xref: /linux/drivers/mtd/mtdcore.c (revision e3966940559d52aa1800a008dcfeec218dd31f88)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 #include <linux/error-injection.h>
34 
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 struct backing_dev_info *mtd_bdi;
41 
42 #ifdef CONFIG_PM_SLEEP
43 
44 static int mtd_cls_suspend(struct device *dev)
45 {
46 	struct mtd_info *mtd = dev_get_drvdata(dev);
47 
48 	return mtd ? mtd_suspend(mtd) : 0;
49 }
50 
51 static int mtd_cls_resume(struct device *dev)
52 {
53 	struct mtd_info *mtd = dev_get_drvdata(dev);
54 
55 	if (mtd)
56 		mtd_resume(mtd);
57 	return 0;
58 }
59 
60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62 #else
63 #define MTD_CLS_PM_OPS NULL
64 #endif
65 
66 static struct class mtd_class = {
67 	.name = "mtd",
68 	.pm = MTD_CLS_PM_OPS,
69 };
70 
71 static DEFINE_IDR(mtd_idr);
72 
73 /* These are exported solely for the purpose of mtd_blkdevs.c. You
74    should not use them for _anything_ else */
75 DEFINE_MUTEX(mtd_table_mutex);
76 EXPORT_SYMBOL_GPL(mtd_table_mutex);
77 
78 struct mtd_info *__mtd_next_device(int i)
79 {
80 	return idr_get_next(&mtd_idr, &i);
81 }
82 EXPORT_SYMBOL_GPL(__mtd_next_device);
83 
84 static LIST_HEAD(mtd_notifiers);
85 
86 
87 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
88 
89 /* REVISIT once MTD uses the driver model better, whoever allocates
90  * the mtd_info will probably want to use the release() hook...
91  */
92 static void mtd_release(struct device *dev)
93 {
94 	struct mtd_info *mtd = dev_get_drvdata(dev);
95 	dev_t index = MTD_DEVT(mtd->index);
96 
97 	idr_remove(&mtd_idr, mtd->index);
98 	of_node_put(mtd_get_of_node(mtd));
99 
100 	if (mtd_is_partition(mtd))
101 		release_mtd_partition(mtd);
102 
103 	/* remove /dev/mtdXro node */
104 	device_destroy(&mtd_class, index + 1);
105 }
106 
107 static void mtd_device_release(struct kref *kref)
108 {
109 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
110 	bool is_partition = mtd_is_partition(mtd);
111 
112 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
113 
114 	/* Try to remove the NVMEM provider */
115 	nvmem_unregister(mtd->nvmem);
116 
117 	device_unregister(&mtd->dev);
118 
119 	/*
120 	 *  Clear dev so mtd can be safely re-registered later if desired.
121 	 *  Should not be done for partition,
122 	 *  as it was already destroyed in device_unregister().
123 	 */
124 	if (!is_partition)
125 		memset(&mtd->dev, 0, sizeof(mtd->dev));
126 
127 	module_put(THIS_MODULE);
128 }
129 
130 #define MTD_DEVICE_ATTR_RO(name) \
131 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
132 
133 #define MTD_DEVICE_ATTR_RW(name) \
134 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
135 
136 static ssize_t mtd_type_show(struct device *dev,
137 		struct device_attribute *attr, char *buf)
138 {
139 	struct mtd_info *mtd = dev_get_drvdata(dev);
140 	char *type;
141 
142 	switch (mtd->type) {
143 	case MTD_ABSENT:
144 		type = "absent";
145 		break;
146 	case MTD_RAM:
147 		type = "ram";
148 		break;
149 	case MTD_ROM:
150 		type = "rom";
151 		break;
152 	case MTD_NORFLASH:
153 		type = "nor";
154 		break;
155 	case MTD_NANDFLASH:
156 		type = "nand";
157 		break;
158 	case MTD_DATAFLASH:
159 		type = "dataflash";
160 		break;
161 	case MTD_UBIVOLUME:
162 		type = "ubi";
163 		break;
164 	case MTD_MLCNANDFLASH:
165 		type = "mlc-nand";
166 		break;
167 	default:
168 		type = "unknown";
169 	}
170 
171 	return sysfs_emit(buf, "%s\n", type);
172 }
173 MTD_DEVICE_ATTR_RO(type);
174 
175 static ssize_t mtd_flags_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 
180 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
181 }
182 MTD_DEVICE_ATTR_RO(flags);
183 
184 static ssize_t mtd_size_show(struct device *dev,
185 		struct device_attribute *attr, char *buf)
186 {
187 	struct mtd_info *mtd = dev_get_drvdata(dev);
188 
189 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
190 }
191 MTD_DEVICE_ATTR_RO(size);
192 
193 static ssize_t mtd_erasesize_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 
198 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
199 }
200 MTD_DEVICE_ATTR_RO(erasesize);
201 
202 static ssize_t mtd_writesize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
208 }
209 MTD_DEVICE_ATTR_RO(writesize);
210 
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct mtd_info *mtd = dev_get_drvdata(dev);
215 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216 
217 	return sysfs_emit(buf, "%u\n", subpagesize);
218 }
219 MTD_DEVICE_ATTR_RO(subpagesize);
220 
221 static ssize_t mtd_oobsize_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	struct mtd_info *mtd = dev_get_drvdata(dev);
225 
226 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
227 }
228 MTD_DEVICE_ATTR_RO(oobsize);
229 
230 static ssize_t mtd_oobavail_show(struct device *dev,
231 				 struct device_attribute *attr, char *buf)
232 {
233 	struct mtd_info *mtd = dev_get_drvdata(dev);
234 
235 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
236 }
237 MTD_DEVICE_ATTR_RO(oobavail);
238 
239 static ssize_t mtd_numeraseregions_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct mtd_info *mtd = dev_get_drvdata(dev);
243 
244 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
245 }
246 MTD_DEVICE_ATTR_RO(numeraseregions);
247 
248 static ssize_t mtd_name_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 
253 	return sysfs_emit(buf, "%s\n", mtd->name);
254 }
255 MTD_DEVICE_ATTR_RO(name);
256 
257 static ssize_t mtd_ecc_strength_show(struct device *dev,
258 				     struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
263 }
264 MTD_DEVICE_ATTR_RO(ecc_strength);
265 
266 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 					  struct device_attribute *attr,
268 					  char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
273 }
274 
275 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 					   struct device_attribute *attr,
277 					   const char *buf, size_t count)
278 {
279 	struct mtd_info *mtd = dev_get_drvdata(dev);
280 	unsigned int bitflip_threshold;
281 	int retval;
282 
283 	retval = kstrtouint(buf, 0, &bitflip_threshold);
284 	if (retval)
285 		return retval;
286 
287 	mtd->bitflip_threshold = bitflip_threshold;
288 	return count;
289 }
290 MTD_DEVICE_ATTR_RW(bitflip_threshold);
291 
292 static ssize_t mtd_ecc_step_size_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 
297 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
298 
299 }
300 MTD_DEVICE_ATTR_RO(ecc_step_size);
301 
302 static ssize_t mtd_corrected_bits_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
309 }
310 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
311 
312 static ssize_t mtd_ecc_failures_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
319 }
320 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
321 
322 static ssize_t mtd_bad_blocks_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct mtd_info *mtd = dev_get_drvdata(dev);
326 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327 
328 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
329 }
330 MTD_DEVICE_ATTR_RO(bad_blocks);
331 
332 static ssize_t mtd_bbt_blocks_show(struct device *dev,
333 		struct device_attribute *attr, char *buf)
334 {
335 	struct mtd_info *mtd = dev_get_drvdata(dev);
336 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337 
338 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
339 }
340 MTD_DEVICE_ATTR_RO(bbt_blocks);
341 
342 static struct attribute *mtd_attrs[] = {
343 	&dev_attr_type.attr,
344 	&dev_attr_flags.attr,
345 	&dev_attr_size.attr,
346 	&dev_attr_erasesize.attr,
347 	&dev_attr_writesize.attr,
348 	&dev_attr_subpagesize.attr,
349 	&dev_attr_oobsize.attr,
350 	&dev_attr_oobavail.attr,
351 	&dev_attr_numeraseregions.attr,
352 	&dev_attr_name.attr,
353 	&dev_attr_ecc_strength.attr,
354 	&dev_attr_ecc_step_size.attr,
355 	&dev_attr_corrected_bits.attr,
356 	&dev_attr_ecc_failures.attr,
357 	&dev_attr_bad_blocks.attr,
358 	&dev_attr_bbt_blocks.attr,
359 	&dev_attr_bitflip_threshold.attr,
360 	NULL,
361 };
362 ATTRIBUTE_GROUPS(mtd);
363 
364 static const struct device_type mtd_devtype = {
365 	.name		= "mtd",
366 	.groups		= mtd_groups,
367 	.release	= mtd_release,
368 };
369 
370 static bool mtd_expert_analysis_mode;
371 
372 #ifdef CONFIG_DEBUG_FS
373 bool mtd_check_expert_analysis_mode(void)
374 {
375 	const char *mtd_expert_analysis_warning =
376 		"Bad block checks have been entirely disabled.\n"
377 		"This is only reserved for post-mortem forensics and debug purposes.\n"
378 		"Never enable this mode if you do not know what you are doing!\n";
379 
380 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
381 }
382 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
383 #endif
384 
385 static struct dentry *dfs_dir_mtd;
386 
387 static int mtd_ooblayout_show(struct seq_file *s, void *p,
388 			      int (*iter)(struct mtd_info *, int section,
389 					  struct mtd_oob_region *region))
390 {
391 	struct mtd_info *mtd = s->private;
392 	int section;
393 
394 	for (section = 0;; section++) {
395 		struct mtd_oob_region region;
396 		int err;
397 
398 		err = iter(mtd, section, &region);
399 		if (err) {
400 			if (err == -ERANGE)
401 				break;
402 
403 			return err;
404 		}
405 
406 		seq_printf(s, "%-3d %4u %4u\n", section, region.offset,
407 			   region.length);
408 	}
409 
410 	return 0;
411 }
412 
413 static int mtd_ooblayout_ecc_show(struct seq_file *s, void *p)
414 {
415 	return mtd_ooblayout_show(s, p, mtd_ooblayout_ecc);
416 }
417 DEFINE_SHOW_ATTRIBUTE(mtd_ooblayout_ecc);
418 
419 static int mtd_ooblayout_free_show(struct seq_file *s, void *p)
420 {
421 	return mtd_ooblayout_show(s, p, mtd_ooblayout_free);
422 }
423 DEFINE_SHOW_ATTRIBUTE(mtd_ooblayout_free);
424 
425 static void mtd_debugfs_populate(struct mtd_info *mtd)
426 {
427 	struct device *dev = &mtd->dev;
428 	struct mtd_oob_region region;
429 
430 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
431 		return;
432 
433 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
434 	if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir))
435 		return;
436 
437 	/* Create ooblayout files only if at least one region is present. */
438 	if (mtd_ooblayout_ecc(mtd, 0, &region) == 0)
439 		debugfs_create_file("ooblayout_ecc", 0444, mtd->dbg.dfs_dir,
440 				    mtd, &mtd_ooblayout_ecc_fops);
441 
442 	if (mtd_ooblayout_free(mtd, 0, &region) == 0)
443 		debugfs_create_file("ooblayout_free", 0444, mtd->dbg.dfs_dir,
444 				    mtd, &mtd_ooblayout_free_fops);
445 }
446 
447 #ifndef CONFIG_MMU
448 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
449 {
450 	switch (mtd->type) {
451 	case MTD_RAM:
452 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
453 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
454 	case MTD_ROM:
455 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
456 			NOMMU_MAP_READ;
457 	default:
458 		return NOMMU_MAP_COPY;
459 	}
460 }
461 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
462 #endif
463 
464 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
465 			       void *cmd)
466 {
467 	struct mtd_info *mtd;
468 
469 	mtd = container_of(n, struct mtd_info, reboot_notifier);
470 	mtd->_reboot(mtd);
471 
472 	return NOTIFY_DONE;
473 }
474 
475 /**
476  * mtd_wunit_to_pairing_info - get pairing information of a wunit
477  * @mtd: pointer to new MTD device info structure
478  * @wunit: write unit we are interested in
479  * @info: returned pairing information
480  *
481  * Retrieve pairing information associated to the wunit.
482  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
483  * paired together, and where programming a page may influence the page it is
484  * paired with.
485  * The notion of page is replaced by the term wunit (write-unit) to stay
486  * consistent with the ->writesize field.
487  *
488  * The @wunit argument can be extracted from an absolute offset using
489  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
490  * to @wunit.
491  *
492  * From the pairing info the MTD user can find all the wunits paired with
493  * @wunit using the following loop:
494  *
495  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
496  *	info.pair = i;
497  *	mtd_pairing_info_to_wunit(mtd, &info);
498  *	...
499  * }
500  */
501 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
502 			      struct mtd_pairing_info *info)
503 {
504 	struct mtd_info *master = mtd_get_master(mtd);
505 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
506 
507 	if (wunit < 0 || wunit >= npairs)
508 		return -EINVAL;
509 
510 	if (master->pairing && master->pairing->get_info)
511 		return master->pairing->get_info(master, wunit, info);
512 
513 	info->group = 0;
514 	info->pair = wunit;
515 
516 	return 0;
517 }
518 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
519 
520 /**
521  * mtd_pairing_info_to_wunit - get wunit from pairing information
522  * @mtd: pointer to new MTD device info structure
523  * @info: pairing information struct
524  *
525  * Returns a positive number representing the wunit associated to the info
526  * struct, or a negative error code.
527  *
528  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
529  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
530  * doc).
531  *
532  * It can also be used to only program the first page of each pair (i.e.
533  * page attached to group 0), which allows one to use an MLC NAND in
534  * software-emulated SLC mode:
535  *
536  * info.group = 0;
537  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
538  * for (info.pair = 0; info.pair < npairs; info.pair++) {
539  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
540  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
541  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
542  * }
543  */
544 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
545 			      const struct mtd_pairing_info *info)
546 {
547 	struct mtd_info *master = mtd_get_master(mtd);
548 	int ngroups = mtd_pairing_groups(master);
549 	int npairs = mtd_wunit_per_eb(master) / ngroups;
550 
551 	if (!info || info->pair < 0 || info->pair >= npairs ||
552 	    info->group < 0 || info->group >= ngroups)
553 		return -EINVAL;
554 
555 	if (master->pairing && master->pairing->get_wunit)
556 		return mtd->pairing->get_wunit(master, info);
557 
558 	return info->pair;
559 }
560 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
561 
562 /**
563  * mtd_pairing_groups - get the number of pairing groups
564  * @mtd: pointer to new MTD device info structure
565  *
566  * Returns the number of pairing groups.
567  *
568  * This number is usually equal to the number of bits exposed by a single
569  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
570  * to iterate over all pages of a given pair.
571  */
572 int mtd_pairing_groups(struct mtd_info *mtd)
573 {
574 	struct mtd_info *master = mtd_get_master(mtd);
575 
576 	if (!master->pairing || !master->pairing->ngroups)
577 		return 1;
578 
579 	return master->pairing->ngroups;
580 }
581 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
582 
583 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
584 			      void *val, size_t bytes)
585 {
586 	struct mtd_info *mtd = priv;
587 	size_t retlen;
588 	int err;
589 
590 	err = mtd_read(mtd, offset, bytes, &retlen, val);
591 	if (err && err != -EUCLEAN)
592 		return err;
593 
594 	return retlen == bytes ? 0 : -EIO;
595 }
596 
597 static int mtd_nvmem_add(struct mtd_info *mtd)
598 {
599 	struct device_node *node = mtd_get_of_node(mtd);
600 	struct nvmem_config config = {};
601 
602 	config.id = NVMEM_DEVID_NONE;
603 	config.dev = &mtd->dev;
604 	config.name = dev_name(&mtd->dev);
605 	config.owner = THIS_MODULE;
606 	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
607 	config.reg_read = mtd_nvmem_reg_read;
608 	config.size = mtd->size;
609 	config.word_size = 1;
610 	config.stride = 1;
611 	config.read_only = true;
612 	config.root_only = true;
613 	config.ignore_wp = true;
614 	config.priv = mtd;
615 
616 	mtd->nvmem = nvmem_register(&config);
617 	if (IS_ERR(mtd->nvmem)) {
618 		/* Just ignore if there is no NVMEM support in the kernel */
619 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
620 			mtd->nvmem = NULL;
621 		else
622 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
623 					     "Failed to register NVMEM device\n");
624 	}
625 
626 	return 0;
627 }
628 
629 static void mtd_check_of_node(struct mtd_info *mtd)
630 {
631 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
632 	const char *pname, *prefix = "partition-";
633 	int plen, mtd_name_len, offset, prefix_len;
634 
635 	/* Check if MTD already has a device node */
636 	if (mtd_get_of_node(mtd))
637 		return;
638 
639 	if (!mtd_is_partition(mtd))
640 		return;
641 
642 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
643 	if (!parent_dn)
644 		return;
645 
646 	if (mtd_is_partition(mtd->parent))
647 		partitions = of_node_get(parent_dn);
648 	else
649 		partitions = of_get_child_by_name(parent_dn, "partitions");
650 	if (!partitions)
651 		goto exit_parent;
652 
653 	prefix_len = strlen(prefix);
654 	mtd_name_len = strlen(mtd->name);
655 
656 	/* Search if a partition is defined with the same name */
657 	for_each_child_of_node(partitions, mtd_dn) {
658 		/* Skip partition with no/wrong prefix */
659 		if (!of_node_name_prefix(mtd_dn, prefix))
660 			continue;
661 
662 		/* Label have priority. Check that first */
663 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
664 			offset = 0;
665 		} else {
666 			pname = mtd_dn->name;
667 			offset = prefix_len;
668 		}
669 
670 		plen = strlen(pname) - offset;
671 		if (plen == mtd_name_len &&
672 		    !strncmp(mtd->name, pname + offset, plen)) {
673 			mtd_set_of_node(mtd, mtd_dn);
674 			of_node_put(mtd_dn);
675 			break;
676 		}
677 	}
678 
679 	of_node_put(partitions);
680 exit_parent:
681 	of_node_put(parent_dn);
682 }
683 
684 /**
685  *	add_mtd_device - register an MTD device
686  *	@mtd: pointer to new MTD device info structure
687  *
688  *	Add a device to the list of MTD devices present in the system, and
689  *	notify each currently active MTD 'user' of its arrival. Returns
690  *	zero on success or non-zero on failure.
691  */
692 
693 int add_mtd_device(struct mtd_info *mtd)
694 {
695 	struct device_node *np = mtd_get_of_node(mtd);
696 	struct mtd_info *master = mtd_get_master(mtd);
697 	struct mtd_notifier *not;
698 	int i, error, ofidx;
699 
700 	/*
701 	 * May occur, for instance, on buggy drivers which call
702 	 * mtd_device_parse_register() multiple times on the same master MTD,
703 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
704 	 */
705 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
706 		return -EEXIST;
707 
708 	BUG_ON(mtd->writesize == 0);
709 
710 	/*
711 	 * MTD drivers should implement ->_{write,read}() or
712 	 * ->_{write,read}_oob(), but not both.
713 	 */
714 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
715 		    (mtd->_read && mtd->_read_oob)))
716 		return -EINVAL;
717 
718 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
719 		    !(mtd->flags & MTD_NO_ERASE)))
720 		return -EINVAL;
721 
722 	/*
723 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
724 	 * master is an MLC NAND and has a proper pairing scheme defined.
725 	 * We also reject masters that implement ->_writev() for now, because
726 	 * NAND controller drivers don't implement this hook, and adding the
727 	 * SLC -> MLC address/length conversion to this path is useless if we
728 	 * don't have a user.
729 	 */
730 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
731 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
732 	     !master->pairing || master->_writev))
733 		return -EINVAL;
734 
735 	mutex_lock(&mtd_table_mutex);
736 
737 	ofidx = -1;
738 	if (np)
739 		ofidx = of_alias_get_id(np, "mtd");
740 	if (ofidx >= 0)
741 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
742 	else
743 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
744 	if (i < 0) {
745 		error = i;
746 		goto fail_locked;
747 	}
748 
749 	mtd->index = i;
750 	kref_init(&mtd->refcnt);
751 
752 	/* default value if not set by driver */
753 	if (mtd->bitflip_threshold == 0)
754 		mtd->bitflip_threshold = mtd->ecc_strength;
755 
756 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
757 		int ngroups = mtd_pairing_groups(master);
758 
759 		mtd->erasesize /= ngroups;
760 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
761 			    mtd->erasesize;
762 	}
763 
764 	if (is_power_of_2(mtd->erasesize))
765 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
766 	else
767 		mtd->erasesize_shift = 0;
768 
769 	if (is_power_of_2(mtd->writesize))
770 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
771 	else
772 		mtd->writesize_shift = 0;
773 
774 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
775 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
776 
777 	/* Some chips always power up locked. Unlock them now */
778 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
779 		error = mtd_unlock(mtd, 0, mtd->size);
780 		if (error && error != -EOPNOTSUPP)
781 			printk(KERN_WARNING
782 			       "%s: unlock failed, writes may not work\n",
783 			       mtd->name);
784 		/* Ignore unlock failures? */
785 		error = 0;
786 	}
787 
788 	/* Caller should have set dev.parent to match the
789 	 * physical device, if appropriate.
790 	 */
791 	mtd->dev.type = &mtd_devtype;
792 	mtd->dev.class = &mtd_class;
793 	mtd->dev.devt = MTD_DEVT(i);
794 	error = dev_set_name(&mtd->dev, "mtd%d", i);
795 	if (error)
796 		goto fail_devname;
797 	dev_set_drvdata(&mtd->dev, mtd);
798 	mtd_check_of_node(mtd);
799 	of_node_get(mtd_get_of_node(mtd));
800 	error = device_register(&mtd->dev);
801 	if (error) {
802 		put_device(&mtd->dev);
803 		goto fail_added;
804 	}
805 
806 	/* Add the nvmem provider */
807 	error = mtd_nvmem_add(mtd);
808 	if (error)
809 		goto fail_nvmem_add;
810 
811 	mtd_debugfs_populate(mtd);
812 
813 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
814 		      "mtd%dro", i);
815 
816 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
817 	/* No need to get a refcount on the module containing
818 	   the notifier, since we hold the mtd_table_mutex */
819 	list_for_each_entry(not, &mtd_notifiers, list)
820 		not->add(mtd);
821 
822 	mutex_unlock(&mtd_table_mutex);
823 
824 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
825 		if (IS_BUILTIN(CONFIG_MTD)) {
826 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
827 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
828 		} else {
829 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
830 				mtd->index, mtd->name);
831 		}
832 	}
833 
834 	/* We _know_ we aren't being removed, because
835 	   our caller is still holding us here. So none
836 	   of this try_ nonsense, and no bitching about it
837 	   either. :) */
838 	__module_get(THIS_MODULE);
839 	return 0;
840 
841 fail_nvmem_add:
842 	device_unregister(&mtd->dev);
843 fail_added:
844 	of_node_put(mtd_get_of_node(mtd));
845 fail_devname:
846 	idr_remove(&mtd_idr, i);
847 fail_locked:
848 	mutex_unlock(&mtd_table_mutex);
849 	return error;
850 }
851 
852 /**
853  *	del_mtd_device - unregister an MTD device
854  *	@mtd: pointer to MTD device info structure
855  *
856  *	Remove a device from the list of MTD devices present in the system,
857  *	and notify each currently active MTD 'user' of its departure.
858  *	Returns zero on success or 1 on failure, which currently will happen
859  *	if the requested device does not appear to be present in the list.
860  */
861 
862 int del_mtd_device(struct mtd_info *mtd)
863 {
864 	int ret;
865 	struct mtd_notifier *not;
866 
867 	mutex_lock(&mtd_table_mutex);
868 
869 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
870 		ret = -ENODEV;
871 		goto out_error;
872 	}
873 
874 	/* No need to get a refcount on the module containing
875 		the notifier, since we hold the mtd_table_mutex */
876 	list_for_each_entry(not, &mtd_notifiers, list)
877 		not->remove(mtd);
878 
879 	kref_put(&mtd->refcnt, mtd_device_release);
880 	ret = 0;
881 
882 out_error:
883 	mutex_unlock(&mtd_table_mutex);
884 	return ret;
885 }
886 
887 /*
888  * Set a few defaults based on the parent devices, if not provided by the
889  * driver
890  */
891 static void mtd_set_dev_defaults(struct mtd_info *mtd)
892 {
893 	if (mtd->dev.parent) {
894 		if (!mtd->owner && mtd->dev.parent->driver)
895 			mtd->owner = mtd->dev.parent->driver->owner;
896 		if (!mtd->name)
897 			mtd->name = dev_name(mtd->dev.parent);
898 	} else {
899 		pr_debug("mtd device won't show a device symlink in sysfs\n");
900 	}
901 
902 	INIT_LIST_HEAD(&mtd->partitions);
903 	mutex_init(&mtd->master.partitions_lock);
904 	mutex_init(&mtd->master.chrdev_lock);
905 }
906 
907 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
908 {
909 	struct otp_info *info;
910 	ssize_t size = 0;
911 	unsigned int i;
912 	size_t retlen;
913 	int ret;
914 
915 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
916 	if (!info)
917 		return -ENOMEM;
918 
919 	if (is_user)
920 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
921 	else
922 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
923 	if (ret)
924 		goto err;
925 
926 	for (i = 0; i < retlen / sizeof(*info); i++)
927 		size += info[i].length;
928 
929 	kfree(info);
930 	return size;
931 
932 err:
933 	kfree(info);
934 
935 	/* ENODATA means there is no OTP region. */
936 	return ret == -ENODATA ? 0 : ret;
937 }
938 
939 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
940 						   const char *compatible,
941 						   int size,
942 						   nvmem_reg_read_t reg_read)
943 {
944 	struct nvmem_device *nvmem = NULL;
945 	struct nvmem_config config = {};
946 	struct device_node *np;
947 
948 	/* DT binding is optional */
949 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
950 
951 	/* OTP nvmem will be registered on the physical device */
952 	config.dev = mtd->dev.parent;
953 	config.name = compatible;
954 	config.id = NVMEM_DEVID_AUTO;
955 	config.owner = THIS_MODULE;
956 	config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd);
957 	config.type = NVMEM_TYPE_OTP;
958 	config.root_only = true;
959 	config.ignore_wp = true;
960 	config.reg_read = reg_read;
961 	config.size = size;
962 	config.of_node = np;
963 	config.priv = mtd;
964 
965 	nvmem = nvmem_register(&config);
966 	/* Just ignore if there is no NVMEM support in the kernel */
967 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
968 		nvmem = NULL;
969 
970 	of_node_put(np);
971 
972 	return nvmem;
973 }
974 
975 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
976 				       void *val, size_t bytes)
977 {
978 	struct mtd_info *mtd = priv;
979 	size_t retlen;
980 	int ret;
981 
982 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
983 	if (ret)
984 		return ret;
985 
986 	return retlen == bytes ? 0 : -EIO;
987 }
988 
989 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
990 				       void *val, size_t bytes)
991 {
992 	struct mtd_info *mtd = priv;
993 	size_t retlen;
994 	int ret;
995 
996 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
997 	if (ret)
998 		return ret;
999 
1000 	return retlen == bytes ? 0 : -EIO;
1001 }
1002 
1003 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
1004 {
1005 	struct device *dev = mtd->dev.parent;
1006 	struct nvmem_device *nvmem;
1007 	ssize_t size;
1008 	int err;
1009 
1010 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
1011 		size = mtd_otp_size(mtd, true);
1012 		if (size < 0) {
1013 			err = size;
1014 			goto err;
1015 		}
1016 
1017 		if (size > 0) {
1018 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
1019 						       mtd_nvmem_user_otp_reg_read);
1020 			if (IS_ERR(nvmem)) {
1021 				err = PTR_ERR(nvmem);
1022 				goto err;
1023 			}
1024 			mtd->otp_user_nvmem = nvmem;
1025 		}
1026 	}
1027 
1028 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
1029 		size = mtd_otp_size(mtd, false);
1030 		if (size < 0) {
1031 			err = size;
1032 			goto err;
1033 		}
1034 
1035 		if (size > 0) {
1036 			/*
1037 			 * The factory OTP contains thing such as a unique serial
1038 			 * number and is small, so let's read it out and put it
1039 			 * into the entropy pool.
1040 			 */
1041 			void *otp;
1042 
1043 			otp = kmalloc(size, GFP_KERNEL);
1044 			if (!otp) {
1045 				err = -ENOMEM;
1046 				goto err;
1047 			}
1048 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
1049 			if (err < 0) {
1050 				kfree(otp);
1051 				goto err;
1052 			}
1053 			add_device_randomness(otp, err);
1054 			kfree(otp);
1055 
1056 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1057 						       mtd_nvmem_fact_otp_reg_read);
1058 			if (IS_ERR(nvmem)) {
1059 				err = PTR_ERR(nvmem);
1060 				goto err;
1061 			}
1062 			mtd->otp_factory_nvmem = nvmem;
1063 		}
1064 	}
1065 
1066 	return 0;
1067 
1068 err:
1069 	nvmem_unregister(mtd->otp_user_nvmem);
1070 	/* Don't report error if OTP is not supported. */
1071 	if (err == -EOPNOTSUPP)
1072 		return 0;
1073 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1074 }
1075 
1076 /**
1077  * mtd_device_parse_register - parse partitions and register an MTD device.
1078  *
1079  * @mtd: the MTD device to register
1080  * @types: the list of MTD partition probes to try, see
1081  *         'parse_mtd_partitions()' for more information
1082  * @parser_data: MTD partition parser-specific data
1083  * @parts: fallback partition information to register, if parsing fails;
1084  *         only valid if %nr_parts > %0
1085  * @nr_parts: the number of partitions in parts, if zero then the full
1086  *            MTD device is registered if no partition info is found
1087  *
1088  * This function aggregates MTD partitions parsing (done by
1089  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1090  * basically follows the most common pattern found in many MTD drivers:
1091  *
1092  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1093  *   registered first.
1094  * * Then It tries to probe partitions on MTD device @mtd using parsers
1095  *   specified in @types (if @types is %NULL, then the default list of parsers
1096  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1097  *   found this functions tries to fallback to information specified in
1098  *   @parts/@nr_parts.
1099  * * If no partitions were found this function just registers the MTD device
1100  *   @mtd and exits.
1101  *
1102  * Returns zero in case of success and a negative error code in case of failure.
1103  */
1104 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1105 			      struct mtd_part_parser_data *parser_data,
1106 			      const struct mtd_partition *parts,
1107 			      int nr_parts)
1108 {
1109 	int ret, err;
1110 
1111 	mtd_set_dev_defaults(mtd);
1112 
1113 	ret = mtd_otp_nvmem_add(mtd);
1114 	if (ret)
1115 		goto out;
1116 
1117 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1118 		ret = add_mtd_device(mtd);
1119 		if (ret)
1120 			goto out;
1121 	}
1122 
1123 	/* Prefer parsed partitions over driver-provided fallback */
1124 	ret = parse_mtd_partitions(mtd, types, parser_data);
1125 	if (ret == -EPROBE_DEFER)
1126 		goto out;
1127 
1128 	if (ret > 0)
1129 		ret = 0;
1130 	else if (nr_parts)
1131 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1132 	else if (!device_is_registered(&mtd->dev))
1133 		ret = add_mtd_device(mtd);
1134 	else
1135 		ret = 0;
1136 
1137 	if (ret)
1138 		goto out;
1139 
1140 	/*
1141 	 * FIXME: some drivers unfortunately call this function more than once.
1142 	 * So we have to check if we've already assigned the reboot notifier.
1143 	 *
1144 	 * Generally, we can make multiple calls work for most cases, but it
1145 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1146 	 * cmdlineparts will register partitions more than once).
1147 	 */
1148 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1149 		  "MTD already registered\n");
1150 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1151 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1152 		register_reboot_notifier(&mtd->reboot_notifier);
1153 	}
1154 
1155 out:
1156 	if (ret) {
1157 		nvmem_unregister(mtd->otp_user_nvmem);
1158 		nvmem_unregister(mtd->otp_factory_nvmem);
1159 	}
1160 
1161 	if (ret && device_is_registered(&mtd->dev)) {
1162 		err = del_mtd_device(mtd);
1163 		if (err)
1164 			pr_err("Error when deleting MTD device (%d)\n", err);
1165 	}
1166 
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1170 
1171 /**
1172  * mtd_device_unregister - unregister an existing MTD device.
1173  *
1174  * @master: the MTD device to unregister.  This will unregister both the master
1175  *          and any partitions if registered.
1176  */
1177 int mtd_device_unregister(struct mtd_info *master)
1178 {
1179 	int err;
1180 
1181 	if (master->_reboot) {
1182 		unregister_reboot_notifier(&master->reboot_notifier);
1183 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1184 	}
1185 
1186 	nvmem_unregister(master->otp_user_nvmem);
1187 	nvmem_unregister(master->otp_factory_nvmem);
1188 
1189 	err = del_mtd_partitions(master);
1190 	if (err)
1191 		return err;
1192 
1193 	if (!device_is_registered(&master->dev))
1194 		return 0;
1195 
1196 	return del_mtd_device(master);
1197 }
1198 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1199 
1200 /**
1201  *	register_mtd_user - register a 'user' of MTD devices.
1202  *	@new: pointer to notifier info structure
1203  *
1204  *	Registers a pair of callbacks function to be called upon addition
1205  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1206  *	invoked for each MTD device currently present in the system.
1207  */
1208 void register_mtd_user (struct mtd_notifier *new)
1209 {
1210 	struct mtd_info *mtd;
1211 
1212 	mutex_lock(&mtd_table_mutex);
1213 
1214 	list_add(&new->list, &mtd_notifiers);
1215 
1216 	__module_get(THIS_MODULE);
1217 
1218 	mtd_for_each_device(mtd)
1219 		new->add(mtd);
1220 
1221 	mutex_unlock(&mtd_table_mutex);
1222 }
1223 EXPORT_SYMBOL_GPL(register_mtd_user);
1224 
1225 /**
1226  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1227  *	@old: pointer to notifier info structure
1228  *
1229  *	Removes a callback function pair from the list of 'users' to be
1230  *	notified upon addition or removal of MTD devices. Causes the
1231  *	'remove' callback to be immediately invoked for each MTD device
1232  *	currently present in the system.
1233  */
1234 int unregister_mtd_user (struct mtd_notifier *old)
1235 {
1236 	struct mtd_info *mtd;
1237 
1238 	mutex_lock(&mtd_table_mutex);
1239 
1240 	module_put(THIS_MODULE);
1241 
1242 	mtd_for_each_device(mtd)
1243 		old->remove(mtd);
1244 
1245 	list_del(&old->list);
1246 	mutex_unlock(&mtd_table_mutex);
1247 	return 0;
1248 }
1249 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1250 
1251 /**
1252  *	get_mtd_device - obtain a validated handle for an MTD device
1253  *	@mtd: last known address of the required MTD device
1254  *	@num: internal device number of the required MTD device
1255  *
1256  *	Given a number and NULL address, return the num'th entry in the device
1257  *	table, if any.	Given an address and num == -1, search the device table
1258  *	for a device with that address and return if it's still present. Given
1259  *	both, return the num'th driver only if its address matches. Return
1260  *	error code if not.
1261  */
1262 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1263 {
1264 	struct mtd_info *ret = NULL, *other;
1265 	int err = -ENODEV;
1266 
1267 	mutex_lock(&mtd_table_mutex);
1268 
1269 	if (num == -1) {
1270 		mtd_for_each_device(other) {
1271 			if (other == mtd) {
1272 				ret = mtd;
1273 				break;
1274 			}
1275 		}
1276 	} else if (num >= 0) {
1277 		ret = idr_find(&mtd_idr, num);
1278 		if (mtd && mtd != ret)
1279 			ret = NULL;
1280 	}
1281 
1282 	if (!ret) {
1283 		ret = ERR_PTR(err);
1284 		goto out;
1285 	}
1286 
1287 	err = __get_mtd_device(ret);
1288 	if (err)
1289 		ret = ERR_PTR(err);
1290 out:
1291 	mutex_unlock(&mtd_table_mutex);
1292 	return ret;
1293 }
1294 EXPORT_SYMBOL_GPL(get_mtd_device);
1295 
1296 
1297 int __get_mtd_device(struct mtd_info *mtd)
1298 {
1299 	struct mtd_info *master = mtd_get_master(mtd);
1300 	int err;
1301 
1302 	if (master->_get_device) {
1303 		err = master->_get_device(mtd);
1304 		if (err)
1305 			return err;
1306 	}
1307 
1308 	if (!try_module_get(master->owner)) {
1309 		if (master->_put_device)
1310 			master->_put_device(master);
1311 		return -ENODEV;
1312 	}
1313 
1314 	while (mtd) {
1315 		if (mtd != master)
1316 			kref_get(&mtd->refcnt);
1317 		mtd = mtd->parent;
1318 	}
1319 
1320 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1321 		kref_get(&master->refcnt);
1322 
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(__get_mtd_device);
1326 
1327 /**
1328  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1329  *
1330  * @np: device tree node
1331  */
1332 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1333 {
1334 	struct mtd_info *mtd = NULL;
1335 	struct mtd_info *tmp;
1336 	int err;
1337 
1338 	mutex_lock(&mtd_table_mutex);
1339 
1340 	err = -EPROBE_DEFER;
1341 	mtd_for_each_device(tmp) {
1342 		if (mtd_get_of_node(tmp) == np) {
1343 			mtd = tmp;
1344 			err = __get_mtd_device(mtd);
1345 			break;
1346 		}
1347 	}
1348 
1349 	mutex_unlock(&mtd_table_mutex);
1350 
1351 	return err ? ERR_PTR(err) : mtd;
1352 }
1353 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1354 
1355 /**
1356  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1357  *	device name
1358  *	@name: MTD device name to open
1359  *
1360  * 	This function returns MTD device description structure in case of
1361  * 	success and an error code in case of failure.
1362  */
1363 struct mtd_info *get_mtd_device_nm(const char *name)
1364 {
1365 	int err = -ENODEV;
1366 	struct mtd_info *mtd = NULL, *other;
1367 
1368 	mutex_lock(&mtd_table_mutex);
1369 
1370 	mtd_for_each_device(other) {
1371 		if (!strcmp(name, other->name)) {
1372 			mtd = other;
1373 			break;
1374 		}
1375 	}
1376 
1377 	if (!mtd)
1378 		goto out_unlock;
1379 
1380 	err = __get_mtd_device(mtd);
1381 	if (err)
1382 		goto out_unlock;
1383 
1384 	mutex_unlock(&mtd_table_mutex);
1385 	return mtd;
1386 
1387 out_unlock:
1388 	mutex_unlock(&mtd_table_mutex);
1389 	return ERR_PTR(err);
1390 }
1391 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1392 
1393 void put_mtd_device(struct mtd_info *mtd)
1394 {
1395 	mutex_lock(&mtd_table_mutex);
1396 	__put_mtd_device(mtd);
1397 	mutex_unlock(&mtd_table_mutex);
1398 
1399 }
1400 EXPORT_SYMBOL_GPL(put_mtd_device);
1401 
1402 void __put_mtd_device(struct mtd_info *mtd)
1403 {
1404 	struct mtd_info *master = mtd_get_master(mtd);
1405 
1406 	while (mtd) {
1407 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1408 		struct mtd_info *parent = mtd->parent;
1409 
1410 		if (mtd != master)
1411 			kref_put(&mtd->refcnt, mtd_device_release);
1412 		mtd = parent;
1413 	}
1414 
1415 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1416 		kref_put(&master->refcnt, mtd_device_release);
1417 
1418 	module_put(master->owner);
1419 
1420 	/* must be the last as master can be freed in the _put_device */
1421 	if (master->_put_device)
1422 		master->_put_device(master);
1423 }
1424 EXPORT_SYMBOL_GPL(__put_mtd_device);
1425 
1426 /*
1427  * Erase is an synchronous operation. Device drivers are epected to return a
1428  * negative error code if the operation failed and update instr->fail_addr
1429  * to point the portion that was not properly erased.
1430  */
1431 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1432 {
1433 	struct mtd_info *master = mtd_get_master(mtd);
1434 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1435 	struct erase_info adjinstr;
1436 	int ret;
1437 
1438 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1439 	adjinstr = *instr;
1440 
1441 	if (!mtd->erasesize || !master->_erase)
1442 		return -ENOTSUPP;
1443 
1444 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1445 		return -EINVAL;
1446 	if (!(mtd->flags & MTD_WRITEABLE))
1447 		return -EROFS;
1448 
1449 	if (!instr->len)
1450 		return 0;
1451 
1452 	ledtrig_mtd_activity();
1453 
1454 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1455 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1456 				master->erasesize;
1457 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1458 				master->erasesize) -
1459 			       adjinstr.addr;
1460 	}
1461 
1462 	adjinstr.addr += mst_ofs;
1463 
1464 	ret = master->_erase(master, &adjinstr);
1465 
1466 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1467 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1468 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1469 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1470 							 master);
1471 			instr->fail_addr *= mtd->erasesize;
1472 		}
1473 	}
1474 
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL_GPL(mtd_erase);
1478 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1479 
1480 /*
1481  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1482  */
1483 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1484 	      void **virt, resource_size_t *phys)
1485 {
1486 	struct mtd_info *master = mtd_get_master(mtd);
1487 
1488 	*retlen = 0;
1489 	*virt = NULL;
1490 	if (phys)
1491 		*phys = 0;
1492 	if (!master->_point)
1493 		return -EOPNOTSUPP;
1494 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1495 		return -EINVAL;
1496 	if (!len)
1497 		return 0;
1498 
1499 	from = mtd_get_master_ofs(mtd, from);
1500 	return master->_point(master, from, len, retlen, virt, phys);
1501 }
1502 EXPORT_SYMBOL_GPL(mtd_point);
1503 
1504 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1505 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1506 {
1507 	struct mtd_info *master = mtd_get_master(mtd);
1508 
1509 	if (!master->_unpoint)
1510 		return -EOPNOTSUPP;
1511 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1512 		return -EINVAL;
1513 	if (!len)
1514 		return 0;
1515 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1516 }
1517 EXPORT_SYMBOL_GPL(mtd_unpoint);
1518 
1519 /*
1520  * Allow NOMMU mmap() to directly map the device (if not NULL)
1521  * - return the address to which the offset maps
1522  * - return -ENOSYS to indicate refusal to do the mapping
1523  */
1524 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1525 				    unsigned long offset, unsigned long flags)
1526 {
1527 	size_t retlen;
1528 	void *virt;
1529 	int ret;
1530 
1531 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1532 	if (ret)
1533 		return ret;
1534 	if (retlen != len) {
1535 		mtd_unpoint(mtd, offset, retlen);
1536 		return -ENOSYS;
1537 	}
1538 	return (unsigned long)virt;
1539 }
1540 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1541 
1542 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1543 				 const struct mtd_ecc_stats *old_stats)
1544 {
1545 	struct mtd_ecc_stats diff;
1546 
1547 	if (master == mtd)
1548 		return;
1549 
1550 	diff = master->ecc_stats;
1551 	diff.failed -= old_stats->failed;
1552 	diff.corrected -= old_stats->corrected;
1553 
1554 	while (mtd->parent) {
1555 		mtd->ecc_stats.failed += diff.failed;
1556 		mtd->ecc_stats.corrected += diff.corrected;
1557 		mtd = mtd->parent;
1558 	}
1559 }
1560 
1561 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1562 	     u_char *buf)
1563 {
1564 	struct mtd_oob_ops ops = {
1565 		.len = len,
1566 		.datbuf = buf,
1567 	};
1568 	int ret;
1569 
1570 	ret = mtd_read_oob(mtd, from, &ops);
1571 	*retlen = ops.retlen;
1572 
1573 	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1574 
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL_GPL(mtd_read);
1578 ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1579 
1580 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1581 	      const u_char *buf)
1582 {
1583 	struct mtd_oob_ops ops = {
1584 		.len = len,
1585 		.datbuf = (u8 *)buf,
1586 	};
1587 	int ret;
1588 
1589 	ret = mtd_write_oob(mtd, to, &ops);
1590 	*retlen = ops.retlen;
1591 
1592 	return ret;
1593 }
1594 EXPORT_SYMBOL_GPL(mtd_write);
1595 ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1596 
1597 /*
1598  * In blackbox flight recorder like scenarios we want to make successful writes
1599  * in interrupt context. panic_write() is only intended to be called when its
1600  * known the kernel is about to panic and we need the write to succeed. Since
1601  * the kernel is not going to be running for much longer, this function can
1602  * break locks and delay to ensure the write succeeds (but not sleep).
1603  */
1604 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1605 		    const u_char *buf)
1606 {
1607 	struct mtd_info *master = mtd_get_master(mtd);
1608 
1609 	*retlen = 0;
1610 	if (!master->_panic_write)
1611 		return -EOPNOTSUPP;
1612 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1613 		return -EINVAL;
1614 	if (!(mtd->flags & MTD_WRITEABLE))
1615 		return -EROFS;
1616 	if (!len)
1617 		return 0;
1618 	if (!master->oops_panic_write)
1619 		master->oops_panic_write = true;
1620 
1621 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1622 				    retlen, buf);
1623 }
1624 EXPORT_SYMBOL_GPL(mtd_panic_write);
1625 
1626 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1627 			     struct mtd_oob_ops *ops)
1628 {
1629 	/*
1630 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1631 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1632 	 *  this case.
1633 	 */
1634 	if (!ops->datbuf)
1635 		ops->len = 0;
1636 
1637 	if (!ops->oobbuf)
1638 		ops->ooblen = 0;
1639 
1640 	if (offs < 0 || offs + ops->len > mtd->size)
1641 		return -EINVAL;
1642 
1643 	if (ops->ooblen) {
1644 		size_t maxooblen;
1645 
1646 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1647 			return -EINVAL;
1648 
1649 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1650 				      mtd_div_by_ws(offs, mtd)) *
1651 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1652 		if (ops->ooblen > maxooblen)
1653 			return -EINVAL;
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1660 			    struct mtd_oob_ops *ops)
1661 {
1662 	struct mtd_info *master = mtd_get_master(mtd);
1663 	int ret;
1664 
1665 	from = mtd_get_master_ofs(mtd, from);
1666 	if (master->_read_oob)
1667 		ret = master->_read_oob(master, from, ops);
1668 	else
1669 		ret = master->_read(master, from, ops->len, &ops->retlen,
1670 				    ops->datbuf);
1671 
1672 	return ret;
1673 }
1674 
1675 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1676 			     struct mtd_oob_ops *ops)
1677 {
1678 	struct mtd_info *master = mtd_get_master(mtd);
1679 	int ret;
1680 
1681 	to = mtd_get_master_ofs(mtd, to);
1682 	if (master->_write_oob)
1683 		ret = master->_write_oob(master, to, ops);
1684 	else
1685 		ret = master->_write(master, to, ops->len, &ops->retlen,
1686 				     ops->datbuf);
1687 
1688 	return ret;
1689 }
1690 
1691 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1692 			       struct mtd_oob_ops *ops)
1693 {
1694 	struct mtd_info *master = mtd_get_master(mtd);
1695 	int ngroups = mtd_pairing_groups(master);
1696 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1697 	struct mtd_oob_ops adjops = *ops;
1698 	unsigned int wunit, oobavail;
1699 	struct mtd_pairing_info info;
1700 	int max_bitflips = 0;
1701 	u32 ebofs, pageofs;
1702 	loff_t base, pos;
1703 
1704 	ebofs = mtd_mod_by_eb(start, mtd);
1705 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1706 	info.group = 0;
1707 	info.pair = mtd_div_by_ws(ebofs, mtd);
1708 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1709 	oobavail = mtd_oobavail(mtd, ops);
1710 
1711 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1712 		int ret;
1713 
1714 		if (info.pair >= npairs) {
1715 			info.pair = 0;
1716 			base += master->erasesize;
1717 		}
1718 
1719 		wunit = mtd_pairing_info_to_wunit(master, &info);
1720 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1721 
1722 		adjops.len = ops->len - ops->retlen;
1723 		if (adjops.len > mtd->writesize - pageofs)
1724 			adjops.len = mtd->writesize - pageofs;
1725 
1726 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1727 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1728 			adjops.ooblen = oobavail - adjops.ooboffs;
1729 
1730 		if (read) {
1731 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1732 			if (ret > 0)
1733 				max_bitflips = max(max_bitflips, ret);
1734 		} else {
1735 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1736 		}
1737 
1738 		if (ret < 0)
1739 			return ret;
1740 
1741 		max_bitflips = max(max_bitflips, ret);
1742 		ops->retlen += adjops.retlen;
1743 		ops->oobretlen += adjops.oobretlen;
1744 		adjops.datbuf += adjops.retlen;
1745 		adjops.oobbuf += adjops.oobretlen;
1746 		adjops.ooboffs = 0;
1747 		pageofs = 0;
1748 		info.pair++;
1749 	}
1750 
1751 	return max_bitflips;
1752 }
1753 
1754 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1755 {
1756 	struct mtd_info *master = mtd_get_master(mtd);
1757 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1758 	int ret_code;
1759 
1760 	ops->retlen = ops->oobretlen = 0;
1761 
1762 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1763 	if (ret_code)
1764 		return ret_code;
1765 
1766 	ledtrig_mtd_activity();
1767 
1768 	/* Check the validity of a potential fallback on mtd->_read */
1769 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1770 		return -EOPNOTSUPP;
1771 
1772 	if (ops->stats)
1773 		memset(ops->stats, 0, sizeof(*ops->stats));
1774 
1775 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1776 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1777 	else
1778 		ret_code = mtd_read_oob_std(mtd, from, ops);
1779 
1780 	mtd_update_ecc_stats(mtd, master, &old_stats);
1781 
1782 	/*
1783 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1784 	 * similar to mtd->_read(), returning a non-negative integer
1785 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1786 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1787 	 */
1788 	if (unlikely(ret_code < 0))
1789 		return ret_code;
1790 	if (mtd->ecc_strength == 0)
1791 		return 0;	/* device lacks ecc */
1792 	if (ops->stats)
1793 		ops->stats->max_bitflips = ret_code;
1794 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1795 }
1796 EXPORT_SYMBOL_GPL(mtd_read_oob);
1797 
1798 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1799 				struct mtd_oob_ops *ops)
1800 {
1801 	struct mtd_info *master = mtd_get_master(mtd);
1802 	int ret;
1803 
1804 	ops->retlen = ops->oobretlen = 0;
1805 
1806 	if (!(mtd->flags & MTD_WRITEABLE))
1807 		return -EROFS;
1808 
1809 	ret = mtd_check_oob_ops(mtd, to, ops);
1810 	if (ret)
1811 		return ret;
1812 
1813 	ledtrig_mtd_activity();
1814 
1815 	/* Check the validity of a potential fallback on mtd->_write */
1816 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1817 		return -EOPNOTSUPP;
1818 
1819 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1820 		return mtd_io_emulated_slc(mtd, to, false, ops);
1821 
1822 	return mtd_write_oob_std(mtd, to, ops);
1823 }
1824 EXPORT_SYMBOL_GPL(mtd_write_oob);
1825 
1826 /**
1827  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1828  * @mtd: MTD device structure
1829  * @section: ECC section. Depending on the layout you may have all the ECC
1830  *	     bytes stored in a single contiguous section, or one section
1831  *	     per ECC chunk (and sometime several sections for a single ECC
1832  *	     ECC chunk)
1833  * @oobecc: OOB region struct filled with the appropriate ECC position
1834  *	    information
1835  *
1836  * This function returns ECC section information in the OOB area. If you want
1837  * to get all the ECC bytes information, then you should call
1838  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1839  *
1840  * Returns zero on success, a negative error code otherwise.
1841  */
1842 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1843 		      struct mtd_oob_region *oobecc)
1844 {
1845 	struct mtd_info *master = mtd_get_master(mtd);
1846 
1847 	memset(oobecc, 0, sizeof(*oobecc));
1848 
1849 	if (!master || section < 0)
1850 		return -EINVAL;
1851 
1852 	if (!master->ooblayout || !master->ooblayout->ecc)
1853 		return -ENOTSUPP;
1854 
1855 	return master->ooblayout->ecc(master, section, oobecc);
1856 }
1857 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1858 
1859 /**
1860  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1861  *			section
1862  * @mtd: MTD device structure
1863  * @section: Free section you are interested in. Depending on the layout
1864  *	     you may have all the free bytes stored in a single contiguous
1865  *	     section, or one section per ECC chunk plus an extra section
1866  *	     for the remaining bytes (or other funky layout).
1867  * @oobfree: OOB region struct filled with the appropriate free position
1868  *	     information
1869  *
1870  * This function returns free bytes position in the OOB area. If you want
1871  * to get all the free bytes information, then you should call
1872  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1873  *
1874  * Returns zero on success, a negative error code otherwise.
1875  */
1876 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1877 		       struct mtd_oob_region *oobfree)
1878 {
1879 	struct mtd_info *master = mtd_get_master(mtd);
1880 
1881 	memset(oobfree, 0, sizeof(*oobfree));
1882 
1883 	if (!master || section < 0)
1884 		return -EINVAL;
1885 
1886 	if (!master->ooblayout || !master->ooblayout->free)
1887 		return -ENOTSUPP;
1888 
1889 	return master->ooblayout->free(master, section, oobfree);
1890 }
1891 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1892 
1893 /**
1894  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1895  * @mtd: mtd info structure
1896  * @byte: the byte we are searching for
1897  * @sectionp: pointer where the section id will be stored
1898  * @oobregion: used to retrieve the ECC position
1899  * @iter: iterator function. Should be either mtd_ooblayout_free or
1900  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1901  *
1902  * This function returns the section id and oobregion information of a
1903  * specific byte. For example, say you want to know where the 4th ECC byte is
1904  * stored, you'll use:
1905  *
1906  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1907  *
1908  * Returns zero on success, a negative error code otherwise.
1909  */
1910 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1911 				int *sectionp, struct mtd_oob_region *oobregion,
1912 				int (*iter)(struct mtd_info *,
1913 					    int section,
1914 					    struct mtd_oob_region *oobregion))
1915 {
1916 	int pos = 0, ret, section = 0;
1917 
1918 	memset(oobregion, 0, sizeof(*oobregion));
1919 
1920 	while (1) {
1921 		ret = iter(mtd, section, oobregion);
1922 		if (ret)
1923 			return ret;
1924 
1925 		if (pos + oobregion->length > byte)
1926 			break;
1927 
1928 		pos += oobregion->length;
1929 		section++;
1930 	}
1931 
1932 	/*
1933 	 * Adjust region info to make it start at the beginning at the
1934 	 * 'start' ECC byte.
1935 	 */
1936 	oobregion->offset += byte - pos;
1937 	oobregion->length -= byte - pos;
1938 	*sectionp = section;
1939 
1940 	return 0;
1941 }
1942 
1943 /**
1944  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1945  *				  ECC byte
1946  * @mtd: mtd info structure
1947  * @eccbyte: the byte we are searching for
1948  * @section: pointer where the section id will be stored
1949  * @oobregion: OOB region information
1950  *
1951  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1952  * byte.
1953  *
1954  * Returns zero on success, a negative error code otherwise.
1955  */
1956 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1957 				 int *section,
1958 				 struct mtd_oob_region *oobregion)
1959 {
1960 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1961 					 mtd_ooblayout_ecc);
1962 }
1963 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1964 
1965 /**
1966  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1967  * @mtd: mtd info structure
1968  * @buf: destination buffer to store OOB bytes
1969  * @oobbuf: OOB buffer
1970  * @start: first byte to retrieve
1971  * @nbytes: number of bytes to retrieve
1972  * @iter: section iterator
1973  *
1974  * Extract bytes attached to a specific category (ECC or free)
1975  * from the OOB buffer and copy them into buf.
1976  *
1977  * Returns zero on success, a negative error code otherwise.
1978  */
1979 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1980 				const u8 *oobbuf, int start, int nbytes,
1981 				int (*iter)(struct mtd_info *,
1982 					    int section,
1983 					    struct mtd_oob_region *oobregion))
1984 {
1985 	struct mtd_oob_region oobregion;
1986 	int section, ret;
1987 
1988 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1989 					&oobregion, iter);
1990 
1991 	while (!ret) {
1992 		int cnt;
1993 
1994 		cnt = min_t(int, nbytes, oobregion.length);
1995 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1996 		buf += cnt;
1997 		nbytes -= cnt;
1998 
1999 		if (!nbytes)
2000 			break;
2001 
2002 		ret = iter(mtd, ++section, &oobregion);
2003 	}
2004 
2005 	return ret;
2006 }
2007 
2008 /**
2009  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
2010  * @mtd: mtd info structure
2011  * @buf: source buffer to get OOB bytes from
2012  * @oobbuf: OOB buffer
2013  * @start: first OOB byte to set
2014  * @nbytes: number of OOB bytes to set
2015  * @iter: section iterator
2016  *
2017  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
2018  * is selected by passing the appropriate iterator.
2019  *
2020  * Returns zero on success, a negative error code otherwise.
2021  */
2022 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
2023 				u8 *oobbuf, int start, int nbytes,
2024 				int (*iter)(struct mtd_info *,
2025 					    int section,
2026 					    struct mtd_oob_region *oobregion))
2027 {
2028 	struct mtd_oob_region oobregion;
2029 	int section, ret;
2030 
2031 	ret = mtd_ooblayout_find_region(mtd, start, &section,
2032 					&oobregion, iter);
2033 
2034 	while (!ret) {
2035 		int cnt;
2036 
2037 		cnt = min_t(int, nbytes, oobregion.length);
2038 		memcpy(oobbuf + oobregion.offset, buf, cnt);
2039 		buf += cnt;
2040 		nbytes -= cnt;
2041 
2042 		if (!nbytes)
2043 			break;
2044 
2045 		ret = iter(mtd, ++section, &oobregion);
2046 	}
2047 
2048 	return ret;
2049 }
2050 
2051 /**
2052  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
2053  * @mtd: mtd info structure
2054  * @iter: category iterator
2055  *
2056  * Count the number of bytes in a given category.
2057  *
2058  * Returns a positive value on success, a negative error code otherwise.
2059  */
2060 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2061 				int (*iter)(struct mtd_info *,
2062 					    int section,
2063 					    struct mtd_oob_region *oobregion))
2064 {
2065 	struct mtd_oob_region oobregion;
2066 	int section = 0, ret, nbytes = 0;
2067 
2068 	while (1) {
2069 		ret = iter(mtd, section++, &oobregion);
2070 		if (ret) {
2071 			if (ret == -ERANGE)
2072 				ret = nbytes;
2073 			break;
2074 		}
2075 
2076 		nbytes += oobregion.length;
2077 	}
2078 
2079 	return ret;
2080 }
2081 
2082 /**
2083  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2084  * @mtd: mtd info structure
2085  * @eccbuf: destination buffer to store ECC bytes
2086  * @oobbuf: OOB buffer
2087  * @start: first ECC byte to retrieve
2088  * @nbytes: number of ECC bytes to retrieve
2089  *
2090  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2091  *
2092  * Returns zero on success, a negative error code otherwise.
2093  */
2094 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2095 			       const u8 *oobbuf, int start, int nbytes)
2096 {
2097 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2098 				       mtd_ooblayout_ecc);
2099 }
2100 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2101 
2102 /**
2103  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2104  * @mtd: mtd info structure
2105  * @eccbuf: source buffer to get ECC bytes from
2106  * @oobbuf: OOB buffer
2107  * @start: first ECC byte to set
2108  * @nbytes: number of ECC bytes to set
2109  *
2110  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2111  *
2112  * Returns zero on success, a negative error code otherwise.
2113  */
2114 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2115 			       u8 *oobbuf, int start, int nbytes)
2116 {
2117 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2118 				       mtd_ooblayout_ecc);
2119 }
2120 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2121 
2122 /**
2123  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2124  * @mtd: mtd info structure
2125  * @databuf: destination buffer to store ECC bytes
2126  * @oobbuf: OOB buffer
2127  * @start: first ECC byte to retrieve
2128  * @nbytes: number of ECC bytes to retrieve
2129  *
2130  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2131  *
2132  * Returns zero on success, a negative error code otherwise.
2133  */
2134 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2135 				const u8 *oobbuf, int start, int nbytes)
2136 {
2137 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2138 				       mtd_ooblayout_free);
2139 }
2140 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2141 
2142 /**
2143  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2144  * @mtd: mtd info structure
2145  * @databuf: source buffer to get data bytes from
2146  * @oobbuf: OOB buffer
2147  * @start: first ECC byte to set
2148  * @nbytes: number of ECC bytes to set
2149  *
2150  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2151  *
2152  * Returns zero on success, a negative error code otherwise.
2153  */
2154 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2155 				u8 *oobbuf, int start, int nbytes)
2156 {
2157 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2158 				       mtd_ooblayout_free);
2159 }
2160 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2161 
2162 /**
2163  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2164  * @mtd: mtd info structure
2165  *
2166  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2167  *
2168  * Returns zero on success, a negative error code otherwise.
2169  */
2170 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2171 {
2172 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2173 }
2174 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2175 
2176 /**
2177  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2178  * @mtd: mtd info structure
2179  *
2180  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2181  *
2182  * Returns zero on success, a negative error code otherwise.
2183  */
2184 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2185 {
2186 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2187 }
2188 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2189 
2190 /*
2191  * Method to access the protection register area, present in some flash
2192  * devices. The user data is one time programmable but the factory data is read
2193  * only.
2194  */
2195 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2196 			   struct otp_info *buf)
2197 {
2198 	struct mtd_info *master = mtd_get_master(mtd);
2199 
2200 	if (!master->_get_fact_prot_info)
2201 		return -EOPNOTSUPP;
2202 	if (!len)
2203 		return 0;
2204 	return master->_get_fact_prot_info(master, len, retlen, buf);
2205 }
2206 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2207 
2208 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2209 			   size_t *retlen, u_char *buf)
2210 {
2211 	struct mtd_info *master = mtd_get_master(mtd);
2212 
2213 	*retlen = 0;
2214 	if (!master->_read_fact_prot_reg)
2215 		return -EOPNOTSUPP;
2216 	if (!len)
2217 		return 0;
2218 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2219 }
2220 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2221 
2222 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2223 			   struct otp_info *buf)
2224 {
2225 	struct mtd_info *master = mtd_get_master(mtd);
2226 
2227 	if (!master->_get_user_prot_info)
2228 		return -EOPNOTSUPP;
2229 	if (!len)
2230 		return 0;
2231 	return master->_get_user_prot_info(master, len, retlen, buf);
2232 }
2233 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2234 
2235 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2236 			   size_t *retlen, u_char *buf)
2237 {
2238 	struct mtd_info *master = mtd_get_master(mtd);
2239 
2240 	*retlen = 0;
2241 	if (!master->_read_user_prot_reg)
2242 		return -EOPNOTSUPP;
2243 	if (!len)
2244 		return 0;
2245 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2246 }
2247 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2248 
2249 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2250 			    size_t *retlen, const u_char *buf)
2251 {
2252 	struct mtd_info *master = mtd_get_master(mtd);
2253 	int ret;
2254 
2255 	*retlen = 0;
2256 	if (!master->_write_user_prot_reg)
2257 		return -EOPNOTSUPP;
2258 	if (!len)
2259 		return 0;
2260 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2261 	if (ret)
2262 		return ret;
2263 
2264 	/*
2265 	 * If no data could be written at all, we are out of memory and
2266 	 * must return -ENOSPC.
2267 	 */
2268 	return (*retlen) ? 0 : -ENOSPC;
2269 }
2270 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2271 
2272 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2273 {
2274 	struct mtd_info *master = mtd_get_master(mtd);
2275 
2276 	if (!master->_lock_user_prot_reg)
2277 		return -EOPNOTSUPP;
2278 	if (!len)
2279 		return 0;
2280 	return master->_lock_user_prot_reg(master, from, len);
2281 }
2282 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2283 
2284 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2285 {
2286 	struct mtd_info *master = mtd_get_master(mtd);
2287 
2288 	if (!master->_erase_user_prot_reg)
2289 		return -EOPNOTSUPP;
2290 	if (!len)
2291 		return 0;
2292 	return master->_erase_user_prot_reg(master, from, len);
2293 }
2294 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2295 
2296 /* Chip-supported device locking */
2297 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2298 {
2299 	struct mtd_info *master = mtd_get_master(mtd);
2300 
2301 	if (!master->_lock)
2302 		return -EOPNOTSUPP;
2303 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2304 		return -EINVAL;
2305 	if (!len)
2306 		return 0;
2307 
2308 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2309 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2310 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2311 	}
2312 
2313 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2314 }
2315 EXPORT_SYMBOL_GPL(mtd_lock);
2316 
2317 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2318 {
2319 	struct mtd_info *master = mtd_get_master(mtd);
2320 
2321 	if (!master->_unlock)
2322 		return -EOPNOTSUPP;
2323 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2324 		return -EINVAL;
2325 	if (!len)
2326 		return 0;
2327 
2328 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2329 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2330 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2331 	}
2332 
2333 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2334 }
2335 EXPORT_SYMBOL_GPL(mtd_unlock);
2336 
2337 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2338 {
2339 	struct mtd_info *master = mtd_get_master(mtd);
2340 
2341 	if (!master->_is_locked)
2342 		return -EOPNOTSUPP;
2343 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2344 		return -EINVAL;
2345 	if (!len)
2346 		return 0;
2347 
2348 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2349 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2350 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2351 	}
2352 
2353 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2354 }
2355 EXPORT_SYMBOL_GPL(mtd_is_locked);
2356 
2357 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2358 {
2359 	struct mtd_info *master = mtd_get_master(mtd);
2360 
2361 	if (ofs < 0 || ofs >= mtd->size)
2362 		return -EINVAL;
2363 	if (!master->_block_isreserved)
2364 		return 0;
2365 
2366 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2367 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2368 
2369 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2370 }
2371 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2372 
2373 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2374 {
2375 	struct mtd_info *master = mtd_get_master(mtd);
2376 
2377 	if (ofs < 0 || ofs >= mtd->size)
2378 		return -EINVAL;
2379 	if (!master->_block_isbad)
2380 		return 0;
2381 
2382 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2383 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2384 
2385 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2386 }
2387 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2388 
2389 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2390 {
2391 	struct mtd_info *master = mtd_get_master(mtd);
2392 	loff_t moffs;
2393 	int ret;
2394 
2395 	if (!master->_block_markbad)
2396 		return -EOPNOTSUPP;
2397 	if (ofs < 0 || ofs >= mtd->size)
2398 		return -EINVAL;
2399 	if (!(mtd->flags & MTD_WRITEABLE))
2400 		return -EROFS;
2401 
2402 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2403 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2404 
2405 	moffs = mtd_get_master_ofs(mtd, ofs);
2406 
2407 	if (master->_block_isbad) {
2408 		ret = master->_block_isbad(master, moffs);
2409 		if (ret > 0)
2410 			return 0;
2411 	}
2412 
2413 	ret = master->_block_markbad(master, moffs);
2414 	if (ret)
2415 		return ret;
2416 
2417 	while (mtd->parent) {
2418 		mtd->ecc_stats.badblocks++;
2419 		mtd = mtd->parent;
2420 	}
2421 
2422 	return 0;
2423 }
2424 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2425 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2426 
2427 /*
2428  * default_mtd_writev - the default writev method
2429  * @mtd: mtd device description object pointer
2430  * @vecs: the vectors to write
2431  * @count: count of vectors in @vecs
2432  * @to: the MTD device offset to write to
2433  * @retlen: on exit contains the count of bytes written to the MTD device.
2434  *
2435  * This function returns zero in case of success and a negative error code in
2436  * case of failure.
2437  */
2438 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2439 			      unsigned long count, loff_t to, size_t *retlen)
2440 {
2441 	unsigned long i;
2442 	size_t totlen = 0, thislen;
2443 	int ret = 0;
2444 
2445 	for (i = 0; i < count; i++) {
2446 		if (!vecs[i].iov_len)
2447 			continue;
2448 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2449 				vecs[i].iov_base);
2450 		totlen += thislen;
2451 		if (ret || thislen != vecs[i].iov_len)
2452 			break;
2453 		to += vecs[i].iov_len;
2454 	}
2455 	*retlen = totlen;
2456 	return ret;
2457 }
2458 
2459 /*
2460  * mtd_writev - the vector-based MTD write method
2461  * @mtd: mtd device description object pointer
2462  * @vecs: the vectors to write
2463  * @count: count of vectors in @vecs
2464  * @to: the MTD device offset to write to
2465  * @retlen: on exit contains the count of bytes written to the MTD device.
2466  *
2467  * This function returns zero in case of success and a negative error code in
2468  * case of failure.
2469  */
2470 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2471 	       unsigned long count, loff_t to, size_t *retlen)
2472 {
2473 	struct mtd_info *master = mtd_get_master(mtd);
2474 
2475 	*retlen = 0;
2476 	if (!(mtd->flags & MTD_WRITEABLE))
2477 		return -EROFS;
2478 
2479 	if (!master->_writev)
2480 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2481 
2482 	return master->_writev(master, vecs, count,
2483 			       mtd_get_master_ofs(mtd, to), retlen);
2484 }
2485 EXPORT_SYMBOL_GPL(mtd_writev);
2486 
2487 /**
2488  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2489  * @mtd: mtd device description object pointer
2490  * @size: a pointer to the ideal or maximum size of the allocation, points
2491  *        to the actual allocation size on success.
2492  *
2493  * This routine attempts to allocate a contiguous kernel buffer up to
2494  * the specified size, backing off the size of the request exponentially
2495  * until the request succeeds or until the allocation size falls below
2496  * the system page size. This attempts to make sure it does not adversely
2497  * impact system performance, so when allocating more than one page, we
2498  * ask the memory allocator to avoid re-trying, swapping, writing back
2499  * or performing I/O.
2500  *
2501  * Note, this function also makes sure that the allocated buffer is aligned to
2502  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2503  *
2504  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2505  * to handle smaller (i.e. degraded) buffer allocations under low- or
2506  * fragmented-memory situations where such reduced allocations, from a
2507  * requested ideal, are allowed.
2508  *
2509  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2510  */
2511 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2512 {
2513 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2514 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2515 	void *kbuf;
2516 
2517 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2518 
2519 	while (*size > min_alloc) {
2520 		kbuf = kmalloc(*size, flags);
2521 		if (kbuf)
2522 			return kbuf;
2523 
2524 		*size >>= 1;
2525 		*size = ALIGN(*size, mtd->writesize);
2526 	}
2527 
2528 	/*
2529 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2530 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2531 	 */
2532 	return kmalloc(*size, GFP_KERNEL);
2533 }
2534 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2535 
2536 #ifdef CONFIG_PROC_FS
2537 
2538 /*====================================================================*/
2539 /* Support for /proc/mtd */
2540 
2541 static int mtd_proc_show(struct seq_file *m, void *v)
2542 {
2543 	struct mtd_info *mtd;
2544 
2545 	seq_puts(m, "dev:    size   erasesize  name\n");
2546 	mutex_lock(&mtd_table_mutex);
2547 	mtd_for_each_device(mtd) {
2548 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2549 			   mtd->index, (unsigned long long)mtd->size,
2550 			   mtd->erasesize, mtd->name);
2551 	}
2552 	mutex_unlock(&mtd_table_mutex);
2553 	return 0;
2554 }
2555 #endif /* CONFIG_PROC_FS */
2556 
2557 /*====================================================================*/
2558 /* Init code */
2559 
2560 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2561 {
2562 	struct backing_dev_info *bdi;
2563 	int ret;
2564 
2565 	bdi = bdi_alloc(NUMA_NO_NODE);
2566 	if (!bdi)
2567 		return ERR_PTR(-ENOMEM);
2568 	bdi->ra_pages = 0;
2569 	bdi->io_pages = 0;
2570 
2571 	/*
2572 	 * We put '-0' suffix to the name to get the same name format as we
2573 	 * used to get. Since this is called only once, we get a unique name.
2574 	 */
2575 	ret = bdi_register(bdi, "%.28s-0", name);
2576 	if (ret)
2577 		bdi_put(bdi);
2578 
2579 	return ret ? ERR_PTR(ret) : bdi;
2580 }
2581 
2582 static struct proc_dir_entry *proc_mtd;
2583 
2584 static int __init init_mtd(void)
2585 {
2586 	int ret;
2587 
2588 	ret = class_register(&mtd_class);
2589 	if (ret)
2590 		goto err_reg;
2591 
2592 	mtd_bdi = mtd_bdi_init("mtd");
2593 	if (IS_ERR(mtd_bdi)) {
2594 		ret = PTR_ERR(mtd_bdi);
2595 		goto err_bdi;
2596 	}
2597 
2598 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2599 
2600 	ret = init_mtdchar();
2601 	if (ret)
2602 		goto out_procfs;
2603 
2604 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2605 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2606 			    &mtd_expert_analysis_mode);
2607 
2608 	return 0;
2609 
2610 out_procfs:
2611 	if (proc_mtd)
2612 		remove_proc_entry("mtd", NULL);
2613 	bdi_unregister(mtd_bdi);
2614 	bdi_put(mtd_bdi);
2615 err_bdi:
2616 	class_unregister(&mtd_class);
2617 err_reg:
2618 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2619 	return ret;
2620 }
2621 
2622 static void __exit cleanup_mtd(void)
2623 {
2624 	debugfs_remove_recursive(dfs_dir_mtd);
2625 	cleanup_mtdchar();
2626 	if (proc_mtd)
2627 		remove_proc_entry("mtd", NULL);
2628 	class_unregister(&mtd_class);
2629 	bdi_unregister(mtd_bdi);
2630 	bdi_put(mtd_bdi);
2631 	idr_destroy(&mtd_idr);
2632 }
2633 
2634 module_init(init_mtd);
2635 module_exit(cleanup_mtd);
2636 
2637 MODULE_LICENSE("GPL");
2638 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2639 MODULE_DESCRIPTION("Core MTD registration and access routines");
2640