1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/proc_fs.h> 36 #include <linux/idr.h> 37 #include <linux/backing-dev.h> 38 #include <linux/gfp.h> 39 #include <linux/slab.h> 40 #include <linux/reboot.h> 41 #include <linux/kconfig.h> 42 43 #include <linux/mtd/mtd.h> 44 #include <linux/mtd/partitions.h> 45 46 #include "mtdcore.h" 47 48 static struct backing_dev_info mtd_bdi = { 49 }; 50 51 #ifdef CONFIG_PM_SLEEP 52 53 static int mtd_cls_suspend(struct device *dev) 54 { 55 struct mtd_info *mtd = dev_get_drvdata(dev); 56 57 return mtd ? mtd_suspend(mtd) : 0; 58 } 59 60 static int mtd_cls_resume(struct device *dev) 61 { 62 struct mtd_info *mtd = dev_get_drvdata(dev); 63 64 if (mtd) 65 mtd_resume(mtd); 66 return 0; 67 } 68 69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 71 #else 72 #define MTD_CLS_PM_OPS NULL 73 #endif 74 75 static struct class mtd_class = { 76 .name = "mtd", 77 .owner = THIS_MODULE, 78 .pm = MTD_CLS_PM_OPS, 79 }; 80 81 static DEFINE_IDR(mtd_idr); 82 83 /* These are exported solely for the purpose of mtd_blkdevs.c. You 84 should not use them for _anything_ else */ 85 DEFINE_MUTEX(mtd_table_mutex); 86 EXPORT_SYMBOL_GPL(mtd_table_mutex); 87 88 struct mtd_info *__mtd_next_device(int i) 89 { 90 return idr_get_next(&mtd_idr, &i); 91 } 92 EXPORT_SYMBOL_GPL(__mtd_next_device); 93 94 static LIST_HEAD(mtd_notifiers); 95 96 97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 98 99 /* REVISIT once MTD uses the driver model better, whoever allocates 100 * the mtd_info will probably want to use the release() hook... 101 */ 102 static void mtd_release(struct device *dev) 103 { 104 struct mtd_info *mtd = dev_get_drvdata(dev); 105 dev_t index = MTD_DEVT(mtd->index); 106 107 /* remove /dev/mtdXro node */ 108 device_destroy(&mtd_class, index + 1); 109 } 110 111 static ssize_t mtd_type_show(struct device *dev, 112 struct device_attribute *attr, char *buf) 113 { 114 struct mtd_info *mtd = dev_get_drvdata(dev); 115 char *type; 116 117 switch (mtd->type) { 118 case MTD_ABSENT: 119 type = "absent"; 120 break; 121 case MTD_RAM: 122 type = "ram"; 123 break; 124 case MTD_ROM: 125 type = "rom"; 126 break; 127 case MTD_NORFLASH: 128 type = "nor"; 129 break; 130 case MTD_NANDFLASH: 131 type = "nand"; 132 break; 133 case MTD_DATAFLASH: 134 type = "dataflash"; 135 break; 136 case MTD_UBIVOLUME: 137 type = "ubi"; 138 break; 139 case MTD_MLCNANDFLASH: 140 type = "mlc-nand"; 141 break; 142 default: 143 type = "unknown"; 144 } 145 146 return snprintf(buf, PAGE_SIZE, "%s\n", type); 147 } 148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 149 150 static ssize_t mtd_flags_show(struct device *dev, 151 struct device_attribute *attr, char *buf) 152 { 153 struct mtd_info *mtd = dev_get_drvdata(dev); 154 155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 156 157 } 158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 159 160 static ssize_t mtd_size_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct mtd_info *mtd = dev_get_drvdata(dev); 164 165 return snprintf(buf, PAGE_SIZE, "%llu\n", 166 (unsigned long long)mtd->size); 167 168 } 169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 170 171 static ssize_t mtd_erasesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 177 178 } 179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 180 181 static ssize_t mtd_writesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 187 188 } 189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 190 191 static ssize_t mtd_subpagesize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 196 197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 198 199 } 200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 201 202 static ssize_t mtd_oobsize_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct mtd_info *mtd = dev_get_drvdata(dev); 206 207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 208 209 } 210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 211 212 static ssize_t mtd_numeraseregions_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 struct mtd_info *mtd = dev_get_drvdata(dev); 216 217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 218 219 } 220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 221 NULL); 222 223 static ssize_t mtd_name_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 struct mtd_info *mtd = dev_get_drvdata(dev); 227 228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 229 230 } 231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 232 233 static ssize_t mtd_ecc_strength_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct mtd_info *mtd = dev_get_drvdata(dev); 237 238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 239 } 240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 241 242 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 243 struct device_attribute *attr, 244 char *buf) 245 { 246 struct mtd_info *mtd = dev_get_drvdata(dev); 247 248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 249 } 250 251 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 252 struct device_attribute *attr, 253 const char *buf, size_t count) 254 { 255 struct mtd_info *mtd = dev_get_drvdata(dev); 256 unsigned int bitflip_threshold; 257 int retval; 258 259 retval = kstrtouint(buf, 0, &bitflip_threshold); 260 if (retval) 261 return retval; 262 263 mtd->bitflip_threshold = bitflip_threshold; 264 return count; 265 } 266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 267 mtd_bitflip_threshold_show, 268 mtd_bitflip_threshold_store); 269 270 static ssize_t mtd_ecc_step_size_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct mtd_info *mtd = dev_get_drvdata(dev); 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 276 277 } 278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 279 280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 287 } 288 static DEVICE_ATTR(corrected_bits, S_IRUGO, 289 mtd_ecc_stats_corrected_show, NULL); 290 291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 298 } 299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 300 301 static ssize_t mtd_badblocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 308 } 309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 310 311 static ssize_t mtd_bbtblocks_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct mtd_info *mtd = dev_get_drvdata(dev); 315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 316 317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 318 } 319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 320 321 static struct attribute *mtd_attrs[] = { 322 &dev_attr_type.attr, 323 &dev_attr_flags.attr, 324 &dev_attr_size.attr, 325 &dev_attr_erasesize.attr, 326 &dev_attr_writesize.attr, 327 &dev_attr_subpagesize.attr, 328 &dev_attr_oobsize.attr, 329 &dev_attr_numeraseregions.attr, 330 &dev_attr_name.attr, 331 &dev_attr_ecc_strength.attr, 332 &dev_attr_ecc_step_size.attr, 333 &dev_attr_corrected_bits.attr, 334 &dev_attr_ecc_failures.attr, 335 &dev_attr_bad_blocks.attr, 336 &dev_attr_bbt_blocks.attr, 337 &dev_attr_bitflip_threshold.attr, 338 NULL, 339 }; 340 ATTRIBUTE_GROUPS(mtd); 341 342 static struct device_type mtd_devtype = { 343 .name = "mtd", 344 .groups = mtd_groups, 345 .release = mtd_release, 346 }; 347 348 #ifndef CONFIG_MMU 349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 350 { 351 switch (mtd->type) { 352 case MTD_RAM: 353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 354 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 355 case MTD_ROM: 356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 357 NOMMU_MAP_READ; 358 default: 359 return NOMMU_MAP_COPY; 360 } 361 } 362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 363 #endif 364 365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 366 void *cmd) 367 { 368 struct mtd_info *mtd; 369 370 mtd = container_of(n, struct mtd_info, reboot_notifier); 371 mtd->_reboot(mtd); 372 373 return NOTIFY_DONE; 374 } 375 376 /** 377 * add_mtd_device - register an MTD device 378 * @mtd: pointer to new MTD device info structure 379 * 380 * Add a device to the list of MTD devices present in the system, and 381 * notify each currently active MTD 'user' of its arrival. Returns 382 * zero on success or non-zero on failure. 383 */ 384 385 int add_mtd_device(struct mtd_info *mtd) 386 { 387 struct mtd_notifier *not; 388 int i, error; 389 390 mtd->backing_dev_info = &mtd_bdi; 391 392 BUG_ON(mtd->writesize == 0); 393 mutex_lock(&mtd_table_mutex); 394 395 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 396 if (i < 0) { 397 error = i; 398 goto fail_locked; 399 } 400 401 mtd->index = i; 402 mtd->usecount = 0; 403 404 /* default value if not set by driver */ 405 if (mtd->bitflip_threshold == 0) 406 mtd->bitflip_threshold = mtd->ecc_strength; 407 408 if (is_power_of_2(mtd->erasesize)) 409 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 410 else 411 mtd->erasesize_shift = 0; 412 413 if (is_power_of_2(mtd->writesize)) 414 mtd->writesize_shift = ffs(mtd->writesize) - 1; 415 else 416 mtd->writesize_shift = 0; 417 418 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 419 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 420 421 /* Some chips always power up locked. Unlock them now */ 422 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 423 error = mtd_unlock(mtd, 0, mtd->size); 424 if (error && error != -EOPNOTSUPP) 425 printk(KERN_WARNING 426 "%s: unlock failed, writes may not work\n", 427 mtd->name); 428 /* Ignore unlock failures? */ 429 error = 0; 430 } 431 432 /* Caller should have set dev.parent to match the 433 * physical device. 434 */ 435 mtd->dev.type = &mtd_devtype; 436 mtd->dev.class = &mtd_class; 437 mtd->dev.devt = MTD_DEVT(i); 438 dev_set_name(&mtd->dev, "mtd%d", i); 439 dev_set_drvdata(&mtd->dev, mtd); 440 error = device_register(&mtd->dev); 441 if (error) 442 goto fail_added; 443 444 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 445 "mtd%dro", i); 446 447 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 448 /* No need to get a refcount on the module containing 449 the notifier, since we hold the mtd_table_mutex */ 450 list_for_each_entry(not, &mtd_notifiers, list) 451 not->add(mtd); 452 453 mutex_unlock(&mtd_table_mutex); 454 /* We _know_ we aren't being removed, because 455 our caller is still holding us here. So none 456 of this try_ nonsense, and no bitching about it 457 either. :) */ 458 __module_get(THIS_MODULE); 459 return 0; 460 461 fail_added: 462 idr_remove(&mtd_idr, i); 463 fail_locked: 464 mutex_unlock(&mtd_table_mutex); 465 return error; 466 } 467 468 /** 469 * del_mtd_device - unregister an MTD device 470 * @mtd: pointer to MTD device info structure 471 * 472 * Remove a device from the list of MTD devices present in the system, 473 * and notify each currently active MTD 'user' of its departure. 474 * Returns zero on success or 1 on failure, which currently will happen 475 * if the requested device does not appear to be present in the list. 476 */ 477 478 int del_mtd_device(struct mtd_info *mtd) 479 { 480 int ret; 481 struct mtd_notifier *not; 482 483 mutex_lock(&mtd_table_mutex); 484 485 if (idr_find(&mtd_idr, mtd->index) != mtd) { 486 ret = -ENODEV; 487 goto out_error; 488 } 489 490 /* No need to get a refcount on the module containing 491 the notifier, since we hold the mtd_table_mutex */ 492 list_for_each_entry(not, &mtd_notifiers, list) 493 not->remove(mtd); 494 495 if (mtd->usecount) { 496 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 497 mtd->index, mtd->name, mtd->usecount); 498 ret = -EBUSY; 499 } else { 500 device_unregister(&mtd->dev); 501 502 idr_remove(&mtd_idr, mtd->index); 503 504 module_put(THIS_MODULE); 505 ret = 0; 506 } 507 508 out_error: 509 mutex_unlock(&mtd_table_mutex); 510 return ret; 511 } 512 513 static int mtd_add_device_partitions(struct mtd_info *mtd, 514 struct mtd_partition *real_parts, 515 int nbparts) 516 { 517 int ret; 518 519 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 520 ret = add_mtd_device(mtd); 521 if (ret) 522 return ret; 523 } 524 525 if (nbparts > 0) { 526 ret = add_mtd_partitions(mtd, real_parts, nbparts); 527 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 528 del_mtd_device(mtd); 529 return ret; 530 } 531 532 return 0; 533 } 534 535 536 /** 537 * mtd_device_parse_register - parse partitions and register an MTD device. 538 * 539 * @mtd: the MTD device to register 540 * @types: the list of MTD partition probes to try, see 541 * 'parse_mtd_partitions()' for more information 542 * @parser_data: MTD partition parser-specific data 543 * @parts: fallback partition information to register, if parsing fails; 544 * only valid if %nr_parts > %0 545 * @nr_parts: the number of partitions in parts, if zero then the full 546 * MTD device is registered if no partition info is found 547 * 548 * This function aggregates MTD partitions parsing (done by 549 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 550 * basically follows the most common pattern found in many MTD drivers: 551 * 552 * * It first tries to probe partitions on MTD device @mtd using parsers 553 * specified in @types (if @types is %NULL, then the default list of parsers 554 * is used, see 'parse_mtd_partitions()' for more information). If none are 555 * found this functions tries to fallback to information specified in 556 * @parts/@nr_parts. 557 * * If any partitioning info was found, this function registers the found 558 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 559 * as a whole is registered first. 560 * * If no partitions were found this function just registers the MTD device 561 * @mtd and exits. 562 * 563 * Returns zero in case of success and a negative error code in case of failure. 564 */ 565 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 566 struct mtd_part_parser_data *parser_data, 567 const struct mtd_partition *parts, 568 int nr_parts) 569 { 570 int ret; 571 struct mtd_partition *real_parts = NULL; 572 573 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 574 if (ret <= 0 && nr_parts && parts) { 575 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 576 GFP_KERNEL); 577 if (!real_parts) 578 ret = -ENOMEM; 579 else 580 ret = nr_parts; 581 } 582 583 if (ret >= 0) 584 ret = mtd_add_device_partitions(mtd, real_parts, ret); 585 586 /* 587 * FIXME: some drivers unfortunately call this function more than once. 588 * So we have to check if we've already assigned the reboot notifier. 589 * 590 * Generally, we can make multiple calls work for most cases, but it 591 * does cause problems with parse_mtd_partitions() above (e.g., 592 * cmdlineparts will register partitions more than once). 593 */ 594 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 595 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 596 register_reboot_notifier(&mtd->reboot_notifier); 597 } 598 599 kfree(real_parts); 600 return ret; 601 } 602 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 603 604 /** 605 * mtd_device_unregister - unregister an existing MTD device. 606 * 607 * @master: the MTD device to unregister. This will unregister both the master 608 * and any partitions if registered. 609 */ 610 int mtd_device_unregister(struct mtd_info *master) 611 { 612 int err; 613 614 if (master->_reboot) 615 unregister_reboot_notifier(&master->reboot_notifier); 616 617 err = del_mtd_partitions(master); 618 if (err) 619 return err; 620 621 if (!device_is_registered(&master->dev)) 622 return 0; 623 624 return del_mtd_device(master); 625 } 626 EXPORT_SYMBOL_GPL(mtd_device_unregister); 627 628 /** 629 * register_mtd_user - register a 'user' of MTD devices. 630 * @new: pointer to notifier info structure 631 * 632 * Registers a pair of callbacks function to be called upon addition 633 * or removal of MTD devices. Causes the 'add' callback to be immediately 634 * invoked for each MTD device currently present in the system. 635 */ 636 void register_mtd_user (struct mtd_notifier *new) 637 { 638 struct mtd_info *mtd; 639 640 mutex_lock(&mtd_table_mutex); 641 642 list_add(&new->list, &mtd_notifiers); 643 644 __module_get(THIS_MODULE); 645 646 mtd_for_each_device(mtd) 647 new->add(mtd); 648 649 mutex_unlock(&mtd_table_mutex); 650 } 651 EXPORT_SYMBOL_GPL(register_mtd_user); 652 653 /** 654 * unregister_mtd_user - unregister a 'user' of MTD devices. 655 * @old: pointer to notifier info structure 656 * 657 * Removes a callback function pair from the list of 'users' to be 658 * notified upon addition or removal of MTD devices. Causes the 659 * 'remove' callback to be immediately invoked for each MTD device 660 * currently present in the system. 661 */ 662 int unregister_mtd_user (struct mtd_notifier *old) 663 { 664 struct mtd_info *mtd; 665 666 mutex_lock(&mtd_table_mutex); 667 668 module_put(THIS_MODULE); 669 670 mtd_for_each_device(mtd) 671 old->remove(mtd); 672 673 list_del(&old->list); 674 mutex_unlock(&mtd_table_mutex); 675 return 0; 676 } 677 EXPORT_SYMBOL_GPL(unregister_mtd_user); 678 679 /** 680 * get_mtd_device - obtain a validated handle for an MTD device 681 * @mtd: last known address of the required MTD device 682 * @num: internal device number of the required MTD device 683 * 684 * Given a number and NULL address, return the num'th entry in the device 685 * table, if any. Given an address and num == -1, search the device table 686 * for a device with that address and return if it's still present. Given 687 * both, return the num'th driver only if its address matches. Return 688 * error code if not. 689 */ 690 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 691 { 692 struct mtd_info *ret = NULL, *other; 693 int err = -ENODEV; 694 695 mutex_lock(&mtd_table_mutex); 696 697 if (num == -1) { 698 mtd_for_each_device(other) { 699 if (other == mtd) { 700 ret = mtd; 701 break; 702 } 703 } 704 } else if (num >= 0) { 705 ret = idr_find(&mtd_idr, num); 706 if (mtd && mtd != ret) 707 ret = NULL; 708 } 709 710 if (!ret) { 711 ret = ERR_PTR(err); 712 goto out; 713 } 714 715 err = __get_mtd_device(ret); 716 if (err) 717 ret = ERR_PTR(err); 718 out: 719 mutex_unlock(&mtd_table_mutex); 720 return ret; 721 } 722 EXPORT_SYMBOL_GPL(get_mtd_device); 723 724 725 int __get_mtd_device(struct mtd_info *mtd) 726 { 727 int err; 728 729 if (!try_module_get(mtd->owner)) 730 return -ENODEV; 731 732 if (mtd->_get_device) { 733 err = mtd->_get_device(mtd); 734 735 if (err) { 736 module_put(mtd->owner); 737 return err; 738 } 739 } 740 mtd->usecount++; 741 return 0; 742 } 743 EXPORT_SYMBOL_GPL(__get_mtd_device); 744 745 /** 746 * get_mtd_device_nm - obtain a validated handle for an MTD device by 747 * device name 748 * @name: MTD device name to open 749 * 750 * This function returns MTD device description structure in case of 751 * success and an error code in case of failure. 752 */ 753 struct mtd_info *get_mtd_device_nm(const char *name) 754 { 755 int err = -ENODEV; 756 struct mtd_info *mtd = NULL, *other; 757 758 mutex_lock(&mtd_table_mutex); 759 760 mtd_for_each_device(other) { 761 if (!strcmp(name, other->name)) { 762 mtd = other; 763 break; 764 } 765 } 766 767 if (!mtd) 768 goto out_unlock; 769 770 err = __get_mtd_device(mtd); 771 if (err) 772 goto out_unlock; 773 774 mutex_unlock(&mtd_table_mutex); 775 return mtd; 776 777 out_unlock: 778 mutex_unlock(&mtd_table_mutex); 779 return ERR_PTR(err); 780 } 781 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 782 783 void put_mtd_device(struct mtd_info *mtd) 784 { 785 mutex_lock(&mtd_table_mutex); 786 __put_mtd_device(mtd); 787 mutex_unlock(&mtd_table_mutex); 788 789 } 790 EXPORT_SYMBOL_GPL(put_mtd_device); 791 792 void __put_mtd_device(struct mtd_info *mtd) 793 { 794 --mtd->usecount; 795 BUG_ON(mtd->usecount < 0); 796 797 if (mtd->_put_device) 798 mtd->_put_device(mtd); 799 800 module_put(mtd->owner); 801 } 802 EXPORT_SYMBOL_GPL(__put_mtd_device); 803 804 /* 805 * Erase is an asynchronous operation. Device drivers are supposed 806 * to call instr->callback() whenever the operation completes, even 807 * if it completes with a failure. 808 * Callers are supposed to pass a callback function and wait for it 809 * to be called before writing to the block. 810 */ 811 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 812 { 813 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 814 return -EINVAL; 815 if (!(mtd->flags & MTD_WRITEABLE)) 816 return -EROFS; 817 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 818 if (!instr->len) { 819 instr->state = MTD_ERASE_DONE; 820 mtd_erase_callback(instr); 821 return 0; 822 } 823 return mtd->_erase(mtd, instr); 824 } 825 EXPORT_SYMBOL_GPL(mtd_erase); 826 827 /* 828 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 829 */ 830 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 831 void **virt, resource_size_t *phys) 832 { 833 *retlen = 0; 834 *virt = NULL; 835 if (phys) 836 *phys = 0; 837 if (!mtd->_point) 838 return -EOPNOTSUPP; 839 if (from < 0 || from >= mtd->size || len > mtd->size - from) 840 return -EINVAL; 841 if (!len) 842 return 0; 843 return mtd->_point(mtd, from, len, retlen, virt, phys); 844 } 845 EXPORT_SYMBOL_GPL(mtd_point); 846 847 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 848 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 849 { 850 if (!mtd->_point) 851 return -EOPNOTSUPP; 852 if (from < 0 || from >= mtd->size || len > mtd->size - from) 853 return -EINVAL; 854 if (!len) 855 return 0; 856 return mtd->_unpoint(mtd, from, len); 857 } 858 EXPORT_SYMBOL_GPL(mtd_unpoint); 859 860 /* 861 * Allow NOMMU mmap() to directly map the device (if not NULL) 862 * - return the address to which the offset maps 863 * - return -ENOSYS to indicate refusal to do the mapping 864 */ 865 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 866 unsigned long offset, unsigned long flags) 867 { 868 if (!mtd->_get_unmapped_area) 869 return -EOPNOTSUPP; 870 if (offset >= mtd->size || len > mtd->size - offset) 871 return -EINVAL; 872 return mtd->_get_unmapped_area(mtd, len, offset, flags); 873 } 874 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 875 876 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 877 u_char *buf) 878 { 879 int ret_code; 880 *retlen = 0; 881 if (from < 0 || from >= mtd->size || len > mtd->size - from) 882 return -EINVAL; 883 if (!len) 884 return 0; 885 886 /* 887 * In the absence of an error, drivers return a non-negative integer 888 * representing the maximum number of bitflips that were corrected on 889 * any one ecc region (if applicable; zero otherwise). 890 */ 891 ret_code = mtd->_read(mtd, from, len, retlen, buf); 892 if (unlikely(ret_code < 0)) 893 return ret_code; 894 if (mtd->ecc_strength == 0) 895 return 0; /* device lacks ecc */ 896 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 897 } 898 EXPORT_SYMBOL_GPL(mtd_read); 899 900 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 901 const u_char *buf) 902 { 903 *retlen = 0; 904 if (to < 0 || to >= mtd->size || len > mtd->size - to) 905 return -EINVAL; 906 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 907 return -EROFS; 908 if (!len) 909 return 0; 910 return mtd->_write(mtd, to, len, retlen, buf); 911 } 912 EXPORT_SYMBOL_GPL(mtd_write); 913 914 /* 915 * In blackbox flight recorder like scenarios we want to make successful writes 916 * in interrupt context. panic_write() is only intended to be called when its 917 * known the kernel is about to panic and we need the write to succeed. Since 918 * the kernel is not going to be running for much longer, this function can 919 * break locks and delay to ensure the write succeeds (but not sleep). 920 */ 921 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 922 const u_char *buf) 923 { 924 *retlen = 0; 925 if (!mtd->_panic_write) 926 return -EOPNOTSUPP; 927 if (to < 0 || to >= mtd->size || len > mtd->size - to) 928 return -EINVAL; 929 if (!(mtd->flags & MTD_WRITEABLE)) 930 return -EROFS; 931 if (!len) 932 return 0; 933 return mtd->_panic_write(mtd, to, len, retlen, buf); 934 } 935 EXPORT_SYMBOL_GPL(mtd_panic_write); 936 937 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 938 { 939 int ret_code; 940 ops->retlen = ops->oobretlen = 0; 941 if (!mtd->_read_oob) 942 return -EOPNOTSUPP; 943 /* 944 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 945 * similar to mtd->_read(), returning a non-negative integer 946 * representing max bitflips. In other cases, mtd->_read_oob() may 947 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 948 */ 949 ret_code = mtd->_read_oob(mtd, from, ops); 950 if (unlikely(ret_code < 0)) 951 return ret_code; 952 if (mtd->ecc_strength == 0) 953 return 0; /* device lacks ecc */ 954 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 955 } 956 EXPORT_SYMBOL_GPL(mtd_read_oob); 957 958 /* 959 * Method to access the protection register area, present in some flash 960 * devices. The user data is one time programmable but the factory data is read 961 * only. 962 */ 963 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 964 struct otp_info *buf) 965 { 966 if (!mtd->_get_fact_prot_info) 967 return -EOPNOTSUPP; 968 if (!len) 969 return 0; 970 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 971 } 972 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 973 974 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 975 size_t *retlen, u_char *buf) 976 { 977 *retlen = 0; 978 if (!mtd->_read_fact_prot_reg) 979 return -EOPNOTSUPP; 980 if (!len) 981 return 0; 982 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 983 } 984 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 985 986 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 987 struct otp_info *buf) 988 { 989 if (!mtd->_get_user_prot_info) 990 return -EOPNOTSUPP; 991 if (!len) 992 return 0; 993 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 994 } 995 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 996 997 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 998 size_t *retlen, u_char *buf) 999 { 1000 *retlen = 0; 1001 if (!mtd->_read_user_prot_reg) 1002 return -EOPNOTSUPP; 1003 if (!len) 1004 return 0; 1005 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1006 } 1007 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1008 1009 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1010 size_t *retlen, u_char *buf) 1011 { 1012 int ret; 1013 1014 *retlen = 0; 1015 if (!mtd->_write_user_prot_reg) 1016 return -EOPNOTSUPP; 1017 if (!len) 1018 return 0; 1019 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1020 if (ret) 1021 return ret; 1022 1023 /* 1024 * If no data could be written at all, we are out of memory and 1025 * must return -ENOSPC. 1026 */ 1027 return (*retlen) ? 0 : -ENOSPC; 1028 } 1029 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1030 1031 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1032 { 1033 if (!mtd->_lock_user_prot_reg) 1034 return -EOPNOTSUPP; 1035 if (!len) 1036 return 0; 1037 return mtd->_lock_user_prot_reg(mtd, from, len); 1038 } 1039 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1040 1041 /* Chip-supported device locking */ 1042 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1043 { 1044 if (!mtd->_lock) 1045 return -EOPNOTSUPP; 1046 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1047 return -EINVAL; 1048 if (!len) 1049 return 0; 1050 return mtd->_lock(mtd, ofs, len); 1051 } 1052 EXPORT_SYMBOL_GPL(mtd_lock); 1053 1054 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1055 { 1056 if (!mtd->_unlock) 1057 return -EOPNOTSUPP; 1058 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1059 return -EINVAL; 1060 if (!len) 1061 return 0; 1062 return mtd->_unlock(mtd, ofs, len); 1063 } 1064 EXPORT_SYMBOL_GPL(mtd_unlock); 1065 1066 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1067 { 1068 if (!mtd->_is_locked) 1069 return -EOPNOTSUPP; 1070 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1071 return -EINVAL; 1072 if (!len) 1073 return 0; 1074 return mtd->_is_locked(mtd, ofs, len); 1075 } 1076 EXPORT_SYMBOL_GPL(mtd_is_locked); 1077 1078 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1079 { 1080 if (ofs < 0 || ofs >= mtd->size) 1081 return -EINVAL; 1082 if (!mtd->_block_isreserved) 1083 return 0; 1084 return mtd->_block_isreserved(mtd, ofs); 1085 } 1086 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1087 1088 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1089 { 1090 if (ofs < 0 || ofs >= mtd->size) 1091 return -EINVAL; 1092 if (!mtd->_block_isbad) 1093 return 0; 1094 return mtd->_block_isbad(mtd, ofs); 1095 } 1096 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1097 1098 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1099 { 1100 if (!mtd->_block_markbad) 1101 return -EOPNOTSUPP; 1102 if (ofs < 0 || ofs >= mtd->size) 1103 return -EINVAL; 1104 if (!(mtd->flags & MTD_WRITEABLE)) 1105 return -EROFS; 1106 return mtd->_block_markbad(mtd, ofs); 1107 } 1108 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1109 1110 /* 1111 * default_mtd_writev - the default writev method 1112 * @mtd: mtd device description object pointer 1113 * @vecs: the vectors to write 1114 * @count: count of vectors in @vecs 1115 * @to: the MTD device offset to write to 1116 * @retlen: on exit contains the count of bytes written to the MTD device. 1117 * 1118 * This function returns zero in case of success and a negative error code in 1119 * case of failure. 1120 */ 1121 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1122 unsigned long count, loff_t to, size_t *retlen) 1123 { 1124 unsigned long i; 1125 size_t totlen = 0, thislen; 1126 int ret = 0; 1127 1128 for (i = 0; i < count; i++) { 1129 if (!vecs[i].iov_len) 1130 continue; 1131 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1132 vecs[i].iov_base); 1133 totlen += thislen; 1134 if (ret || thislen != vecs[i].iov_len) 1135 break; 1136 to += vecs[i].iov_len; 1137 } 1138 *retlen = totlen; 1139 return ret; 1140 } 1141 1142 /* 1143 * mtd_writev - the vector-based MTD write method 1144 * @mtd: mtd device description object pointer 1145 * @vecs: the vectors to write 1146 * @count: count of vectors in @vecs 1147 * @to: the MTD device offset to write to 1148 * @retlen: on exit contains the count of bytes written to the MTD device. 1149 * 1150 * This function returns zero in case of success and a negative error code in 1151 * case of failure. 1152 */ 1153 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1154 unsigned long count, loff_t to, size_t *retlen) 1155 { 1156 *retlen = 0; 1157 if (!(mtd->flags & MTD_WRITEABLE)) 1158 return -EROFS; 1159 if (!mtd->_writev) 1160 return default_mtd_writev(mtd, vecs, count, to, retlen); 1161 return mtd->_writev(mtd, vecs, count, to, retlen); 1162 } 1163 EXPORT_SYMBOL_GPL(mtd_writev); 1164 1165 /** 1166 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1167 * @mtd: mtd device description object pointer 1168 * @size: a pointer to the ideal or maximum size of the allocation, points 1169 * to the actual allocation size on success. 1170 * 1171 * This routine attempts to allocate a contiguous kernel buffer up to 1172 * the specified size, backing off the size of the request exponentially 1173 * until the request succeeds or until the allocation size falls below 1174 * the system page size. This attempts to make sure it does not adversely 1175 * impact system performance, so when allocating more than one page, we 1176 * ask the memory allocator to avoid re-trying, swapping, writing back 1177 * or performing I/O. 1178 * 1179 * Note, this function also makes sure that the allocated buffer is aligned to 1180 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1181 * 1182 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1183 * to handle smaller (i.e. degraded) buffer allocations under low- or 1184 * fragmented-memory situations where such reduced allocations, from a 1185 * requested ideal, are allowed. 1186 * 1187 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1188 */ 1189 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1190 { 1191 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1192 __GFP_NORETRY | __GFP_NO_KSWAPD; 1193 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1194 void *kbuf; 1195 1196 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1197 1198 while (*size > min_alloc) { 1199 kbuf = kmalloc(*size, flags); 1200 if (kbuf) 1201 return kbuf; 1202 1203 *size >>= 1; 1204 *size = ALIGN(*size, mtd->writesize); 1205 } 1206 1207 /* 1208 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1209 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1210 */ 1211 return kmalloc(*size, GFP_KERNEL); 1212 } 1213 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1214 1215 #ifdef CONFIG_PROC_FS 1216 1217 /*====================================================================*/ 1218 /* Support for /proc/mtd */ 1219 1220 static int mtd_proc_show(struct seq_file *m, void *v) 1221 { 1222 struct mtd_info *mtd; 1223 1224 seq_puts(m, "dev: size erasesize name\n"); 1225 mutex_lock(&mtd_table_mutex); 1226 mtd_for_each_device(mtd) { 1227 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1228 mtd->index, (unsigned long long)mtd->size, 1229 mtd->erasesize, mtd->name); 1230 } 1231 mutex_unlock(&mtd_table_mutex); 1232 return 0; 1233 } 1234 1235 static int mtd_proc_open(struct inode *inode, struct file *file) 1236 { 1237 return single_open(file, mtd_proc_show, NULL); 1238 } 1239 1240 static const struct file_operations mtd_proc_ops = { 1241 .open = mtd_proc_open, 1242 .read = seq_read, 1243 .llseek = seq_lseek, 1244 .release = single_release, 1245 }; 1246 #endif /* CONFIG_PROC_FS */ 1247 1248 /*====================================================================*/ 1249 /* Init code */ 1250 1251 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1252 { 1253 int ret; 1254 1255 ret = bdi_init(bdi); 1256 if (!ret) 1257 ret = bdi_register(bdi, NULL, "%s", name); 1258 1259 if (ret) 1260 bdi_destroy(bdi); 1261 1262 return ret; 1263 } 1264 1265 static struct proc_dir_entry *proc_mtd; 1266 1267 static int __init init_mtd(void) 1268 { 1269 int ret; 1270 1271 ret = class_register(&mtd_class); 1272 if (ret) 1273 goto err_reg; 1274 1275 ret = mtd_bdi_init(&mtd_bdi, "mtd"); 1276 if (ret) 1277 goto err_bdi; 1278 1279 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1280 1281 ret = init_mtdchar(); 1282 if (ret) 1283 goto out_procfs; 1284 1285 return 0; 1286 1287 out_procfs: 1288 if (proc_mtd) 1289 remove_proc_entry("mtd", NULL); 1290 err_bdi: 1291 class_unregister(&mtd_class); 1292 err_reg: 1293 pr_err("Error registering mtd class or bdi: %d\n", ret); 1294 return ret; 1295 } 1296 1297 static void __exit cleanup_mtd(void) 1298 { 1299 cleanup_mtdchar(); 1300 if (proc_mtd) 1301 remove_proc_entry("mtd", NULL); 1302 class_unregister(&mtd_class); 1303 bdi_destroy(&mtd_bdi); 1304 } 1305 1306 module_init(init_mtd); 1307 module_exit(cleanup_mtd); 1308 1309 MODULE_LICENSE("GPL"); 1310 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1311 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1312