1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 static ssize_t mtd_type_show(struct device *dev, 100 struct device_attribute *attr, char *buf) 101 { 102 struct mtd_info *mtd = dev_get_drvdata(dev); 103 char *type; 104 105 switch (mtd->type) { 106 case MTD_ABSENT: 107 type = "absent"; 108 break; 109 case MTD_RAM: 110 type = "ram"; 111 break; 112 case MTD_ROM: 113 type = "rom"; 114 break; 115 case MTD_NORFLASH: 116 type = "nor"; 117 break; 118 case MTD_NANDFLASH: 119 type = "nand"; 120 break; 121 case MTD_DATAFLASH: 122 type = "dataflash"; 123 break; 124 case MTD_UBIVOLUME: 125 type = "ubi"; 126 break; 127 case MTD_MLCNANDFLASH: 128 type = "mlc-nand"; 129 break; 130 default: 131 type = "unknown"; 132 } 133 134 return snprintf(buf, PAGE_SIZE, "%s\n", type); 135 } 136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 137 138 static ssize_t mtd_flags_show(struct device *dev, 139 struct device_attribute *attr, char *buf) 140 { 141 struct mtd_info *mtd = dev_get_drvdata(dev); 142 143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 144 } 145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 146 147 static ssize_t mtd_size_show(struct device *dev, 148 struct device_attribute *attr, char *buf) 149 { 150 struct mtd_info *mtd = dev_get_drvdata(dev); 151 152 return snprintf(buf, PAGE_SIZE, "%llu\n", 153 (unsigned long long)mtd->size); 154 } 155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 156 157 static ssize_t mtd_erasesize_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct mtd_info *mtd = dev_get_drvdata(dev); 161 162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 163 } 164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 165 166 static ssize_t mtd_writesize_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168 { 169 struct mtd_info *mtd = dev_get_drvdata(dev); 170 171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 172 } 173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 174 175 static ssize_t mtd_subpagesize_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 180 181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 182 } 183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 184 185 static ssize_t mtd_oobsize_show(struct device *dev, 186 struct device_attribute *attr, char *buf) 187 { 188 struct mtd_info *mtd = dev_get_drvdata(dev); 189 190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 191 } 192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 193 194 static ssize_t mtd_oobavail_show(struct device *dev, 195 struct device_attribute *attr, char *buf) 196 { 197 struct mtd_info *mtd = dev_get_drvdata(dev); 198 199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail); 200 } 201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL); 202 203 static ssize_t mtd_numeraseregions_show(struct device *dev, 204 struct device_attribute *attr, char *buf) 205 { 206 struct mtd_info *mtd = dev_get_drvdata(dev); 207 208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 209 } 210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 211 NULL); 212 213 static ssize_t mtd_name_show(struct device *dev, 214 struct device_attribute *attr, char *buf) 215 { 216 struct mtd_info *mtd = dev_get_drvdata(dev); 217 218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 219 } 220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 221 222 static ssize_t mtd_ecc_strength_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 struct mtd_info *mtd = dev_get_drvdata(dev); 226 227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 228 } 229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 230 231 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 232 struct device_attribute *attr, 233 char *buf) 234 { 235 struct mtd_info *mtd = dev_get_drvdata(dev); 236 237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 238 } 239 240 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 241 struct device_attribute *attr, 242 const char *buf, size_t count) 243 { 244 struct mtd_info *mtd = dev_get_drvdata(dev); 245 unsigned int bitflip_threshold; 246 int retval; 247 248 retval = kstrtouint(buf, 0, &bitflip_threshold); 249 if (retval) 250 return retval; 251 252 mtd->bitflip_threshold = bitflip_threshold; 253 return count; 254 } 255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 256 mtd_bitflip_threshold_show, 257 mtd_bitflip_threshold_store); 258 259 static ssize_t mtd_ecc_step_size_show(struct device *dev, 260 struct device_attribute *attr, char *buf) 261 { 262 struct mtd_info *mtd = dev_get_drvdata(dev); 263 264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 265 266 } 267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 268 269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 270 struct device_attribute *attr, char *buf) 271 { 272 struct mtd_info *mtd = dev_get_drvdata(dev); 273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 276 } 277 static DEVICE_ATTR(corrected_bits, S_IRUGO, 278 mtd_ecc_stats_corrected_show, NULL); 279 280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 287 } 288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 289 290 static ssize_t mtd_badblocks_show(struct device *dev, 291 struct device_attribute *attr, char *buf) 292 { 293 struct mtd_info *mtd = dev_get_drvdata(dev); 294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 295 296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 297 } 298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 299 300 static ssize_t mtd_bbtblocks_show(struct device *dev, 301 struct device_attribute *attr, char *buf) 302 { 303 struct mtd_info *mtd = dev_get_drvdata(dev); 304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 305 306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 307 } 308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 309 310 static struct attribute *mtd_attrs[] = { 311 &dev_attr_type.attr, 312 &dev_attr_flags.attr, 313 &dev_attr_size.attr, 314 &dev_attr_erasesize.attr, 315 &dev_attr_writesize.attr, 316 &dev_attr_subpagesize.attr, 317 &dev_attr_oobsize.attr, 318 &dev_attr_oobavail.attr, 319 &dev_attr_numeraseregions.attr, 320 &dev_attr_name.attr, 321 &dev_attr_ecc_strength.attr, 322 &dev_attr_ecc_step_size.attr, 323 &dev_attr_corrected_bits.attr, 324 &dev_attr_ecc_failures.attr, 325 &dev_attr_bad_blocks.attr, 326 &dev_attr_bbt_blocks.attr, 327 &dev_attr_bitflip_threshold.attr, 328 NULL, 329 }; 330 ATTRIBUTE_GROUPS(mtd); 331 332 static const struct device_type mtd_devtype = { 333 .name = "mtd", 334 .groups = mtd_groups, 335 .release = mtd_release, 336 }; 337 338 #ifndef CONFIG_MMU 339 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 340 { 341 switch (mtd->type) { 342 case MTD_RAM: 343 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 344 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 345 case MTD_ROM: 346 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 347 NOMMU_MAP_READ; 348 default: 349 return NOMMU_MAP_COPY; 350 } 351 } 352 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 353 #endif 354 355 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 356 void *cmd) 357 { 358 struct mtd_info *mtd; 359 360 mtd = container_of(n, struct mtd_info, reboot_notifier); 361 mtd->_reboot(mtd); 362 363 return NOTIFY_DONE; 364 } 365 366 /** 367 * mtd_wunit_to_pairing_info - get pairing information of a wunit 368 * @mtd: pointer to new MTD device info structure 369 * @wunit: write unit we are interested in 370 * @info: returned pairing information 371 * 372 * Retrieve pairing information associated to the wunit. 373 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 374 * paired together, and where programming a page may influence the page it is 375 * paired with. 376 * The notion of page is replaced by the term wunit (write-unit) to stay 377 * consistent with the ->writesize field. 378 * 379 * The @wunit argument can be extracted from an absolute offset using 380 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 381 * to @wunit. 382 * 383 * From the pairing info the MTD user can find all the wunits paired with 384 * @wunit using the following loop: 385 * 386 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 387 * info.pair = i; 388 * mtd_pairing_info_to_wunit(mtd, &info); 389 * ... 390 * } 391 */ 392 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 393 struct mtd_pairing_info *info) 394 { 395 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 396 397 if (wunit < 0 || wunit >= npairs) 398 return -EINVAL; 399 400 if (mtd->pairing && mtd->pairing->get_info) 401 return mtd->pairing->get_info(mtd, wunit, info); 402 403 info->group = 0; 404 info->pair = wunit; 405 406 return 0; 407 } 408 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 409 410 /** 411 * mtd_pairing_info_to_wunit - get wunit from pairing information 412 * @mtd: pointer to new MTD device info structure 413 * @info: pairing information struct 414 * 415 * Returns a positive number representing the wunit associated to the info 416 * struct, or a negative error code. 417 * 418 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 419 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 420 * doc). 421 * 422 * It can also be used to only program the first page of each pair (i.e. 423 * page attached to group 0), which allows one to use an MLC NAND in 424 * software-emulated SLC mode: 425 * 426 * info.group = 0; 427 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 428 * for (info.pair = 0; info.pair < npairs; info.pair++) { 429 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 430 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 431 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 432 * } 433 */ 434 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 435 const struct mtd_pairing_info *info) 436 { 437 int ngroups = mtd_pairing_groups(mtd); 438 int npairs = mtd_wunit_per_eb(mtd) / ngroups; 439 440 if (!info || info->pair < 0 || info->pair >= npairs || 441 info->group < 0 || info->group >= ngroups) 442 return -EINVAL; 443 444 if (mtd->pairing && mtd->pairing->get_wunit) 445 return mtd->pairing->get_wunit(mtd, info); 446 447 return info->pair; 448 } 449 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 450 451 /** 452 * mtd_pairing_groups - get the number of pairing groups 453 * @mtd: pointer to new MTD device info structure 454 * 455 * Returns the number of pairing groups. 456 * 457 * This number is usually equal to the number of bits exposed by a single 458 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 459 * to iterate over all pages of a given pair. 460 */ 461 int mtd_pairing_groups(struct mtd_info *mtd) 462 { 463 if (!mtd->pairing || !mtd->pairing->ngroups) 464 return 1; 465 466 return mtd->pairing->ngroups; 467 } 468 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 469 470 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 471 void *val, size_t bytes) 472 { 473 struct mtd_info *mtd = priv; 474 size_t retlen; 475 int err; 476 477 err = mtd_read(mtd, offset, bytes, &retlen, val); 478 if (err && err != -EUCLEAN) 479 return err; 480 481 return retlen == bytes ? 0 : -EIO; 482 } 483 484 static int mtd_nvmem_add(struct mtd_info *mtd) 485 { 486 struct nvmem_config config = {}; 487 488 config.id = -1; 489 config.dev = &mtd->dev; 490 config.name = mtd->name; 491 config.owner = THIS_MODULE; 492 config.reg_read = mtd_nvmem_reg_read; 493 config.size = mtd->size; 494 config.word_size = 1; 495 config.stride = 1; 496 config.read_only = true; 497 config.root_only = true; 498 config.no_of_node = true; 499 config.priv = mtd; 500 501 mtd->nvmem = nvmem_register(&config); 502 if (IS_ERR(mtd->nvmem)) { 503 /* Just ignore if there is no NVMEM support in the kernel */ 504 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 505 mtd->nvmem = NULL; 506 } else { 507 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 508 return PTR_ERR(mtd->nvmem); 509 } 510 } 511 512 return 0; 513 } 514 515 static struct dentry *dfs_dir_mtd; 516 517 /** 518 * add_mtd_device - register an MTD device 519 * @mtd: pointer to new MTD device info structure 520 * 521 * Add a device to the list of MTD devices present in the system, and 522 * notify each currently active MTD 'user' of its arrival. Returns 523 * zero on success or non-zero on failure. 524 */ 525 526 int add_mtd_device(struct mtd_info *mtd) 527 { 528 struct mtd_notifier *not; 529 int i, error; 530 531 /* 532 * May occur, for instance, on buggy drivers which call 533 * mtd_device_parse_register() multiple times on the same master MTD, 534 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 535 */ 536 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 537 return -EEXIST; 538 539 BUG_ON(mtd->writesize == 0); 540 541 /* 542 * MTD drivers should implement ->_{write,read}() or 543 * ->_{write,read}_oob(), but not both. 544 */ 545 if (WARN_ON((mtd->_write && mtd->_write_oob) || 546 (mtd->_read && mtd->_read_oob))) 547 return -EINVAL; 548 549 if (WARN_ON((!mtd->erasesize || !mtd->_erase) && 550 !(mtd->flags & MTD_NO_ERASE))) 551 return -EINVAL; 552 553 mutex_lock(&mtd_table_mutex); 554 555 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 556 if (i < 0) { 557 error = i; 558 goto fail_locked; 559 } 560 561 mtd->index = i; 562 mtd->usecount = 0; 563 564 /* default value if not set by driver */ 565 if (mtd->bitflip_threshold == 0) 566 mtd->bitflip_threshold = mtd->ecc_strength; 567 568 if (is_power_of_2(mtd->erasesize)) 569 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 570 else 571 mtd->erasesize_shift = 0; 572 573 if (is_power_of_2(mtd->writesize)) 574 mtd->writesize_shift = ffs(mtd->writesize) - 1; 575 else 576 mtd->writesize_shift = 0; 577 578 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 579 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 580 581 /* Some chips always power up locked. Unlock them now */ 582 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 583 error = mtd_unlock(mtd, 0, mtd->size); 584 if (error && error != -EOPNOTSUPP) 585 printk(KERN_WARNING 586 "%s: unlock failed, writes may not work\n", 587 mtd->name); 588 /* Ignore unlock failures? */ 589 error = 0; 590 } 591 592 /* Caller should have set dev.parent to match the 593 * physical device, if appropriate. 594 */ 595 mtd->dev.type = &mtd_devtype; 596 mtd->dev.class = &mtd_class; 597 mtd->dev.devt = MTD_DEVT(i); 598 dev_set_name(&mtd->dev, "mtd%d", i); 599 dev_set_drvdata(&mtd->dev, mtd); 600 of_node_get(mtd_get_of_node(mtd)); 601 error = device_register(&mtd->dev); 602 if (error) 603 goto fail_added; 604 605 /* Add the nvmem provider */ 606 error = mtd_nvmem_add(mtd); 607 if (error) 608 goto fail_nvmem_add; 609 610 if (!IS_ERR_OR_NULL(dfs_dir_mtd)) { 611 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd); 612 if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) { 613 pr_debug("mtd device %s won't show data in debugfs\n", 614 dev_name(&mtd->dev)); 615 } 616 } 617 618 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 619 "mtd%dro", i); 620 621 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 622 /* No need to get a refcount on the module containing 623 the notifier, since we hold the mtd_table_mutex */ 624 list_for_each_entry(not, &mtd_notifiers, list) 625 not->add(mtd); 626 627 mutex_unlock(&mtd_table_mutex); 628 /* We _know_ we aren't being removed, because 629 our caller is still holding us here. So none 630 of this try_ nonsense, and no bitching about it 631 either. :) */ 632 __module_get(THIS_MODULE); 633 return 0; 634 635 fail_nvmem_add: 636 device_unregister(&mtd->dev); 637 fail_added: 638 of_node_put(mtd_get_of_node(mtd)); 639 idr_remove(&mtd_idr, i); 640 fail_locked: 641 mutex_unlock(&mtd_table_mutex); 642 return error; 643 } 644 645 /** 646 * del_mtd_device - unregister an MTD device 647 * @mtd: pointer to MTD device info structure 648 * 649 * Remove a device from the list of MTD devices present in the system, 650 * and notify each currently active MTD 'user' of its departure. 651 * Returns zero on success or 1 on failure, which currently will happen 652 * if the requested device does not appear to be present in the list. 653 */ 654 655 int del_mtd_device(struct mtd_info *mtd) 656 { 657 int ret; 658 struct mtd_notifier *not; 659 660 mutex_lock(&mtd_table_mutex); 661 662 debugfs_remove_recursive(mtd->dbg.dfs_dir); 663 664 if (idr_find(&mtd_idr, mtd->index) != mtd) { 665 ret = -ENODEV; 666 goto out_error; 667 } 668 669 /* No need to get a refcount on the module containing 670 the notifier, since we hold the mtd_table_mutex */ 671 list_for_each_entry(not, &mtd_notifiers, list) 672 not->remove(mtd); 673 674 if (mtd->usecount) { 675 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 676 mtd->index, mtd->name, mtd->usecount); 677 ret = -EBUSY; 678 } else { 679 /* Try to remove the NVMEM provider */ 680 if (mtd->nvmem) 681 nvmem_unregister(mtd->nvmem); 682 683 device_unregister(&mtd->dev); 684 685 idr_remove(&mtd_idr, mtd->index); 686 of_node_put(mtd_get_of_node(mtd)); 687 688 module_put(THIS_MODULE); 689 ret = 0; 690 } 691 692 out_error: 693 mutex_unlock(&mtd_table_mutex); 694 return ret; 695 } 696 697 /* 698 * Set a few defaults based on the parent devices, if not provided by the 699 * driver 700 */ 701 static void mtd_set_dev_defaults(struct mtd_info *mtd) 702 { 703 if (mtd->dev.parent) { 704 if (!mtd->owner && mtd->dev.parent->driver) 705 mtd->owner = mtd->dev.parent->driver->owner; 706 if (!mtd->name) 707 mtd->name = dev_name(mtd->dev.parent); 708 } else { 709 pr_debug("mtd device won't show a device symlink in sysfs\n"); 710 } 711 712 mtd->orig_flags = mtd->flags; 713 } 714 715 /** 716 * mtd_device_parse_register - parse partitions and register an MTD device. 717 * 718 * @mtd: the MTD device to register 719 * @types: the list of MTD partition probes to try, see 720 * 'parse_mtd_partitions()' for more information 721 * @parser_data: MTD partition parser-specific data 722 * @parts: fallback partition information to register, if parsing fails; 723 * only valid if %nr_parts > %0 724 * @nr_parts: the number of partitions in parts, if zero then the full 725 * MTD device is registered if no partition info is found 726 * 727 * This function aggregates MTD partitions parsing (done by 728 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 729 * basically follows the most common pattern found in many MTD drivers: 730 * 731 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 732 * registered first. 733 * * Then It tries to probe partitions on MTD device @mtd using parsers 734 * specified in @types (if @types is %NULL, then the default list of parsers 735 * is used, see 'parse_mtd_partitions()' for more information). If none are 736 * found this functions tries to fallback to information specified in 737 * @parts/@nr_parts. 738 * * If no partitions were found this function just registers the MTD device 739 * @mtd and exits. 740 * 741 * Returns zero in case of success and a negative error code in case of failure. 742 */ 743 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 744 struct mtd_part_parser_data *parser_data, 745 const struct mtd_partition *parts, 746 int nr_parts) 747 { 748 int ret; 749 750 mtd_set_dev_defaults(mtd); 751 752 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 753 ret = add_mtd_device(mtd); 754 if (ret) 755 return ret; 756 } 757 758 /* Prefer parsed partitions over driver-provided fallback */ 759 ret = parse_mtd_partitions(mtd, types, parser_data); 760 if (ret > 0) 761 ret = 0; 762 else if (nr_parts) 763 ret = add_mtd_partitions(mtd, parts, nr_parts); 764 else if (!device_is_registered(&mtd->dev)) 765 ret = add_mtd_device(mtd); 766 else 767 ret = 0; 768 769 if (ret) 770 goto out; 771 772 /* 773 * FIXME: some drivers unfortunately call this function more than once. 774 * So we have to check if we've already assigned the reboot notifier. 775 * 776 * Generally, we can make multiple calls work for most cases, but it 777 * does cause problems with parse_mtd_partitions() above (e.g., 778 * cmdlineparts will register partitions more than once). 779 */ 780 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 781 "MTD already registered\n"); 782 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 783 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 784 register_reboot_notifier(&mtd->reboot_notifier); 785 } 786 787 out: 788 if (ret && device_is_registered(&mtd->dev)) 789 del_mtd_device(mtd); 790 791 return ret; 792 } 793 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 794 795 /** 796 * mtd_device_unregister - unregister an existing MTD device. 797 * 798 * @master: the MTD device to unregister. This will unregister both the master 799 * and any partitions if registered. 800 */ 801 int mtd_device_unregister(struct mtd_info *master) 802 { 803 int err; 804 805 if (master->_reboot) 806 unregister_reboot_notifier(&master->reboot_notifier); 807 808 err = del_mtd_partitions(master); 809 if (err) 810 return err; 811 812 if (!device_is_registered(&master->dev)) 813 return 0; 814 815 return del_mtd_device(master); 816 } 817 EXPORT_SYMBOL_GPL(mtd_device_unregister); 818 819 /** 820 * register_mtd_user - register a 'user' of MTD devices. 821 * @new: pointer to notifier info structure 822 * 823 * Registers a pair of callbacks function to be called upon addition 824 * or removal of MTD devices. Causes the 'add' callback to be immediately 825 * invoked for each MTD device currently present in the system. 826 */ 827 void register_mtd_user (struct mtd_notifier *new) 828 { 829 struct mtd_info *mtd; 830 831 mutex_lock(&mtd_table_mutex); 832 833 list_add(&new->list, &mtd_notifiers); 834 835 __module_get(THIS_MODULE); 836 837 mtd_for_each_device(mtd) 838 new->add(mtd); 839 840 mutex_unlock(&mtd_table_mutex); 841 } 842 EXPORT_SYMBOL_GPL(register_mtd_user); 843 844 /** 845 * unregister_mtd_user - unregister a 'user' of MTD devices. 846 * @old: pointer to notifier info structure 847 * 848 * Removes a callback function pair from the list of 'users' to be 849 * notified upon addition or removal of MTD devices. Causes the 850 * 'remove' callback to be immediately invoked for each MTD device 851 * currently present in the system. 852 */ 853 int unregister_mtd_user (struct mtd_notifier *old) 854 { 855 struct mtd_info *mtd; 856 857 mutex_lock(&mtd_table_mutex); 858 859 module_put(THIS_MODULE); 860 861 mtd_for_each_device(mtd) 862 old->remove(mtd); 863 864 list_del(&old->list); 865 mutex_unlock(&mtd_table_mutex); 866 return 0; 867 } 868 EXPORT_SYMBOL_GPL(unregister_mtd_user); 869 870 /** 871 * get_mtd_device - obtain a validated handle for an MTD device 872 * @mtd: last known address of the required MTD device 873 * @num: internal device number of the required MTD device 874 * 875 * Given a number and NULL address, return the num'th entry in the device 876 * table, if any. Given an address and num == -1, search the device table 877 * for a device with that address and return if it's still present. Given 878 * both, return the num'th driver only if its address matches. Return 879 * error code if not. 880 */ 881 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 882 { 883 struct mtd_info *ret = NULL, *other; 884 int err = -ENODEV; 885 886 mutex_lock(&mtd_table_mutex); 887 888 if (num == -1) { 889 mtd_for_each_device(other) { 890 if (other == mtd) { 891 ret = mtd; 892 break; 893 } 894 } 895 } else if (num >= 0) { 896 ret = idr_find(&mtd_idr, num); 897 if (mtd && mtd != ret) 898 ret = NULL; 899 } 900 901 if (!ret) { 902 ret = ERR_PTR(err); 903 goto out; 904 } 905 906 err = __get_mtd_device(ret); 907 if (err) 908 ret = ERR_PTR(err); 909 out: 910 mutex_unlock(&mtd_table_mutex); 911 return ret; 912 } 913 EXPORT_SYMBOL_GPL(get_mtd_device); 914 915 916 int __get_mtd_device(struct mtd_info *mtd) 917 { 918 int err; 919 920 if (!try_module_get(mtd->owner)) 921 return -ENODEV; 922 923 if (mtd->_get_device) { 924 err = mtd->_get_device(mtd); 925 926 if (err) { 927 module_put(mtd->owner); 928 return err; 929 } 930 } 931 mtd->usecount++; 932 return 0; 933 } 934 EXPORT_SYMBOL_GPL(__get_mtd_device); 935 936 /** 937 * get_mtd_device_nm - obtain a validated handle for an MTD device by 938 * device name 939 * @name: MTD device name to open 940 * 941 * This function returns MTD device description structure in case of 942 * success and an error code in case of failure. 943 */ 944 struct mtd_info *get_mtd_device_nm(const char *name) 945 { 946 int err = -ENODEV; 947 struct mtd_info *mtd = NULL, *other; 948 949 mutex_lock(&mtd_table_mutex); 950 951 mtd_for_each_device(other) { 952 if (!strcmp(name, other->name)) { 953 mtd = other; 954 break; 955 } 956 } 957 958 if (!mtd) 959 goto out_unlock; 960 961 err = __get_mtd_device(mtd); 962 if (err) 963 goto out_unlock; 964 965 mutex_unlock(&mtd_table_mutex); 966 return mtd; 967 968 out_unlock: 969 mutex_unlock(&mtd_table_mutex); 970 return ERR_PTR(err); 971 } 972 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 973 974 void put_mtd_device(struct mtd_info *mtd) 975 { 976 mutex_lock(&mtd_table_mutex); 977 __put_mtd_device(mtd); 978 mutex_unlock(&mtd_table_mutex); 979 980 } 981 EXPORT_SYMBOL_GPL(put_mtd_device); 982 983 void __put_mtd_device(struct mtd_info *mtd) 984 { 985 --mtd->usecount; 986 BUG_ON(mtd->usecount < 0); 987 988 if (mtd->_put_device) 989 mtd->_put_device(mtd); 990 991 module_put(mtd->owner); 992 } 993 EXPORT_SYMBOL_GPL(__put_mtd_device); 994 995 /* 996 * Erase is an synchronous operation. Device drivers are epected to return a 997 * negative error code if the operation failed and update instr->fail_addr 998 * to point the portion that was not properly erased. 999 */ 1000 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1001 { 1002 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1003 1004 if (!mtd->erasesize || !mtd->_erase) 1005 return -ENOTSUPP; 1006 1007 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1008 return -EINVAL; 1009 if (!(mtd->flags & MTD_WRITEABLE)) 1010 return -EROFS; 1011 1012 if (!instr->len) 1013 return 0; 1014 1015 ledtrig_mtd_activity(); 1016 return mtd->_erase(mtd, instr); 1017 } 1018 EXPORT_SYMBOL_GPL(mtd_erase); 1019 1020 /* 1021 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1022 */ 1023 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1024 void **virt, resource_size_t *phys) 1025 { 1026 *retlen = 0; 1027 *virt = NULL; 1028 if (phys) 1029 *phys = 0; 1030 if (!mtd->_point) 1031 return -EOPNOTSUPP; 1032 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1033 return -EINVAL; 1034 if (!len) 1035 return 0; 1036 return mtd->_point(mtd, from, len, retlen, virt, phys); 1037 } 1038 EXPORT_SYMBOL_GPL(mtd_point); 1039 1040 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1041 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1042 { 1043 if (!mtd->_unpoint) 1044 return -EOPNOTSUPP; 1045 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1046 return -EINVAL; 1047 if (!len) 1048 return 0; 1049 return mtd->_unpoint(mtd, from, len); 1050 } 1051 EXPORT_SYMBOL_GPL(mtd_unpoint); 1052 1053 /* 1054 * Allow NOMMU mmap() to directly map the device (if not NULL) 1055 * - return the address to which the offset maps 1056 * - return -ENOSYS to indicate refusal to do the mapping 1057 */ 1058 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1059 unsigned long offset, unsigned long flags) 1060 { 1061 size_t retlen; 1062 void *virt; 1063 int ret; 1064 1065 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1066 if (ret) 1067 return ret; 1068 if (retlen != len) { 1069 mtd_unpoint(mtd, offset, retlen); 1070 return -ENOSYS; 1071 } 1072 return (unsigned long)virt; 1073 } 1074 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1075 1076 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1077 u_char *buf) 1078 { 1079 struct mtd_oob_ops ops = { 1080 .len = len, 1081 .datbuf = buf, 1082 }; 1083 int ret; 1084 1085 ret = mtd_read_oob(mtd, from, &ops); 1086 *retlen = ops.retlen; 1087 1088 return ret; 1089 } 1090 EXPORT_SYMBOL_GPL(mtd_read); 1091 1092 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1093 const u_char *buf) 1094 { 1095 struct mtd_oob_ops ops = { 1096 .len = len, 1097 .datbuf = (u8 *)buf, 1098 }; 1099 int ret; 1100 1101 ret = mtd_write_oob(mtd, to, &ops); 1102 *retlen = ops.retlen; 1103 1104 return ret; 1105 } 1106 EXPORT_SYMBOL_GPL(mtd_write); 1107 1108 /* 1109 * In blackbox flight recorder like scenarios we want to make successful writes 1110 * in interrupt context. panic_write() is only intended to be called when its 1111 * known the kernel is about to panic and we need the write to succeed. Since 1112 * the kernel is not going to be running for much longer, this function can 1113 * break locks and delay to ensure the write succeeds (but not sleep). 1114 */ 1115 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1116 const u_char *buf) 1117 { 1118 *retlen = 0; 1119 if (!mtd->_panic_write) 1120 return -EOPNOTSUPP; 1121 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1122 return -EINVAL; 1123 if (!(mtd->flags & MTD_WRITEABLE)) 1124 return -EROFS; 1125 if (!len) 1126 return 0; 1127 return mtd->_panic_write(mtd, to, len, retlen, buf); 1128 } 1129 EXPORT_SYMBOL_GPL(mtd_panic_write); 1130 1131 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1132 struct mtd_oob_ops *ops) 1133 { 1134 /* 1135 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1136 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1137 * this case. 1138 */ 1139 if (!ops->datbuf) 1140 ops->len = 0; 1141 1142 if (!ops->oobbuf) 1143 ops->ooblen = 0; 1144 1145 if (offs < 0 || offs + ops->len > mtd->size) 1146 return -EINVAL; 1147 1148 if (ops->ooblen) { 1149 size_t maxooblen; 1150 1151 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1152 return -EINVAL; 1153 1154 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1155 mtd_div_by_ws(offs, mtd)) * 1156 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1157 if (ops->ooblen > maxooblen) 1158 return -EINVAL; 1159 } 1160 1161 return 0; 1162 } 1163 1164 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1165 { 1166 int ret_code; 1167 ops->retlen = ops->oobretlen = 0; 1168 1169 ret_code = mtd_check_oob_ops(mtd, from, ops); 1170 if (ret_code) 1171 return ret_code; 1172 1173 ledtrig_mtd_activity(); 1174 1175 /* Check the validity of a potential fallback on mtd->_read */ 1176 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf)) 1177 return -EOPNOTSUPP; 1178 1179 if (mtd->_read_oob) 1180 ret_code = mtd->_read_oob(mtd, from, ops); 1181 else 1182 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen, 1183 ops->datbuf); 1184 1185 /* 1186 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1187 * similar to mtd->_read(), returning a non-negative integer 1188 * representing max bitflips. In other cases, mtd->_read_oob() may 1189 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1190 */ 1191 if (unlikely(ret_code < 0)) 1192 return ret_code; 1193 if (mtd->ecc_strength == 0) 1194 return 0; /* device lacks ecc */ 1195 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1196 } 1197 EXPORT_SYMBOL_GPL(mtd_read_oob); 1198 1199 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1200 struct mtd_oob_ops *ops) 1201 { 1202 int ret; 1203 1204 ops->retlen = ops->oobretlen = 0; 1205 1206 if (!(mtd->flags & MTD_WRITEABLE)) 1207 return -EROFS; 1208 1209 ret = mtd_check_oob_ops(mtd, to, ops); 1210 if (ret) 1211 return ret; 1212 1213 ledtrig_mtd_activity(); 1214 1215 /* Check the validity of a potential fallback on mtd->_write */ 1216 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf)) 1217 return -EOPNOTSUPP; 1218 1219 if (mtd->_write_oob) 1220 return mtd->_write_oob(mtd, to, ops); 1221 else 1222 return mtd->_write(mtd, to, ops->len, &ops->retlen, 1223 ops->datbuf); 1224 } 1225 EXPORT_SYMBOL_GPL(mtd_write_oob); 1226 1227 /** 1228 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1229 * @mtd: MTD device structure 1230 * @section: ECC section. Depending on the layout you may have all the ECC 1231 * bytes stored in a single contiguous section, or one section 1232 * per ECC chunk (and sometime several sections for a single ECC 1233 * ECC chunk) 1234 * @oobecc: OOB region struct filled with the appropriate ECC position 1235 * information 1236 * 1237 * This function returns ECC section information in the OOB area. If you want 1238 * to get all the ECC bytes information, then you should call 1239 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1240 * 1241 * Returns zero on success, a negative error code otherwise. 1242 */ 1243 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1244 struct mtd_oob_region *oobecc) 1245 { 1246 memset(oobecc, 0, sizeof(*oobecc)); 1247 1248 if (!mtd || section < 0) 1249 return -EINVAL; 1250 1251 if (!mtd->ooblayout || !mtd->ooblayout->ecc) 1252 return -ENOTSUPP; 1253 1254 return mtd->ooblayout->ecc(mtd, section, oobecc); 1255 } 1256 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1257 1258 /** 1259 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1260 * section 1261 * @mtd: MTD device structure 1262 * @section: Free section you are interested in. Depending on the layout 1263 * you may have all the free bytes stored in a single contiguous 1264 * section, or one section per ECC chunk plus an extra section 1265 * for the remaining bytes (or other funky layout). 1266 * @oobfree: OOB region struct filled with the appropriate free position 1267 * information 1268 * 1269 * This function returns free bytes position in the OOB area. If you want 1270 * to get all the free bytes information, then you should call 1271 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1272 * 1273 * Returns zero on success, a negative error code otherwise. 1274 */ 1275 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1276 struct mtd_oob_region *oobfree) 1277 { 1278 memset(oobfree, 0, sizeof(*oobfree)); 1279 1280 if (!mtd || section < 0) 1281 return -EINVAL; 1282 1283 if (!mtd->ooblayout || !mtd->ooblayout->free) 1284 return -ENOTSUPP; 1285 1286 return mtd->ooblayout->free(mtd, section, oobfree); 1287 } 1288 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1289 1290 /** 1291 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1292 * @mtd: mtd info structure 1293 * @byte: the byte we are searching for 1294 * @sectionp: pointer where the section id will be stored 1295 * @oobregion: used to retrieve the ECC position 1296 * @iter: iterator function. Should be either mtd_ooblayout_free or 1297 * mtd_ooblayout_ecc depending on the region type you're searching for 1298 * 1299 * This function returns the section id and oobregion information of a 1300 * specific byte. For example, say you want to know where the 4th ECC byte is 1301 * stored, you'll use: 1302 * 1303 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1304 * 1305 * Returns zero on success, a negative error code otherwise. 1306 */ 1307 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1308 int *sectionp, struct mtd_oob_region *oobregion, 1309 int (*iter)(struct mtd_info *, 1310 int section, 1311 struct mtd_oob_region *oobregion)) 1312 { 1313 int pos = 0, ret, section = 0; 1314 1315 memset(oobregion, 0, sizeof(*oobregion)); 1316 1317 while (1) { 1318 ret = iter(mtd, section, oobregion); 1319 if (ret) 1320 return ret; 1321 1322 if (pos + oobregion->length > byte) 1323 break; 1324 1325 pos += oobregion->length; 1326 section++; 1327 } 1328 1329 /* 1330 * Adjust region info to make it start at the beginning at the 1331 * 'start' ECC byte. 1332 */ 1333 oobregion->offset += byte - pos; 1334 oobregion->length -= byte - pos; 1335 *sectionp = section; 1336 1337 return 0; 1338 } 1339 1340 /** 1341 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1342 * ECC byte 1343 * @mtd: mtd info structure 1344 * @eccbyte: the byte we are searching for 1345 * @sectionp: pointer where the section id will be stored 1346 * @oobregion: OOB region information 1347 * 1348 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1349 * byte. 1350 * 1351 * Returns zero on success, a negative error code otherwise. 1352 */ 1353 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1354 int *section, 1355 struct mtd_oob_region *oobregion) 1356 { 1357 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1358 mtd_ooblayout_ecc); 1359 } 1360 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1361 1362 /** 1363 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1364 * @mtd: mtd info structure 1365 * @buf: destination buffer to store OOB bytes 1366 * @oobbuf: OOB buffer 1367 * @start: first byte to retrieve 1368 * @nbytes: number of bytes to retrieve 1369 * @iter: section iterator 1370 * 1371 * Extract bytes attached to a specific category (ECC or free) 1372 * from the OOB buffer and copy them into buf. 1373 * 1374 * Returns zero on success, a negative error code otherwise. 1375 */ 1376 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1377 const u8 *oobbuf, int start, int nbytes, 1378 int (*iter)(struct mtd_info *, 1379 int section, 1380 struct mtd_oob_region *oobregion)) 1381 { 1382 struct mtd_oob_region oobregion; 1383 int section, ret; 1384 1385 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1386 &oobregion, iter); 1387 1388 while (!ret) { 1389 int cnt; 1390 1391 cnt = min_t(int, nbytes, oobregion.length); 1392 memcpy(buf, oobbuf + oobregion.offset, cnt); 1393 buf += cnt; 1394 nbytes -= cnt; 1395 1396 if (!nbytes) 1397 break; 1398 1399 ret = iter(mtd, ++section, &oobregion); 1400 } 1401 1402 return ret; 1403 } 1404 1405 /** 1406 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1407 * @mtd: mtd info structure 1408 * @buf: source buffer to get OOB bytes from 1409 * @oobbuf: OOB buffer 1410 * @start: first OOB byte to set 1411 * @nbytes: number of OOB bytes to set 1412 * @iter: section iterator 1413 * 1414 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1415 * is selected by passing the appropriate iterator. 1416 * 1417 * Returns zero on success, a negative error code otherwise. 1418 */ 1419 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1420 u8 *oobbuf, int start, int nbytes, 1421 int (*iter)(struct mtd_info *, 1422 int section, 1423 struct mtd_oob_region *oobregion)) 1424 { 1425 struct mtd_oob_region oobregion; 1426 int section, ret; 1427 1428 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1429 &oobregion, iter); 1430 1431 while (!ret) { 1432 int cnt; 1433 1434 cnt = min_t(int, nbytes, oobregion.length); 1435 memcpy(oobbuf + oobregion.offset, buf, cnt); 1436 buf += cnt; 1437 nbytes -= cnt; 1438 1439 if (!nbytes) 1440 break; 1441 1442 ret = iter(mtd, ++section, &oobregion); 1443 } 1444 1445 return ret; 1446 } 1447 1448 /** 1449 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1450 * @mtd: mtd info structure 1451 * @iter: category iterator 1452 * 1453 * Count the number of bytes in a given category. 1454 * 1455 * Returns a positive value on success, a negative error code otherwise. 1456 */ 1457 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1458 int (*iter)(struct mtd_info *, 1459 int section, 1460 struct mtd_oob_region *oobregion)) 1461 { 1462 struct mtd_oob_region oobregion; 1463 int section = 0, ret, nbytes = 0; 1464 1465 while (1) { 1466 ret = iter(mtd, section++, &oobregion); 1467 if (ret) { 1468 if (ret == -ERANGE) 1469 ret = nbytes; 1470 break; 1471 } 1472 1473 nbytes += oobregion.length; 1474 } 1475 1476 return ret; 1477 } 1478 1479 /** 1480 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1481 * @mtd: mtd info structure 1482 * @eccbuf: destination buffer to store ECC bytes 1483 * @oobbuf: OOB buffer 1484 * @start: first ECC byte to retrieve 1485 * @nbytes: number of ECC bytes to retrieve 1486 * 1487 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1488 * 1489 * Returns zero on success, a negative error code otherwise. 1490 */ 1491 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1492 const u8 *oobbuf, int start, int nbytes) 1493 { 1494 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1495 mtd_ooblayout_ecc); 1496 } 1497 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1498 1499 /** 1500 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1501 * @mtd: mtd info structure 1502 * @eccbuf: source buffer to get ECC bytes from 1503 * @oobbuf: OOB buffer 1504 * @start: first ECC byte to set 1505 * @nbytes: number of ECC bytes to set 1506 * 1507 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1508 * 1509 * Returns zero on success, a negative error code otherwise. 1510 */ 1511 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1512 u8 *oobbuf, int start, int nbytes) 1513 { 1514 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1515 mtd_ooblayout_ecc); 1516 } 1517 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1518 1519 /** 1520 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1521 * @mtd: mtd info structure 1522 * @databuf: destination buffer to store ECC bytes 1523 * @oobbuf: OOB buffer 1524 * @start: first ECC byte to retrieve 1525 * @nbytes: number of ECC bytes to retrieve 1526 * 1527 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1528 * 1529 * Returns zero on success, a negative error code otherwise. 1530 */ 1531 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1532 const u8 *oobbuf, int start, int nbytes) 1533 { 1534 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1535 mtd_ooblayout_free); 1536 } 1537 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1538 1539 /** 1540 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1541 * @mtd: mtd info structure 1542 * @databuf: source buffer to get data bytes from 1543 * @oobbuf: OOB buffer 1544 * @start: first ECC byte to set 1545 * @nbytes: number of ECC bytes to set 1546 * 1547 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1548 * 1549 * Returns zero on success, a negative error code otherwise. 1550 */ 1551 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1552 u8 *oobbuf, int start, int nbytes) 1553 { 1554 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1555 mtd_ooblayout_free); 1556 } 1557 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1558 1559 /** 1560 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1561 * @mtd: mtd info structure 1562 * 1563 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1564 * 1565 * Returns zero on success, a negative error code otherwise. 1566 */ 1567 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1568 { 1569 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1570 } 1571 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1572 1573 /** 1574 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1575 * @mtd: mtd info structure 1576 * 1577 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1578 * 1579 * Returns zero on success, a negative error code otherwise. 1580 */ 1581 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1582 { 1583 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1584 } 1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1586 1587 /* 1588 * Method to access the protection register area, present in some flash 1589 * devices. The user data is one time programmable but the factory data is read 1590 * only. 1591 */ 1592 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1593 struct otp_info *buf) 1594 { 1595 if (!mtd->_get_fact_prot_info) 1596 return -EOPNOTSUPP; 1597 if (!len) 1598 return 0; 1599 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 1600 } 1601 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 1602 1603 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1604 size_t *retlen, u_char *buf) 1605 { 1606 *retlen = 0; 1607 if (!mtd->_read_fact_prot_reg) 1608 return -EOPNOTSUPP; 1609 if (!len) 1610 return 0; 1611 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 1612 } 1613 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 1614 1615 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1616 struct otp_info *buf) 1617 { 1618 if (!mtd->_get_user_prot_info) 1619 return -EOPNOTSUPP; 1620 if (!len) 1621 return 0; 1622 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1623 } 1624 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1625 1626 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1627 size_t *retlen, u_char *buf) 1628 { 1629 *retlen = 0; 1630 if (!mtd->_read_user_prot_reg) 1631 return -EOPNOTSUPP; 1632 if (!len) 1633 return 0; 1634 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1635 } 1636 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1637 1638 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1639 size_t *retlen, u_char *buf) 1640 { 1641 int ret; 1642 1643 *retlen = 0; 1644 if (!mtd->_write_user_prot_reg) 1645 return -EOPNOTSUPP; 1646 if (!len) 1647 return 0; 1648 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1649 if (ret) 1650 return ret; 1651 1652 /* 1653 * If no data could be written at all, we are out of memory and 1654 * must return -ENOSPC. 1655 */ 1656 return (*retlen) ? 0 : -ENOSPC; 1657 } 1658 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1659 1660 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1661 { 1662 if (!mtd->_lock_user_prot_reg) 1663 return -EOPNOTSUPP; 1664 if (!len) 1665 return 0; 1666 return mtd->_lock_user_prot_reg(mtd, from, len); 1667 } 1668 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1669 1670 /* Chip-supported device locking */ 1671 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1672 { 1673 if (!mtd->_lock) 1674 return -EOPNOTSUPP; 1675 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1676 return -EINVAL; 1677 if (!len) 1678 return 0; 1679 return mtd->_lock(mtd, ofs, len); 1680 } 1681 EXPORT_SYMBOL_GPL(mtd_lock); 1682 1683 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1684 { 1685 if (!mtd->_unlock) 1686 return -EOPNOTSUPP; 1687 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1688 return -EINVAL; 1689 if (!len) 1690 return 0; 1691 return mtd->_unlock(mtd, ofs, len); 1692 } 1693 EXPORT_SYMBOL_GPL(mtd_unlock); 1694 1695 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1696 { 1697 if (!mtd->_is_locked) 1698 return -EOPNOTSUPP; 1699 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1700 return -EINVAL; 1701 if (!len) 1702 return 0; 1703 return mtd->_is_locked(mtd, ofs, len); 1704 } 1705 EXPORT_SYMBOL_GPL(mtd_is_locked); 1706 1707 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1708 { 1709 if (ofs < 0 || ofs >= mtd->size) 1710 return -EINVAL; 1711 if (!mtd->_block_isreserved) 1712 return 0; 1713 return mtd->_block_isreserved(mtd, ofs); 1714 } 1715 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1716 1717 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1718 { 1719 if (ofs < 0 || ofs >= mtd->size) 1720 return -EINVAL; 1721 if (!mtd->_block_isbad) 1722 return 0; 1723 return mtd->_block_isbad(mtd, ofs); 1724 } 1725 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1726 1727 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1728 { 1729 if (!mtd->_block_markbad) 1730 return -EOPNOTSUPP; 1731 if (ofs < 0 || ofs >= mtd->size) 1732 return -EINVAL; 1733 if (!(mtd->flags & MTD_WRITEABLE)) 1734 return -EROFS; 1735 return mtd->_block_markbad(mtd, ofs); 1736 } 1737 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1738 1739 /* 1740 * default_mtd_writev - the default writev method 1741 * @mtd: mtd device description object pointer 1742 * @vecs: the vectors to write 1743 * @count: count of vectors in @vecs 1744 * @to: the MTD device offset to write to 1745 * @retlen: on exit contains the count of bytes written to the MTD device. 1746 * 1747 * This function returns zero in case of success and a negative error code in 1748 * case of failure. 1749 */ 1750 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1751 unsigned long count, loff_t to, size_t *retlen) 1752 { 1753 unsigned long i; 1754 size_t totlen = 0, thislen; 1755 int ret = 0; 1756 1757 for (i = 0; i < count; i++) { 1758 if (!vecs[i].iov_len) 1759 continue; 1760 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1761 vecs[i].iov_base); 1762 totlen += thislen; 1763 if (ret || thislen != vecs[i].iov_len) 1764 break; 1765 to += vecs[i].iov_len; 1766 } 1767 *retlen = totlen; 1768 return ret; 1769 } 1770 1771 /* 1772 * mtd_writev - the vector-based MTD write method 1773 * @mtd: mtd device description object pointer 1774 * @vecs: the vectors to write 1775 * @count: count of vectors in @vecs 1776 * @to: the MTD device offset to write to 1777 * @retlen: on exit contains the count of bytes written to the MTD device. 1778 * 1779 * This function returns zero in case of success and a negative error code in 1780 * case of failure. 1781 */ 1782 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1783 unsigned long count, loff_t to, size_t *retlen) 1784 { 1785 *retlen = 0; 1786 if (!(mtd->flags & MTD_WRITEABLE)) 1787 return -EROFS; 1788 if (!mtd->_writev) 1789 return default_mtd_writev(mtd, vecs, count, to, retlen); 1790 return mtd->_writev(mtd, vecs, count, to, retlen); 1791 } 1792 EXPORT_SYMBOL_GPL(mtd_writev); 1793 1794 /** 1795 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1796 * @mtd: mtd device description object pointer 1797 * @size: a pointer to the ideal or maximum size of the allocation, points 1798 * to the actual allocation size on success. 1799 * 1800 * This routine attempts to allocate a contiguous kernel buffer up to 1801 * the specified size, backing off the size of the request exponentially 1802 * until the request succeeds or until the allocation size falls below 1803 * the system page size. This attempts to make sure it does not adversely 1804 * impact system performance, so when allocating more than one page, we 1805 * ask the memory allocator to avoid re-trying, swapping, writing back 1806 * or performing I/O. 1807 * 1808 * Note, this function also makes sure that the allocated buffer is aligned to 1809 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1810 * 1811 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1812 * to handle smaller (i.e. degraded) buffer allocations under low- or 1813 * fragmented-memory situations where such reduced allocations, from a 1814 * requested ideal, are allowed. 1815 * 1816 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1817 */ 1818 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1819 { 1820 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 1821 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1822 void *kbuf; 1823 1824 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1825 1826 while (*size > min_alloc) { 1827 kbuf = kmalloc(*size, flags); 1828 if (kbuf) 1829 return kbuf; 1830 1831 *size >>= 1; 1832 *size = ALIGN(*size, mtd->writesize); 1833 } 1834 1835 /* 1836 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1837 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1838 */ 1839 return kmalloc(*size, GFP_KERNEL); 1840 } 1841 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1842 1843 #ifdef CONFIG_PROC_FS 1844 1845 /*====================================================================*/ 1846 /* Support for /proc/mtd */ 1847 1848 static int mtd_proc_show(struct seq_file *m, void *v) 1849 { 1850 struct mtd_info *mtd; 1851 1852 seq_puts(m, "dev: size erasesize name\n"); 1853 mutex_lock(&mtd_table_mutex); 1854 mtd_for_each_device(mtd) { 1855 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1856 mtd->index, (unsigned long long)mtd->size, 1857 mtd->erasesize, mtd->name); 1858 } 1859 mutex_unlock(&mtd_table_mutex); 1860 return 0; 1861 } 1862 #endif /* CONFIG_PROC_FS */ 1863 1864 /*====================================================================*/ 1865 /* Init code */ 1866 1867 static struct backing_dev_info * __init mtd_bdi_init(char *name) 1868 { 1869 struct backing_dev_info *bdi; 1870 int ret; 1871 1872 bdi = bdi_alloc(GFP_KERNEL); 1873 if (!bdi) 1874 return ERR_PTR(-ENOMEM); 1875 1876 bdi->name = name; 1877 /* 1878 * We put '-0' suffix to the name to get the same name format as we 1879 * used to get. Since this is called only once, we get a unique name. 1880 */ 1881 ret = bdi_register(bdi, "%.28s-0", name); 1882 if (ret) 1883 bdi_put(bdi); 1884 1885 return ret ? ERR_PTR(ret) : bdi; 1886 } 1887 1888 static struct proc_dir_entry *proc_mtd; 1889 1890 static int __init init_mtd(void) 1891 { 1892 int ret; 1893 1894 ret = class_register(&mtd_class); 1895 if (ret) 1896 goto err_reg; 1897 1898 mtd_bdi = mtd_bdi_init("mtd"); 1899 if (IS_ERR(mtd_bdi)) { 1900 ret = PTR_ERR(mtd_bdi); 1901 goto err_bdi; 1902 } 1903 1904 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 1905 1906 ret = init_mtdchar(); 1907 if (ret) 1908 goto out_procfs; 1909 1910 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 1911 1912 return 0; 1913 1914 out_procfs: 1915 if (proc_mtd) 1916 remove_proc_entry("mtd", NULL); 1917 bdi_put(mtd_bdi); 1918 err_bdi: 1919 class_unregister(&mtd_class); 1920 err_reg: 1921 pr_err("Error registering mtd class or bdi: %d\n", ret); 1922 return ret; 1923 } 1924 1925 static void __exit cleanup_mtd(void) 1926 { 1927 debugfs_remove_recursive(dfs_dir_mtd); 1928 cleanup_mtdchar(); 1929 if (proc_mtd) 1930 remove_proc_entry("mtd", NULL); 1931 class_unregister(&mtd_class); 1932 bdi_put(mtd_bdi); 1933 idr_destroy(&mtd_idr); 1934 } 1935 1936 module_init(init_mtd); 1937 module_exit(cleanup_mtd); 1938 1939 MODULE_LICENSE("GPL"); 1940 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1941 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1942