1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 #include <linux/leds.h> 30 #include <linux/debugfs.h> 31 #include <linux/nvmem-provider.h> 32 #include <linux/root_dev.h> 33 #include <linux/error-injection.h> 34 35 #include <linux/mtd/mtd.h> 36 #include <linux/mtd/partitions.h> 37 38 #include "mtdcore.h" 39 40 struct backing_dev_info *mtd_bdi; 41 42 #ifdef CONFIG_PM_SLEEP 43 44 static int mtd_cls_suspend(struct device *dev) 45 { 46 struct mtd_info *mtd = dev_get_drvdata(dev); 47 48 return mtd ? mtd_suspend(mtd) : 0; 49 } 50 51 static int mtd_cls_resume(struct device *dev) 52 { 53 struct mtd_info *mtd = dev_get_drvdata(dev); 54 55 if (mtd) 56 mtd_resume(mtd); 57 return 0; 58 } 59 60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 62 #else 63 #define MTD_CLS_PM_OPS NULL 64 #endif 65 66 static struct class mtd_class = { 67 .name = "mtd", 68 .pm = MTD_CLS_PM_OPS, 69 }; 70 71 static DEFINE_IDR(mtd_idr); 72 73 /* These are exported solely for the purpose of mtd_blkdevs.c. You 74 should not use them for _anything_ else */ 75 DEFINE_MUTEX(mtd_table_mutex); 76 EXPORT_SYMBOL_GPL(mtd_table_mutex); 77 78 struct mtd_info *__mtd_next_device(int i) 79 { 80 return idr_get_next(&mtd_idr, &i); 81 } 82 EXPORT_SYMBOL_GPL(__mtd_next_device); 83 84 static LIST_HEAD(mtd_notifiers); 85 86 87 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 88 89 /* REVISIT once MTD uses the driver model better, whoever allocates 90 * the mtd_info will probably want to use the release() hook... 91 */ 92 static void mtd_release(struct device *dev) 93 { 94 struct mtd_info *mtd = dev_get_drvdata(dev); 95 dev_t index = MTD_DEVT(mtd->index); 96 97 idr_remove(&mtd_idr, mtd->index); 98 of_node_put(mtd_get_of_node(mtd)); 99 100 if (mtd_is_partition(mtd)) 101 release_mtd_partition(mtd); 102 103 /* remove /dev/mtdXro node */ 104 device_destroy(&mtd_class, index + 1); 105 } 106 107 static void mtd_device_release(struct kref *kref) 108 { 109 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt); 110 bool is_partition = mtd_is_partition(mtd); 111 112 debugfs_remove_recursive(mtd->dbg.dfs_dir); 113 114 /* Try to remove the NVMEM provider */ 115 nvmem_unregister(mtd->nvmem); 116 117 device_unregister(&mtd->dev); 118 119 /* 120 * Clear dev so mtd can be safely re-registered later if desired. 121 * Should not be done for partition, 122 * as it was already destroyed in device_unregister(). 123 */ 124 if (!is_partition) 125 memset(&mtd->dev, 0, sizeof(mtd->dev)); 126 127 module_put(THIS_MODULE); 128 } 129 130 #define MTD_DEVICE_ATTR_RO(name) \ 131 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 132 133 #define MTD_DEVICE_ATTR_RW(name) \ 134 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 135 136 static ssize_t mtd_type_show(struct device *dev, 137 struct device_attribute *attr, char *buf) 138 { 139 struct mtd_info *mtd = dev_get_drvdata(dev); 140 char *type; 141 142 switch (mtd->type) { 143 case MTD_ABSENT: 144 type = "absent"; 145 break; 146 case MTD_RAM: 147 type = "ram"; 148 break; 149 case MTD_ROM: 150 type = "rom"; 151 break; 152 case MTD_NORFLASH: 153 type = "nor"; 154 break; 155 case MTD_NANDFLASH: 156 type = "nand"; 157 break; 158 case MTD_DATAFLASH: 159 type = "dataflash"; 160 break; 161 case MTD_UBIVOLUME: 162 type = "ubi"; 163 break; 164 case MTD_MLCNANDFLASH: 165 type = "mlc-nand"; 166 break; 167 default: 168 type = "unknown"; 169 } 170 171 return sysfs_emit(buf, "%s\n", type); 172 } 173 MTD_DEVICE_ATTR_RO(type); 174 175 static ssize_t mtd_flags_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 180 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 181 } 182 MTD_DEVICE_ATTR_RO(flags); 183 184 static ssize_t mtd_size_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct mtd_info *mtd = dev_get_drvdata(dev); 188 189 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 190 } 191 MTD_DEVICE_ATTR_RO(size); 192 193 static ssize_t mtd_erasesize_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 198 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 199 } 200 MTD_DEVICE_ATTR_RO(erasesize); 201 202 static ssize_t mtd_writesize_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct mtd_info *mtd = dev_get_drvdata(dev); 206 207 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 208 } 209 MTD_DEVICE_ATTR_RO(writesize); 210 211 static ssize_t mtd_subpagesize_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 struct mtd_info *mtd = dev_get_drvdata(dev); 215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 216 217 return sysfs_emit(buf, "%u\n", subpagesize); 218 } 219 MTD_DEVICE_ATTR_RO(subpagesize); 220 221 static ssize_t mtd_oobsize_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 struct mtd_info *mtd = dev_get_drvdata(dev); 225 226 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 227 } 228 MTD_DEVICE_ATTR_RO(oobsize); 229 230 static ssize_t mtd_oobavail_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct mtd_info *mtd = dev_get_drvdata(dev); 234 235 return sysfs_emit(buf, "%u\n", mtd->oobavail); 236 } 237 MTD_DEVICE_ATTR_RO(oobavail); 238 239 static ssize_t mtd_numeraseregions_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct mtd_info *mtd = dev_get_drvdata(dev); 243 244 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 245 } 246 MTD_DEVICE_ATTR_RO(numeraseregions); 247 248 static ssize_t mtd_name_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 struct mtd_info *mtd = dev_get_drvdata(dev); 252 253 return sysfs_emit(buf, "%s\n", mtd->name); 254 } 255 MTD_DEVICE_ATTR_RO(name); 256 257 static ssize_t mtd_ecc_strength_show(struct device *dev, 258 struct device_attribute *attr, char *buf) 259 { 260 struct mtd_info *mtd = dev_get_drvdata(dev); 261 262 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 263 } 264 MTD_DEVICE_ATTR_RO(ecc_strength); 265 266 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 267 struct device_attribute *attr, 268 char *buf) 269 { 270 struct mtd_info *mtd = dev_get_drvdata(dev); 271 272 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 273 } 274 275 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 276 struct device_attribute *attr, 277 const char *buf, size_t count) 278 { 279 struct mtd_info *mtd = dev_get_drvdata(dev); 280 unsigned int bitflip_threshold; 281 int retval; 282 283 retval = kstrtouint(buf, 0, &bitflip_threshold); 284 if (retval) 285 return retval; 286 287 mtd->bitflip_threshold = bitflip_threshold; 288 return count; 289 } 290 MTD_DEVICE_ATTR_RW(bitflip_threshold); 291 292 static ssize_t mtd_ecc_step_size_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 297 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 298 299 } 300 MTD_DEVICE_ATTR_RO(ecc_step_size); 301 302 static ssize_t mtd_corrected_bits_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 309 } 310 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 311 312 static ssize_t mtd_ecc_failures_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 319 } 320 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 321 322 static ssize_t mtd_bad_blocks_show(struct device *dev, 323 struct device_attribute *attr, char *buf) 324 { 325 struct mtd_info *mtd = dev_get_drvdata(dev); 326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 327 328 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 329 } 330 MTD_DEVICE_ATTR_RO(bad_blocks); 331 332 static ssize_t mtd_bbt_blocks_show(struct device *dev, 333 struct device_attribute *attr, char *buf) 334 { 335 struct mtd_info *mtd = dev_get_drvdata(dev); 336 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 337 338 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 339 } 340 MTD_DEVICE_ATTR_RO(bbt_blocks); 341 342 static struct attribute *mtd_attrs[] = { 343 &dev_attr_type.attr, 344 &dev_attr_flags.attr, 345 &dev_attr_size.attr, 346 &dev_attr_erasesize.attr, 347 &dev_attr_writesize.attr, 348 &dev_attr_subpagesize.attr, 349 &dev_attr_oobsize.attr, 350 &dev_attr_oobavail.attr, 351 &dev_attr_numeraseregions.attr, 352 &dev_attr_name.attr, 353 &dev_attr_ecc_strength.attr, 354 &dev_attr_ecc_step_size.attr, 355 &dev_attr_corrected_bits.attr, 356 &dev_attr_ecc_failures.attr, 357 &dev_attr_bad_blocks.attr, 358 &dev_attr_bbt_blocks.attr, 359 &dev_attr_bitflip_threshold.attr, 360 NULL, 361 }; 362 ATTRIBUTE_GROUPS(mtd); 363 364 static const struct device_type mtd_devtype = { 365 .name = "mtd", 366 .groups = mtd_groups, 367 .release = mtd_release, 368 }; 369 370 static bool mtd_expert_analysis_mode; 371 372 #ifdef CONFIG_DEBUG_FS 373 bool mtd_check_expert_analysis_mode(void) 374 { 375 const char *mtd_expert_analysis_warning = 376 "Bad block checks have been entirely disabled.\n" 377 "This is only reserved for post-mortem forensics and debug purposes.\n" 378 "Never enable this mode if you do not know what you are doing!\n"; 379 380 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 381 } 382 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 383 #endif 384 385 static struct dentry *dfs_dir_mtd; 386 387 static int mtd_ooblayout_show(struct seq_file *s, void *p, 388 int (*iter)(struct mtd_info *, int section, 389 struct mtd_oob_region *region)) 390 { 391 struct mtd_info *mtd = s->private; 392 int section; 393 394 for (section = 0;; section++) { 395 struct mtd_oob_region region; 396 int err; 397 398 err = iter(mtd, section, ®ion); 399 if (err) { 400 if (err == -ERANGE) 401 break; 402 403 return err; 404 } 405 406 seq_printf(s, "%-3d %4u %4u\n", section, region.offset, 407 region.length); 408 } 409 410 return 0; 411 } 412 413 static int mtd_ooblayout_ecc_show(struct seq_file *s, void *p) 414 { 415 return mtd_ooblayout_show(s, p, mtd_ooblayout_ecc); 416 } 417 DEFINE_SHOW_ATTRIBUTE(mtd_ooblayout_ecc); 418 419 static int mtd_ooblayout_free_show(struct seq_file *s, void *p) 420 { 421 return mtd_ooblayout_show(s, p, mtd_ooblayout_free); 422 } 423 DEFINE_SHOW_ATTRIBUTE(mtd_ooblayout_free); 424 425 static void mtd_debugfs_populate(struct mtd_info *mtd) 426 { 427 struct device *dev = &mtd->dev; 428 struct mtd_oob_region region; 429 430 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 431 return; 432 433 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 434 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) 435 return; 436 437 /* Create ooblayout files only if at least one region is present. */ 438 if (mtd_ooblayout_ecc(mtd, 0, ®ion) == 0) 439 debugfs_create_file("ooblayout_ecc", 0444, mtd->dbg.dfs_dir, 440 mtd, &mtd_ooblayout_ecc_fops); 441 442 if (mtd_ooblayout_free(mtd, 0, ®ion) == 0) 443 debugfs_create_file("ooblayout_free", 0444, mtd->dbg.dfs_dir, 444 mtd, &mtd_ooblayout_free_fops); 445 } 446 447 #ifndef CONFIG_MMU 448 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 449 { 450 switch (mtd->type) { 451 case MTD_RAM: 452 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 453 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 454 case MTD_ROM: 455 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 456 NOMMU_MAP_READ; 457 default: 458 return NOMMU_MAP_COPY; 459 } 460 } 461 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 462 #endif 463 464 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 465 void *cmd) 466 { 467 struct mtd_info *mtd; 468 469 mtd = container_of(n, struct mtd_info, reboot_notifier); 470 mtd->_reboot(mtd); 471 472 return NOTIFY_DONE; 473 } 474 475 /** 476 * mtd_wunit_to_pairing_info - get pairing information of a wunit 477 * @mtd: pointer to new MTD device info structure 478 * @wunit: write unit we are interested in 479 * @info: returned pairing information 480 * 481 * Retrieve pairing information associated to the wunit. 482 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 483 * paired together, and where programming a page may influence the page it is 484 * paired with. 485 * The notion of page is replaced by the term wunit (write-unit) to stay 486 * consistent with the ->writesize field. 487 * 488 * The @wunit argument can be extracted from an absolute offset using 489 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 490 * to @wunit. 491 * 492 * From the pairing info the MTD user can find all the wunits paired with 493 * @wunit using the following loop: 494 * 495 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 496 * info.pair = i; 497 * mtd_pairing_info_to_wunit(mtd, &info); 498 * ... 499 * } 500 */ 501 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 502 struct mtd_pairing_info *info) 503 { 504 struct mtd_info *master = mtd_get_master(mtd); 505 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 506 507 if (wunit < 0 || wunit >= npairs) 508 return -EINVAL; 509 510 if (master->pairing && master->pairing->get_info) 511 return master->pairing->get_info(master, wunit, info); 512 513 info->group = 0; 514 info->pair = wunit; 515 516 return 0; 517 } 518 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 519 520 /** 521 * mtd_pairing_info_to_wunit - get wunit from pairing information 522 * @mtd: pointer to new MTD device info structure 523 * @info: pairing information struct 524 * 525 * Returns a positive number representing the wunit associated to the info 526 * struct, or a negative error code. 527 * 528 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 529 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 530 * doc). 531 * 532 * It can also be used to only program the first page of each pair (i.e. 533 * page attached to group 0), which allows one to use an MLC NAND in 534 * software-emulated SLC mode: 535 * 536 * info.group = 0; 537 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 538 * for (info.pair = 0; info.pair < npairs; info.pair++) { 539 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 540 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 541 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 542 * } 543 */ 544 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 545 const struct mtd_pairing_info *info) 546 { 547 struct mtd_info *master = mtd_get_master(mtd); 548 int ngroups = mtd_pairing_groups(master); 549 int npairs = mtd_wunit_per_eb(master) / ngroups; 550 551 if (!info || info->pair < 0 || info->pair >= npairs || 552 info->group < 0 || info->group >= ngroups) 553 return -EINVAL; 554 555 if (master->pairing && master->pairing->get_wunit) 556 return mtd->pairing->get_wunit(master, info); 557 558 return info->pair; 559 } 560 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 561 562 /** 563 * mtd_pairing_groups - get the number of pairing groups 564 * @mtd: pointer to new MTD device info structure 565 * 566 * Returns the number of pairing groups. 567 * 568 * This number is usually equal to the number of bits exposed by a single 569 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 570 * to iterate over all pages of a given pair. 571 */ 572 int mtd_pairing_groups(struct mtd_info *mtd) 573 { 574 struct mtd_info *master = mtd_get_master(mtd); 575 576 if (!master->pairing || !master->pairing->ngroups) 577 return 1; 578 579 return master->pairing->ngroups; 580 } 581 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 582 583 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 584 void *val, size_t bytes) 585 { 586 struct mtd_info *mtd = priv; 587 size_t retlen; 588 int err; 589 590 err = mtd_read(mtd, offset, bytes, &retlen, val); 591 if (err && err != -EUCLEAN) 592 return err; 593 594 return retlen == bytes ? 0 : -EIO; 595 } 596 597 static int mtd_nvmem_add(struct mtd_info *mtd) 598 { 599 struct device_node *node = mtd_get_of_node(mtd); 600 struct nvmem_config config = {}; 601 602 config.id = NVMEM_DEVID_NONE; 603 config.dev = &mtd->dev; 604 config.name = dev_name(&mtd->dev); 605 config.owner = THIS_MODULE; 606 config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells"); 607 config.reg_read = mtd_nvmem_reg_read; 608 config.size = mtd->size; 609 config.word_size = 1; 610 config.stride = 1; 611 config.read_only = true; 612 config.root_only = true; 613 config.ignore_wp = true; 614 config.priv = mtd; 615 616 mtd->nvmem = nvmem_register(&config); 617 if (IS_ERR(mtd->nvmem)) { 618 /* Just ignore if there is no NVMEM support in the kernel */ 619 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 620 mtd->nvmem = NULL; 621 else 622 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 623 "Failed to register NVMEM device\n"); 624 } 625 626 return 0; 627 } 628 629 static void mtd_check_of_node(struct mtd_info *mtd) 630 { 631 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 632 const char *pname, *prefix = "partition-"; 633 int plen, mtd_name_len, offset, prefix_len; 634 635 /* Check if MTD already has a device node */ 636 if (mtd_get_of_node(mtd)) 637 return; 638 639 if (!mtd_is_partition(mtd)) 640 return; 641 642 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 643 if (!parent_dn) 644 return; 645 646 if (mtd_is_partition(mtd->parent)) 647 partitions = of_node_get(parent_dn); 648 else 649 partitions = of_get_child_by_name(parent_dn, "partitions"); 650 if (!partitions) 651 goto exit_parent; 652 653 prefix_len = strlen(prefix); 654 mtd_name_len = strlen(mtd->name); 655 656 /* Search if a partition is defined with the same name */ 657 for_each_child_of_node(partitions, mtd_dn) { 658 /* Skip partition with no/wrong prefix */ 659 if (!of_node_name_prefix(mtd_dn, prefix)) 660 continue; 661 662 /* Label have priority. Check that first */ 663 if (!of_property_read_string(mtd_dn, "label", &pname)) { 664 offset = 0; 665 } else { 666 pname = mtd_dn->name; 667 offset = prefix_len; 668 } 669 670 plen = strlen(pname) - offset; 671 if (plen == mtd_name_len && 672 !strncmp(mtd->name, pname + offset, plen)) { 673 mtd_set_of_node(mtd, mtd_dn); 674 of_node_put(mtd_dn); 675 break; 676 } 677 } 678 679 of_node_put(partitions); 680 exit_parent: 681 of_node_put(parent_dn); 682 } 683 684 /** 685 * add_mtd_device - register an MTD device 686 * @mtd: pointer to new MTD device info structure 687 * 688 * Add a device to the list of MTD devices present in the system, and 689 * notify each currently active MTD 'user' of its arrival. Returns 690 * zero on success or non-zero on failure. 691 */ 692 693 int add_mtd_device(struct mtd_info *mtd) 694 { 695 struct device_node *np = mtd_get_of_node(mtd); 696 struct mtd_info *master = mtd_get_master(mtd); 697 struct mtd_notifier *not; 698 int i, error, ofidx; 699 700 /* 701 * May occur, for instance, on buggy drivers which call 702 * mtd_device_parse_register() multiple times on the same master MTD, 703 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 704 */ 705 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 706 return -EEXIST; 707 708 BUG_ON(mtd->writesize == 0); 709 710 /* 711 * MTD drivers should implement ->_{write,read}() or 712 * ->_{write,read}_oob(), but not both. 713 */ 714 if (WARN_ON((mtd->_write && mtd->_write_oob) || 715 (mtd->_read && mtd->_read_oob))) 716 return -EINVAL; 717 718 if (WARN_ON((!mtd->erasesize || !master->_erase) && 719 !(mtd->flags & MTD_NO_ERASE))) 720 return -EINVAL; 721 722 /* 723 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 724 * master is an MLC NAND and has a proper pairing scheme defined. 725 * We also reject masters that implement ->_writev() for now, because 726 * NAND controller drivers don't implement this hook, and adding the 727 * SLC -> MLC address/length conversion to this path is useless if we 728 * don't have a user. 729 */ 730 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 731 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 732 !master->pairing || master->_writev)) 733 return -EINVAL; 734 735 mutex_lock(&mtd_table_mutex); 736 737 ofidx = -1; 738 if (np) 739 ofidx = of_alias_get_id(np, "mtd"); 740 if (ofidx >= 0) 741 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 742 else 743 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 744 if (i < 0) { 745 error = i; 746 goto fail_locked; 747 } 748 749 mtd->index = i; 750 kref_init(&mtd->refcnt); 751 752 /* default value if not set by driver */ 753 if (mtd->bitflip_threshold == 0) 754 mtd->bitflip_threshold = mtd->ecc_strength; 755 756 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 757 int ngroups = mtd_pairing_groups(master); 758 759 mtd->erasesize /= ngroups; 760 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 761 mtd->erasesize; 762 } 763 764 if (is_power_of_2(mtd->erasesize)) 765 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 766 else 767 mtd->erasesize_shift = 0; 768 769 if (is_power_of_2(mtd->writesize)) 770 mtd->writesize_shift = ffs(mtd->writesize) - 1; 771 else 772 mtd->writesize_shift = 0; 773 774 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 775 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 776 777 /* Some chips always power up locked. Unlock them now */ 778 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 779 error = mtd_unlock(mtd, 0, mtd->size); 780 if (error && error != -EOPNOTSUPP) 781 printk(KERN_WARNING 782 "%s: unlock failed, writes may not work\n", 783 mtd->name); 784 /* Ignore unlock failures? */ 785 error = 0; 786 } 787 788 /* Caller should have set dev.parent to match the 789 * physical device, if appropriate. 790 */ 791 mtd->dev.type = &mtd_devtype; 792 mtd->dev.class = &mtd_class; 793 mtd->dev.devt = MTD_DEVT(i); 794 error = dev_set_name(&mtd->dev, "mtd%d", i); 795 if (error) 796 goto fail_devname; 797 dev_set_drvdata(&mtd->dev, mtd); 798 mtd_check_of_node(mtd); 799 of_node_get(mtd_get_of_node(mtd)); 800 error = device_register(&mtd->dev); 801 if (error) { 802 put_device(&mtd->dev); 803 goto fail_added; 804 } 805 806 /* Add the nvmem provider */ 807 error = mtd_nvmem_add(mtd); 808 if (error) 809 goto fail_nvmem_add; 810 811 mtd_debugfs_populate(mtd); 812 813 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 814 "mtd%dro", i); 815 816 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 817 /* No need to get a refcount on the module containing 818 the notifier, since we hold the mtd_table_mutex */ 819 list_for_each_entry(not, &mtd_notifiers, list) 820 not->add(mtd); 821 822 mutex_unlock(&mtd_table_mutex); 823 824 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 825 if (IS_BUILTIN(CONFIG_MTD)) { 826 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 827 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 828 } else { 829 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 830 mtd->index, mtd->name); 831 } 832 } 833 834 /* We _know_ we aren't being removed, because 835 our caller is still holding us here. So none 836 of this try_ nonsense, and no bitching about it 837 either. :) */ 838 __module_get(THIS_MODULE); 839 return 0; 840 841 fail_nvmem_add: 842 device_unregister(&mtd->dev); 843 fail_added: 844 of_node_put(mtd_get_of_node(mtd)); 845 fail_devname: 846 idr_remove(&mtd_idr, i); 847 fail_locked: 848 mutex_unlock(&mtd_table_mutex); 849 return error; 850 } 851 852 /** 853 * del_mtd_device - unregister an MTD device 854 * @mtd: pointer to MTD device info structure 855 * 856 * Remove a device from the list of MTD devices present in the system, 857 * and notify each currently active MTD 'user' of its departure. 858 * Returns zero on success or 1 on failure, which currently will happen 859 * if the requested device does not appear to be present in the list. 860 */ 861 862 int del_mtd_device(struct mtd_info *mtd) 863 { 864 int ret; 865 struct mtd_notifier *not; 866 867 mutex_lock(&mtd_table_mutex); 868 869 if (idr_find(&mtd_idr, mtd->index) != mtd) { 870 ret = -ENODEV; 871 goto out_error; 872 } 873 874 /* No need to get a refcount on the module containing 875 the notifier, since we hold the mtd_table_mutex */ 876 list_for_each_entry(not, &mtd_notifiers, list) 877 not->remove(mtd); 878 879 kref_put(&mtd->refcnt, mtd_device_release); 880 ret = 0; 881 882 out_error: 883 mutex_unlock(&mtd_table_mutex); 884 return ret; 885 } 886 887 /* 888 * Set a few defaults based on the parent devices, if not provided by the 889 * driver 890 */ 891 static void mtd_set_dev_defaults(struct mtd_info *mtd) 892 { 893 if (mtd->dev.parent) { 894 if (!mtd->owner && mtd->dev.parent->driver) 895 mtd->owner = mtd->dev.parent->driver->owner; 896 if (!mtd->name) 897 mtd->name = dev_name(mtd->dev.parent); 898 } else { 899 pr_debug("mtd device won't show a device symlink in sysfs\n"); 900 } 901 902 INIT_LIST_HEAD(&mtd->partitions); 903 mutex_init(&mtd->master.partitions_lock); 904 mutex_init(&mtd->master.chrdev_lock); 905 } 906 907 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 908 { 909 struct otp_info *info; 910 ssize_t size = 0; 911 unsigned int i; 912 size_t retlen; 913 int ret; 914 915 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 916 if (!info) 917 return -ENOMEM; 918 919 if (is_user) 920 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 921 else 922 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 923 if (ret) 924 goto err; 925 926 for (i = 0; i < retlen / sizeof(*info); i++) 927 size += info[i].length; 928 929 kfree(info); 930 return size; 931 932 err: 933 kfree(info); 934 935 /* ENODATA means there is no OTP region. */ 936 return ret == -ENODATA ? 0 : ret; 937 } 938 939 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 940 const char *compatible, 941 int size, 942 nvmem_reg_read_t reg_read) 943 { 944 struct nvmem_device *nvmem = NULL; 945 struct nvmem_config config = {}; 946 struct device_node *np; 947 948 /* DT binding is optional */ 949 np = of_get_compatible_child(mtd->dev.of_node, compatible); 950 951 /* OTP nvmem will be registered on the physical device */ 952 config.dev = mtd->dev.parent; 953 config.name = compatible; 954 config.id = NVMEM_DEVID_AUTO; 955 config.owner = THIS_MODULE; 956 config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd); 957 config.type = NVMEM_TYPE_OTP; 958 config.root_only = true; 959 config.ignore_wp = true; 960 config.reg_read = reg_read; 961 config.size = size; 962 config.of_node = np; 963 config.priv = mtd; 964 965 nvmem = nvmem_register(&config); 966 /* Just ignore if there is no NVMEM support in the kernel */ 967 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 968 nvmem = NULL; 969 970 of_node_put(np); 971 972 return nvmem; 973 } 974 975 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 976 void *val, size_t bytes) 977 { 978 struct mtd_info *mtd = priv; 979 size_t retlen; 980 int ret; 981 982 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 983 if (ret) 984 return ret; 985 986 return retlen == bytes ? 0 : -EIO; 987 } 988 989 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 990 void *val, size_t bytes) 991 { 992 struct mtd_info *mtd = priv; 993 size_t retlen; 994 int ret; 995 996 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 997 if (ret) 998 return ret; 999 1000 return retlen == bytes ? 0 : -EIO; 1001 } 1002 1003 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 1004 { 1005 struct device *dev = mtd->dev.parent; 1006 struct nvmem_device *nvmem; 1007 ssize_t size; 1008 int err; 1009 1010 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 1011 size = mtd_otp_size(mtd, true); 1012 if (size < 0) { 1013 err = size; 1014 goto err; 1015 } 1016 1017 if (size > 0) { 1018 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 1019 mtd_nvmem_user_otp_reg_read); 1020 if (IS_ERR(nvmem)) { 1021 err = PTR_ERR(nvmem); 1022 goto err; 1023 } 1024 mtd->otp_user_nvmem = nvmem; 1025 } 1026 } 1027 1028 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 1029 size = mtd_otp_size(mtd, false); 1030 if (size < 0) { 1031 err = size; 1032 goto err; 1033 } 1034 1035 if (size > 0) { 1036 /* 1037 * The factory OTP contains thing such as a unique serial 1038 * number and is small, so let's read it out and put it 1039 * into the entropy pool. 1040 */ 1041 void *otp; 1042 1043 otp = kmalloc(size, GFP_KERNEL); 1044 if (!otp) { 1045 err = -ENOMEM; 1046 goto err; 1047 } 1048 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); 1049 if (err < 0) { 1050 kfree(otp); 1051 goto err; 1052 } 1053 add_device_randomness(otp, err); 1054 kfree(otp); 1055 1056 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 1057 mtd_nvmem_fact_otp_reg_read); 1058 if (IS_ERR(nvmem)) { 1059 err = PTR_ERR(nvmem); 1060 goto err; 1061 } 1062 mtd->otp_factory_nvmem = nvmem; 1063 } 1064 } 1065 1066 return 0; 1067 1068 err: 1069 nvmem_unregister(mtd->otp_user_nvmem); 1070 /* Don't report error if OTP is not supported. */ 1071 if (err == -EOPNOTSUPP) 1072 return 0; 1073 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 1074 } 1075 1076 /** 1077 * mtd_device_parse_register - parse partitions and register an MTD device. 1078 * 1079 * @mtd: the MTD device to register 1080 * @types: the list of MTD partition probes to try, see 1081 * 'parse_mtd_partitions()' for more information 1082 * @parser_data: MTD partition parser-specific data 1083 * @parts: fallback partition information to register, if parsing fails; 1084 * only valid if %nr_parts > %0 1085 * @nr_parts: the number of partitions in parts, if zero then the full 1086 * MTD device is registered if no partition info is found 1087 * 1088 * This function aggregates MTD partitions parsing (done by 1089 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1090 * basically follows the most common pattern found in many MTD drivers: 1091 * 1092 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1093 * registered first. 1094 * * Then It tries to probe partitions on MTD device @mtd using parsers 1095 * specified in @types (if @types is %NULL, then the default list of parsers 1096 * is used, see 'parse_mtd_partitions()' for more information). If none are 1097 * found this functions tries to fallback to information specified in 1098 * @parts/@nr_parts. 1099 * * If no partitions were found this function just registers the MTD device 1100 * @mtd and exits. 1101 * 1102 * Returns zero in case of success and a negative error code in case of failure. 1103 */ 1104 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1105 struct mtd_part_parser_data *parser_data, 1106 const struct mtd_partition *parts, 1107 int nr_parts) 1108 { 1109 int ret, err; 1110 1111 mtd_set_dev_defaults(mtd); 1112 1113 ret = mtd_otp_nvmem_add(mtd); 1114 if (ret) 1115 goto out; 1116 1117 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1118 ret = add_mtd_device(mtd); 1119 if (ret) 1120 goto out; 1121 } 1122 1123 /* Prefer parsed partitions over driver-provided fallback */ 1124 ret = parse_mtd_partitions(mtd, types, parser_data); 1125 if (ret == -EPROBE_DEFER) 1126 goto out; 1127 1128 if (ret > 0) 1129 ret = 0; 1130 else if (nr_parts) 1131 ret = add_mtd_partitions(mtd, parts, nr_parts); 1132 else if (!device_is_registered(&mtd->dev)) 1133 ret = add_mtd_device(mtd); 1134 else 1135 ret = 0; 1136 1137 if (ret) 1138 goto out; 1139 1140 /* 1141 * FIXME: some drivers unfortunately call this function more than once. 1142 * So we have to check if we've already assigned the reboot notifier. 1143 * 1144 * Generally, we can make multiple calls work for most cases, but it 1145 * does cause problems with parse_mtd_partitions() above (e.g., 1146 * cmdlineparts will register partitions more than once). 1147 */ 1148 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1149 "MTD already registered\n"); 1150 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1151 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1152 register_reboot_notifier(&mtd->reboot_notifier); 1153 } 1154 1155 out: 1156 if (ret) { 1157 nvmem_unregister(mtd->otp_user_nvmem); 1158 nvmem_unregister(mtd->otp_factory_nvmem); 1159 } 1160 1161 if (ret && device_is_registered(&mtd->dev)) { 1162 err = del_mtd_device(mtd); 1163 if (err) 1164 pr_err("Error when deleting MTD device (%d)\n", err); 1165 } 1166 1167 return ret; 1168 } 1169 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1170 1171 /** 1172 * mtd_device_unregister - unregister an existing MTD device. 1173 * 1174 * @master: the MTD device to unregister. This will unregister both the master 1175 * and any partitions if registered. 1176 */ 1177 int mtd_device_unregister(struct mtd_info *master) 1178 { 1179 int err; 1180 1181 if (master->_reboot) { 1182 unregister_reboot_notifier(&master->reboot_notifier); 1183 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1184 } 1185 1186 nvmem_unregister(master->otp_user_nvmem); 1187 nvmem_unregister(master->otp_factory_nvmem); 1188 1189 err = del_mtd_partitions(master); 1190 if (err) 1191 return err; 1192 1193 if (!device_is_registered(&master->dev)) 1194 return 0; 1195 1196 return del_mtd_device(master); 1197 } 1198 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1199 1200 /** 1201 * register_mtd_user - register a 'user' of MTD devices. 1202 * @new: pointer to notifier info structure 1203 * 1204 * Registers a pair of callbacks function to be called upon addition 1205 * or removal of MTD devices. Causes the 'add' callback to be immediately 1206 * invoked for each MTD device currently present in the system. 1207 */ 1208 void register_mtd_user (struct mtd_notifier *new) 1209 { 1210 struct mtd_info *mtd; 1211 1212 mutex_lock(&mtd_table_mutex); 1213 1214 list_add(&new->list, &mtd_notifiers); 1215 1216 __module_get(THIS_MODULE); 1217 1218 mtd_for_each_device(mtd) 1219 new->add(mtd); 1220 1221 mutex_unlock(&mtd_table_mutex); 1222 } 1223 EXPORT_SYMBOL_GPL(register_mtd_user); 1224 1225 /** 1226 * unregister_mtd_user - unregister a 'user' of MTD devices. 1227 * @old: pointer to notifier info structure 1228 * 1229 * Removes a callback function pair from the list of 'users' to be 1230 * notified upon addition or removal of MTD devices. Causes the 1231 * 'remove' callback to be immediately invoked for each MTD device 1232 * currently present in the system. 1233 */ 1234 int unregister_mtd_user (struct mtd_notifier *old) 1235 { 1236 struct mtd_info *mtd; 1237 1238 mutex_lock(&mtd_table_mutex); 1239 1240 module_put(THIS_MODULE); 1241 1242 mtd_for_each_device(mtd) 1243 old->remove(mtd); 1244 1245 list_del(&old->list); 1246 mutex_unlock(&mtd_table_mutex); 1247 return 0; 1248 } 1249 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1250 1251 /** 1252 * get_mtd_device - obtain a validated handle for an MTD device 1253 * @mtd: last known address of the required MTD device 1254 * @num: internal device number of the required MTD device 1255 * 1256 * Given a number and NULL address, return the num'th entry in the device 1257 * table, if any. Given an address and num == -1, search the device table 1258 * for a device with that address and return if it's still present. Given 1259 * both, return the num'th driver only if its address matches. Return 1260 * error code if not. 1261 */ 1262 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1263 { 1264 struct mtd_info *ret = NULL, *other; 1265 int err = -ENODEV; 1266 1267 mutex_lock(&mtd_table_mutex); 1268 1269 if (num == -1) { 1270 mtd_for_each_device(other) { 1271 if (other == mtd) { 1272 ret = mtd; 1273 break; 1274 } 1275 } 1276 } else if (num >= 0) { 1277 ret = idr_find(&mtd_idr, num); 1278 if (mtd && mtd != ret) 1279 ret = NULL; 1280 } 1281 1282 if (!ret) { 1283 ret = ERR_PTR(err); 1284 goto out; 1285 } 1286 1287 err = __get_mtd_device(ret); 1288 if (err) 1289 ret = ERR_PTR(err); 1290 out: 1291 mutex_unlock(&mtd_table_mutex); 1292 return ret; 1293 } 1294 EXPORT_SYMBOL_GPL(get_mtd_device); 1295 1296 1297 int __get_mtd_device(struct mtd_info *mtd) 1298 { 1299 struct mtd_info *master = mtd_get_master(mtd); 1300 int err; 1301 1302 if (master->_get_device) { 1303 err = master->_get_device(mtd); 1304 if (err) 1305 return err; 1306 } 1307 1308 if (!try_module_get(master->owner)) { 1309 if (master->_put_device) 1310 master->_put_device(master); 1311 return -ENODEV; 1312 } 1313 1314 while (mtd) { 1315 if (mtd != master) 1316 kref_get(&mtd->refcnt); 1317 mtd = mtd->parent; 1318 } 1319 1320 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1321 kref_get(&master->refcnt); 1322 1323 return 0; 1324 } 1325 EXPORT_SYMBOL_GPL(__get_mtd_device); 1326 1327 /** 1328 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1329 * 1330 * @np: device tree node 1331 */ 1332 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1333 { 1334 struct mtd_info *mtd = NULL; 1335 struct mtd_info *tmp; 1336 int err; 1337 1338 mutex_lock(&mtd_table_mutex); 1339 1340 err = -EPROBE_DEFER; 1341 mtd_for_each_device(tmp) { 1342 if (mtd_get_of_node(tmp) == np) { 1343 mtd = tmp; 1344 err = __get_mtd_device(mtd); 1345 break; 1346 } 1347 } 1348 1349 mutex_unlock(&mtd_table_mutex); 1350 1351 return err ? ERR_PTR(err) : mtd; 1352 } 1353 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1354 1355 /** 1356 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1357 * device name 1358 * @name: MTD device name to open 1359 * 1360 * This function returns MTD device description structure in case of 1361 * success and an error code in case of failure. 1362 */ 1363 struct mtd_info *get_mtd_device_nm(const char *name) 1364 { 1365 int err = -ENODEV; 1366 struct mtd_info *mtd = NULL, *other; 1367 1368 mutex_lock(&mtd_table_mutex); 1369 1370 mtd_for_each_device(other) { 1371 if (!strcmp(name, other->name)) { 1372 mtd = other; 1373 break; 1374 } 1375 } 1376 1377 if (!mtd) 1378 goto out_unlock; 1379 1380 err = __get_mtd_device(mtd); 1381 if (err) 1382 goto out_unlock; 1383 1384 mutex_unlock(&mtd_table_mutex); 1385 return mtd; 1386 1387 out_unlock: 1388 mutex_unlock(&mtd_table_mutex); 1389 return ERR_PTR(err); 1390 } 1391 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1392 1393 void put_mtd_device(struct mtd_info *mtd) 1394 { 1395 mutex_lock(&mtd_table_mutex); 1396 __put_mtd_device(mtd); 1397 mutex_unlock(&mtd_table_mutex); 1398 1399 } 1400 EXPORT_SYMBOL_GPL(put_mtd_device); 1401 1402 void __put_mtd_device(struct mtd_info *mtd) 1403 { 1404 struct mtd_info *master = mtd_get_master(mtd); 1405 1406 while (mtd) { 1407 /* kref_put() can relese mtd, so keep a reference mtd->parent */ 1408 struct mtd_info *parent = mtd->parent; 1409 1410 if (mtd != master) 1411 kref_put(&mtd->refcnt, mtd_device_release); 1412 mtd = parent; 1413 } 1414 1415 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1416 kref_put(&master->refcnt, mtd_device_release); 1417 1418 module_put(master->owner); 1419 1420 /* must be the last as master can be freed in the _put_device */ 1421 if (master->_put_device) 1422 master->_put_device(master); 1423 } 1424 EXPORT_SYMBOL_GPL(__put_mtd_device); 1425 1426 /* 1427 * Erase is an synchronous operation. Device drivers are epected to return a 1428 * negative error code if the operation failed and update instr->fail_addr 1429 * to point the portion that was not properly erased. 1430 */ 1431 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1432 { 1433 struct mtd_info *master = mtd_get_master(mtd); 1434 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1435 struct erase_info adjinstr; 1436 int ret; 1437 1438 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1439 adjinstr = *instr; 1440 1441 if (!mtd->erasesize || !master->_erase) 1442 return -ENOTSUPP; 1443 1444 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1445 return -EINVAL; 1446 if (!(mtd->flags & MTD_WRITEABLE)) 1447 return -EROFS; 1448 1449 if (!instr->len) 1450 return 0; 1451 1452 ledtrig_mtd_activity(); 1453 1454 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1455 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1456 master->erasesize; 1457 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1458 master->erasesize) - 1459 adjinstr.addr; 1460 } 1461 1462 adjinstr.addr += mst_ofs; 1463 1464 ret = master->_erase(master, &adjinstr); 1465 1466 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1467 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1468 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1469 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1470 master); 1471 instr->fail_addr *= mtd->erasesize; 1472 } 1473 } 1474 1475 return ret; 1476 } 1477 EXPORT_SYMBOL_GPL(mtd_erase); 1478 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO); 1479 1480 /* 1481 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1482 */ 1483 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1484 void **virt, resource_size_t *phys) 1485 { 1486 struct mtd_info *master = mtd_get_master(mtd); 1487 1488 *retlen = 0; 1489 *virt = NULL; 1490 if (phys) 1491 *phys = 0; 1492 if (!master->_point) 1493 return -EOPNOTSUPP; 1494 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1495 return -EINVAL; 1496 if (!len) 1497 return 0; 1498 1499 from = mtd_get_master_ofs(mtd, from); 1500 return master->_point(master, from, len, retlen, virt, phys); 1501 } 1502 EXPORT_SYMBOL_GPL(mtd_point); 1503 1504 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1505 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1506 { 1507 struct mtd_info *master = mtd_get_master(mtd); 1508 1509 if (!master->_unpoint) 1510 return -EOPNOTSUPP; 1511 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1512 return -EINVAL; 1513 if (!len) 1514 return 0; 1515 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1516 } 1517 EXPORT_SYMBOL_GPL(mtd_unpoint); 1518 1519 /* 1520 * Allow NOMMU mmap() to directly map the device (if not NULL) 1521 * - return the address to which the offset maps 1522 * - return -ENOSYS to indicate refusal to do the mapping 1523 */ 1524 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1525 unsigned long offset, unsigned long flags) 1526 { 1527 size_t retlen; 1528 void *virt; 1529 int ret; 1530 1531 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1532 if (ret) 1533 return ret; 1534 if (retlen != len) { 1535 mtd_unpoint(mtd, offset, retlen); 1536 return -ENOSYS; 1537 } 1538 return (unsigned long)virt; 1539 } 1540 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1541 1542 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1543 const struct mtd_ecc_stats *old_stats) 1544 { 1545 struct mtd_ecc_stats diff; 1546 1547 if (master == mtd) 1548 return; 1549 1550 diff = master->ecc_stats; 1551 diff.failed -= old_stats->failed; 1552 diff.corrected -= old_stats->corrected; 1553 1554 while (mtd->parent) { 1555 mtd->ecc_stats.failed += diff.failed; 1556 mtd->ecc_stats.corrected += diff.corrected; 1557 mtd = mtd->parent; 1558 } 1559 } 1560 1561 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1562 u_char *buf) 1563 { 1564 struct mtd_oob_ops ops = { 1565 .len = len, 1566 .datbuf = buf, 1567 }; 1568 int ret; 1569 1570 ret = mtd_read_oob(mtd, from, &ops); 1571 *retlen = ops.retlen; 1572 1573 WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret)); 1574 1575 return ret; 1576 } 1577 EXPORT_SYMBOL_GPL(mtd_read); 1578 ALLOW_ERROR_INJECTION(mtd_read, ERRNO); 1579 1580 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1581 const u_char *buf) 1582 { 1583 struct mtd_oob_ops ops = { 1584 .len = len, 1585 .datbuf = (u8 *)buf, 1586 }; 1587 int ret; 1588 1589 ret = mtd_write_oob(mtd, to, &ops); 1590 *retlen = ops.retlen; 1591 1592 return ret; 1593 } 1594 EXPORT_SYMBOL_GPL(mtd_write); 1595 ALLOW_ERROR_INJECTION(mtd_write, ERRNO); 1596 1597 /* 1598 * In blackbox flight recorder like scenarios we want to make successful writes 1599 * in interrupt context. panic_write() is only intended to be called when its 1600 * known the kernel is about to panic and we need the write to succeed. Since 1601 * the kernel is not going to be running for much longer, this function can 1602 * break locks and delay to ensure the write succeeds (but not sleep). 1603 */ 1604 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1605 const u_char *buf) 1606 { 1607 struct mtd_info *master = mtd_get_master(mtd); 1608 1609 *retlen = 0; 1610 if (!master->_panic_write) 1611 return -EOPNOTSUPP; 1612 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1613 return -EINVAL; 1614 if (!(mtd->flags & MTD_WRITEABLE)) 1615 return -EROFS; 1616 if (!len) 1617 return 0; 1618 if (!master->oops_panic_write) 1619 master->oops_panic_write = true; 1620 1621 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1622 retlen, buf); 1623 } 1624 EXPORT_SYMBOL_GPL(mtd_panic_write); 1625 1626 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1627 struct mtd_oob_ops *ops) 1628 { 1629 /* 1630 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1631 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1632 * this case. 1633 */ 1634 if (!ops->datbuf) 1635 ops->len = 0; 1636 1637 if (!ops->oobbuf) 1638 ops->ooblen = 0; 1639 1640 if (offs < 0 || offs + ops->len > mtd->size) 1641 return -EINVAL; 1642 1643 if (ops->ooblen) { 1644 size_t maxooblen; 1645 1646 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1647 return -EINVAL; 1648 1649 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1650 mtd_div_by_ws(offs, mtd)) * 1651 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1652 if (ops->ooblen > maxooblen) 1653 return -EINVAL; 1654 } 1655 1656 return 0; 1657 } 1658 1659 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1660 struct mtd_oob_ops *ops) 1661 { 1662 struct mtd_info *master = mtd_get_master(mtd); 1663 int ret; 1664 1665 from = mtd_get_master_ofs(mtd, from); 1666 if (master->_read_oob) 1667 ret = master->_read_oob(master, from, ops); 1668 else 1669 ret = master->_read(master, from, ops->len, &ops->retlen, 1670 ops->datbuf); 1671 1672 return ret; 1673 } 1674 1675 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1676 struct mtd_oob_ops *ops) 1677 { 1678 struct mtd_info *master = mtd_get_master(mtd); 1679 int ret; 1680 1681 to = mtd_get_master_ofs(mtd, to); 1682 if (master->_write_oob) 1683 ret = master->_write_oob(master, to, ops); 1684 else 1685 ret = master->_write(master, to, ops->len, &ops->retlen, 1686 ops->datbuf); 1687 1688 return ret; 1689 } 1690 1691 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1692 struct mtd_oob_ops *ops) 1693 { 1694 struct mtd_info *master = mtd_get_master(mtd); 1695 int ngroups = mtd_pairing_groups(master); 1696 int npairs = mtd_wunit_per_eb(master) / ngroups; 1697 struct mtd_oob_ops adjops = *ops; 1698 unsigned int wunit, oobavail; 1699 struct mtd_pairing_info info; 1700 int max_bitflips = 0; 1701 u32 ebofs, pageofs; 1702 loff_t base, pos; 1703 1704 ebofs = mtd_mod_by_eb(start, mtd); 1705 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1706 info.group = 0; 1707 info.pair = mtd_div_by_ws(ebofs, mtd); 1708 pageofs = mtd_mod_by_ws(ebofs, mtd); 1709 oobavail = mtd_oobavail(mtd, ops); 1710 1711 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1712 int ret; 1713 1714 if (info.pair >= npairs) { 1715 info.pair = 0; 1716 base += master->erasesize; 1717 } 1718 1719 wunit = mtd_pairing_info_to_wunit(master, &info); 1720 pos = mtd_wunit_to_offset(mtd, base, wunit); 1721 1722 adjops.len = ops->len - ops->retlen; 1723 if (adjops.len > mtd->writesize - pageofs) 1724 adjops.len = mtd->writesize - pageofs; 1725 1726 adjops.ooblen = ops->ooblen - ops->oobretlen; 1727 if (adjops.ooblen > oobavail - adjops.ooboffs) 1728 adjops.ooblen = oobavail - adjops.ooboffs; 1729 1730 if (read) { 1731 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1732 if (ret > 0) 1733 max_bitflips = max(max_bitflips, ret); 1734 } else { 1735 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1736 } 1737 1738 if (ret < 0) 1739 return ret; 1740 1741 max_bitflips = max(max_bitflips, ret); 1742 ops->retlen += adjops.retlen; 1743 ops->oobretlen += adjops.oobretlen; 1744 adjops.datbuf += adjops.retlen; 1745 adjops.oobbuf += adjops.oobretlen; 1746 adjops.ooboffs = 0; 1747 pageofs = 0; 1748 info.pair++; 1749 } 1750 1751 return max_bitflips; 1752 } 1753 1754 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1755 { 1756 struct mtd_info *master = mtd_get_master(mtd); 1757 struct mtd_ecc_stats old_stats = master->ecc_stats; 1758 int ret_code; 1759 1760 ops->retlen = ops->oobretlen = 0; 1761 1762 ret_code = mtd_check_oob_ops(mtd, from, ops); 1763 if (ret_code) 1764 return ret_code; 1765 1766 ledtrig_mtd_activity(); 1767 1768 /* Check the validity of a potential fallback on mtd->_read */ 1769 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1770 return -EOPNOTSUPP; 1771 1772 if (ops->stats) 1773 memset(ops->stats, 0, sizeof(*ops->stats)); 1774 1775 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1776 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1777 else 1778 ret_code = mtd_read_oob_std(mtd, from, ops); 1779 1780 mtd_update_ecc_stats(mtd, master, &old_stats); 1781 1782 /* 1783 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1784 * similar to mtd->_read(), returning a non-negative integer 1785 * representing max bitflips. In other cases, mtd->_read_oob() may 1786 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1787 */ 1788 if (unlikely(ret_code < 0)) 1789 return ret_code; 1790 if (mtd->ecc_strength == 0) 1791 return 0; /* device lacks ecc */ 1792 if (ops->stats) 1793 ops->stats->max_bitflips = ret_code; 1794 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1795 } 1796 EXPORT_SYMBOL_GPL(mtd_read_oob); 1797 1798 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1799 struct mtd_oob_ops *ops) 1800 { 1801 struct mtd_info *master = mtd_get_master(mtd); 1802 int ret; 1803 1804 ops->retlen = ops->oobretlen = 0; 1805 1806 if (!(mtd->flags & MTD_WRITEABLE)) 1807 return -EROFS; 1808 1809 ret = mtd_check_oob_ops(mtd, to, ops); 1810 if (ret) 1811 return ret; 1812 1813 ledtrig_mtd_activity(); 1814 1815 /* Check the validity of a potential fallback on mtd->_write */ 1816 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1817 return -EOPNOTSUPP; 1818 1819 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1820 return mtd_io_emulated_slc(mtd, to, false, ops); 1821 1822 return mtd_write_oob_std(mtd, to, ops); 1823 } 1824 EXPORT_SYMBOL_GPL(mtd_write_oob); 1825 1826 /** 1827 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1828 * @mtd: MTD device structure 1829 * @section: ECC section. Depending on the layout you may have all the ECC 1830 * bytes stored in a single contiguous section, or one section 1831 * per ECC chunk (and sometime several sections for a single ECC 1832 * ECC chunk) 1833 * @oobecc: OOB region struct filled with the appropriate ECC position 1834 * information 1835 * 1836 * This function returns ECC section information in the OOB area. If you want 1837 * to get all the ECC bytes information, then you should call 1838 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1839 * 1840 * Returns zero on success, a negative error code otherwise. 1841 */ 1842 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1843 struct mtd_oob_region *oobecc) 1844 { 1845 struct mtd_info *master = mtd_get_master(mtd); 1846 1847 memset(oobecc, 0, sizeof(*oobecc)); 1848 1849 if (!master || section < 0) 1850 return -EINVAL; 1851 1852 if (!master->ooblayout || !master->ooblayout->ecc) 1853 return -ENOTSUPP; 1854 1855 return master->ooblayout->ecc(master, section, oobecc); 1856 } 1857 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1858 1859 /** 1860 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1861 * section 1862 * @mtd: MTD device structure 1863 * @section: Free section you are interested in. Depending on the layout 1864 * you may have all the free bytes stored in a single contiguous 1865 * section, or one section per ECC chunk plus an extra section 1866 * for the remaining bytes (or other funky layout). 1867 * @oobfree: OOB region struct filled with the appropriate free position 1868 * information 1869 * 1870 * This function returns free bytes position in the OOB area. If you want 1871 * to get all the free bytes information, then you should call 1872 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1873 * 1874 * Returns zero on success, a negative error code otherwise. 1875 */ 1876 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1877 struct mtd_oob_region *oobfree) 1878 { 1879 struct mtd_info *master = mtd_get_master(mtd); 1880 1881 memset(oobfree, 0, sizeof(*oobfree)); 1882 1883 if (!master || section < 0) 1884 return -EINVAL; 1885 1886 if (!master->ooblayout || !master->ooblayout->free) 1887 return -ENOTSUPP; 1888 1889 return master->ooblayout->free(master, section, oobfree); 1890 } 1891 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1892 1893 /** 1894 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1895 * @mtd: mtd info structure 1896 * @byte: the byte we are searching for 1897 * @sectionp: pointer where the section id will be stored 1898 * @oobregion: used to retrieve the ECC position 1899 * @iter: iterator function. Should be either mtd_ooblayout_free or 1900 * mtd_ooblayout_ecc depending on the region type you're searching for 1901 * 1902 * This function returns the section id and oobregion information of a 1903 * specific byte. For example, say you want to know where the 4th ECC byte is 1904 * stored, you'll use: 1905 * 1906 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1907 * 1908 * Returns zero on success, a negative error code otherwise. 1909 */ 1910 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1911 int *sectionp, struct mtd_oob_region *oobregion, 1912 int (*iter)(struct mtd_info *, 1913 int section, 1914 struct mtd_oob_region *oobregion)) 1915 { 1916 int pos = 0, ret, section = 0; 1917 1918 memset(oobregion, 0, sizeof(*oobregion)); 1919 1920 while (1) { 1921 ret = iter(mtd, section, oobregion); 1922 if (ret) 1923 return ret; 1924 1925 if (pos + oobregion->length > byte) 1926 break; 1927 1928 pos += oobregion->length; 1929 section++; 1930 } 1931 1932 /* 1933 * Adjust region info to make it start at the beginning at the 1934 * 'start' ECC byte. 1935 */ 1936 oobregion->offset += byte - pos; 1937 oobregion->length -= byte - pos; 1938 *sectionp = section; 1939 1940 return 0; 1941 } 1942 1943 /** 1944 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1945 * ECC byte 1946 * @mtd: mtd info structure 1947 * @eccbyte: the byte we are searching for 1948 * @section: pointer where the section id will be stored 1949 * @oobregion: OOB region information 1950 * 1951 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1952 * byte. 1953 * 1954 * Returns zero on success, a negative error code otherwise. 1955 */ 1956 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1957 int *section, 1958 struct mtd_oob_region *oobregion) 1959 { 1960 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1961 mtd_ooblayout_ecc); 1962 } 1963 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1964 1965 /** 1966 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1967 * @mtd: mtd info structure 1968 * @buf: destination buffer to store OOB bytes 1969 * @oobbuf: OOB buffer 1970 * @start: first byte to retrieve 1971 * @nbytes: number of bytes to retrieve 1972 * @iter: section iterator 1973 * 1974 * Extract bytes attached to a specific category (ECC or free) 1975 * from the OOB buffer and copy them into buf. 1976 * 1977 * Returns zero on success, a negative error code otherwise. 1978 */ 1979 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1980 const u8 *oobbuf, int start, int nbytes, 1981 int (*iter)(struct mtd_info *, 1982 int section, 1983 struct mtd_oob_region *oobregion)) 1984 { 1985 struct mtd_oob_region oobregion; 1986 int section, ret; 1987 1988 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1989 &oobregion, iter); 1990 1991 while (!ret) { 1992 int cnt; 1993 1994 cnt = min_t(int, nbytes, oobregion.length); 1995 memcpy(buf, oobbuf + oobregion.offset, cnt); 1996 buf += cnt; 1997 nbytes -= cnt; 1998 1999 if (!nbytes) 2000 break; 2001 2002 ret = iter(mtd, ++section, &oobregion); 2003 } 2004 2005 return ret; 2006 } 2007 2008 /** 2009 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 2010 * @mtd: mtd info structure 2011 * @buf: source buffer to get OOB bytes from 2012 * @oobbuf: OOB buffer 2013 * @start: first OOB byte to set 2014 * @nbytes: number of OOB bytes to set 2015 * @iter: section iterator 2016 * 2017 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 2018 * is selected by passing the appropriate iterator. 2019 * 2020 * Returns zero on success, a negative error code otherwise. 2021 */ 2022 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 2023 u8 *oobbuf, int start, int nbytes, 2024 int (*iter)(struct mtd_info *, 2025 int section, 2026 struct mtd_oob_region *oobregion)) 2027 { 2028 struct mtd_oob_region oobregion; 2029 int section, ret; 2030 2031 ret = mtd_ooblayout_find_region(mtd, start, §ion, 2032 &oobregion, iter); 2033 2034 while (!ret) { 2035 int cnt; 2036 2037 cnt = min_t(int, nbytes, oobregion.length); 2038 memcpy(oobbuf + oobregion.offset, buf, cnt); 2039 buf += cnt; 2040 nbytes -= cnt; 2041 2042 if (!nbytes) 2043 break; 2044 2045 ret = iter(mtd, ++section, &oobregion); 2046 } 2047 2048 return ret; 2049 } 2050 2051 /** 2052 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 2053 * @mtd: mtd info structure 2054 * @iter: category iterator 2055 * 2056 * Count the number of bytes in a given category. 2057 * 2058 * Returns a positive value on success, a negative error code otherwise. 2059 */ 2060 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 2061 int (*iter)(struct mtd_info *, 2062 int section, 2063 struct mtd_oob_region *oobregion)) 2064 { 2065 struct mtd_oob_region oobregion; 2066 int section = 0, ret, nbytes = 0; 2067 2068 while (1) { 2069 ret = iter(mtd, section++, &oobregion); 2070 if (ret) { 2071 if (ret == -ERANGE) 2072 ret = nbytes; 2073 break; 2074 } 2075 2076 nbytes += oobregion.length; 2077 } 2078 2079 return ret; 2080 } 2081 2082 /** 2083 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 2084 * @mtd: mtd info structure 2085 * @eccbuf: destination buffer to store ECC bytes 2086 * @oobbuf: OOB buffer 2087 * @start: first ECC byte to retrieve 2088 * @nbytes: number of ECC bytes to retrieve 2089 * 2090 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 2091 * 2092 * Returns zero on success, a negative error code otherwise. 2093 */ 2094 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 2095 const u8 *oobbuf, int start, int nbytes) 2096 { 2097 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2098 mtd_ooblayout_ecc); 2099 } 2100 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 2101 2102 /** 2103 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 2104 * @mtd: mtd info structure 2105 * @eccbuf: source buffer to get ECC bytes from 2106 * @oobbuf: OOB buffer 2107 * @start: first ECC byte to set 2108 * @nbytes: number of ECC bytes to set 2109 * 2110 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2111 * 2112 * Returns zero on success, a negative error code otherwise. 2113 */ 2114 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2115 u8 *oobbuf, int start, int nbytes) 2116 { 2117 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2118 mtd_ooblayout_ecc); 2119 } 2120 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2121 2122 /** 2123 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2124 * @mtd: mtd info structure 2125 * @databuf: destination buffer to store ECC bytes 2126 * @oobbuf: OOB buffer 2127 * @start: first ECC byte to retrieve 2128 * @nbytes: number of ECC bytes to retrieve 2129 * 2130 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2131 * 2132 * Returns zero on success, a negative error code otherwise. 2133 */ 2134 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2135 const u8 *oobbuf, int start, int nbytes) 2136 { 2137 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2138 mtd_ooblayout_free); 2139 } 2140 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2141 2142 /** 2143 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2144 * @mtd: mtd info structure 2145 * @databuf: source buffer to get data bytes from 2146 * @oobbuf: OOB buffer 2147 * @start: first ECC byte to set 2148 * @nbytes: number of ECC bytes to set 2149 * 2150 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2151 * 2152 * Returns zero on success, a negative error code otherwise. 2153 */ 2154 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2155 u8 *oobbuf, int start, int nbytes) 2156 { 2157 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2158 mtd_ooblayout_free); 2159 } 2160 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2161 2162 /** 2163 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2164 * @mtd: mtd info structure 2165 * 2166 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2167 * 2168 * Returns zero on success, a negative error code otherwise. 2169 */ 2170 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2171 { 2172 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2173 } 2174 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2175 2176 /** 2177 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2178 * @mtd: mtd info structure 2179 * 2180 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2181 * 2182 * Returns zero on success, a negative error code otherwise. 2183 */ 2184 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2185 { 2186 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2187 } 2188 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2189 2190 /* 2191 * Method to access the protection register area, present in some flash 2192 * devices. The user data is one time programmable but the factory data is read 2193 * only. 2194 */ 2195 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2196 struct otp_info *buf) 2197 { 2198 struct mtd_info *master = mtd_get_master(mtd); 2199 2200 if (!master->_get_fact_prot_info) 2201 return -EOPNOTSUPP; 2202 if (!len) 2203 return 0; 2204 return master->_get_fact_prot_info(master, len, retlen, buf); 2205 } 2206 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2207 2208 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2209 size_t *retlen, u_char *buf) 2210 { 2211 struct mtd_info *master = mtd_get_master(mtd); 2212 2213 *retlen = 0; 2214 if (!master->_read_fact_prot_reg) 2215 return -EOPNOTSUPP; 2216 if (!len) 2217 return 0; 2218 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2219 } 2220 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2221 2222 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2223 struct otp_info *buf) 2224 { 2225 struct mtd_info *master = mtd_get_master(mtd); 2226 2227 if (!master->_get_user_prot_info) 2228 return -EOPNOTSUPP; 2229 if (!len) 2230 return 0; 2231 return master->_get_user_prot_info(master, len, retlen, buf); 2232 } 2233 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2234 2235 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2236 size_t *retlen, u_char *buf) 2237 { 2238 struct mtd_info *master = mtd_get_master(mtd); 2239 2240 *retlen = 0; 2241 if (!master->_read_user_prot_reg) 2242 return -EOPNOTSUPP; 2243 if (!len) 2244 return 0; 2245 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2246 } 2247 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2248 2249 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2250 size_t *retlen, const u_char *buf) 2251 { 2252 struct mtd_info *master = mtd_get_master(mtd); 2253 int ret; 2254 2255 *retlen = 0; 2256 if (!master->_write_user_prot_reg) 2257 return -EOPNOTSUPP; 2258 if (!len) 2259 return 0; 2260 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2261 if (ret) 2262 return ret; 2263 2264 /* 2265 * If no data could be written at all, we are out of memory and 2266 * must return -ENOSPC. 2267 */ 2268 return (*retlen) ? 0 : -ENOSPC; 2269 } 2270 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2271 2272 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2273 { 2274 struct mtd_info *master = mtd_get_master(mtd); 2275 2276 if (!master->_lock_user_prot_reg) 2277 return -EOPNOTSUPP; 2278 if (!len) 2279 return 0; 2280 return master->_lock_user_prot_reg(master, from, len); 2281 } 2282 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2283 2284 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2285 { 2286 struct mtd_info *master = mtd_get_master(mtd); 2287 2288 if (!master->_erase_user_prot_reg) 2289 return -EOPNOTSUPP; 2290 if (!len) 2291 return 0; 2292 return master->_erase_user_prot_reg(master, from, len); 2293 } 2294 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2295 2296 /* Chip-supported device locking */ 2297 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2298 { 2299 struct mtd_info *master = mtd_get_master(mtd); 2300 2301 if (!master->_lock) 2302 return -EOPNOTSUPP; 2303 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2304 return -EINVAL; 2305 if (!len) 2306 return 0; 2307 2308 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2309 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2310 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2311 } 2312 2313 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2314 } 2315 EXPORT_SYMBOL_GPL(mtd_lock); 2316 2317 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2318 { 2319 struct mtd_info *master = mtd_get_master(mtd); 2320 2321 if (!master->_unlock) 2322 return -EOPNOTSUPP; 2323 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2324 return -EINVAL; 2325 if (!len) 2326 return 0; 2327 2328 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2329 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2330 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2331 } 2332 2333 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2334 } 2335 EXPORT_SYMBOL_GPL(mtd_unlock); 2336 2337 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2338 { 2339 struct mtd_info *master = mtd_get_master(mtd); 2340 2341 if (!master->_is_locked) 2342 return -EOPNOTSUPP; 2343 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2344 return -EINVAL; 2345 if (!len) 2346 return 0; 2347 2348 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2349 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2350 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2351 } 2352 2353 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2354 } 2355 EXPORT_SYMBOL_GPL(mtd_is_locked); 2356 2357 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2358 { 2359 struct mtd_info *master = mtd_get_master(mtd); 2360 2361 if (ofs < 0 || ofs >= mtd->size) 2362 return -EINVAL; 2363 if (!master->_block_isreserved) 2364 return 0; 2365 2366 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2367 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2368 2369 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2370 } 2371 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2372 2373 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2374 { 2375 struct mtd_info *master = mtd_get_master(mtd); 2376 2377 if (ofs < 0 || ofs >= mtd->size) 2378 return -EINVAL; 2379 if (!master->_block_isbad) 2380 return 0; 2381 2382 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2383 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2384 2385 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2386 } 2387 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2388 2389 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2390 { 2391 struct mtd_info *master = mtd_get_master(mtd); 2392 loff_t moffs; 2393 int ret; 2394 2395 if (!master->_block_markbad) 2396 return -EOPNOTSUPP; 2397 if (ofs < 0 || ofs >= mtd->size) 2398 return -EINVAL; 2399 if (!(mtd->flags & MTD_WRITEABLE)) 2400 return -EROFS; 2401 2402 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2403 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2404 2405 moffs = mtd_get_master_ofs(mtd, ofs); 2406 2407 if (master->_block_isbad) { 2408 ret = master->_block_isbad(master, moffs); 2409 if (ret > 0) 2410 return 0; 2411 } 2412 2413 ret = master->_block_markbad(master, moffs); 2414 if (ret) 2415 return ret; 2416 2417 while (mtd->parent) { 2418 mtd->ecc_stats.badblocks++; 2419 mtd = mtd->parent; 2420 } 2421 2422 return 0; 2423 } 2424 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2425 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO); 2426 2427 /* 2428 * default_mtd_writev - the default writev method 2429 * @mtd: mtd device description object pointer 2430 * @vecs: the vectors to write 2431 * @count: count of vectors in @vecs 2432 * @to: the MTD device offset to write to 2433 * @retlen: on exit contains the count of bytes written to the MTD device. 2434 * 2435 * This function returns zero in case of success and a negative error code in 2436 * case of failure. 2437 */ 2438 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2439 unsigned long count, loff_t to, size_t *retlen) 2440 { 2441 unsigned long i; 2442 size_t totlen = 0, thislen; 2443 int ret = 0; 2444 2445 for (i = 0; i < count; i++) { 2446 if (!vecs[i].iov_len) 2447 continue; 2448 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2449 vecs[i].iov_base); 2450 totlen += thislen; 2451 if (ret || thislen != vecs[i].iov_len) 2452 break; 2453 to += vecs[i].iov_len; 2454 } 2455 *retlen = totlen; 2456 return ret; 2457 } 2458 2459 /* 2460 * mtd_writev - the vector-based MTD write method 2461 * @mtd: mtd device description object pointer 2462 * @vecs: the vectors to write 2463 * @count: count of vectors in @vecs 2464 * @to: the MTD device offset to write to 2465 * @retlen: on exit contains the count of bytes written to the MTD device. 2466 * 2467 * This function returns zero in case of success and a negative error code in 2468 * case of failure. 2469 */ 2470 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2471 unsigned long count, loff_t to, size_t *retlen) 2472 { 2473 struct mtd_info *master = mtd_get_master(mtd); 2474 2475 *retlen = 0; 2476 if (!(mtd->flags & MTD_WRITEABLE)) 2477 return -EROFS; 2478 2479 if (!master->_writev) 2480 return default_mtd_writev(mtd, vecs, count, to, retlen); 2481 2482 return master->_writev(master, vecs, count, 2483 mtd_get_master_ofs(mtd, to), retlen); 2484 } 2485 EXPORT_SYMBOL_GPL(mtd_writev); 2486 2487 /** 2488 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2489 * @mtd: mtd device description object pointer 2490 * @size: a pointer to the ideal or maximum size of the allocation, points 2491 * to the actual allocation size on success. 2492 * 2493 * This routine attempts to allocate a contiguous kernel buffer up to 2494 * the specified size, backing off the size of the request exponentially 2495 * until the request succeeds or until the allocation size falls below 2496 * the system page size. This attempts to make sure it does not adversely 2497 * impact system performance, so when allocating more than one page, we 2498 * ask the memory allocator to avoid re-trying, swapping, writing back 2499 * or performing I/O. 2500 * 2501 * Note, this function also makes sure that the allocated buffer is aligned to 2502 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2503 * 2504 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2505 * to handle smaller (i.e. degraded) buffer allocations under low- or 2506 * fragmented-memory situations where such reduced allocations, from a 2507 * requested ideal, are allowed. 2508 * 2509 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2510 */ 2511 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2512 { 2513 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2514 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2515 void *kbuf; 2516 2517 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2518 2519 while (*size > min_alloc) { 2520 kbuf = kmalloc(*size, flags); 2521 if (kbuf) 2522 return kbuf; 2523 2524 *size >>= 1; 2525 *size = ALIGN(*size, mtd->writesize); 2526 } 2527 2528 /* 2529 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2530 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2531 */ 2532 return kmalloc(*size, GFP_KERNEL); 2533 } 2534 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2535 2536 #ifdef CONFIG_PROC_FS 2537 2538 /*====================================================================*/ 2539 /* Support for /proc/mtd */ 2540 2541 static int mtd_proc_show(struct seq_file *m, void *v) 2542 { 2543 struct mtd_info *mtd; 2544 2545 seq_puts(m, "dev: size erasesize name\n"); 2546 mutex_lock(&mtd_table_mutex); 2547 mtd_for_each_device(mtd) { 2548 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2549 mtd->index, (unsigned long long)mtd->size, 2550 mtd->erasesize, mtd->name); 2551 } 2552 mutex_unlock(&mtd_table_mutex); 2553 return 0; 2554 } 2555 #endif /* CONFIG_PROC_FS */ 2556 2557 /*====================================================================*/ 2558 /* Init code */ 2559 2560 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2561 { 2562 struct backing_dev_info *bdi; 2563 int ret; 2564 2565 bdi = bdi_alloc(NUMA_NO_NODE); 2566 if (!bdi) 2567 return ERR_PTR(-ENOMEM); 2568 bdi->ra_pages = 0; 2569 bdi->io_pages = 0; 2570 2571 /* 2572 * We put '-0' suffix to the name to get the same name format as we 2573 * used to get. Since this is called only once, we get a unique name. 2574 */ 2575 ret = bdi_register(bdi, "%.28s-0", name); 2576 if (ret) 2577 bdi_put(bdi); 2578 2579 return ret ? ERR_PTR(ret) : bdi; 2580 } 2581 2582 static struct proc_dir_entry *proc_mtd; 2583 2584 static int __init init_mtd(void) 2585 { 2586 int ret; 2587 2588 ret = class_register(&mtd_class); 2589 if (ret) 2590 goto err_reg; 2591 2592 mtd_bdi = mtd_bdi_init("mtd"); 2593 if (IS_ERR(mtd_bdi)) { 2594 ret = PTR_ERR(mtd_bdi); 2595 goto err_bdi; 2596 } 2597 2598 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2599 2600 ret = init_mtdchar(); 2601 if (ret) 2602 goto out_procfs; 2603 2604 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2605 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2606 &mtd_expert_analysis_mode); 2607 2608 return 0; 2609 2610 out_procfs: 2611 if (proc_mtd) 2612 remove_proc_entry("mtd", NULL); 2613 bdi_unregister(mtd_bdi); 2614 bdi_put(mtd_bdi); 2615 err_bdi: 2616 class_unregister(&mtd_class); 2617 err_reg: 2618 pr_err("Error registering mtd class or bdi: %d\n", ret); 2619 return ret; 2620 } 2621 2622 static void __exit cleanup_mtd(void) 2623 { 2624 debugfs_remove_recursive(dfs_dir_mtd); 2625 cleanup_mtdchar(); 2626 if (proc_mtd) 2627 remove_proc_entry("mtd", NULL); 2628 class_unregister(&mtd_class); 2629 bdi_unregister(mtd_bdi); 2630 bdi_put(mtd_bdi); 2631 idr_destroy(&mtd_idr); 2632 } 2633 2634 module_init(init_mtd); 2635 module_exit(cleanup_mtd); 2636 2637 MODULE_LICENSE("GPL"); 2638 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2639 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2640