_for_each_device(mtd)
792 		new->add(mtd);
793 
794 	mutex_unlock(&mtd_table_mutex);
795 }
796 EXPORT_SYMBOL_GPL(register_mtd_user);
797 
798 /**
799  *	unregister_mtd_user - unregister a 'user' of MTD devices.
800  *	@old: pointer to notifier info structure
801  *
802  *	Removes a callback function pair from the list of 'users' to be
803  *	notified upon addition or removal of MTD devices. Causes the
804  *	'remove' callback to be immediately invoked for each MTD device
805  *	currently present in the system.
806  */
807 int unregister_mtd_user (struct mtd_notifier *old)
808 {
809 	struct mtd_info *mtd;
810 
811 	mutex_lock(&mtd_table_mutex);
812 
813 	module_put(THIS_MODULE);
814 
815 	mtd_for_each_device(mtd)
816 		old->remove(mtd);
817 
818 	list_del(&old->list);
819 	mutex_unlock(&mtd_table_mutex);
820 	return 0;
821 }
822 EXPORT_SYMBOL_GPL(unregister_mtd_user);
823 
824 /**
825  *	get_mtd_device - obtain a validated handle for an MTD device
826  *	@mtd: last known address of the required MTD device
827  *	@num: internal device number of the required MTD device
828  *
829  *	Given a number and NULL address, return the num'th entry in the device
830  *	table, if any.	Given an address and num == -1, search the device table
831  *	for a device with that address and return if it's still present. Given
832  *	both, return the num'th driver only if its address matches. Return
833  *	error code if not.
834  */
835 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
836 {
837 	struct mtd_info *ret = NULL, *other;
838 	int err = -ENODEV;
839 
840 	mutex_lock(&mtd_table_mutex);
841 
842 	if (num == -1) {
843 		mtd_for_each_device(other) {
844 			if (other == mtd) {
845 				ret = mtd;
846 				break;
847 			}
848 		}
849 	} else if (num >= 0) {
850 		ret = idr_find(&mtd_idr, num);
851 		if (mtd && mtd != ret)
852 			ret = NULL;
853 	}
854 
855 	if (!ret) {
856 		ret = ERR_PTR(err);
857 		goto out;
858 	}
859 
860 	err = __get_mtd_device(ret);
861 	if (err)
862 		ret = ERR_PTR(err);
863 out:
864 	mutex_unlock(&mtd_table_mutex);
865 	return ret;
866 }
867 EXPORT_SYMBOL_GPL(get_mtd_device);
868 
869 
870 int __get_mtd_device(struct mtd_info *mtd)
871 {
872 	int err;
873 
874 	if (!try_module_get(mtd->owner))
875 		return -ENODEV;
876 
877 	if (mtd->_get_device) {
878 		err = mtd->_get_device(mtd);
879 
880 		if (err) {
881 			module_put(mtd->owner);
882 			return err;
883 		}
884 	}
885 	mtd->usecount++;
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(__get_mtd_device);
889 
890 /**
891  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
892  *	device name
893  *	@name: MTD device name to open
894  *
895  * 	This function returns MTD device description structure in case of
896  * 	success and an error code in case of failure.
897  */
898 struct mtd_info *get_mtd_device_nm(const char *name)
899 {
900 	int err = -ENODEV;
901 	struct mtd_info *mtd = NULL, *other;
902 
903 	mutex_lock(&mtd_table_mutex);
904 
905 	mtd_for_each_device(other) {
906 		if (!strcmp(name, other->name)) {
907 			mtd = other;
908 			break;
909 		}
910 	}
911 
912 	if (!mtd)
913 		goto out_unlock;
914 
915 	err = __get_mtd_device(mtd);
916 	if (err)
917 		goto out_unlock;
918 
919 	mutex_unlock(&mtd_table_mutex);
920 	return mtd;
921 
922 out_unlock:
923 	mutex_unlock(&mtd_table_mutex);
924 	return ERR_PTR(err);
925 }
926 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
927 
928 void put_mtd_device(struct mtd_info *mtd)
929 {
930 	mutex_lock(&mtd_table_mutex);
931 	__put_mtd_device(mtd);
932 	mutex_unlock(&mtd_table_mutex);
933 
934 }
935 EXPORT_SYMBOL_GPL(put_mtd_device);
936 
937 void __put_mtd_device(struct mtd_info *mtd)
938 {
939 	--mtd->usecount;
940 	BUG_ON(mtd->usecount < 0);
941 
942 	if (mtd->_put_device)
943 		mtd->_put_device(mtd);
944 
945 	module_put(mtd->owner);
946 }
947 EXPORT_SYMBOL_GPL(__put_mtd_device);
948 
949 /*
950  * Erase is an asynchronous operation.  Device drivers are supposed
951  * to call instr->callback() whenever the operation completes, even
952  * if it completes with a failure.
953  * Callers are supposed to pass a callback function and wait for it
954  * to be called before writing to the block.
955  */
956 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
957 {
958 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
959 		return -EINVAL;
960 	if (!(mtd->flags & MTD_WRITEABLE))
961 		return -EROFS;
962 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
963 	if (!instr->len) {
964 		instr->state = MTD_ERASE_DONE;
965 		mtd_erase_callback(instr);
966 		return 0;
967 	}
968 	ledtrig_mtd_activity();
969 	return mtd->_erase(mtd, instr);
970 }
971 EXPORT_SYMBOL_GPL(mtd_erase);
972 
973 /*
974  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
975  */
976 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
977 	      void **virt, resource_size_t *phys)
978 {
979 	*retlen = 0;
980 	*virt = NULL;
981 	if (phys)
982 		*phys = 0;
983 	if (!mtd->_point)
984 		return -EOPNOTSUPP;
985 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
986 		return -EINVAL;
987 	if (!len)
988 		return 0;
989 	return mtd->_point(mtd, from, len, retlen, virt, phys);
990 }
991 EXPORT_SYMBOL_GPL(mtd_point);
992 
993 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
994 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
995 {
996 	if (!mtd->_point)
997 		return -EOPNOTSUPP;
998 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
999 		return -EINVAL;
1000 	if (!len)
1001 		return 0;
1002 	return mtd->_unpoint(mtd, from, len);
1003 }
1004 EXPORT_SYMBOL_GPL(mtd_unpoint);
1005 
1006 /*
1007  * Allow NOMMU mmap() to directly map the device (if not NULL)
1008  * - return the address to which the offset maps
1009  * - return -ENOSYS to indicate refusal to do the mapping
1010  */
1011 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1012 				    unsigned long offset, unsigned long flags)
1013 {
1014 	if (!mtd->_get_unmapped_area)
1015 		return -EOPNOTSUPP;
1016 	if (offset >= mtd->size || len > mtd->size - offset)
1017 		return -EINVAL;
1018 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
1019 }
1020 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1021 
1022 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1023 	     u_char *buf)
1024 {
1025 	int ret_code;
1026 	*retlen = 0;
1027 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1028 		return -EINVAL;
1029 	if (!len)
1030 		return 0;
1031 
1032 	ledtrig_mtd_activity();
1033 	/*
1034 	 * In the absence of an error, drivers return a non-negative integer
1035 	 * representing the maximum number of bitflips that were corrected on
1036 	 * any one ecc region (if applicable; zero otherwise).
1037 	 */
1038 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
1039 	if (unlikely(ret_code < 0))
1040 		return ret_code;
1041 	if (mtd->ecc_strength == 0)
1042 		return 0;	/* device lacks ecc */
1043 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1044 }
1045 EXPORT_SYMBOL_GPL(mtd_read);
1046 
1047 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1048 	      const u_char *buf)
1049 {
1050 	*retlen = 0;
1051 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1052 		return -EINVAL;
1053 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
1054 		return -EROFS;
1055 	if (!len)
1056 		return 0;
1057 	ledtrig_mtd_activity();
1058 	return mtd->_write(mtd, to, len, retlen, buf);
1059 }
1060 EXPORT_SYMBOL_GPL(mtd_write);
1061 
1062 /*
1063  * In blackbox flight recorder like scenarios we want to make successful writes
1064  * in interrupt context. panic_write() is only intended to be called when its
1065  * known the kernel is about to panic and we need the write to succeed. Since
1066  * the kernel is not going to be running for much longer, this function can
1067  * break locks and delay to ensure the write succeeds (but not sleep).
1068  */
1069 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1070 		    const u_char *buf)
1071 {
1072 	*retlen = 0;
1073 	if (!mtd->_panic_write)
1074 		return -EOPNOTSUPP;
1075 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1076 		return -EINVAL;
1077 	if (!(mtd->flags & MTD_WRITEABLE))
1078 		return -EROFS;
1079 	if (!len)
1080 		return 0;
1081 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1082 }
1083 EXPORT_SYMBOL_GPL(mtd_panic_write);
1084 
1085 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1086 {
1087 	int ret_code;
1088 	ops->retlen = ops->oobretlen = 0;
1089 	if (!mtd->_read_oob)
1090 		return -EOPNOTSUPP;
1091 
1092 	ledtrig_mtd_activity();
1093 	/*
1094 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1095 	 * similar to mtd->_read(), returning a non-negative integer
1096 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1097 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1098 	 */
1099 	ret_code = mtd->_read_oob(mtd, from, ops);
1100 	if (unlikely(ret_code < 0))
1101 		return ret_code;
1102 	if (mtd->ecc_strength == 0)
1103 		return 0;	/* device lacks ecc */
1104 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_read_oob);
1107 
1108 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1109 				struct mtd_oob_ops *ops)
1110 {
1111 	ops->retlen = ops->oobretlen = 0;
1112 	if (!mtd->_write_oob)
1113 		return -EOPNOTSUPP;
1114 	if (!(mtd->flags & MTD_WRITEABLE))
1115 		return -EROFS;
1116 	ledtrig_mtd_activity();
1117 	return mtd->_write_oob(mtd, to, ops);
1118 }
1119 EXPORT_SYMBOL_GPL(mtd_write_oob);
1120 
1121 /**
1122  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1123  * @mtd: MTD device structure
1124  * @section: ECC section. Depending on the layout you may have all the ECC
1125  *	     bytes stored in a single contiguous section, or one section
1126  *	     per ECC chunk (and sometime several sections for a single ECC
1127  *	     ECC chunk)
1128  * @oobecc: OOB region struct filled with the appropriate ECC position
1129  *	    information
1130  *
1131  * This function returns ECC section information in the OOB area. If you want
1132  * to get all the ECC bytes information, then you should call
1133  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1134  *
1135  * Returns zero on success, a negative error code otherwise.
1136  */
1137 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1138 		      struct mtd_oob_region *oobecc)
1139 {
1140 	memset(oobecc, 0, sizeof(*oobecc));
1141 
1142 	if (!mtd || section < 0)
1143 		return -EINVAL;
1144 
1145 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1146 		return -ENOTSUPP;
1147 
1148 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1149 }
1150 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1151 
1152 /**
1153  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1154  *			section
1155  * @mtd: MTD device structure
1156  * @section: Free section you are interested in. Depending on the layout
1157  *	     you may have all the free bytes stored in a single contiguous
1158  *	     section, or one section per ECC chunk plus an extra section
1159  *	     for the remaining bytes (or other funky layout).
1160  * @oobfree: OOB region struct filled with the appropriate free position
1161  *	     information
1162  *
1163  * This function returns free bytes position in the OOB area. If you want
1164  * to get all the free bytes information, then you should call
1165  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1166  *
1167  * Returns zero on success, a negative error code otherwise.
1168  */
1169 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1170 		       struct mtd_oob_region *oobfree)
1171 {
1172 	memset(oobfree, 0, sizeof(*oobfree));
1173 
1174 	if (!mtd || section < 0)
1175 		return -EINVAL;
1176 
1177 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1178 		return -ENOTSUPP;
1179 
1180 	return mtd->ooblayout->free(mtd, section, oobfree);
1181 }
1182 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1183 
1184 /**
1185  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1186  * @mtd: mtd info structure
1187  * @byte: the byte we are searching for
1188  * @sectionp: pointer where the section id will be stored
1189  * @oobregion: used to retrieve the ECC position
1190  * @iter: iterator function. Should be either mtd_ooblayout_free or
1191  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1192  *
1193  * This function returns the section id and oobregion information of a
1194  * specific byte. For example, say you want to know where the 4th ECC byte is
1195  * stored, you'll use:
1196  *
1197  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1198  *
1199  * Returns zero on success, a negative error code otherwise.
1200  */
1201 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1202 				int *sectionp, struct mtd_oob_region *oobregion,
1203 				int (*iter)(struct mtd_info *,
1204 					    int section,
1205 					    struct mtd_oob_region *oobregion))
1206 {
1207 	int pos = 0, ret, section = 0;
1208 
1209 	memset(oobregion, 0, sizeof(*oobregion));
1210 
1211 	while (1) {
1212 		ret = iter(mtd, section, oobregion);
1213 		if (ret)
1214 			return ret;
1215 
1216 		if (pos + oobregion->length > byte)
1217 			break;
1218 
1219 		pos += oobregion->length;
1220 		section++;
1221 	}
1222 
1223 	/*
1224 	 * Adjust region info to make it start at the beginning at the
1225 	 * 'start' ECC byte.
1226 	 */
1227 	oobregion->offset += byte - pos;
1228 	oobregion->length -= byte - pos;
1229 	*sectionp = section;
1230 
1231 	return 0;
1232 }
1233 
1234 /**
1235  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1236  *				  ECC byte
1237  * @mtd: mtd info structure
1238  * @eccbyte: the byte we are searching for
1239  * @sectionp: pointer where the section id will be stored
1240  * @oobregion: OOB region information
1241  *
1242  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1243  * byte.
1244  *
1245  * Returns zero on success, a negative error code otherwise.
1246  */
1247 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1248 				 int *section,
1249 				 struct mtd_oob_region *oobregion)
1250 {
1251 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1252 					 mtd_ooblayout_ecc);
1253 }
1254 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1255 
1256 /**
1257  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1258  * @mtd: mtd info structure
1259  * @buf: destination buffer to store OOB bytes
1260  * @oobbuf: OOB buffer
1261  * @start: first byte to retrieve
1262  * @nbytes: number of bytes to retrieve
1263  * @iter: section iterator
1264  *
1265  * Extract bytes attached to a specific category (ECC or free)
1266  * from the OOB buffer and copy them into buf.
1267  *
1268  * Returns zero on success, a negative error code otherwise.
1269  */
1270 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1271 				const u8 *oobbuf, int start, int nbytes,
1272 				int (*iter)(struct mtd_info *,
1273 					    int section,
1274 					    struct mtd_oob_region *oobregion))
1275 {
1276 	struct mtd_oob_region oobregion;
1277 	int section, ret;
1278 
1279 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1280 					&oobregion, iter);
1281 
1282 	while (!ret) {
1283 		int cnt;
1284 
1285 		cnt = min_t(int, nbytes, oobregion.length);
1286 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1287 		buf += cnt;
1288 		nbytes -= cnt;
1289 
1290 		if (!nbytes)
1291 			break;
1292 
1293 		ret = iter(mtd, ++section, &oobregion);
1294 	}
1295 
1296 	return ret;
1297 }
1298 
1299 /**
1300  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1301  * @mtd: mtd info structure
1302  * @buf: source buffer to get OOB bytes from
1303  * @oobbuf: OOB buffer
1304  * @start: first OOB byte to set
1305  * @nbytes: number of OOB bytes to set
1306  * @iter: section iterator
1307  *
1308  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1309  * is selected by passing the appropriate iterator.
1310  *
1311  * Returns zero on success, a negative error code otherwise.
1312  */
1313 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1314 				u8 *oobbuf, int start, int nbytes,
1315 				int (*iter)(struct mtd_info *,
1316 					    int section,
1317 					    struct mtd_oob_region *oobregion))
1318 {
1319 	struct mtd_oob_region oobregion;
1320 	int section, ret;
1321 
1322 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1323 					&oobregion, iter);
1324 
1325 	while (!ret) {
1326 		int cnt;
1327 
1328 		cnt = min_t(int, nbytes, oobregion.length);
1329 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1330 		buf += cnt;
1331 		nbytes -= cnt;
1332 
1333 		if (!nbytes)
1334 			break;
1335 
1336 		ret = iter(mtd, ++section, &oobregion);
1337 	}
1338 
1339 	return ret;
1340 }
1341 
1342 /**
1343  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1344  * @mtd: mtd info structure
1345  * @iter: category iterator
1346  *
1347  * Count the number of bytes in a given category.
1348  *
1349  * Returns a positive value on success, a negative error code otherwise.
1350  */
1351 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1352 				int (*iter)(struct mtd_info *,
1353 					    int section,
1354 					    struct mtd_oob_region *oobregion))
1355 {
1356 	struct mtd_oob_region oobregion;
1357 	int section = 0, ret, nbytes = 0;
1358 
1359 	while (1) {
1360 		ret = iter(mtd, section++, &oobregion);
1361 		if (ret) {
1362 			if (ret == -ERANGE)
1363 				ret = nbytes;
1364 			break;
1365 		}
1366 
1367 		nbytes += oobregion.length;
1368 	}
1369 
1370 	return ret;
1371 }
1372 
1373 /**
1374  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1375  * @mtd: mtd info structure
1376  * @eccbuf: destination buffer to store ECC bytes
1377  * @oobbuf: OOB buffer
1378  * @start: first ECC byte to retrieve
1379  * @nbytes: number of ECC bytes to retrieve
1380  *
1381  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1382  *
1383  * Returns zero on success, a negative error code otherwise.
1384  */
1385 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1386 			       const u8 *oobbuf, int start, int nbytes)
1387 {
1388 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1389 				       mtd_ooblayout_ecc);
1390 }
1391 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1392 
1393 /**
1394  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1395  * @mtd: mtd info structure
1396  * @eccbuf: source buffer to get ECC bytes from
1397  * @oobbuf: OOB buffer
1398  * @start: first ECC byte to set
1399  * @nbytes: number of ECC bytes to set
1400  *
1401  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1402  *
1403  * Returns zero on success, a negative error code otherwise.
1404  */
1405 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1406 			       u8 *oobbuf, int start, int nbytes)
1407 {
1408 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1409 				       mtd_ooblayout_ecc);
1410 }
1411 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1412 
1413 /**
1414  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1415  * @mtd: mtd info structure
1416  * @databuf: destination buffer to store ECC bytes
1417  * @oobbuf: OOB buffer
1418  * @start: first ECC byte to retrieve
1419  * @nbytes: number of ECC bytes to retrieve
1420  *
1421  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1422  *
1423  * Returns zero on success, a negative error code otherwise.
1424  */
1425 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1426 				const u8 *oobbuf, int start, int nbytes)
1427 {
1428 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1429 				       mtd_ooblayout_free);
1430 }
1431 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1432 
1433 /**
1434  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1435  * @mtd: mtd info structure
1436  * @eccbuf: source buffer to get data bytes from
1437  * @oobbuf: OOB buffer
1438  * @start: first ECC byte to set
1439  * @nbytes: number of ECC bytes to set
1440  *
1441  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1442  *
1443  * Returns zero on success, a negative error code otherwise.
1444  */
1445 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1446 				u8 *oobbuf, int start, int nbytes)
1447 {
1448 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1449 				       mtd_ooblayout_free);
1450 }
1451 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1452 
1453 /**
1454  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1455  * @mtd: mtd info structure
1456  *
1457  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1458  *
1459  * Returns zero on success, a negative error code otherwise.
1460  */
1461 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1462 {
1463 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1464 }
1465 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1466 
1467 /**
1468  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1469  * @mtd: mtd info structure
1470  *
1471  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1472  *
1473  * Returns zero on success, a negative error code otherwise.
1474  */
1475 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1476 {
1477 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1478 }
1479 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1480 
1481 /*
1482  * Method to access the protection register area, present in some flash
1483  * devices. The user data is one time programmable but the factory data is read
1484  * only.
1485  */
1486 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1487 			   struct otp_info *buf)
1488 {
1489 	if (!mtd->_get_fact_prot_info)
1490 		return -EOPNOTSUPP;
1491 	if (!len)
1492 		return 0;
1493 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1494 }
1495 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1496 
1497 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1498 			   size_t *retlen, u_char *buf)
1499 {
1500 	*retlen = 0;
1501 	if (!mtd->_read_fact_prot_reg)
1502 		return -EOPNOTSUPP;
1503 	if (!len)
1504 		return 0;
1505 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1508 
1509 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1510 			   struct otp_info *buf)
1511 {
1512 	if (!mtd->_get_user_prot_info)
1513 		return -EOPNOTSUPP;
1514 	if (!len)
1515 		return 0;
1516 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1517 }
1518 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1519 
1520 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1521 			   size_t *retlen, u_char *buf)
1522 {
1523 	*retlen = 0;
1524 	if (!mtd->_read_user_prot_reg)
1525 		return -EOPNOTSUPP;
1526 	if (!len)
1527 		return 0;
1528 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1529 }
1530 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1531 
1532 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1533 			    size_t *retlen, u_char *buf)
1534 {
1535 	int ret;
1536 
1537 	*retlen = 0;
1538 	if (!mtd->_write_user_prot_reg)
1539 		return -EOPNOTSUPP;
1540 	if (!len)
1541 		return 0;
1542 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1543 	if (ret)
1544 		return ret;
1545 
1546 	/*
1547 	 * If no data could be written at all, we are out of memory and
1548 	 * must return -ENOSPC.
1549 	 */
1550 	return (*retlen) ? 0 : -ENOSPC;
1551 }
1552 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1553 
1554 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1555 {
1556 	if (!mtd->_lock_user_prot_reg)
1557 		return -EOPNOTSUPP;
1558 	if (!len)
1559 		return 0;
1560 	return mtd->_lock_user_prot_reg(mtd, from, len);
1561 }
1562 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1563 
1564 /* Chip-supported device locking */
1565 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1566 {
1567 	if (!mtd->_lock)
1568 		return -EOPNOTSUPP;
1569 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1570 		return -EINVAL;
1571 	if (!len)
1572 		return 0;
1573 	return mtd->_lock(mtd, ofs, len);
1574 }
1575 EXPORT_SYMBOL_GPL(mtd_lock);
1576 
1577 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1578 {
1579 	if (!mtd->_unlock)
1580 		return -EOPNOTSUPP;
1581 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1582 		return -EINVAL;
1583 	if (!len)
1584 		return 0;
1585 	return mtd->_unlock(mtd, ofs, len);
1586 }
1587 EXPORT_SYMBOL_GPL(mtd_unlock);
1588 
1589 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1590 {
1591 	if (!mtd->_is_locked)
1592 		return -EOPNOTSUPP;
1593 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1594 		return -EINVAL;
1595 	if (!len)
1596 		return 0;
1597 	return mtd->_is_locked(mtd, ofs, len);
1598 }
1599 EXPORT_SYMBOL_GPL(mtd_is_locked);
1600 
1601 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1602 {
1603 	if (ofs < 0 || ofs >= mtd->size)
1604 		return -EINVAL;
1605 	if (!mtd->_block_isreserved)
1606 		return 0;
1607 	return mtd->_block_isreserved(mtd, ofs);
1608 }
1609 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1610 
1611 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1612 {
1613 	if (ofs < 0 || ofs >= mtd->size)
1614 		return -EINVAL;
1615 	if (!mtd->_block_isbad)
1616 		return 0;
1617 	return mtd->_block_isbad(mtd, ofs);
1618 }
1619 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1620 
1621 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1622 {
1623 	if (!mtd->_block_markbad)
1624 		return -EOPNOTSUPP;
1625 	if (ofs < 0 || ofs >= mtd->size)
1626 		return -EINVAL;
1627 	if (!(mtd->flags & MTD_WRITEABLE))
1628 		return -EROFS;
1629 	return mtd->_block_markbad(mtd, ofs);
1630 }
1631 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1632 
1633 /*
1634  * default_mtd_writev - the default writev method
1635  * @mtd: mtd device description object pointer
1636  * @vecs: the vectors to write
1637  * @count: count of vectors in @vecs
1638  * @to: the MTD device offset to write to
1639  * @retlen: on exit contains the count of bytes written to the MTD device.
1640  *
1641  * This function returns zero in case of success and a negative error code in
1642  * case of failure.
1643  */
1644 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1645 			      unsigned long count, loff_t to, size_t *retlen)
1646 {
1647 	unsigned long i;
1648 	size_t totlen = 0, thislen;
1649 	int ret = 0;
1650 
1651 	for (i = 0; i < count; i++) {
1652 		if (!vecs[i].iov_len)
1653 			continue;
1654 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1655 				vecs[i].iov_base);
1656 		totlen += thislen;
1657 		if (ret || thislen != vecs[i].iov_len)
1658 			break;
1659 		to += vecs[i].iov_len;
1660 	}
1661 	*retlen = totlen;
1662 	return ret;
1663 }
1664 
1665 /*
1666  * mtd_writev - the vector-based MTD write method
1667  * @mtd: mtd device description object pointer
1668  * @vecs: the vectors to write
1669  * @count: count of vectors in @vecs
1670  * @to: the MTD device offset to write to
1671  * @retlen: on exit contains the count of bytes written to the MTD device.
1672  *
1673  * This function returns zero in case of success and a negative error code in
1674  * case of failure.
1675  */
1676 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1677 	       unsigned long count, loff_t to, size_t *retlen)
1678 {
1679 	*retlen = 0;
1680 	if (!(mtd->flags & MTD_WRITEABLE))
1681 		return -EROFS;
1682 	if (!mtd->_writev)
1683 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1684 	return mtd->_writev(mtd, vecs, count, to, retlen);
1685 }
1686 EXPORT_SYMBOL_GPL(mtd_writev);
1687 
1688 /**
1689  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1690  * @mtd: mtd device description object pointer
1691  * @size: a pointer to the ideal or maximum size of the allocation, points
1692  *        to the actual allocation size on success.
1693  *
1694  * This routine attempts to allocate a contiguous kernel buffer up to
1695  * the specified size, backing off the size of the request exponentially
1696  * until the request succeeds or until the allocation size falls below
1697  * the system page size. This attempts to make sure it does not adversely
1698  * impact system performance, so when allocating more than one page, we
1699  * ask the memory allocator to avoid re-trying, swapping, writing back
1700  * or performing I/O.
1701  *
1702  * Note, this function also makes sure that the allocated buffer is aligned to
1703  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1704  *
1705  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1706  * to handle smaller (i.e. degraded) buffer allocations under low- or
1707  * fragmented-memory situations where such reduced allocations, from a
1708  * requested ideal, are allowed.
1709  *
1710  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1711  */
1712 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1713 {
1714 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1715 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1716 	void *kbuf;
1717 
1718 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1719 
1720 	while (*size > min_alloc) {
1721 		kbuf = kmalloc(*size, flags);
1722 		if (kbuf)
1723 			return kbuf;
1724 
1725 		*size >>= 1;
1726 		*size = ALIGN(*size, mtd->writesize);
1727 	}
1728 
1729 	/*
1730 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1731 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1732 	 */
1733 	return kmalloc(*size, GFP_KERNEL);
1734 }
1735 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1736 
1737 #ifdef CONFIG_PROC_FS
1738 
1739 /*====================================================================*/
1740 /* Support for /proc/mtd */
1741 
1742 static int mtd_proc_show(struct seq_file *m, void *v)
1743 {
1744 	struct mtd_info *mtd;
1745 
1746 	seq_puts(m, "dev:    size   erasesize  name\n");
1747 	mutex_lock(&mtd_table_mutex);
1748 	mtd_for_each_device(mtd) {
1749 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1750 			   mtd->index, (unsigned long long)mtd->size,
1751 			   mtd->erasesize, mtd->name);
1752 	}
1753 	mutex_unlock(&mtd_table_mutex);
1754 	return 0;
1755 }
1756 
1757 static int mtd_proc_open(struct inode *inode, struct file *file)
1758 {
1759 	return single_open(file, mtd_proc_show, NULL);
1760 }
1761 
1762 static const struct file_operations mtd_proc_ops = {
1763 	.open		= mtd_proc_open,
1764 	.read		= seq_read,
1765 	.llseek		= seq_lseek,
1766 	.release	= single_release,
1767 };
1768 #endif /* CONFIG_PROC_FS */
1769 
1770 /*====================================================================*/
1771 /* Init code */
1772 
1773 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1774 {
1775 	struct backing_dev_info *bdi;
1776 	int ret;
1777 
1778 	bdi = kzalloc(sizeof(*bdi), GFP_KERNEL);
1779 	if (!bdi)
1780 		return ERR_PTR(-ENOMEM);
1781 
1782 	ret = bdi_setup_and_register(bdi, name);
1783 	if (ret)
1784 		kfree(bdi);
1785 
1786 	return ret ? ERR_PTR(ret) : bdi;
1787 }
1788 
1789 static struct proc_dir_entry *proc_mtd;
1790 
1791 static int __init init_mtd(void)
1792 {
1793 	int ret;
1794 
1795 	ret = class_register(&mtd_class);
1796 	if (ret)
1797 		goto err_reg;
1798 
1799 	mtd_bdi = mtd_bdi_init("mtd");
1800 	if (IS_ERR(mtd_bdi)) {
1801 		ret = PTR_ERR(mtd_bdi);
1802 		goto err_bdi;
1803 	}
1804 
1805 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1806 
1807 	ret = init_mtdchar();
1808 	if (ret)
1809 		goto out_procfs;
1810 
1811 	return 0;
1812 
1813 out_procfs:
1814 	if (proc_mtd)
1815 		remove_proc_entry("mtd", NULL);
1816 	bdi_destroy(mtd_bdi);
1817 	kfree(mtd_bdi);
1818 err_bdi:
1819 	class_unregister(&mtd_class);
1820 err_reg:
1821 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1822 	return ret;
1823 }
1824 
1825 static void __exit cleanup_mtd(void)
1826 {
1827 	cleanup_mtdchar();
1828 	if (proc_mtd)
1829 		remove_proc_entry("mtd", NULL);
1830 	class_unregister(&mtd_class);
1831 	bdi_destroy(mtd_bdi);
1832 	kfree(mtd_bdi);
1833 	idr_destroy(&mtd_idr);
1834 }
1835 
1836 module_init(init_mtd);
1837 module_exit(cleanup_mtd);
1838 
1839 MODULE_LICENSE("GPL");
1840 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1841 MODULE_DESCRIPTION("Core MTD registration and access routines");
1842