xref: /linux/drivers/mtd/mtdcore.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41 #include <linux/kconfig.h>
42 
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45 
46 #include "mtdcore.h"
47 
48 static struct backing_dev_info mtd_bdi = {
49 };
50 
51 #ifdef CONFIG_PM_SLEEP
52 
53 static int mtd_cls_suspend(struct device *dev)
54 {
55 	struct mtd_info *mtd = dev_get_drvdata(dev);
56 
57 	return mtd ? mtd_suspend(mtd) : 0;
58 }
59 
60 static int mtd_cls_resume(struct device *dev)
61 {
62 	struct mtd_info *mtd = dev_get_drvdata(dev);
63 
64 	if (mtd)
65 		mtd_resume(mtd);
66 	return 0;
67 }
68 
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74 
75 static struct class mtd_class = {
76 	.name = "mtd",
77 	.owner = THIS_MODULE,
78 	.pm = MTD_CLS_PM_OPS,
79 };
80 
81 static DEFINE_IDR(mtd_idr);
82 
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84    should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87 
88 struct mtd_info *__mtd_next_device(int i)
89 {
90 	return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93 
94 static LIST_HEAD(mtd_notifiers);
95 
96 
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98 
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100  * the mtd_info will probably want to use the release() hook...
101  */
102 static void mtd_release(struct device *dev)
103 {
104 	struct mtd_info *mtd = dev_get_drvdata(dev);
105 	dev_t index = MTD_DEVT(mtd->index);
106 
107 	/* remove /dev/mtdXro node */
108 	device_destroy(&mtd_class, index + 1);
109 }
110 
111 static ssize_t mtd_type_show(struct device *dev,
112 		struct device_attribute *attr, char *buf)
113 {
114 	struct mtd_info *mtd = dev_get_drvdata(dev);
115 	char *type;
116 
117 	switch (mtd->type) {
118 	case MTD_ABSENT:
119 		type = "absent";
120 		break;
121 	case MTD_RAM:
122 		type = "ram";
123 		break;
124 	case MTD_ROM:
125 		type = "rom";
126 		break;
127 	case MTD_NORFLASH:
128 		type = "nor";
129 		break;
130 	case MTD_NANDFLASH:
131 		type = "nand";
132 		break;
133 	case MTD_DATAFLASH:
134 		type = "dataflash";
135 		break;
136 	case MTD_UBIVOLUME:
137 		type = "ubi";
138 		break;
139 	case MTD_MLCNANDFLASH:
140 		type = "mlc-nand";
141 		break;
142 	default:
143 		type = "unknown";
144 	}
145 
146 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149 
150 static ssize_t mtd_flags_show(struct device *dev,
151 		struct device_attribute *attr, char *buf)
152 {
153 	struct mtd_info *mtd = dev_get_drvdata(dev);
154 
155 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156 
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159 
160 static ssize_t mtd_size_show(struct device *dev,
161 		struct device_attribute *attr, char *buf)
162 {
163 	struct mtd_info *mtd = dev_get_drvdata(dev);
164 
165 	return snprintf(buf, PAGE_SIZE, "%llu\n",
166 		(unsigned long long)mtd->size);
167 
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170 
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177 
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180 
181 static ssize_t mtd_writesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187 
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190 
191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196 
197 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198 
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201 
202 static ssize_t mtd_oobsize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208 
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211 
212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 
217 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218 
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 	NULL);
222 
223 static ssize_t mtd_name_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229 
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232 
233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 				     struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241 
242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 					  struct device_attribute *attr,
244 					  char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250 
251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 					   struct device_attribute *attr,
253 					   const char *buf, size_t count)
254 {
255 	struct mtd_info *mtd = dev_get_drvdata(dev);
256 	unsigned int bitflip_threshold;
257 	int retval;
258 
259 	retval = kstrtouint(buf, 0, &bitflip_threshold);
260 	if (retval)
261 		return retval;
262 
263 	mtd->bitflip_threshold = bitflip_threshold;
264 	return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 		   mtd_bitflip_threshold_show,
268 		   mtd_bitflip_threshold_store);
269 
270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	struct mtd_info *mtd = dev_get_drvdata(dev);
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276 
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 		   mtd_ecc_stats_corrected_show, NULL);
290 
291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300 
301 static ssize_t mtd_badblocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310 
311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320 
321 static struct attribute *mtd_attrs[] = {
322 	&dev_attr_type.attr,
323 	&dev_attr_flags.attr,
324 	&dev_attr_size.attr,
325 	&dev_attr_erasesize.attr,
326 	&dev_attr_writesize.attr,
327 	&dev_attr_subpagesize.attr,
328 	&dev_attr_oobsize.attr,
329 	&dev_attr_numeraseregions.attr,
330 	&dev_attr_name.attr,
331 	&dev_attr_ecc_strength.attr,
332 	&dev_attr_ecc_step_size.attr,
333 	&dev_attr_corrected_bits.attr,
334 	&dev_attr_ecc_failures.attr,
335 	&dev_attr_bad_blocks.attr,
336 	&dev_attr_bbt_blocks.attr,
337 	&dev_attr_bitflip_threshold.attr,
338 	NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341 
342 static struct device_type mtd_devtype = {
343 	.name		= "mtd",
344 	.groups		= mtd_groups,
345 	.release	= mtd_release,
346 };
347 
348 #ifndef CONFIG_MMU
349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 	switch (mtd->type) {
352 	case MTD_RAM:
353 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 	case MTD_ROM:
356 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 			NOMMU_MAP_READ;
358 	default:
359 		return NOMMU_MAP_COPY;
360 	}
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364 
365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 			       void *cmd)
367 {
368 	struct mtd_info *mtd;
369 
370 	mtd = container_of(n, struct mtd_info, reboot_notifier);
371 	mtd->_reboot(mtd);
372 
373 	return NOTIFY_DONE;
374 }
375 
376 /**
377  *	add_mtd_device - register an MTD device
378  *	@mtd: pointer to new MTD device info structure
379  *
380  *	Add a device to the list of MTD devices present in the system, and
381  *	notify each currently active MTD 'user' of its arrival. Returns
382  *	zero on success or non-zero on failure.
383  */
384 
385 int add_mtd_device(struct mtd_info *mtd)
386 {
387 	struct mtd_notifier *not;
388 	int i, error;
389 
390 	mtd->backing_dev_info = &mtd_bdi;
391 
392 	BUG_ON(mtd->writesize == 0);
393 	mutex_lock(&mtd_table_mutex);
394 
395 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
396 	if (i < 0) {
397 		error = i;
398 		goto fail_locked;
399 	}
400 
401 	mtd->index = i;
402 	mtd->usecount = 0;
403 
404 	/* default value if not set by driver */
405 	if (mtd->bitflip_threshold == 0)
406 		mtd->bitflip_threshold = mtd->ecc_strength;
407 
408 	if (is_power_of_2(mtd->erasesize))
409 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
410 	else
411 		mtd->erasesize_shift = 0;
412 
413 	if (is_power_of_2(mtd->writesize))
414 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
415 	else
416 		mtd->writesize_shift = 0;
417 
418 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
419 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
420 
421 	/* Some chips always power up locked. Unlock them now */
422 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
423 		error = mtd_unlock(mtd, 0, mtd->size);
424 		if (error && error != -EOPNOTSUPP)
425 			printk(KERN_WARNING
426 			       "%s: unlock failed, writes may not work\n",
427 			       mtd->name);
428 		/* Ignore unlock failures? */
429 		error = 0;
430 	}
431 
432 	/* Caller should have set dev.parent to match the
433 	 * physical device.
434 	 */
435 	mtd->dev.type = &mtd_devtype;
436 	mtd->dev.class = &mtd_class;
437 	mtd->dev.devt = MTD_DEVT(i);
438 	dev_set_name(&mtd->dev, "mtd%d", i);
439 	dev_set_drvdata(&mtd->dev, mtd);
440 	error = device_register(&mtd->dev);
441 	if (error)
442 		goto fail_added;
443 
444 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
445 		      "mtd%dro", i);
446 
447 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
448 	/* No need to get a refcount on the module containing
449 	   the notifier, since we hold the mtd_table_mutex */
450 	list_for_each_entry(not, &mtd_notifiers, list)
451 		not->add(mtd);
452 
453 	mutex_unlock(&mtd_table_mutex);
454 	/* We _know_ we aren't being removed, because
455 	   our caller is still holding us here. So none
456 	   of this try_ nonsense, and no bitching about it
457 	   either. :) */
458 	__module_get(THIS_MODULE);
459 	return 0;
460 
461 fail_added:
462 	idr_remove(&mtd_idr, i);
463 fail_locked:
464 	mutex_unlock(&mtd_table_mutex);
465 	return error;
466 }
467 
468 /**
469  *	del_mtd_device - unregister an MTD device
470  *	@mtd: pointer to MTD device info structure
471  *
472  *	Remove a device from the list of MTD devices present in the system,
473  *	and notify each currently active MTD 'user' of its departure.
474  *	Returns zero on success or 1 on failure, which currently will happen
475  *	if the requested device does not appear to be present in the list.
476  */
477 
478 int del_mtd_device(struct mtd_info *mtd)
479 {
480 	int ret;
481 	struct mtd_notifier *not;
482 
483 	mutex_lock(&mtd_table_mutex);
484 
485 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
486 		ret = -ENODEV;
487 		goto out_error;
488 	}
489 
490 	/* No need to get a refcount on the module containing
491 		the notifier, since we hold the mtd_table_mutex */
492 	list_for_each_entry(not, &mtd_notifiers, list)
493 		not->remove(mtd);
494 
495 	if (mtd->usecount) {
496 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
497 		       mtd->index, mtd->name, mtd->usecount);
498 		ret = -EBUSY;
499 	} else {
500 		device_unregister(&mtd->dev);
501 
502 		idr_remove(&mtd_idr, mtd->index);
503 
504 		module_put(THIS_MODULE);
505 		ret = 0;
506 	}
507 
508 out_error:
509 	mutex_unlock(&mtd_table_mutex);
510 	return ret;
511 }
512 
513 static int mtd_add_device_partitions(struct mtd_info *mtd,
514 				     struct mtd_partition *real_parts,
515 				     int nbparts)
516 {
517 	int ret;
518 
519 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
520 		ret = add_mtd_device(mtd);
521 		if (ret)
522 			return ret;
523 	}
524 
525 	if (nbparts > 0) {
526 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
527 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
528 			del_mtd_device(mtd);
529 		return ret;
530 	}
531 
532 	return 0;
533 }
534 
535 
536 /**
537  * mtd_device_parse_register - parse partitions and register an MTD device.
538  *
539  * @mtd: the MTD device to register
540  * @types: the list of MTD partition probes to try, see
541  *         'parse_mtd_partitions()' for more information
542  * @parser_data: MTD partition parser-specific data
543  * @parts: fallback partition information to register, if parsing fails;
544  *         only valid if %nr_parts > %0
545  * @nr_parts: the number of partitions in parts, if zero then the full
546  *            MTD device is registered if no partition info is found
547  *
548  * This function aggregates MTD partitions parsing (done by
549  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
550  * basically follows the most common pattern found in many MTD drivers:
551  *
552  * * It first tries to probe partitions on MTD device @mtd using parsers
553  *   specified in @types (if @types is %NULL, then the default list of parsers
554  *   is used, see 'parse_mtd_partitions()' for more information). If none are
555  *   found this functions tries to fallback to information specified in
556  *   @parts/@nr_parts.
557  * * If any partitioning info was found, this function registers the found
558  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
559  *   as a whole is registered first.
560  * * If no partitions were found this function just registers the MTD device
561  *   @mtd and exits.
562  *
563  * Returns zero in case of success and a negative error code in case of failure.
564  */
565 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
566 			      struct mtd_part_parser_data *parser_data,
567 			      const struct mtd_partition *parts,
568 			      int nr_parts)
569 {
570 	int ret;
571 	struct mtd_partition *real_parts = NULL;
572 
573 	ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
574 	if (ret <= 0 && nr_parts && parts) {
575 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
576 				     GFP_KERNEL);
577 		if (!real_parts)
578 			ret = -ENOMEM;
579 		else
580 			ret = nr_parts;
581 	}
582 
583 	if (ret >= 0)
584 		ret = mtd_add_device_partitions(mtd, real_parts, ret);
585 
586 	/*
587 	 * FIXME: some drivers unfortunately call this function more than once.
588 	 * So we have to check if we've already assigned the reboot notifier.
589 	 *
590 	 * Generally, we can make multiple calls work for most cases, but it
591 	 * does cause problems with parse_mtd_partitions() above (e.g.,
592 	 * cmdlineparts will register partitions more than once).
593 	 */
594 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
595 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
596 		register_reboot_notifier(&mtd->reboot_notifier);
597 	}
598 
599 	kfree(real_parts);
600 	return ret;
601 }
602 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
603 
604 /**
605  * mtd_device_unregister - unregister an existing MTD device.
606  *
607  * @master: the MTD device to unregister.  This will unregister both the master
608  *          and any partitions if registered.
609  */
610 int mtd_device_unregister(struct mtd_info *master)
611 {
612 	int err;
613 
614 	if (master->_reboot)
615 		unregister_reboot_notifier(&master->reboot_notifier);
616 
617 	err = del_mtd_partitions(master);
618 	if (err)
619 		return err;
620 
621 	if (!device_is_registered(&master->dev))
622 		return 0;
623 
624 	return del_mtd_device(master);
625 }
626 EXPORT_SYMBOL_GPL(mtd_device_unregister);
627 
628 /**
629  *	register_mtd_user - register a 'user' of MTD devices.
630  *	@new: pointer to notifier info structure
631  *
632  *	Registers a pair of callbacks function to be called upon addition
633  *	or removal of MTD devices. Causes the 'add' callback to be immediately
634  *	invoked for each MTD device currently present in the system.
635  */
636 void register_mtd_user (struct mtd_notifier *new)
637 {
638 	struct mtd_info *mtd;
639 
640 	mutex_lock(&mtd_table_mutex);
641 
642 	list_add(&new->list, &mtd_notifiers);
643 
644 	__module_get(THIS_MODULE);
645 
646 	mtd_for_each_device(mtd)
647 		new->add(mtd);
648 
649 	mutex_unlock(&mtd_table_mutex);
650 }
651 EXPORT_SYMBOL_GPL(register_mtd_user);
652 
653 /**
654  *	unregister_mtd_user - unregister a 'user' of MTD devices.
655  *	@old: pointer to notifier info structure
656  *
657  *	Removes a callback function pair from the list of 'users' to be
658  *	notified upon addition or removal of MTD devices. Causes the
659  *	'remove' callback to be immediately invoked for each MTD device
660  *	currently present in the system.
661  */
662 int unregister_mtd_user (struct mtd_notifier *old)
663 {
664 	struct mtd_info *mtd;
665 
666 	mutex_lock(&mtd_table_mutex);
667 
668 	module_put(THIS_MODULE);
669 
670 	mtd_for_each_device(mtd)
671 		old->remove(mtd);
672 
673 	list_del(&old->list);
674 	mutex_unlock(&mtd_table_mutex);
675 	return 0;
676 }
677 EXPORT_SYMBOL_GPL(unregister_mtd_user);
678 
679 /**
680  *	get_mtd_device - obtain a validated handle for an MTD device
681  *	@mtd: last known address of the required MTD device
682  *	@num: internal device number of the required MTD device
683  *
684  *	Given a number and NULL address, return the num'th entry in the device
685  *	table, if any.	Given an address and num == -1, search the device table
686  *	for a device with that address and return if it's still present. Given
687  *	both, return the num'th driver only if its address matches. Return
688  *	error code if not.
689  */
690 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
691 {
692 	struct mtd_info *ret = NULL, *other;
693 	int err = -ENODEV;
694 
695 	mutex_lock(&mtd_table_mutex);
696 
697 	if (num == -1) {
698 		mtd_for_each_device(other) {
699 			if (other == mtd) {
700 				ret = mtd;
701 				break;
702 			}
703 		}
704 	} else if (num >= 0) {
705 		ret = idr_find(&mtd_idr, num);
706 		if (mtd && mtd != ret)
707 			ret = NULL;
708 	}
709 
710 	if (!ret) {
711 		ret = ERR_PTR(err);
712 		goto out;
713 	}
714 
715 	err = __get_mtd_device(ret);
716 	if (err)
717 		ret = ERR_PTR(err);
718 out:
719 	mutex_unlock(&mtd_table_mutex);
720 	return ret;
721 }
722 EXPORT_SYMBOL_GPL(get_mtd_device);
723 
724 
725 int __get_mtd_device(struct mtd_info *mtd)
726 {
727 	int err;
728 
729 	if (!try_module_get(mtd->owner))
730 		return -ENODEV;
731 
732 	if (mtd->_get_device) {
733 		err = mtd->_get_device(mtd);
734 
735 		if (err) {
736 			module_put(mtd->owner);
737 			return err;
738 		}
739 	}
740 	mtd->usecount++;
741 	return 0;
742 }
743 EXPORT_SYMBOL_GPL(__get_mtd_device);
744 
745 /**
746  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
747  *	device name
748  *	@name: MTD device name to open
749  *
750  * 	This function returns MTD device description structure in case of
751  * 	success and an error code in case of failure.
752  */
753 struct mtd_info *get_mtd_device_nm(const char *name)
754 {
755 	int err = -ENODEV;
756 	struct mtd_info *mtd = NULL, *other;
757 
758 	mutex_lock(&mtd_table_mutex);
759 
760 	mtd_for_each_device(other) {
761 		if (!strcmp(name, other->name)) {
762 			mtd = other;
763 			break;
764 		}
765 	}
766 
767 	if (!mtd)
768 		goto out_unlock;
769 
770 	err = __get_mtd_device(mtd);
771 	if (err)
772 		goto out_unlock;
773 
774 	mutex_unlock(&mtd_table_mutex);
775 	return mtd;
776 
777 out_unlock:
778 	mutex_unlock(&mtd_table_mutex);
779 	return ERR_PTR(err);
780 }
781 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
782 
783 void put_mtd_device(struct mtd_info *mtd)
784 {
785 	mutex_lock(&mtd_table_mutex);
786 	__put_mtd_device(mtd);
787 	mutex_unlock(&mtd_table_mutex);
788 
789 }
790 EXPORT_SYMBOL_GPL(put_mtd_device);
791 
792 void __put_mtd_device(struct mtd_info *mtd)
793 {
794 	--mtd->usecount;
795 	BUG_ON(mtd->usecount < 0);
796 
797 	if (mtd->_put_device)
798 		mtd->_put_device(mtd);
799 
800 	module_put(mtd->owner);
801 }
802 EXPORT_SYMBOL_GPL(__put_mtd_device);
803 
804 /*
805  * Erase is an asynchronous operation.  Device drivers are supposed
806  * to call instr->callback() whenever the operation completes, even
807  * if it completes with a failure.
808  * Callers are supposed to pass a callback function and wait for it
809  * to be called before writing to the block.
810  */
811 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
812 {
813 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
814 		return -EINVAL;
815 	if (!(mtd->flags & MTD_WRITEABLE))
816 		return -EROFS;
817 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
818 	if (!instr->len) {
819 		instr->state = MTD_ERASE_DONE;
820 		mtd_erase_callback(instr);
821 		return 0;
822 	}
823 	return mtd->_erase(mtd, instr);
824 }
825 EXPORT_SYMBOL_GPL(mtd_erase);
826 
827 /*
828  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
829  */
830 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
831 	      void **virt, resource_size_t *phys)
832 {
833 	*retlen = 0;
834 	*virt = NULL;
835 	if (phys)
836 		*phys = 0;
837 	if (!mtd->_point)
838 		return -EOPNOTSUPP;
839 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
840 		return -EINVAL;
841 	if (!len)
842 		return 0;
843 	return mtd->_point(mtd, from, len, retlen, virt, phys);
844 }
845 EXPORT_SYMBOL_GPL(mtd_point);
846 
847 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
848 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
849 {
850 	if (!mtd->_point)
851 		return -EOPNOTSUPP;
852 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
853 		return -EINVAL;
854 	if (!len)
855 		return 0;
856 	return mtd->_unpoint(mtd, from, len);
857 }
858 EXPORT_SYMBOL_GPL(mtd_unpoint);
859 
860 /*
861  * Allow NOMMU mmap() to directly map the device (if not NULL)
862  * - return the address to which the offset maps
863  * - return -ENOSYS to indicate refusal to do the mapping
864  */
865 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
866 				    unsigned long offset, unsigned long flags)
867 {
868 	if (!mtd->_get_unmapped_area)
869 		return -EOPNOTSUPP;
870 	if (offset >= mtd->size || len > mtd->size - offset)
871 		return -EINVAL;
872 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
873 }
874 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
875 
876 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
877 	     u_char *buf)
878 {
879 	int ret_code;
880 	*retlen = 0;
881 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
882 		return -EINVAL;
883 	if (!len)
884 		return 0;
885 
886 	/*
887 	 * In the absence of an error, drivers return a non-negative integer
888 	 * representing the maximum number of bitflips that were corrected on
889 	 * any one ecc region (if applicable; zero otherwise).
890 	 */
891 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
892 	if (unlikely(ret_code < 0))
893 		return ret_code;
894 	if (mtd->ecc_strength == 0)
895 		return 0;	/* device lacks ecc */
896 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
897 }
898 EXPORT_SYMBOL_GPL(mtd_read);
899 
900 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
901 	      const u_char *buf)
902 {
903 	*retlen = 0;
904 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
905 		return -EINVAL;
906 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
907 		return -EROFS;
908 	if (!len)
909 		return 0;
910 	return mtd->_write(mtd, to, len, retlen, buf);
911 }
912 EXPORT_SYMBOL_GPL(mtd_write);
913 
914 /*
915  * In blackbox flight recorder like scenarios we want to make successful writes
916  * in interrupt context. panic_write() is only intended to be called when its
917  * known the kernel is about to panic and we need the write to succeed. Since
918  * the kernel is not going to be running for much longer, this function can
919  * break locks and delay to ensure the write succeeds (but not sleep).
920  */
921 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
922 		    const u_char *buf)
923 {
924 	*retlen = 0;
925 	if (!mtd->_panic_write)
926 		return -EOPNOTSUPP;
927 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
928 		return -EINVAL;
929 	if (!(mtd->flags & MTD_WRITEABLE))
930 		return -EROFS;
931 	if (!len)
932 		return 0;
933 	return mtd->_panic_write(mtd, to, len, retlen, buf);
934 }
935 EXPORT_SYMBOL_GPL(mtd_panic_write);
936 
937 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
938 {
939 	int ret_code;
940 	ops->retlen = ops->oobretlen = 0;
941 	if (!mtd->_read_oob)
942 		return -EOPNOTSUPP;
943 	/*
944 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
945 	 * similar to mtd->_read(), returning a non-negative integer
946 	 * representing max bitflips. In other cases, mtd->_read_oob() may
947 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
948 	 */
949 	ret_code = mtd->_read_oob(mtd, from, ops);
950 	if (unlikely(ret_code < 0))
951 		return ret_code;
952 	if (mtd->ecc_strength == 0)
953 		return 0;	/* device lacks ecc */
954 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
955 }
956 EXPORT_SYMBOL_GPL(mtd_read_oob);
957 
958 /*
959  * Method to access the protection register area, present in some flash
960  * devices. The user data is one time programmable but the factory data is read
961  * only.
962  */
963 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
964 			   struct otp_info *buf)
965 {
966 	if (!mtd->_get_fact_prot_info)
967 		return -EOPNOTSUPP;
968 	if (!len)
969 		return 0;
970 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
971 }
972 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
973 
974 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
975 			   size_t *retlen, u_char *buf)
976 {
977 	*retlen = 0;
978 	if (!mtd->_read_fact_prot_reg)
979 		return -EOPNOTSUPP;
980 	if (!len)
981 		return 0;
982 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
983 }
984 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
985 
986 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
987 			   struct otp_info *buf)
988 {
989 	if (!mtd->_get_user_prot_info)
990 		return -EOPNOTSUPP;
991 	if (!len)
992 		return 0;
993 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
994 }
995 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
996 
997 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
998 			   size_t *retlen, u_char *buf)
999 {
1000 	*retlen = 0;
1001 	if (!mtd->_read_user_prot_reg)
1002 		return -EOPNOTSUPP;
1003 	if (!len)
1004 		return 0;
1005 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1006 }
1007 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1008 
1009 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1010 			    size_t *retlen, u_char *buf)
1011 {
1012 	int ret;
1013 
1014 	*retlen = 0;
1015 	if (!mtd->_write_user_prot_reg)
1016 		return -EOPNOTSUPP;
1017 	if (!len)
1018 		return 0;
1019 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1020 	if (ret)
1021 		return ret;
1022 
1023 	/*
1024 	 * If no data could be written at all, we are out of memory and
1025 	 * must return -ENOSPC.
1026 	 */
1027 	return (*retlen) ? 0 : -ENOSPC;
1028 }
1029 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1030 
1031 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1032 {
1033 	if (!mtd->_lock_user_prot_reg)
1034 		return -EOPNOTSUPP;
1035 	if (!len)
1036 		return 0;
1037 	return mtd->_lock_user_prot_reg(mtd, from, len);
1038 }
1039 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1040 
1041 /* Chip-supported device locking */
1042 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1043 {
1044 	if (!mtd->_lock)
1045 		return -EOPNOTSUPP;
1046 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1047 		return -EINVAL;
1048 	if (!len)
1049 		return 0;
1050 	return mtd->_lock(mtd, ofs, len);
1051 }
1052 EXPORT_SYMBOL_GPL(mtd_lock);
1053 
1054 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1055 {
1056 	if (!mtd->_unlock)
1057 		return -EOPNOTSUPP;
1058 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1059 		return -EINVAL;
1060 	if (!len)
1061 		return 0;
1062 	return mtd->_unlock(mtd, ofs, len);
1063 }
1064 EXPORT_SYMBOL_GPL(mtd_unlock);
1065 
1066 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1067 {
1068 	if (!mtd->_is_locked)
1069 		return -EOPNOTSUPP;
1070 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1071 		return -EINVAL;
1072 	if (!len)
1073 		return 0;
1074 	return mtd->_is_locked(mtd, ofs, len);
1075 }
1076 EXPORT_SYMBOL_GPL(mtd_is_locked);
1077 
1078 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1079 {
1080 	if (ofs < 0 || ofs >= mtd->size)
1081 		return -EINVAL;
1082 	if (!mtd->_block_isreserved)
1083 		return 0;
1084 	return mtd->_block_isreserved(mtd, ofs);
1085 }
1086 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1087 
1088 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1089 {
1090 	if (ofs < 0 || ofs >= mtd->size)
1091 		return -EINVAL;
1092 	if (!mtd->_block_isbad)
1093 		return 0;
1094 	return mtd->_block_isbad(mtd, ofs);
1095 }
1096 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1097 
1098 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1099 {
1100 	if (!mtd->_block_markbad)
1101 		return -EOPNOTSUPP;
1102 	if (ofs < 0 || ofs >= mtd->size)
1103 		return -EINVAL;
1104 	if (!(mtd->flags & MTD_WRITEABLE))
1105 		return -EROFS;
1106 	return mtd->_block_markbad(mtd, ofs);
1107 }
1108 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1109 
1110 /*
1111  * default_mtd_writev - the default writev method
1112  * @mtd: mtd device description object pointer
1113  * @vecs: the vectors to write
1114  * @count: count of vectors in @vecs
1115  * @to: the MTD device offset to write to
1116  * @retlen: on exit contains the count of bytes written to the MTD device.
1117  *
1118  * This function returns zero in case of success and a negative error code in
1119  * case of failure.
1120  */
1121 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1122 			      unsigned long count, loff_t to, size_t *retlen)
1123 {
1124 	unsigned long i;
1125 	size_t totlen = 0, thislen;
1126 	int ret = 0;
1127 
1128 	for (i = 0; i < count; i++) {
1129 		if (!vecs[i].iov_len)
1130 			continue;
1131 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1132 				vecs[i].iov_base);
1133 		totlen += thislen;
1134 		if (ret || thislen != vecs[i].iov_len)
1135 			break;
1136 		to += vecs[i].iov_len;
1137 	}
1138 	*retlen = totlen;
1139 	return ret;
1140 }
1141 
1142 /*
1143  * mtd_writev - the vector-based MTD write method
1144  * @mtd: mtd device description object pointer
1145  * @vecs: the vectors to write
1146  * @count: count of vectors in @vecs
1147  * @to: the MTD device offset to write to
1148  * @retlen: on exit contains the count of bytes written to the MTD device.
1149  *
1150  * This function returns zero in case of success and a negative error code in
1151  * case of failure.
1152  */
1153 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1154 	       unsigned long count, loff_t to, size_t *retlen)
1155 {
1156 	*retlen = 0;
1157 	if (!(mtd->flags & MTD_WRITEABLE))
1158 		return -EROFS;
1159 	if (!mtd->_writev)
1160 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1161 	return mtd->_writev(mtd, vecs, count, to, retlen);
1162 }
1163 EXPORT_SYMBOL_GPL(mtd_writev);
1164 
1165 /**
1166  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1167  * @mtd: mtd device description object pointer
1168  * @size: a pointer to the ideal or maximum size of the allocation, points
1169  *        to the actual allocation size on success.
1170  *
1171  * This routine attempts to allocate a contiguous kernel buffer up to
1172  * the specified size, backing off the size of the request exponentially
1173  * until the request succeeds or until the allocation size falls below
1174  * the system page size. This attempts to make sure it does not adversely
1175  * impact system performance, so when allocating more than one page, we
1176  * ask the memory allocator to avoid re-trying, swapping, writing back
1177  * or performing I/O.
1178  *
1179  * Note, this function also makes sure that the allocated buffer is aligned to
1180  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1181  *
1182  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1183  * to handle smaller (i.e. degraded) buffer allocations under low- or
1184  * fragmented-memory situations where such reduced allocations, from a
1185  * requested ideal, are allowed.
1186  *
1187  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1188  */
1189 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1190 {
1191 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1192 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1193 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1194 	void *kbuf;
1195 
1196 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1197 
1198 	while (*size > min_alloc) {
1199 		kbuf = kmalloc(*size, flags);
1200 		if (kbuf)
1201 			return kbuf;
1202 
1203 		*size >>= 1;
1204 		*size = ALIGN(*size, mtd->writesize);
1205 	}
1206 
1207 	/*
1208 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1209 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1210 	 */
1211 	return kmalloc(*size, GFP_KERNEL);
1212 }
1213 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1214 
1215 #ifdef CONFIG_PROC_FS
1216 
1217 /*====================================================================*/
1218 /* Support for /proc/mtd */
1219 
1220 static int mtd_proc_show(struct seq_file *m, void *v)
1221 {
1222 	struct mtd_info *mtd;
1223 
1224 	seq_puts(m, "dev:    size   erasesize  name\n");
1225 	mutex_lock(&mtd_table_mutex);
1226 	mtd_for_each_device(mtd) {
1227 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1228 			   mtd->index, (unsigned long long)mtd->size,
1229 			   mtd->erasesize, mtd->name);
1230 	}
1231 	mutex_unlock(&mtd_table_mutex);
1232 	return 0;
1233 }
1234 
1235 static int mtd_proc_open(struct inode *inode, struct file *file)
1236 {
1237 	return single_open(file, mtd_proc_show, NULL);
1238 }
1239 
1240 static const struct file_operations mtd_proc_ops = {
1241 	.open		= mtd_proc_open,
1242 	.read		= seq_read,
1243 	.llseek		= seq_lseek,
1244 	.release	= single_release,
1245 };
1246 #endif /* CONFIG_PROC_FS */
1247 
1248 /*====================================================================*/
1249 /* Init code */
1250 
1251 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1252 {
1253 	int ret;
1254 
1255 	ret = bdi_init(bdi);
1256 	if (!ret)
1257 		ret = bdi_register(bdi, NULL, "%s", name);
1258 
1259 	if (ret)
1260 		bdi_destroy(bdi);
1261 
1262 	return ret;
1263 }
1264 
1265 static struct proc_dir_entry *proc_mtd;
1266 
1267 static int __init init_mtd(void)
1268 {
1269 	int ret;
1270 
1271 	ret = class_register(&mtd_class);
1272 	if (ret)
1273 		goto err_reg;
1274 
1275 	ret = mtd_bdi_init(&mtd_bdi, "mtd");
1276 	if (ret)
1277 		goto err_bdi;
1278 
1279 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1280 
1281 	ret = init_mtdchar();
1282 	if (ret)
1283 		goto out_procfs;
1284 
1285 	return 0;
1286 
1287 out_procfs:
1288 	if (proc_mtd)
1289 		remove_proc_entry("mtd", NULL);
1290 err_bdi:
1291 	class_unregister(&mtd_class);
1292 err_reg:
1293 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1294 	return ret;
1295 }
1296 
1297 static void __exit cleanup_mtd(void)
1298 {
1299 	cleanup_mtdchar();
1300 	if (proc_mtd)
1301 		remove_proc_entry("mtd", NULL);
1302 	class_unregister(&mtd_class);
1303 	bdi_destroy(&mtd_bdi);
1304 }
1305 
1306 module_init(init_mtd);
1307 module_exit(cleanup_mtd);
1308 
1309 MODULE_LICENSE("GPL");
1310 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1311 MODULE_DESCRIPTION("Core MTD registration and access routines");
1312