1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 #define MTD_DEVICE_ATTR_RO(name) \ 100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 101 102 #define MTD_DEVICE_ATTR_RW(name) \ 103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 104 105 static ssize_t mtd_type_show(struct device *dev, 106 struct device_attribute *attr, char *buf) 107 { 108 struct mtd_info *mtd = dev_get_drvdata(dev); 109 char *type; 110 111 switch (mtd->type) { 112 case MTD_ABSENT: 113 type = "absent"; 114 break; 115 case MTD_RAM: 116 type = "ram"; 117 break; 118 case MTD_ROM: 119 type = "rom"; 120 break; 121 case MTD_NORFLASH: 122 type = "nor"; 123 break; 124 case MTD_NANDFLASH: 125 type = "nand"; 126 break; 127 case MTD_DATAFLASH: 128 type = "dataflash"; 129 break; 130 case MTD_UBIVOLUME: 131 type = "ubi"; 132 break; 133 case MTD_MLCNANDFLASH: 134 type = "mlc-nand"; 135 break; 136 default: 137 type = "unknown"; 138 } 139 140 return sysfs_emit(buf, "%s\n", type); 141 } 142 MTD_DEVICE_ATTR_RO(type); 143 144 static ssize_t mtd_flags_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct mtd_info *mtd = dev_get_drvdata(dev); 148 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 150 } 151 MTD_DEVICE_ATTR_RO(flags); 152 153 static ssize_t mtd_size_show(struct device *dev, 154 struct device_attribute *attr, char *buf) 155 { 156 struct mtd_info *mtd = dev_get_drvdata(dev); 157 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 159 } 160 MTD_DEVICE_ATTR_RO(size); 161 162 static ssize_t mtd_erasesize_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 168 } 169 MTD_DEVICE_ATTR_RO(erasesize); 170 171 static ssize_t mtd_writesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 177 } 178 MTD_DEVICE_ATTR_RO(writesize); 179 180 static ssize_t mtd_subpagesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 185 186 return sysfs_emit(buf, "%u\n", subpagesize); 187 } 188 MTD_DEVICE_ATTR_RO(subpagesize); 189 190 static ssize_t mtd_oobsize_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 196 } 197 MTD_DEVICE_ATTR_RO(oobsize); 198 199 static ssize_t mtd_oobavail_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return sysfs_emit(buf, "%u\n", mtd->oobavail); 205 } 206 MTD_DEVICE_ATTR_RO(oobavail); 207 208 static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 214 } 215 MTD_DEVICE_ATTR_RO(numeraseregions); 216 217 static ssize_t mtd_name_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return sysfs_emit(buf, "%s\n", mtd->name); 223 } 224 MTD_DEVICE_ATTR_RO(name); 225 226 static ssize_t mtd_ecc_strength_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct mtd_info *mtd = dev_get_drvdata(dev); 230 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 232 } 233 MTD_DEVICE_ATTR_RO(ecc_strength); 234 235 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 242 } 243 244 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 unsigned int bitflip_threshold; 250 int retval; 251 252 retval = kstrtouint(buf, 0, &bitflip_threshold); 253 if (retval) 254 return retval; 255 256 mtd->bitflip_threshold = bitflip_threshold; 257 return count; 258 } 259 MTD_DEVICE_ATTR_RW(bitflip_threshold); 260 261 static ssize_t mtd_ecc_step_size_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 267 268 } 269 MTD_DEVICE_ATTR_RO(ecc_step_size); 270 271 static ssize_t mtd_corrected_bits_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 276 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 278 } 279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 280 281 static ssize_t mtd_ecc_failures_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 288 } 289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 290 291 static ssize_t mtd_bad_blocks_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 298 } 299 MTD_DEVICE_ATTR_RO(bad_blocks); 300 301 static ssize_t mtd_bbt_blocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 308 } 309 MTD_DEVICE_ATTR_RO(bbt_blocks); 310 311 static struct attribute *mtd_attrs[] = { 312 &dev_attr_type.attr, 313 &dev_attr_flags.attr, 314 &dev_attr_size.attr, 315 &dev_attr_erasesize.attr, 316 &dev_attr_writesize.attr, 317 &dev_attr_subpagesize.attr, 318 &dev_attr_oobsize.attr, 319 &dev_attr_oobavail.attr, 320 &dev_attr_numeraseregions.attr, 321 &dev_attr_name.attr, 322 &dev_attr_ecc_strength.attr, 323 &dev_attr_ecc_step_size.attr, 324 &dev_attr_corrected_bits.attr, 325 &dev_attr_ecc_failures.attr, 326 &dev_attr_bad_blocks.attr, 327 &dev_attr_bbt_blocks.attr, 328 &dev_attr_bitflip_threshold.attr, 329 NULL, 330 }; 331 ATTRIBUTE_GROUPS(mtd); 332 333 static const struct device_type mtd_devtype = { 334 .name = "mtd", 335 .groups = mtd_groups, 336 .release = mtd_release, 337 }; 338 339 static bool mtd_expert_analysis_mode; 340 341 #ifdef CONFIG_DEBUG_FS 342 bool mtd_check_expert_analysis_mode(void) 343 { 344 const char *mtd_expert_analysis_warning = 345 "Bad block checks have been entirely disabled.\n" 346 "This is only reserved for post-mortem forensics and debug purposes.\n" 347 "Never enable this mode if you do not know what you are doing!\n"; 348 349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 350 } 351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 352 #endif 353 354 static struct dentry *dfs_dir_mtd; 355 356 static void mtd_debugfs_populate(struct mtd_info *mtd) 357 { 358 struct device *dev = &mtd->dev; 359 360 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 361 return; 362 363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 364 } 365 366 #ifndef CONFIG_MMU 367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 368 { 369 switch (mtd->type) { 370 case MTD_RAM: 371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 372 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 373 case MTD_ROM: 374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 375 NOMMU_MAP_READ; 376 default: 377 return NOMMU_MAP_COPY; 378 } 379 } 380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 381 #endif 382 383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 384 void *cmd) 385 { 386 struct mtd_info *mtd; 387 388 mtd = container_of(n, struct mtd_info, reboot_notifier); 389 mtd->_reboot(mtd); 390 391 return NOTIFY_DONE; 392 } 393 394 /** 395 * mtd_wunit_to_pairing_info - get pairing information of a wunit 396 * @mtd: pointer to new MTD device info structure 397 * @wunit: write unit we are interested in 398 * @info: returned pairing information 399 * 400 * Retrieve pairing information associated to the wunit. 401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 402 * paired together, and where programming a page may influence the page it is 403 * paired with. 404 * The notion of page is replaced by the term wunit (write-unit) to stay 405 * consistent with the ->writesize field. 406 * 407 * The @wunit argument can be extracted from an absolute offset using 408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 409 * to @wunit. 410 * 411 * From the pairing info the MTD user can find all the wunits paired with 412 * @wunit using the following loop: 413 * 414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 415 * info.pair = i; 416 * mtd_pairing_info_to_wunit(mtd, &info); 417 * ... 418 * } 419 */ 420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 421 struct mtd_pairing_info *info) 422 { 423 struct mtd_info *master = mtd_get_master(mtd); 424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 425 426 if (wunit < 0 || wunit >= npairs) 427 return -EINVAL; 428 429 if (master->pairing && master->pairing->get_info) 430 return master->pairing->get_info(master, wunit, info); 431 432 info->group = 0; 433 info->pair = wunit; 434 435 return 0; 436 } 437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 438 439 /** 440 * mtd_pairing_info_to_wunit - get wunit from pairing information 441 * @mtd: pointer to new MTD device info structure 442 * @info: pairing information struct 443 * 444 * Returns a positive number representing the wunit associated to the info 445 * struct, or a negative error code. 446 * 447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 449 * doc). 450 * 451 * It can also be used to only program the first page of each pair (i.e. 452 * page attached to group 0), which allows one to use an MLC NAND in 453 * software-emulated SLC mode: 454 * 455 * info.group = 0; 456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 457 * for (info.pair = 0; info.pair < npairs; info.pair++) { 458 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 460 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 461 * } 462 */ 463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 464 const struct mtd_pairing_info *info) 465 { 466 struct mtd_info *master = mtd_get_master(mtd); 467 int ngroups = mtd_pairing_groups(master); 468 int npairs = mtd_wunit_per_eb(master) / ngroups; 469 470 if (!info || info->pair < 0 || info->pair >= npairs || 471 info->group < 0 || info->group >= ngroups) 472 return -EINVAL; 473 474 if (master->pairing && master->pairing->get_wunit) 475 return mtd->pairing->get_wunit(master, info); 476 477 return info->pair; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 480 481 /** 482 * mtd_pairing_groups - get the number of pairing groups 483 * @mtd: pointer to new MTD device info structure 484 * 485 * Returns the number of pairing groups. 486 * 487 * This number is usually equal to the number of bits exposed by a single 488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 489 * to iterate over all pages of a given pair. 490 */ 491 int mtd_pairing_groups(struct mtd_info *mtd) 492 { 493 struct mtd_info *master = mtd_get_master(mtd); 494 495 if (!master->pairing || !master->pairing->ngroups) 496 return 1; 497 498 return master->pairing->ngroups; 499 } 500 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 501 502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 503 void *val, size_t bytes) 504 { 505 struct mtd_info *mtd = priv; 506 size_t retlen; 507 int err; 508 509 err = mtd_read(mtd, offset, bytes, &retlen, val); 510 if (err && err != -EUCLEAN) 511 return err; 512 513 return retlen == bytes ? 0 : -EIO; 514 } 515 516 static int mtd_nvmem_add(struct mtd_info *mtd) 517 { 518 struct device_node *node = mtd_get_of_node(mtd); 519 struct nvmem_config config = {}; 520 521 config.id = -1; 522 config.dev = &mtd->dev; 523 config.name = dev_name(&mtd->dev); 524 config.owner = THIS_MODULE; 525 config.reg_read = mtd_nvmem_reg_read; 526 config.size = mtd->size; 527 config.word_size = 1; 528 config.stride = 1; 529 config.read_only = true; 530 config.root_only = true; 531 config.ignore_wp = true; 532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 533 config.priv = mtd; 534 535 mtd->nvmem = nvmem_register(&config); 536 if (IS_ERR(mtd->nvmem)) { 537 /* Just ignore if there is no NVMEM support in the kernel */ 538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 539 mtd->nvmem = NULL; 540 } else { 541 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 542 return PTR_ERR(mtd->nvmem); 543 } 544 } 545 546 return 0; 547 } 548 549 /** 550 * add_mtd_device - register an MTD device 551 * @mtd: pointer to new MTD device info structure 552 * 553 * Add a device to the list of MTD devices present in the system, and 554 * notify each currently active MTD 'user' of its arrival. Returns 555 * zero on success or non-zero on failure. 556 */ 557 558 int add_mtd_device(struct mtd_info *mtd) 559 { 560 struct mtd_info *master = mtd_get_master(mtd); 561 struct mtd_notifier *not; 562 int i, error; 563 564 /* 565 * May occur, for instance, on buggy drivers which call 566 * mtd_device_parse_register() multiple times on the same master MTD, 567 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 568 */ 569 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 570 return -EEXIST; 571 572 BUG_ON(mtd->writesize == 0); 573 574 /* 575 * MTD drivers should implement ->_{write,read}() or 576 * ->_{write,read}_oob(), but not both. 577 */ 578 if (WARN_ON((mtd->_write && mtd->_write_oob) || 579 (mtd->_read && mtd->_read_oob))) 580 return -EINVAL; 581 582 if (WARN_ON((!mtd->erasesize || !master->_erase) && 583 !(mtd->flags & MTD_NO_ERASE))) 584 return -EINVAL; 585 586 /* 587 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 588 * master is an MLC NAND and has a proper pairing scheme defined. 589 * We also reject masters that implement ->_writev() for now, because 590 * NAND controller drivers don't implement this hook, and adding the 591 * SLC -> MLC address/length conversion to this path is useless if we 592 * don't have a user. 593 */ 594 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 595 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 596 !master->pairing || master->_writev)) 597 return -EINVAL; 598 599 mutex_lock(&mtd_table_mutex); 600 601 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 602 if (i < 0) { 603 error = i; 604 goto fail_locked; 605 } 606 607 mtd->index = i; 608 mtd->usecount = 0; 609 610 /* default value if not set by driver */ 611 if (mtd->bitflip_threshold == 0) 612 mtd->bitflip_threshold = mtd->ecc_strength; 613 614 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 615 int ngroups = mtd_pairing_groups(master); 616 617 mtd->erasesize /= ngroups; 618 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 619 mtd->erasesize; 620 } 621 622 if (is_power_of_2(mtd->erasesize)) 623 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 624 else 625 mtd->erasesize_shift = 0; 626 627 if (is_power_of_2(mtd->writesize)) 628 mtd->writesize_shift = ffs(mtd->writesize) - 1; 629 else 630 mtd->writesize_shift = 0; 631 632 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 633 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 634 635 /* Some chips always power up locked. Unlock them now */ 636 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 637 error = mtd_unlock(mtd, 0, mtd->size); 638 if (error && error != -EOPNOTSUPP) 639 printk(KERN_WARNING 640 "%s: unlock failed, writes may not work\n", 641 mtd->name); 642 /* Ignore unlock failures? */ 643 error = 0; 644 } 645 646 /* Caller should have set dev.parent to match the 647 * physical device, if appropriate. 648 */ 649 mtd->dev.type = &mtd_devtype; 650 mtd->dev.class = &mtd_class; 651 mtd->dev.devt = MTD_DEVT(i); 652 dev_set_name(&mtd->dev, "mtd%d", i); 653 dev_set_drvdata(&mtd->dev, mtd); 654 of_node_get(mtd_get_of_node(mtd)); 655 error = device_register(&mtd->dev); 656 if (error) 657 goto fail_added; 658 659 /* Add the nvmem provider */ 660 error = mtd_nvmem_add(mtd); 661 if (error) 662 goto fail_nvmem_add; 663 664 mtd_debugfs_populate(mtd); 665 666 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 667 "mtd%dro", i); 668 669 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 670 /* No need to get a refcount on the module containing 671 the notifier, since we hold the mtd_table_mutex */ 672 list_for_each_entry(not, &mtd_notifiers, list) 673 not->add(mtd); 674 675 mutex_unlock(&mtd_table_mutex); 676 /* We _know_ we aren't being removed, because 677 our caller is still holding us here. So none 678 of this try_ nonsense, and no bitching about it 679 either. :) */ 680 __module_get(THIS_MODULE); 681 return 0; 682 683 fail_nvmem_add: 684 device_unregister(&mtd->dev); 685 fail_added: 686 of_node_put(mtd_get_of_node(mtd)); 687 idr_remove(&mtd_idr, i); 688 fail_locked: 689 mutex_unlock(&mtd_table_mutex); 690 return error; 691 } 692 693 /** 694 * del_mtd_device - unregister an MTD device 695 * @mtd: pointer to MTD device info structure 696 * 697 * Remove a device from the list of MTD devices present in the system, 698 * and notify each currently active MTD 'user' of its departure. 699 * Returns zero on success or 1 on failure, which currently will happen 700 * if the requested device does not appear to be present in the list. 701 */ 702 703 int del_mtd_device(struct mtd_info *mtd) 704 { 705 int ret; 706 struct mtd_notifier *not; 707 708 mutex_lock(&mtd_table_mutex); 709 710 if (idr_find(&mtd_idr, mtd->index) != mtd) { 711 ret = -ENODEV; 712 goto out_error; 713 } 714 715 /* No need to get a refcount on the module containing 716 the notifier, since we hold the mtd_table_mutex */ 717 list_for_each_entry(not, &mtd_notifiers, list) 718 not->remove(mtd); 719 720 if (mtd->usecount) { 721 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 722 mtd->index, mtd->name, mtd->usecount); 723 ret = -EBUSY; 724 } else { 725 debugfs_remove_recursive(mtd->dbg.dfs_dir); 726 727 /* Try to remove the NVMEM provider */ 728 nvmem_unregister(mtd->nvmem); 729 730 device_unregister(&mtd->dev); 731 732 /* Clear dev so mtd can be safely re-registered later if desired */ 733 memset(&mtd->dev, 0, sizeof(mtd->dev)); 734 735 idr_remove(&mtd_idr, mtd->index); 736 of_node_put(mtd_get_of_node(mtd)); 737 738 module_put(THIS_MODULE); 739 ret = 0; 740 } 741 742 out_error: 743 mutex_unlock(&mtd_table_mutex); 744 return ret; 745 } 746 747 /* 748 * Set a few defaults based on the parent devices, if not provided by the 749 * driver 750 */ 751 static void mtd_set_dev_defaults(struct mtd_info *mtd) 752 { 753 if (mtd->dev.parent) { 754 if (!mtd->owner && mtd->dev.parent->driver) 755 mtd->owner = mtd->dev.parent->driver->owner; 756 if (!mtd->name) 757 mtd->name = dev_name(mtd->dev.parent); 758 } else { 759 pr_debug("mtd device won't show a device symlink in sysfs\n"); 760 } 761 762 INIT_LIST_HEAD(&mtd->partitions); 763 mutex_init(&mtd->master.partitions_lock); 764 mutex_init(&mtd->master.chrdev_lock); 765 } 766 767 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 768 { 769 struct otp_info *info; 770 ssize_t size = 0; 771 unsigned int i; 772 size_t retlen; 773 int ret; 774 775 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 776 if (!info) 777 return -ENOMEM; 778 779 if (is_user) 780 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 781 else 782 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 783 if (ret) 784 goto err; 785 786 for (i = 0; i < retlen / sizeof(*info); i++) 787 size += info[i].length; 788 789 kfree(info); 790 return size; 791 792 err: 793 kfree(info); 794 795 /* ENODATA means there is no OTP region. */ 796 return ret == -ENODATA ? 0 : ret; 797 } 798 799 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 800 const char *compatible, 801 int size, 802 nvmem_reg_read_t reg_read) 803 { 804 struct nvmem_device *nvmem = NULL; 805 struct nvmem_config config = {}; 806 struct device_node *np; 807 808 /* DT binding is optional */ 809 np = of_get_compatible_child(mtd->dev.of_node, compatible); 810 811 /* OTP nvmem will be registered on the physical device */ 812 config.dev = mtd->dev.parent; 813 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 814 config.id = NVMEM_DEVID_NONE; 815 config.owner = THIS_MODULE; 816 config.type = NVMEM_TYPE_OTP; 817 config.root_only = true; 818 config.ignore_wp = true; 819 config.reg_read = reg_read; 820 config.size = size; 821 config.of_node = np; 822 config.priv = mtd; 823 824 nvmem = nvmem_register(&config); 825 /* Just ignore if there is no NVMEM support in the kernel */ 826 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 827 nvmem = NULL; 828 829 of_node_put(np); 830 kfree(config.name); 831 832 return nvmem; 833 } 834 835 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 836 void *val, size_t bytes) 837 { 838 struct mtd_info *mtd = priv; 839 size_t retlen; 840 int ret; 841 842 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 843 if (ret) 844 return ret; 845 846 return retlen == bytes ? 0 : -EIO; 847 } 848 849 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 850 void *val, size_t bytes) 851 { 852 struct mtd_info *mtd = priv; 853 size_t retlen; 854 int ret; 855 856 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 857 if (ret) 858 return ret; 859 860 return retlen == bytes ? 0 : -EIO; 861 } 862 863 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 864 { 865 struct nvmem_device *nvmem; 866 ssize_t size; 867 int err; 868 869 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 870 size = mtd_otp_size(mtd, true); 871 if (size < 0) 872 return size; 873 874 if (size > 0) { 875 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 876 mtd_nvmem_user_otp_reg_read); 877 if (IS_ERR(nvmem)) { 878 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 879 return PTR_ERR(nvmem); 880 } 881 mtd->otp_user_nvmem = nvmem; 882 } 883 } 884 885 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 886 size = mtd_otp_size(mtd, false); 887 if (size < 0) { 888 err = size; 889 goto err; 890 } 891 892 if (size > 0) { 893 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 894 mtd_nvmem_fact_otp_reg_read); 895 if (IS_ERR(nvmem)) { 896 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 897 err = PTR_ERR(nvmem); 898 goto err; 899 } 900 mtd->otp_factory_nvmem = nvmem; 901 } 902 } 903 904 return 0; 905 906 err: 907 nvmem_unregister(mtd->otp_user_nvmem); 908 return err; 909 } 910 911 /** 912 * mtd_device_parse_register - parse partitions and register an MTD device. 913 * 914 * @mtd: the MTD device to register 915 * @types: the list of MTD partition probes to try, see 916 * 'parse_mtd_partitions()' for more information 917 * @parser_data: MTD partition parser-specific data 918 * @parts: fallback partition information to register, if parsing fails; 919 * only valid if %nr_parts > %0 920 * @nr_parts: the number of partitions in parts, if zero then the full 921 * MTD device is registered if no partition info is found 922 * 923 * This function aggregates MTD partitions parsing (done by 924 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 925 * basically follows the most common pattern found in many MTD drivers: 926 * 927 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 928 * registered first. 929 * * Then It tries to probe partitions on MTD device @mtd using parsers 930 * specified in @types (if @types is %NULL, then the default list of parsers 931 * is used, see 'parse_mtd_partitions()' for more information). If none are 932 * found this functions tries to fallback to information specified in 933 * @parts/@nr_parts. 934 * * If no partitions were found this function just registers the MTD device 935 * @mtd and exits. 936 * 937 * Returns zero in case of success and a negative error code in case of failure. 938 */ 939 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 940 struct mtd_part_parser_data *parser_data, 941 const struct mtd_partition *parts, 942 int nr_parts) 943 { 944 int ret; 945 946 mtd_set_dev_defaults(mtd); 947 948 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 949 ret = add_mtd_device(mtd); 950 if (ret) 951 return ret; 952 } 953 954 /* Prefer parsed partitions over driver-provided fallback */ 955 ret = parse_mtd_partitions(mtd, types, parser_data); 956 if (ret == -EPROBE_DEFER) 957 goto out; 958 959 if (ret > 0) 960 ret = 0; 961 else if (nr_parts) 962 ret = add_mtd_partitions(mtd, parts, nr_parts); 963 else if (!device_is_registered(&mtd->dev)) 964 ret = add_mtd_device(mtd); 965 else 966 ret = 0; 967 968 if (ret) 969 goto out; 970 971 /* 972 * FIXME: some drivers unfortunately call this function more than once. 973 * So we have to check if we've already assigned the reboot notifier. 974 * 975 * Generally, we can make multiple calls work for most cases, but it 976 * does cause problems with parse_mtd_partitions() above (e.g., 977 * cmdlineparts will register partitions more than once). 978 */ 979 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 980 "MTD already registered\n"); 981 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 982 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 983 register_reboot_notifier(&mtd->reboot_notifier); 984 } 985 986 ret = mtd_otp_nvmem_add(mtd); 987 988 out: 989 if (ret && device_is_registered(&mtd->dev)) 990 del_mtd_device(mtd); 991 992 return ret; 993 } 994 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 995 996 /** 997 * mtd_device_unregister - unregister an existing MTD device. 998 * 999 * @master: the MTD device to unregister. This will unregister both the master 1000 * and any partitions if registered. 1001 */ 1002 int mtd_device_unregister(struct mtd_info *master) 1003 { 1004 int err; 1005 1006 if (master->_reboot) { 1007 unregister_reboot_notifier(&master->reboot_notifier); 1008 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1009 } 1010 1011 nvmem_unregister(master->otp_user_nvmem); 1012 nvmem_unregister(master->otp_factory_nvmem); 1013 1014 err = del_mtd_partitions(master); 1015 if (err) 1016 return err; 1017 1018 if (!device_is_registered(&master->dev)) 1019 return 0; 1020 1021 return del_mtd_device(master); 1022 } 1023 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1024 1025 /** 1026 * register_mtd_user - register a 'user' of MTD devices. 1027 * @new: pointer to notifier info structure 1028 * 1029 * Registers a pair of callbacks function to be called upon addition 1030 * or removal of MTD devices. Causes the 'add' callback to be immediately 1031 * invoked for each MTD device currently present in the system. 1032 */ 1033 void register_mtd_user (struct mtd_notifier *new) 1034 { 1035 struct mtd_info *mtd; 1036 1037 mutex_lock(&mtd_table_mutex); 1038 1039 list_add(&new->list, &mtd_notifiers); 1040 1041 __module_get(THIS_MODULE); 1042 1043 mtd_for_each_device(mtd) 1044 new->add(mtd); 1045 1046 mutex_unlock(&mtd_table_mutex); 1047 } 1048 EXPORT_SYMBOL_GPL(register_mtd_user); 1049 1050 /** 1051 * unregister_mtd_user - unregister a 'user' of MTD devices. 1052 * @old: pointer to notifier info structure 1053 * 1054 * Removes a callback function pair from the list of 'users' to be 1055 * notified upon addition or removal of MTD devices. Causes the 1056 * 'remove' callback to be immediately invoked for each MTD device 1057 * currently present in the system. 1058 */ 1059 int unregister_mtd_user (struct mtd_notifier *old) 1060 { 1061 struct mtd_info *mtd; 1062 1063 mutex_lock(&mtd_table_mutex); 1064 1065 module_put(THIS_MODULE); 1066 1067 mtd_for_each_device(mtd) 1068 old->remove(mtd); 1069 1070 list_del(&old->list); 1071 mutex_unlock(&mtd_table_mutex); 1072 return 0; 1073 } 1074 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1075 1076 /** 1077 * get_mtd_device - obtain a validated handle for an MTD device 1078 * @mtd: last known address of the required MTD device 1079 * @num: internal device number of the required MTD device 1080 * 1081 * Given a number and NULL address, return the num'th entry in the device 1082 * table, if any. Given an address and num == -1, search the device table 1083 * for a device with that address and return if it's still present. Given 1084 * both, return the num'th driver only if its address matches. Return 1085 * error code if not. 1086 */ 1087 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1088 { 1089 struct mtd_info *ret = NULL, *other; 1090 int err = -ENODEV; 1091 1092 mutex_lock(&mtd_table_mutex); 1093 1094 if (num == -1) { 1095 mtd_for_each_device(other) { 1096 if (other == mtd) { 1097 ret = mtd; 1098 break; 1099 } 1100 } 1101 } else if (num >= 0) { 1102 ret = idr_find(&mtd_idr, num); 1103 if (mtd && mtd != ret) 1104 ret = NULL; 1105 } 1106 1107 if (!ret) { 1108 ret = ERR_PTR(err); 1109 goto out; 1110 } 1111 1112 err = __get_mtd_device(ret); 1113 if (err) 1114 ret = ERR_PTR(err); 1115 out: 1116 mutex_unlock(&mtd_table_mutex); 1117 return ret; 1118 } 1119 EXPORT_SYMBOL_GPL(get_mtd_device); 1120 1121 1122 int __get_mtd_device(struct mtd_info *mtd) 1123 { 1124 struct mtd_info *master = mtd_get_master(mtd); 1125 int err; 1126 1127 if (!try_module_get(master->owner)) 1128 return -ENODEV; 1129 1130 if (master->_get_device) { 1131 err = master->_get_device(mtd); 1132 1133 if (err) { 1134 module_put(master->owner); 1135 return err; 1136 } 1137 } 1138 1139 master->usecount++; 1140 1141 while (mtd->parent) { 1142 mtd->usecount++; 1143 mtd = mtd->parent; 1144 } 1145 1146 return 0; 1147 } 1148 EXPORT_SYMBOL_GPL(__get_mtd_device); 1149 1150 /** 1151 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1152 * device name 1153 * @name: MTD device name to open 1154 * 1155 * This function returns MTD device description structure in case of 1156 * success and an error code in case of failure. 1157 */ 1158 struct mtd_info *get_mtd_device_nm(const char *name) 1159 { 1160 int err = -ENODEV; 1161 struct mtd_info *mtd = NULL, *other; 1162 1163 mutex_lock(&mtd_table_mutex); 1164 1165 mtd_for_each_device(other) { 1166 if (!strcmp(name, other->name)) { 1167 mtd = other; 1168 break; 1169 } 1170 } 1171 1172 if (!mtd) 1173 goto out_unlock; 1174 1175 err = __get_mtd_device(mtd); 1176 if (err) 1177 goto out_unlock; 1178 1179 mutex_unlock(&mtd_table_mutex); 1180 return mtd; 1181 1182 out_unlock: 1183 mutex_unlock(&mtd_table_mutex); 1184 return ERR_PTR(err); 1185 } 1186 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1187 1188 void put_mtd_device(struct mtd_info *mtd) 1189 { 1190 mutex_lock(&mtd_table_mutex); 1191 __put_mtd_device(mtd); 1192 mutex_unlock(&mtd_table_mutex); 1193 1194 } 1195 EXPORT_SYMBOL_GPL(put_mtd_device); 1196 1197 void __put_mtd_device(struct mtd_info *mtd) 1198 { 1199 struct mtd_info *master = mtd_get_master(mtd); 1200 1201 while (mtd->parent) { 1202 --mtd->usecount; 1203 BUG_ON(mtd->usecount < 0); 1204 mtd = mtd->parent; 1205 } 1206 1207 master->usecount--; 1208 1209 if (master->_put_device) 1210 master->_put_device(master); 1211 1212 module_put(master->owner); 1213 } 1214 EXPORT_SYMBOL_GPL(__put_mtd_device); 1215 1216 /* 1217 * Erase is an synchronous operation. Device drivers are epected to return a 1218 * negative error code if the operation failed and update instr->fail_addr 1219 * to point the portion that was not properly erased. 1220 */ 1221 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1222 { 1223 struct mtd_info *master = mtd_get_master(mtd); 1224 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1225 struct erase_info adjinstr; 1226 int ret; 1227 1228 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1229 adjinstr = *instr; 1230 1231 if (!mtd->erasesize || !master->_erase) 1232 return -ENOTSUPP; 1233 1234 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1235 return -EINVAL; 1236 if (!(mtd->flags & MTD_WRITEABLE)) 1237 return -EROFS; 1238 1239 if (!instr->len) 1240 return 0; 1241 1242 ledtrig_mtd_activity(); 1243 1244 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1245 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1246 master->erasesize; 1247 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1248 master->erasesize) - 1249 adjinstr.addr; 1250 } 1251 1252 adjinstr.addr += mst_ofs; 1253 1254 ret = master->_erase(master, &adjinstr); 1255 1256 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1257 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1258 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1259 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1260 master); 1261 instr->fail_addr *= mtd->erasesize; 1262 } 1263 } 1264 1265 return ret; 1266 } 1267 EXPORT_SYMBOL_GPL(mtd_erase); 1268 1269 /* 1270 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1271 */ 1272 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1273 void **virt, resource_size_t *phys) 1274 { 1275 struct mtd_info *master = mtd_get_master(mtd); 1276 1277 *retlen = 0; 1278 *virt = NULL; 1279 if (phys) 1280 *phys = 0; 1281 if (!master->_point) 1282 return -EOPNOTSUPP; 1283 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1284 return -EINVAL; 1285 if (!len) 1286 return 0; 1287 1288 from = mtd_get_master_ofs(mtd, from); 1289 return master->_point(master, from, len, retlen, virt, phys); 1290 } 1291 EXPORT_SYMBOL_GPL(mtd_point); 1292 1293 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1294 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1295 { 1296 struct mtd_info *master = mtd_get_master(mtd); 1297 1298 if (!master->_unpoint) 1299 return -EOPNOTSUPP; 1300 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1301 return -EINVAL; 1302 if (!len) 1303 return 0; 1304 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1305 } 1306 EXPORT_SYMBOL_GPL(mtd_unpoint); 1307 1308 /* 1309 * Allow NOMMU mmap() to directly map the device (if not NULL) 1310 * - return the address to which the offset maps 1311 * - return -ENOSYS to indicate refusal to do the mapping 1312 */ 1313 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1314 unsigned long offset, unsigned long flags) 1315 { 1316 size_t retlen; 1317 void *virt; 1318 int ret; 1319 1320 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1321 if (ret) 1322 return ret; 1323 if (retlen != len) { 1324 mtd_unpoint(mtd, offset, retlen); 1325 return -ENOSYS; 1326 } 1327 return (unsigned long)virt; 1328 } 1329 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1330 1331 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1332 const struct mtd_ecc_stats *old_stats) 1333 { 1334 struct mtd_ecc_stats diff; 1335 1336 if (master == mtd) 1337 return; 1338 1339 diff = master->ecc_stats; 1340 diff.failed -= old_stats->failed; 1341 diff.corrected -= old_stats->corrected; 1342 1343 while (mtd->parent) { 1344 mtd->ecc_stats.failed += diff.failed; 1345 mtd->ecc_stats.corrected += diff.corrected; 1346 mtd = mtd->parent; 1347 } 1348 } 1349 1350 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1351 u_char *buf) 1352 { 1353 struct mtd_oob_ops ops = { 1354 .len = len, 1355 .datbuf = buf, 1356 }; 1357 int ret; 1358 1359 ret = mtd_read_oob(mtd, from, &ops); 1360 *retlen = ops.retlen; 1361 1362 return ret; 1363 } 1364 EXPORT_SYMBOL_GPL(mtd_read); 1365 1366 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1367 const u_char *buf) 1368 { 1369 struct mtd_oob_ops ops = { 1370 .len = len, 1371 .datbuf = (u8 *)buf, 1372 }; 1373 int ret; 1374 1375 ret = mtd_write_oob(mtd, to, &ops); 1376 *retlen = ops.retlen; 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL_GPL(mtd_write); 1381 1382 /* 1383 * In blackbox flight recorder like scenarios we want to make successful writes 1384 * in interrupt context. panic_write() is only intended to be called when its 1385 * known the kernel is about to panic and we need the write to succeed. Since 1386 * the kernel is not going to be running for much longer, this function can 1387 * break locks and delay to ensure the write succeeds (but not sleep). 1388 */ 1389 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1390 const u_char *buf) 1391 { 1392 struct mtd_info *master = mtd_get_master(mtd); 1393 1394 *retlen = 0; 1395 if (!master->_panic_write) 1396 return -EOPNOTSUPP; 1397 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1398 return -EINVAL; 1399 if (!(mtd->flags & MTD_WRITEABLE)) 1400 return -EROFS; 1401 if (!len) 1402 return 0; 1403 if (!master->oops_panic_write) 1404 master->oops_panic_write = true; 1405 1406 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1407 retlen, buf); 1408 } 1409 EXPORT_SYMBOL_GPL(mtd_panic_write); 1410 1411 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1412 struct mtd_oob_ops *ops) 1413 { 1414 /* 1415 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1416 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1417 * this case. 1418 */ 1419 if (!ops->datbuf) 1420 ops->len = 0; 1421 1422 if (!ops->oobbuf) 1423 ops->ooblen = 0; 1424 1425 if (offs < 0 || offs + ops->len > mtd->size) 1426 return -EINVAL; 1427 1428 if (ops->ooblen) { 1429 size_t maxooblen; 1430 1431 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1432 return -EINVAL; 1433 1434 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1435 mtd_div_by_ws(offs, mtd)) * 1436 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1437 if (ops->ooblen > maxooblen) 1438 return -EINVAL; 1439 } 1440 1441 return 0; 1442 } 1443 1444 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1445 struct mtd_oob_ops *ops) 1446 { 1447 struct mtd_info *master = mtd_get_master(mtd); 1448 int ret; 1449 1450 from = mtd_get_master_ofs(mtd, from); 1451 if (master->_read_oob) 1452 ret = master->_read_oob(master, from, ops); 1453 else 1454 ret = master->_read(master, from, ops->len, &ops->retlen, 1455 ops->datbuf); 1456 1457 return ret; 1458 } 1459 1460 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1461 struct mtd_oob_ops *ops) 1462 { 1463 struct mtd_info *master = mtd_get_master(mtd); 1464 int ret; 1465 1466 to = mtd_get_master_ofs(mtd, to); 1467 if (master->_write_oob) 1468 ret = master->_write_oob(master, to, ops); 1469 else 1470 ret = master->_write(master, to, ops->len, &ops->retlen, 1471 ops->datbuf); 1472 1473 return ret; 1474 } 1475 1476 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1477 struct mtd_oob_ops *ops) 1478 { 1479 struct mtd_info *master = mtd_get_master(mtd); 1480 int ngroups = mtd_pairing_groups(master); 1481 int npairs = mtd_wunit_per_eb(master) / ngroups; 1482 struct mtd_oob_ops adjops = *ops; 1483 unsigned int wunit, oobavail; 1484 struct mtd_pairing_info info; 1485 int max_bitflips = 0; 1486 u32 ebofs, pageofs; 1487 loff_t base, pos; 1488 1489 ebofs = mtd_mod_by_eb(start, mtd); 1490 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1491 info.group = 0; 1492 info.pair = mtd_div_by_ws(ebofs, mtd); 1493 pageofs = mtd_mod_by_ws(ebofs, mtd); 1494 oobavail = mtd_oobavail(mtd, ops); 1495 1496 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1497 int ret; 1498 1499 if (info.pair >= npairs) { 1500 info.pair = 0; 1501 base += master->erasesize; 1502 } 1503 1504 wunit = mtd_pairing_info_to_wunit(master, &info); 1505 pos = mtd_wunit_to_offset(mtd, base, wunit); 1506 1507 adjops.len = ops->len - ops->retlen; 1508 if (adjops.len > mtd->writesize - pageofs) 1509 adjops.len = mtd->writesize - pageofs; 1510 1511 adjops.ooblen = ops->ooblen - ops->oobretlen; 1512 if (adjops.ooblen > oobavail - adjops.ooboffs) 1513 adjops.ooblen = oobavail - adjops.ooboffs; 1514 1515 if (read) { 1516 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1517 if (ret > 0) 1518 max_bitflips = max(max_bitflips, ret); 1519 } else { 1520 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1521 } 1522 1523 if (ret < 0) 1524 return ret; 1525 1526 max_bitflips = max(max_bitflips, ret); 1527 ops->retlen += adjops.retlen; 1528 ops->oobretlen += adjops.oobretlen; 1529 adjops.datbuf += adjops.retlen; 1530 adjops.oobbuf += adjops.oobretlen; 1531 adjops.ooboffs = 0; 1532 pageofs = 0; 1533 info.pair++; 1534 } 1535 1536 return max_bitflips; 1537 } 1538 1539 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1540 { 1541 struct mtd_info *master = mtd_get_master(mtd); 1542 struct mtd_ecc_stats old_stats = master->ecc_stats; 1543 int ret_code; 1544 1545 ops->retlen = ops->oobretlen = 0; 1546 1547 ret_code = mtd_check_oob_ops(mtd, from, ops); 1548 if (ret_code) 1549 return ret_code; 1550 1551 ledtrig_mtd_activity(); 1552 1553 /* Check the validity of a potential fallback on mtd->_read */ 1554 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1555 return -EOPNOTSUPP; 1556 1557 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1558 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1559 else 1560 ret_code = mtd_read_oob_std(mtd, from, ops); 1561 1562 mtd_update_ecc_stats(mtd, master, &old_stats); 1563 1564 /* 1565 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1566 * similar to mtd->_read(), returning a non-negative integer 1567 * representing max bitflips. In other cases, mtd->_read_oob() may 1568 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1569 */ 1570 if (unlikely(ret_code < 0)) 1571 return ret_code; 1572 if (mtd->ecc_strength == 0) 1573 return 0; /* device lacks ecc */ 1574 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1575 } 1576 EXPORT_SYMBOL_GPL(mtd_read_oob); 1577 1578 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1579 struct mtd_oob_ops *ops) 1580 { 1581 struct mtd_info *master = mtd_get_master(mtd); 1582 int ret; 1583 1584 ops->retlen = ops->oobretlen = 0; 1585 1586 if (!(mtd->flags & MTD_WRITEABLE)) 1587 return -EROFS; 1588 1589 ret = mtd_check_oob_ops(mtd, to, ops); 1590 if (ret) 1591 return ret; 1592 1593 ledtrig_mtd_activity(); 1594 1595 /* Check the validity of a potential fallback on mtd->_write */ 1596 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1597 return -EOPNOTSUPP; 1598 1599 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1600 return mtd_io_emulated_slc(mtd, to, false, ops); 1601 1602 return mtd_write_oob_std(mtd, to, ops); 1603 } 1604 EXPORT_SYMBOL_GPL(mtd_write_oob); 1605 1606 /** 1607 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1608 * @mtd: MTD device structure 1609 * @section: ECC section. Depending on the layout you may have all the ECC 1610 * bytes stored in a single contiguous section, or one section 1611 * per ECC chunk (and sometime several sections for a single ECC 1612 * ECC chunk) 1613 * @oobecc: OOB region struct filled with the appropriate ECC position 1614 * information 1615 * 1616 * This function returns ECC section information in the OOB area. If you want 1617 * to get all the ECC bytes information, then you should call 1618 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1619 * 1620 * Returns zero on success, a negative error code otherwise. 1621 */ 1622 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1623 struct mtd_oob_region *oobecc) 1624 { 1625 struct mtd_info *master = mtd_get_master(mtd); 1626 1627 memset(oobecc, 0, sizeof(*oobecc)); 1628 1629 if (!master || section < 0) 1630 return -EINVAL; 1631 1632 if (!master->ooblayout || !master->ooblayout->ecc) 1633 return -ENOTSUPP; 1634 1635 return master->ooblayout->ecc(master, section, oobecc); 1636 } 1637 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1638 1639 /** 1640 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1641 * section 1642 * @mtd: MTD device structure 1643 * @section: Free section you are interested in. Depending on the layout 1644 * you may have all the free bytes stored in a single contiguous 1645 * section, or one section per ECC chunk plus an extra section 1646 * for the remaining bytes (or other funky layout). 1647 * @oobfree: OOB region struct filled with the appropriate free position 1648 * information 1649 * 1650 * This function returns free bytes position in the OOB area. If you want 1651 * to get all the free bytes information, then you should call 1652 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1653 * 1654 * Returns zero on success, a negative error code otherwise. 1655 */ 1656 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1657 struct mtd_oob_region *oobfree) 1658 { 1659 struct mtd_info *master = mtd_get_master(mtd); 1660 1661 memset(oobfree, 0, sizeof(*oobfree)); 1662 1663 if (!master || section < 0) 1664 return -EINVAL; 1665 1666 if (!master->ooblayout || !master->ooblayout->free) 1667 return -ENOTSUPP; 1668 1669 return master->ooblayout->free(master, section, oobfree); 1670 } 1671 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1672 1673 /** 1674 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1675 * @mtd: mtd info structure 1676 * @byte: the byte we are searching for 1677 * @sectionp: pointer where the section id will be stored 1678 * @oobregion: used to retrieve the ECC position 1679 * @iter: iterator function. Should be either mtd_ooblayout_free or 1680 * mtd_ooblayout_ecc depending on the region type you're searching for 1681 * 1682 * This function returns the section id and oobregion information of a 1683 * specific byte. For example, say you want to know where the 4th ECC byte is 1684 * stored, you'll use: 1685 * 1686 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1687 * 1688 * Returns zero on success, a negative error code otherwise. 1689 */ 1690 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1691 int *sectionp, struct mtd_oob_region *oobregion, 1692 int (*iter)(struct mtd_info *, 1693 int section, 1694 struct mtd_oob_region *oobregion)) 1695 { 1696 int pos = 0, ret, section = 0; 1697 1698 memset(oobregion, 0, sizeof(*oobregion)); 1699 1700 while (1) { 1701 ret = iter(mtd, section, oobregion); 1702 if (ret) 1703 return ret; 1704 1705 if (pos + oobregion->length > byte) 1706 break; 1707 1708 pos += oobregion->length; 1709 section++; 1710 } 1711 1712 /* 1713 * Adjust region info to make it start at the beginning at the 1714 * 'start' ECC byte. 1715 */ 1716 oobregion->offset += byte - pos; 1717 oobregion->length -= byte - pos; 1718 *sectionp = section; 1719 1720 return 0; 1721 } 1722 1723 /** 1724 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1725 * ECC byte 1726 * @mtd: mtd info structure 1727 * @eccbyte: the byte we are searching for 1728 * @section: pointer where the section id will be stored 1729 * @oobregion: OOB region information 1730 * 1731 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1732 * byte. 1733 * 1734 * Returns zero on success, a negative error code otherwise. 1735 */ 1736 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1737 int *section, 1738 struct mtd_oob_region *oobregion) 1739 { 1740 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1741 mtd_ooblayout_ecc); 1742 } 1743 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1744 1745 /** 1746 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1747 * @mtd: mtd info structure 1748 * @buf: destination buffer to store OOB bytes 1749 * @oobbuf: OOB buffer 1750 * @start: first byte to retrieve 1751 * @nbytes: number of bytes to retrieve 1752 * @iter: section iterator 1753 * 1754 * Extract bytes attached to a specific category (ECC or free) 1755 * from the OOB buffer and copy them into buf. 1756 * 1757 * Returns zero on success, a negative error code otherwise. 1758 */ 1759 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1760 const u8 *oobbuf, int start, int nbytes, 1761 int (*iter)(struct mtd_info *, 1762 int section, 1763 struct mtd_oob_region *oobregion)) 1764 { 1765 struct mtd_oob_region oobregion; 1766 int section, ret; 1767 1768 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1769 &oobregion, iter); 1770 1771 while (!ret) { 1772 int cnt; 1773 1774 cnt = min_t(int, nbytes, oobregion.length); 1775 memcpy(buf, oobbuf + oobregion.offset, cnt); 1776 buf += cnt; 1777 nbytes -= cnt; 1778 1779 if (!nbytes) 1780 break; 1781 1782 ret = iter(mtd, ++section, &oobregion); 1783 } 1784 1785 return ret; 1786 } 1787 1788 /** 1789 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1790 * @mtd: mtd info structure 1791 * @buf: source buffer to get OOB bytes from 1792 * @oobbuf: OOB buffer 1793 * @start: first OOB byte to set 1794 * @nbytes: number of OOB bytes to set 1795 * @iter: section iterator 1796 * 1797 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1798 * is selected by passing the appropriate iterator. 1799 * 1800 * Returns zero on success, a negative error code otherwise. 1801 */ 1802 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1803 u8 *oobbuf, int start, int nbytes, 1804 int (*iter)(struct mtd_info *, 1805 int section, 1806 struct mtd_oob_region *oobregion)) 1807 { 1808 struct mtd_oob_region oobregion; 1809 int section, ret; 1810 1811 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1812 &oobregion, iter); 1813 1814 while (!ret) { 1815 int cnt; 1816 1817 cnt = min_t(int, nbytes, oobregion.length); 1818 memcpy(oobbuf + oobregion.offset, buf, cnt); 1819 buf += cnt; 1820 nbytes -= cnt; 1821 1822 if (!nbytes) 1823 break; 1824 1825 ret = iter(mtd, ++section, &oobregion); 1826 } 1827 1828 return ret; 1829 } 1830 1831 /** 1832 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1833 * @mtd: mtd info structure 1834 * @iter: category iterator 1835 * 1836 * Count the number of bytes in a given category. 1837 * 1838 * Returns a positive value on success, a negative error code otherwise. 1839 */ 1840 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1841 int (*iter)(struct mtd_info *, 1842 int section, 1843 struct mtd_oob_region *oobregion)) 1844 { 1845 struct mtd_oob_region oobregion; 1846 int section = 0, ret, nbytes = 0; 1847 1848 while (1) { 1849 ret = iter(mtd, section++, &oobregion); 1850 if (ret) { 1851 if (ret == -ERANGE) 1852 ret = nbytes; 1853 break; 1854 } 1855 1856 nbytes += oobregion.length; 1857 } 1858 1859 return ret; 1860 } 1861 1862 /** 1863 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1864 * @mtd: mtd info structure 1865 * @eccbuf: destination buffer to store ECC bytes 1866 * @oobbuf: OOB buffer 1867 * @start: first ECC byte to retrieve 1868 * @nbytes: number of ECC bytes to retrieve 1869 * 1870 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1871 * 1872 * Returns zero on success, a negative error code otherwise. 1873 */ 1874 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1875 const u8 *oobbuf, int start, int nbytes) 1876 { 1877 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1878 mtd_ooblayout_ecc); 1879 } 1880 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1881 1882 /** 1883 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1884 * @mtd: mtd info structure 1885 * @eccbuf: source buffer to get ECC bytes from 1886 * @oobbuf: OOB buffer 1887 * @start: first ECC byte to set 1888 * @nbytes: number of ECC bytes to set 1889 * 1890 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1891 * 1892 * Returns zero on success, a negative error code otherwise. 1893 */ 1894 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1895 u8 *oobbuf, int start, int nbytes) 1896 { 1897 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1898 mtd_ooblayout_ecc); 1899 } 1900 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1901 1902 /** 1903 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1904 * @mtd: mtd info structure 1905 * @databuf: destination buffer to store ECC bytes 1906 * @oobbuf: OOB buffer 1907 * @start: first ECC byte to retrieve 1908 * @nbytes: number of ECC bytes to retrieve 1909 * 1910 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1911 * 1912 * Returns zero on success, a negative error code otherwise. 1913 */ 1914 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1915 const u8 *oobbuf, int start, int nbytes) 1916 { 1917 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1918 mtd_ooblayout_free); 1919 } 1920 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1921 1922 /** 1923 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1924 * @mtd: mtd info structure 1925 * @databuf: source buffer to get data bytes from 1926 * @oobbuf: OOB buffer 1927 * @start: first ECC byte to set 1928 * @nbytes: number of ECC bytes to set 1929 * 1930 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 1931 * 1932 * Returns zero on success, a negative error code otherwise. 1933 */ 1934 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1935 u8 *oobbuf, int start, int nbytes) 1936 { 1937 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1938 mtd_ooblayout_free); 1939 } 1940 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1941 1942 /** 1943 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1944 * @mtd: mtd info structure 1945 * 1946 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1947 * 1948 * Returns zero on success, a negative error code otherwise. 1949 */ 1950 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1951 { 1952 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1953 } 1954 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1955 1956 /** 1957 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1958 * @mtd: mtd info structure 1959 * 1960 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1961 * 1962 * Returns zero on success, a negative error code otherwise. 1963 */ 1964 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1965 { 1966 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1967 } 1968 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1969 1970 /* 1971 * Method to access the protection register area, present in some flash 1972 * devices. The user data is one time programmable but the factory data is read 1973 * only. 1974 */ 1975 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1976 struct otp_info *buf) 1977 { 1978 struct mtd_info *master = mtd_get_master(mtd); 1979 1980 if (!master->_get_fact_prot_info) 1981 return -EOPNOTSUPP; 1982 if (!len) 1983 return 0; 1984 return master->_get_fact_prot_info(master, len, retlen, buf); 1985 } 1986 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1987 1988 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1989 size_t *retlen, u_char *buf) 1990 { 1991 struct mtd_info *master = mtd_get_master(mtd); 1992 1993 *retlen = 0; 1994 if (!master->_read_fact_prot_reg) 1995 return -EOPNOTSUPP; 1996 if (!len) 1997 return 0; 1998 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 1999 } 2000 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2001 2002 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2003 struct otp_info *buf) 2004 { 2005 struct mtd_info *master = mtd_get_master(mtd); 2006 2007 if (!master->_get_user_prot_info) 2008 return -EOPNOTSUPP; 2009 if (!len) 2010 return 0; 2011 return master->_get_user_prot_info(master, len, retlen, buf); 2012 } 2013 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2014 2015 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2016 size_t *retlen, u_char *buf) 2017 { 2018 struct mtd_info *master = mtd_get_master(mtd); 2019 2020 *retlen = 0; 2021 if (!master->_read_user_prot_reg) 2022 return -EOPNOTSUPP; 2023 if (!len) 2024 return 0; 2025 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2026 } 2027 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2028 2029 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2030 size_t *retlen, const u_char *buf) 2031 { 2032 struct mtd_info *master = mtd_get_master(mtd); 2033 int ret; 2034 2035 *retlen = 0; 2036 if (!master->_write_user_prot_reg) 2037 return -EOPNOTSUPP; 2038 if (!len) 2039 return 0; 2040 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2041 if (ret) 2042 return ret; 2043 2044 /* 2045 * If no data could be written at all, we are out of memory and 2046 * must return -ENOSPC. 2047 */ 2048 return (*retlen) ? 0 : -ENOSPC; 2049 } 2050 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2051 2052 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2053 { 2054 struct mtd_info *master = mtd_get_master(mtd); 2055 2056 if (!master->_lock_user_prot_reg) 2057 return -EOPNOTSUPP; 2058 if (!len) 2059 return 0; 2060 return master->_lock_user_prot_reg(master, from, len); 2061 } 2062 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2063 2064 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2065 { 2066 struct mtd_info *master = mtd_get_master(mtd); 2067 2068 if (!master->_erase_user_prot_reg) 2069 return -EOPNOTSUPP; 2070 if (!len) 2071 return 0; 2072 return master->_erase_user_prot_reg(master, from, len); 2073 } 2074 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2075 2076 /* Chip-supported device locking */ 2077 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2078 { 2079 struct mtd_info *master = mtd_get_master(mtd); 2080 2081 if (!master->_lock) 2082 return -EOPNOTSUPP; 2083 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2084 return -EINVAL; 2085 if (!len) 2086 return 0; 2087 2088 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2089 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2090 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2091 } 2092 2093 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2094 } 2095 EXPORT_SYMBOL_GPL(mtd_lock); 2096 2097 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2098 { 2099 struct mtd_info *master = mtd_get_master(mtd); 2100 2101 if (!master->_unlock) 2102 return -EOPNOTSUPP; 2103 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2104 return -EINVAL; 2105 if (!len) 2106 return 0; 2107 2108 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2109 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2110 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2111 } 2112 2113 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2114 } 2115 EXPORT_SYMBOL_GPL(mtd_unlock); 2116 2117 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2118 { 2119 struct mtd_info *master = mtd_get_master(mtd); 2120 2121 if (!master->_is_locked) 2122 return -EOPNOTSUPP; 2123 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2124 return -EINVAL; 2125 if (!len) 2126 return 0; 2127 2128 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2129 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2130 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2131 } 2132 2133 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2134 } 2135 EXPORT_SYMBOL_GPL(mtd_is_locked); 2136 2137 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2138 { 2139 struct mtd_info *master = mtd_get_master(mtd); 2140 2141 if (ofs < 0 || ofs >= mtd->size) 2142 return -EINVAL; 2143 if (!master->_block_isreserved) 2144 return 0; 2145 2146 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2147 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2148 2149 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2150 } 2151 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2152 2153 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2154 { 2155 struct mtd_info *master = mtd_get_master(mtd); 2156 2157 if (ofs < 0 || ofs >= mtd->size) 2158 return -EINVAL; 2159 if (!master->_block_isbad) 2160 return 0; 2161 2162 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2163 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2164 2165 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2166 } 2167 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2168 2169 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2170 { 2171 struct mtd_info *master = mtd_get_master(mtd); 2172 int ret; 2173 2174 if (!master->_block_markbad) 2175 return -EOPNOTSUPP; 2176 if (ofs < 0 || ofs >= mtd->size) 2177 return -EINVAL; 2178 if (!(mtd->flags & MTD_WRITEABLE)) 2179 return -EROFS; 2180 2181 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2182 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2183 2184 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2185 if (ret) 2186 return ret; 2187 2188 while (mtd->parent) { 2189 mtd->ecc_stats.badblocks++; 2190 mtd = mtd->parent; 2191 } 2192 2193 return 0; 2194 } 2195 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2196 2197 /* 2198 * default_mtd_writev - the default writev method 2199 * @mtd: mtd device description object pointer 2200 * @vecs: the vectors to write 2201 * @count: count of vectors in @vecs 2202 * @to: the MTD device offset to write to 2203 * @retlen: on exit contains the count of bytes written to the MTD device. 2204 * 2205 * This function returns zero in case of success and a negative error code in 2206 * case of failure. 2207 */ 2208 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2209 unsigned long count, loff_t to, size_t *retlen) 2210 { 2211 unsigned long i; 2212 size_t totlen = 0, thislen; 2213 int ret = 0; 2214 2215 for (i = 0; i < count; i++) { 2216 if (!vecs[i].iov_len) 2217 continue; 2218 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2219 vecs[i].iov_base); 2220 totlen += thislen; 2221 if (ret || thislen != vecs[i].iov_len) 2222 break; 2223 to += vecs[i].iov_len; 2224 } 2225 *retlen = totlen; 2226 return ret; 2227 } 2228 2229 /* 2230 * mtd_writev - the vector-based MTD write method 2231 * @mtd: mtd device description object pointer 2232 * @vecs: the vectors to write 2233 * @count: count of vectors in @vecs 2234 * @to: the MTD device offset to write to 2235 * @retlen: on exit contains the count of bytes written to the MTD device. 2236 * 2237 * This function returns zero in case of success and a negative error code in 2238 * case of failure. 2239 */ 2240 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2241 unsigned long count, loff_t to, size_t *retlen) 2242 { 2243 struct mtd_info *master = mtd_get_master(mtd); 2244 2245 *retlen = 0; 2246 if (!(mtd->flags & MTD_WRITEABLE)) 2247 return -EROFS; 2248 2249 if (!master->_writev) 2250 return default_mtd_writev(mtd, vecs, count, to, retlen); 2251 2252 return master->_writev(master, vecs, count, 2253 mtd_get_master_ofs(mtd, to), retlen); 2254 } 2255 EXPORT_SYMBOL_GPL(mtd_writev); 2256 2257 /** 2258 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2259 * @mtd: mtd device description object pointer 2260 * @size: a pointer to the ideal or maximum size of the allocation, points 2261 * to the actual allocation size on success. 2262 * 2263 * This routine attempts to allocate a contiguous kernel buffer up to 2264 * the specified size, backing off the size of the request exponentially 2265 * until the request succeeds or until the allocation size falls below 2266 * the system page size. This attempts to make sure it does not adversely 2267 * impact system performance, so when allocating more than one page, we 2268 * ask the memory allocator to avoid re-trying, swapping, writing back 2269 * or performing I/O. 2270 * 2271 * Note, this function also makes sure that the allocated buffer is aligned to 2272 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2273 * 2274 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2275 * to handle smaller (i.e. degraded) buffer allocations under low- or 2276 * fragmented-memory situations where such reduced allocations, from a 2277 * requested ideal, are allowed. 2278 * 2279 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2280 */ 2281 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2282 { 2283 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2284 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2285 void *kbuf; 2286 2287 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2288 2289 while (*size > min_alloc) { 2290 kbuf = kmalloc(*size, flags); 2291 if (kbuf) 2292 return kbuf; 2293 2294 *size >>= 1; 2295 *size = ALIGN(*size, mtd->writesize); 2296 } 2297 2298 /* 2299 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2300 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2301 */ 2302 return kmalloc(*size, GFP_KERNEL); 2303 } 2304 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2305 2306 #ifdef CONFIG_PROC_FS 2307 2308 /*====================================================================*/ 2309 /* Support for /proc/mtd */ 2310 2311 static int mtd_proc_show(struct seq_file *m, void *v) 2312 { 2313 struct mtd_info *mtd; 2314 2315 seq_puts(m, "dev: size erasesize name\n"); 2316 mutex_lock(&mtd_table_mutex); 2317 mtd_for_each_device(mtd) { 2318 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2319 mtd->index, (unsigned long long)mtd->size, 2320 mtd->erasesize, mtd->name); 2321 } 2322 mutex_unlock(&mtd_table_mutex); 2323 return 0; 2324 } 2325 #endif /* CONFIG_PROC_FS */ 2326 2327 /*====================================================================*/ 2328 /* Init code */ 2329 2330 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2331 { 2332 struct backing_dev_info *bdi; 2333 int ret; 2334 2335 bdi = bdi_alloc(NUMA_NO_NODE); 2336 if (!bdi) 2337 return ERR_PTR(-ENOMEM); 2338 bdi->ra_pages = 0; 2339 bdi->io_pages = 0; 2340 2341 /* 2342 * We put '-0' suffix to the name to get the same name format as we 2343 * used to get. Since this is called only once, we get a unique name. 2344 */ 2345 ret = bdi_register(bdi, "%.28s-0", name); 2346 if (ret) 2347 bdi_put(bdi); 2348 2349 return ret ? ERR_PTR(ret) : bdi; 2350 } 2351 2352 static struct proc_dir_entry *proc_mtd; 2353 2354 static int __init init_mtd(void) 2355 { 2356 int ret; 2357 2358 ret = class_register(&mtd_class); 2359 if (ret) 2360 goto err_reg; 2361 2362 mtd_bdi = mtd_bdi_init("mtd"); 2363 if (IS_ERR(mtd_bdi)) { 2364 ret = PTR_ERR(mtd_bdi); 2365 goto err_bdi; 2366 } 2367 2368 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2369 2370 ret = init_mtdchar(); 2371 if (ret) 2372 goto out_procfs; 2373 2374 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2375 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2376 &mtd_expert_analysis_mode); 2377 2378 return 0; 2379 2380 out_procfs: 2381 if (proc_mtd) 2382 remove_proc_entry("mtd", NULL); 2383 bdi_put(mtd_bdi); 2384 err_bdi: 2385 class_unregister(&mtd_class); 2386 err_reg: 2387 pr_err("Error registering mtd class or bdi: %d\n", ret); 2388 return ret; 2389 } 2390 2391 static void __exit cleanup_mtd(void) 2392 { 2393 debugfs_remove_recursive(dfs_dir_mtd); 2394 cleanup_mtdchar(); 2395 if (proc_mtd) 2396 remove_proc_entry("mtd", NULL); 2397 class_unregister(&mtd_class); 2398 bdi_unregister(mtd_bdi); 2399 bdi_put(mtd_bdi); 2400 idr_destroy(&mtd_idr); 2401 } 2402 2403 module_init(init_mtd); 2404 module_exit(cleanup_mtd); 2405 2406 MODULE_LICENSE("GPL"); 2407 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2408 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2409