xref: /linux/drivers/mtd/mtdcore.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 #include <linux/reboot.h>
41 #include <linux/kconfig.h>
42 
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/partitions.h>
45 
46 #include "mtdcore.h"
47 
48 static struct backing_dev_info mtd_bdi = {
49 };
50 
51 #ifdef CONFIG_PM_SLEEP
52 
53 static int mtd_cls_suspend(struct device *dev)
54 {
55 	struct mtd_info *mtd = dev_get_drvdata(dev);
56 
57 	return mtd ? mtd_suspend(mtd) : 0;
58 }
59 
60 static int mtd_cls_resume(struct device *dev)
61 {
62 	struct mtd_info *mtd = dev_get_drvdata(dev);
63 
64 	if (mtd)
65 		mtd_resume(mtd);
66 	return 0;
67 }
68 
69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
71 #else
72 #define MTD_CLS_PM_OPS NULL
73 #endif
74 
75 static struct class mtd_class = {
76 	.name = "mtd",
77 	.owner = THIS_MODULE,
78 	.pm = MTD_CLS_PM_OPS,
79 };
80 
81 static DEFINE_IDR(mtd_idr);
82 
83 /* These are exported solely for the purpose of mtd_blkdevs.c. You
84    should not use them for _anything_ else */
85 DEFINE_MUTEX(mtd_table_mutex);
86 EXPORT_SYMBOL_GPL(mtd_table_mutex);
87 
88 struct mtd_info *__mtd_next_device(int i)
89 {
90 	return idr_get_next(&mtd_idr, &i);
91 }
92 EXPORT_SYMBOL_GPL(__mtd_next_device);
93 
94 static LIST_HEAD(mtd_notifiers);
95 
96 
97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
98 
99 /* REVISIT once MTD uses the driver model better, whoever allocates
100  * the mtd_info will probably want to use the release() hook...
101  */
102 static void mtd_release(struct device *dev)
103 {
104 	struct mtd_info *mtd = dev_get_drvdata(dev);
105 	dev_t index = MTD_DEVT(mtd->index);
106 
107 	/* remove /dev/mtdXro node */
108 	device_destroy(&mtd_class, index + 1);
109 }
110 
111 static ssize_t mtd_type_show(struct device *dev,
112 		struct device_attribute *attr, char *buf)
113 {
114 	struct mtd_info *mtd = dev_get_drvdata(dev);
115 	char *type;
116 
117 	switch (mtd->type) {
118 	case MTD_ABSENT:
119 		type = "absent";
120 		break;
121 	case MTD_RAM:
122 		type = "ram";
123 		break;
124 	case MTD_ROM:
125 		type = "rom";
126 		break;
127 	case MTD_NORFLASH:
128 		type = "nor";
129 		break;
130 	case MTD_NANDFLASH:
131 		type = "nand";
132 		break;
133 	case MTD_DATAFLASH:
134 		type = "dataflash";
135 		break;
136 	case MTD_UBIVOLUME:
137 		type = "ubi";
138 		break;
139 	case MTD_MLCNANDFLASH:
140 		type = "mlc-nand";
141 		break;
142 	default:
143 		type = "unknown";
144 	}
145 
146 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
147 }
148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
149 
150 static ssize_t mtd_flags_show(struct device *dev,
151 		struct device_attribute *attr, char *buf)
152 {
153 	struct mtd_info *mtd = dev_get_drvdata(dev);
154 
155 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
156 
157 }
158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
159 
160 static ssize_t mtd_size_show(struct device *dev,
161 		struct device_attribute *attr, char *buf)
162 {
163 	struct mtd_info *mtd = dev_get_drvdata(dev);
164 
165 	return snprintf(buf, PAGE_SIZE, "%llu\n",
166 		(unsigned long long)mtd->size);
167 
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170 
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177 
178 }
179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
180 
181 static ssize_t mtd_writesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
187 
188 }
189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
190 
191 static ssize_t mtd_subpagesize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
196 
197 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
198 
199 }
200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
201 
202 static ssize_t mtd_oobsize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
208 
209 }
210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
211 
212 static ssize_t mtd_numeraseregions_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 
217 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
218 
219 }
220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
221 	NULL);
222 
223 static ssize_t mtd_name_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
229 
230 }
231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
232 
233 static ssize_t mtd_ecc_strength_show(struct device *dev,
234 				     struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
239 }
240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
241 
242 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
243 					  struct device_attribute *attr,
244 					  char *buf)
245 {
246 	struct mtd_info *mtd = dev_get_drvdata(dev);
247 
248 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
249 }
250 
251 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
252 					   struct device_attribute *attr,
253 					   const char *buf, size_t count)
254 {
255 	struct mtd_info *mtd = dev_get_drvdata(dev);
256 	unsigned int bitflip_threshold;
257 	int retval;
258 
259 	retval = kstrtouint(buf, 0, &bitflip_threshold);
260 	if (retval)
261 		return retval;
262 
263 	mtd->bitflip_threshold = bitflip_threshold;
264 	return count;
265 }
266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
267 		   mtd_bitflip_threshold_show,
268 		   mtd_bitflip_threshold_store);
269 
270 static ssize_t mtd_ecc_step_size_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	struct mtd_info *mtd = dev_get_drvdata(dev);
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
276 
277 }
278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
279 
280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
287 }
288 static DEVICE_ATTR(corrected_bits, S_IRUGO,
289 		   mtd_ecc_stats_corrected_show, NULL);
290 
291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
298 }
299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
300 
301 static ssize_t mtd_badblocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
308 }
309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
310 
311 static ssize_t mtd_bbtblocks_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
318 }
319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
320 
321 static struct attribute *mtd_attrs[] = {
322 	&dev_attr_type.attr,
323 	&dev_attr_flags.attr,
324 	&dev_attr_size.attr,
325 	&dev_attr_erasesize.attr,
326 	&dev_attr_writesize.attr,
327 	&dev_attr_subpagesize.attr,
328 	&dev_attr_oobsize.attr,
329 	&dev_attr_numeraseregions.attr,
330 	&dev_attr_name.attr,
331 	&dev_attr_ecc_strength.attr,
332 	&dev_attr_ecc_step_size.attr,
333 	&dev_attr_corrected_bits.attr,
334 	&dev_attr_ecc_failures.attr,
335 	&dev_attr_bad_blocks.attr,
336 	&dev_attr_bbt_blocks.attr,
337 	&dev_attr_bitflip_threshold.attr,
338 	NULL,
339 };
340 ATTRIBUTE_GROUPS(mtd);
341 
342 static struct device_type mtd_devtype = {
343 	.name		= "mtd",
344 	.groups		= mtd_groups,
345 	.release	= mtd_release,
346 };
347 
348 #ifndef CONFIG_MMU
349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
350 {
351 	switch (mtd->type) {
352 	case MTD_RAM:
353 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
354 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
355 	case MTD_ROM:
356 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
357 			NOMMU_MAP_READ;
358 	default:
359 		return NOMMU_MAP_COPY;
360 	}
361 }
362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
363 #endif
364 
365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
366 			       void *cmd)
367 {
368 	struct mtd_info *mtd;
369 
370 	mtd = container_of(n, struct mtd_info, reboot_notifier);
371 	mtd->_reboot(mtd);
372 
373 	return NOTIFY_DONE;
374 }
375 
376 /**
377  *	add_mtd_device - register an MTD device
378  *	@mtd: pointer to new MTD device info structure
379  *
380  *	Add a device to the list of MTD devices present in the system, and
381  *	notify each currently active MTD 'user' of its arrival. Returns
382  *	zero on success or non-zero on failure.
383  */
384 
385 int add_mtd_device(struct mtd_info *mtd)
386 {
387 	struct mtd_notifier *not;
388 	int i, error;
389 
390 	/*
391 	 * May occur, for instance, on buggy drivers which call
392 	 * mtd_device_parse_register() multiple times on the same master MTD,
393 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
394 	 */
395 	if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
396 		return -EEXIST;
397 
398 	mtd->backing_dev_info = &mtd_bdi;
399 
400 	BUG_ON(mtd->writesize == 0);
401 	mutex_lock(&mtd_table_mutex);
402 
403 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
404 	if (i < 0) {
405 		error = i;
406 		goto fail_locked;
407 	}
408 
409 	mtd->index = i;
410 	mtd->usecount = 0;
411 
412 	/* default value if not set by driver */
413 	if (mtd->bitflip_threshold == 0)
414 		mtd->bitflip_threshold = mtd->ecc_strength;
415 
416 	if (is_power_of_2(mtd->erasesize))
417 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
418 	else
419 		mtd->erasesize_shift = 0;
420 
421 	if (is_power_of_2(mtd->writesize))
422 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
423 	else
424 		mtd->writesize_shift = 0;
425 
426 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
427 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
428 
429 	if (mtd->dev.parent) {
430 		if (!mtd->owner && mtd->dev.parent->driver)
431 			mtd->owner = mtd->dev.parent->driver->owner;
432 		if (!mtd->name)
433 			mtd->name = dev_name(mtd->dev.parent);
434 	} else {
435 		pr_debug("mtd device won't show a device symlink in sysfs\n");
436 	}
437 
438 	/* Some chips always power up locked. Unlock them now */
439 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
440 		error = mtd_unlock(mtd, 0, mtd->size);
441 		if (error && error != -EOPNOTSUPP)
442 			printk(KERN_WARNING
443 			       "%s: unlock failed, writes may not work\n",
444 			       mtd->name);
445 		/* Ignore unlock failures? */
446 		error = 0;
447 	}
448 
449 	/* Caller should have set dev.parent to match the
450 	 * physical device, if appropriate.
451 	 */
452 	mtd->dev.type = &mtd_devtype;
453 	mtd->dev.class = &mtd_class;
454 	mtd->dev.devt = MTD_DEVT(i);
455 	dev_set_name(&mtd->dev, "mtd%d", i);
456 	dev_set_drvdata(&mtd->dev, mtd);
457 	error = device_register(&mtd->dev);
458 	if (error)
459 		goto fail_added;
460 
461 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
462 		      "mtd%dro", i);
463 
464 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
465 	/* No need to get a refcount on the module containing
466 	   the notifier, since we hold the mtd_table_mutex */
467 	list_for_each_entry(not, &mtd_notifiers, list)
468 		not->add(mtd);
469 
470 	mutex_unlock(&mtd_table_mutex);
471 	/* We _know_ we aren't being removed, because
472 	   our caller is still holding us here. So none
473 	   of this try_ nonsense, and no bitching about it
474 	   either. :) */
475 	__module_get(THIS_MODULE);
476 	return 0;
477 
478 fail_added:
479 	idr_remove(&mtd_idr, i);
480 fail_locked:
481 	mutex_unlock(&mtd_table_mutex);
482 	return error;
483 }
484 
485 /**
486  *	del_mtd_device - unregister an MTD device
487  *	@mtd: pointer to MTD device info structure
488  *
489  *	Remove a device from the list of MTD devices present in the system,
490  *	and notify each currently active MTD 'user' of its departure.
491  *	Returns zero on success or 1 on failure, which currently will happen
492  *	if the requested device does not appear to be present in the list.
493  */
494 
495 int del_mtd_device(struct mtd_info *mtd)
496 {
497 	int ret;
498 	struct mtd_notifier *not;
499 
500 	mutex_lock(&mtd_table_mutex);
501 
502 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
503 		ret = -ENODEV;
504 		goto out_error;
505 	}
506 
507 	/* No need to get a refcount on the module containing
508 		the notifier, since we hold the mtd_table_mutex */
509 	list_for_each_entry(not, &mtd_notifiers, list)
510 		not->remove(mtd);
511 
512 	if (mtd->usecount) {
513 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
514 		       mtd->index, mtd->name, mtd->usecount);
515 		ret = -EBUSY;
516 	} else {
517 		device_unregister(&mtd->dev);
518 
519 		idr_remove(&mtd_idr, mtd->index);
520 
521 		module_put(THIS_MODULE);
522 		ret = 0;
523 	}
524 
525 out_error:
526 	mutex_unlock(&mtd_table_mutex);
527 	return ret;
528 }
529 
530 static int mtd_add_device_partitions(struct mtd_info *mtd,
531 				     struct mtd_partition *real_parts,
532 				     int nbparts)
533 {
534 	int ret;
535 
536 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
537 		ret = add_mtd_device(mtd);
538 		if (ret)
539 			return ret;
540 	}
541 
542 	if (nbparts > 0) {
543 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
544 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
545 			del_mtd_device(mtd);
546 		return ret;
547 	}
548 
549 	return 0;
550 }
551 
552 
553 /**
554  * mtd_device_parse_register - parse partitions and register an MTD device.
555  *
556  * @mtd: the MTD device to register
557  * @types: the list of MTD partition probes to try, see
558  *         'parse_mtd_partitions()' for more information
559  * @parser_data: MTD partition parser-specific data
560  * @parts: fallback partition information to register, if parsing fails;
561  *         only valid if %nr_parts > %0
562  * @nr_parts: the number of partitions in parts, if zero then the full
563  *            MTD device is registered if no partition info is found
564  *
565  * This function aggregates MTD partitions parsing (done by
566  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
567  * basically follows the most common pattern found in many MTD drivers:
568  *
569  * * It first tries to probe partitions on MTD device @mtd using parsers
570  *   specified in @types (if @types is %NULL, then the default list of parsers
571  *   is used, see 'parse_mtd_partitions()' for more information). If none are
572  *   found this functions tries to fallback to information specified in
573  *   @parts/@nr_parts.
574  * * If any partitioning info was found, this function registers the found
575  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
576  *   as a whole is registered first.
577  * * If no partitions were found this function just registers the MTD device
578  *   @mtd and exits.
579  *
580  * Returns zero in case of success and a negative error code in case of failure.
581  */
582 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
583 			      struct mtd_part_parser_data *parser_data,
584 			      const struct mtd_partition *parts,
585 			      int nr_parts)
586 {
587 	int ret;
588 	struct mtd_partition *real_parts = NULL;
589 
590 	ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
591 	if (ret <= 0 && nr_parts && parts) {
592 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
593 				     GFP_KERNEL);
594 		if (!real_parts)
595 			ret = -ENOMEM;
596 		else
597 			ret = nr_parts;
598 	}
599 	/* Didn't come up with either parsed OR fallback partitions */
600 	if (ret < 0) {
601 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
602 			ret);
603 		/* Don't abort on errors; we can still use unpartitioned MTD */
604 		ret = 0;
605 	}
606 
607 	ret = mtd_add_device_partitions(mtd, real_parts, ret);
608 	if (ret)
609 		goto out;
610 
611 	/*
612 	 * FIXME: some drivers unfortunately call this function more than once.
613 	 * So we have to check if we've already assigned the reboot notifier.
614 	 *
615 	 * Generally, we can make multiple calls work for most cases, but it
616 	 * does cause problems with parse_mtd_partitions() above (e.g.,
617 	 * cmdlineparts will register partitions more than once).
618 	 */
619 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
620 		  "MTD already registered\n");
621 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
622 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
623 		register_reboot_notifier(&mtd->reboot_notifier);
624 	}
625 
626 out:
627 	kfree(real_parts);
628 	return ret;
629 }
630 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
631 
632 /**
633  * mtd_device_unregister - unregister an existing MTD device.
634  *
635  * @master: the MTD device to unregister.  This will unregister both the master
636  *          and any partitions if registered.
637  */
638 int mtd_device_unregister(struct mtd_info *master)
639 {
640 	int err;
641 
642 	if (master->_reboot)
643 		unregister_reboot_notifier(&master->reboot_notifier);
644 
645 	err = del_mtd_partitions(master);
646 	if (err)
647 		return err;
648 
649 	if (!device_is_registered(&master->dev))
650 		return 0;
651 
652 	return del_mtd_device(master);
653 }
654 EXPORT_SYMBOL_GPL(mtd_device_unregister);
655 
656 /**
657  *	register_mtd_user - register a 'user' of MTD devices.
658  *	@new: pointer to notifier info structure
659  *
660  *	Registers a pair of callbacks function to be called upon addition
661  *	or removal of MTD devices. Causes the 'add' callback to be immediately
662  *	invoked for each MTD device currently present in the system.
663  */
664 void register_mtd_user (struct mtd_notifier *new)
665 {
666 	struct mtd_info *mtd;
667 
668 	mutex_lock(&mtd_table_mutex);
669 
670 	list_add(&new->list, &mtd_notifiers);
671 
672 	__module_get(THIS_MODULE);
673 
674 	mtd_for_each_device(mtd)
675 		new->add(mtd);
676 
677 	mutex_unlock(&mtd_table_mutex);
678 }
679 EXPORT_SYMBOL_GPL(register_mtd_user);
680 
681 /**
682  *	unregister_mtd_user - unregister a 'user' of MTD devices.
683  *	@old: pointer to notifier info structure
684  *
685  *	Removes a callback function pair from the list of 'users' to be
686  *	notified upon addition or removal of MTD devices. Causes the
687  *	'remove' callback to be immediately invoked for each MTD device
688  *	currently present in the system.
689  */
690 int unregister_mtd_user (struct mtd_notifier *old)
691 {
692 	struct mtd_info *mtd;
693 
694 	mutex_lock(&mtd_table_mutex);
695 
696 	module_put(THIS_MODULE);
697 
698 	mtd_for_each_device(mtd)
699 		old->remove(mtd);
700 
701 	list_del(&old->list);
702 	mutex_unlock(&mtd_table_mutex);
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(unregister_mtd_user);
706 
707 /**
708  *	get_mtd_device - obtain a validated handle for an MTD device
709  *	@mtd: last known address of the required MTD device
710  *	@num: internal device number of the required MTD device
711  *
712  *	Given a number and NULL address, return the num'th entry in the device
713  *	table, if any.	Given an address and num == -1, search the device table
714  *	for a device with that address and return if it's still present. Given
715  *	both, return the num'th driver only if its address matches. Return
716  *	error code if not.
717  */
718 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
719 {
720 	struct mtd_info *ret = NULL, *other;
721 	int err = -ENODEV;
722 
723 	mutex_lock(&mtd_table_mutex);
724 
725 	if (num == -1) {
726 		mtd_for_each_device(other) {
727 			if (other == mtd) {
728 				ret = mtd;
729 				break;
730 			}
731 		}
732 	} else if (num >= 0) {
733 		ret = idr_find(&mtd_idr, num);
734 		if (mtd && mtd != ret)
735 			ret = NULL;
736 	}
737 
738 	if (!ret) {
739 		ret = ERR_PTR(err);
740 		goto out;
741 	}
742 
743 	err = __get_mtd_device(ret);
744 	if (err)
745 		ret = ERR_PTR(err);
746 out:
747 	mutex_unlock(&mtd_table_mutex);
748 	return ret;
749 }
750 EXPORT_SYMBOL_GPL(get_mtd_device);
751 
752 
753 int __get_mtd_device(struct mtd_info *mtd)
754 {
755 	int err;
756 
757 	if (!try_module_get(mtd->owner))
758 		return -ENODEV;
759 
760 	if (mtd->_get_device) {
761 		err = mtd->_get_device(mtd);
762 
763 		if (err) {
764 			module_put(mtd->owner);
765 			return err;
766 		}
767 	}
768 	mtd->usecount++;
769 	return 0;
770 }
771 EXPORT_SYMBOL_GPL(__get_mtd_device);
772 
773 /**
774  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
775  *	device name
776  *	@name: MTD device name to open
777  *
778  * 	This function returns MTD device description structure in case of
779  * 	success and an error code in case of failure.
780  */
781 struct mtd_info *get_mtd_device_nm(const char *name)
782 {
783 	int err = -ENODEV;
784 	struct mtd_info *mtd = NULL, *other;
785 
786 	mutex_lock(&mtd_table_mutex);
787 
788 	mtd_for_each_device(other) {
789 		if (!strcmp(name, other->name)) {
790 			mtd = other;
791 			break;
792 		}
793 	}
794 
795 	if (!mtd)
796 		goto out_unlock;
797 
798 	err = __get_mtd_device(mtd);
799 	if (err)
800 		goto out_unlock;
801 
802 	mutex_unlock(&mtd_table_mutex);
803 	return mtd;
804 
805 out_unlock:
806 	mutex_unlock(&mtd_table_mutex);
807 	return ERR_PTR(err);
808 }
809 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
810 
811 void put_mtd_device(struct mtd_info *mtd)
812 {
813 	mutex_lock(&mtd_table_mutex);
814 	__put_mtd_device(mtd);
815 	mutex_unlock(&mtd_table_mutex);
816 
817 }
818 EXPORT_SYMBOL_GPL(put_mtd_device);
819 
820 void __put_mtd_device(struct mtd_info *mtd)
821 {
822 	--mtd->usecount;
823 	BUG_ON(mtd->usecount < 0);
824 
825 	if (mtd->_put_device)
826 		mtd->_put_device(mtd);
827 
828 	module_put(mtd->owner);
829 }
830 EXPORT_SYMBOL_GPL(__put_mtd_device);
831 
832 /*
833  * Erase is an asynchronous operation.  Device drivers are supposed
834  * to call instr->callback() whenever the operation completes, even
835  * if it completes with a failure.
836  * Callers are supposed to pass a callback function and wait for it
837  * to be called before writing to the block.
838  */
839 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
840 {
841 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
842 		return -EINVAL;
843 	if (!(mtd->flags & MTD_WRITEABLE))
844 		return -EROFS;
845 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
846 	if (!instr->len) {
847 		instr->state = MTD_ERASE_DONE;
848 		mtd_erase_callback(instr);
849 		return 0;
850 	}
851 	return mtd->_erase(mtd, instr);
852 }
853 EXPORT_SYMBOL_GPL(mtd_erase);
854 
855 /*
856  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
857  */
858 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
859 	      void **virt, resource_size_t *phys)
860 {
861 	*retlen = 0;
862 	*virt = NULL;
863 	if (phys)
864 		*phys = 0;
865 	if (!mtd->_point)
866 		return -EOPNOTSUPP;
867 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
868 		return -EINVAL;
869 	if (!len)
870 		return 0;
871 	return mtd->_point(mtd, from, len, retlen, virt, phys);
872 }
873 EXPORT_SYMBOL_GPL(mtd_point);
874 
875 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
876 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
877 {
878 	if (!mtd->_point)
879 		return -EOPNOTSUPP;
880 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
881 		return -EINVAL;
882 	if (!len)
883 		return 0;
884 	return mtd->_unpoint(mtd, from, len);
885 }
886 EXPORT_SYMBOL_GPL(mtd_unpoint);
887 
888 /*
889  * Allow NOMMU mmap() to directly map the device (if not NULL)
890  * - return the address to which the offset maps
891  * - return -ENOSYS to indicate refusal to do the mapping
892  */
893 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
894 				    unsigned long offset, unsigned long flags)
895 {
896 	if (!mtd->_get_unmapped_area)
897 		return -EOPNOTSUPP;
898 	if (offset >= mtd->size || len > mtd->size - offset)
899 		return -EINVAL;
900 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
901 }
902 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
903 
904 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
905 	     u_char *buf)
906 {
907 	int ret_code;
908 	*retlen = 0;
909 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
910 		return -EINVAL;
911 	if (!len)
912 		return 0;
913 
914 	/*
915 	 * In the absence of an error, drivers return a non-negative integer
916 	 * representing the maximum number of bitflips that were corrected on
917 	 * any one ecc region (if applicable; zero otherwise).
918 	 */
919 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
920 	if (unlikely(ret_code < 0))
921 		return ret_code;
922 	if (mtd->ecc_strength == 0)
923 		return 0;	/* device lacks ecc */
924 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
925 }
926 EXPORT_SYMBOL_GPL(mtd_read);
927 
928 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
929 	      const u_char *buf)
930 {
931 	*retlen = 0;
932 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
933 		return -EINVAL;
934 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
935 		return -EROFS;
936 	if (!len)
937 		return 0;
938 	return mtd->_write(mtd, to, len, retlen, buf);
939 }
940 EXPORT_SYMBOL_GPL(mtd_write);
941 
942 /*
943  * In blackbox flight recorder like scenarios we want to make successful writes
944  * in interrupt context. panic_write() is only intended to be called when its
945  * known the kernel is about to panic and we need the write to succeed. Since
946  * the kernel is not going to be running for much longer, this function can
947  * break locks and delay to ensure the write succeeds (but not sleep).
948  */
949 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
950 		    const u_char *buf)
951 {
952 	*retlen = 0;
953 	if (!mtd->_panic_write)
954 		return -EOPNOTSUPP;
955 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
956 		return -EINVAL;
957 	if (!(mtd->flags & MTD_WRITEABLE))
958 		return -EROFS;
959 	if (!len)
960 		return 0;
961 	return mtd->_panic_write(mtd, to, len, retlen, buf);
962 }
963 EXPORT_SYMBOL_GPL(mtd_panic_write);
964 
965 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
966 {
967 	int ret_code;
968 	ops->retlen = ops->oobretlen = 0;
969 	if (!mtd->_read_oob)
970 		return -EOPNOTSUPP;
971 	/*
972 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
973 	 * similar to mtd->_read(), returning a non-negative integer
974 	 * representing max bitflips. In other cases, mtd->_read_oob() may
975 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
976 	 */
977 	ret_code = mtd->_read_oob(mtd, from, ops);
978 	if (unlikely(ret_code < 0))
979 		return ret_code;
980 	if (mtd->ecc_strength == 0)
981 		return 0;	/* device lacks ecc */
982 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
983 }
984 EXPORT_SYMBOL_GPL(mtd_read_oob);
985 
986 /*
987  * Method to access the protection register area, present in some flash
988  * devices. The user data is one time programmable but the factory data is read
989  * only.
990  */
991 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
992 			   struct otp_info *buf)
993 {
994 	if (!mtd->_get_fact_prot_info)
995 		return -EOPNOTSUPP;
996 	if (!len)
997 		return 0;
998 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
999 }
1000 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1001 
1002 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1003 			   size_t *retlen, u_char *buf)
1004 {
1005 	*retlen = 0;
1006 	if (!mtd->_read_fact_prot_reg)
1007 		return -EOPNOTSUPP;
1008 	if (!len)
1009 		return 0;
1010 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1011 }
1012 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1013 
1014 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1015 			   struct otp_info *buf)
1016 {
1017 	if (!mtd->_get_user_prot_info)
1018 		return -EOPNOTSUPP;
1019 	if (!len)
1020 		return 0;
1021 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1022 }
1023 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1024 
1025 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1026 			   size_t *retlen, u_char *buf)
1027 {
1028 	*retlen = 0;
1029 	if (!mtd->_read_user_prot_reg)
1030 		return -EOPNOTSUPP;
1031 	if (!len)
1032 		return 0;
1033 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1034 }
1035 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1036 
1037 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1038 			    size_t *retlen, u_char *buf)
1039 {
1040 	int ret;
1041 
1042 	*retlen = 0;
1043 	if (!mtd->_write_user_prot_reg)
1044 		return -EOPNOTSUPP;
1045 	if (!len)
1046 		return 0;
1047 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1048 	if (ret)
1049 		return ret;
1050 
1051 	/*
1052 	 * If no data could be written at all, we are out of memory and
1053 	 * must return -ENOSPC.
1054 	 */
1055 	return (*retlen) ? 0 : -ENOSPC;
1056 }
1057 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1058 
1059 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1060 {
1061 	if (!mtd->_lock_user_prot_reg)
1062 		return -EOPNOTSUPP;
1063 	if (!len)
1064 		return 0;
1065 	return mtd->_lock_user_prot_reg(mtd, from, len);
1066 }
1067 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1068 
1069 /* Chip-supported device locking */
1070 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1071 {
1072 	if (!mtd->_lock)
1073 		return -EOPNOTSUPP;
1074 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1075 		return -EINVAL;
1076 	if (!len)
1077 		return 0;
1078 	return mtd->_lock(mtd, ofs, len);
1079 }
1080 EXPORT_SYMBOL_GPL(mtd_lock);
1081 
1082 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1083 {
1084 	if (!mtd->_unlock)
1085 		return -EOPNOTSUPP;
1086 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1087 		return -EINVAL;
1088 	if (!len)
1089 		return 0;
1090 	return mtd->_unlock(mtd, ofs, len);
1091 }
1092 EXPORT_SYMBOL_GPL(mtd_unlock);
1093 
1094 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1095 {
1096 	if (!mtd->_is_locked)
1097 		return -EOPNOTSUPP;
1098 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1099 		return -EINVAL;
1100 	if (!len)
1101 		return 0;
1102 	return mtd->_is_locked(mtd, ofs, len);
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_is_locked);
1105 
1106 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1107 {
1108 	if (ofs < 0 || ofs >= mtd->size)
1109 		return -EINVAL;
1110 	if (!mtd->_block_isreserved)
1111 		return 0;
1112 	return mtd->_block_isreserved(mtd, ofs);
1113 }
1114 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1115 
1116 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1117 {
1118 	if (ofs < 0 || ofs >= mtd->size)
1119 		return -EINVAL;
1120 	if (!mtd->_block_isbad)
1121 		return 0;
1122 	return mtd->_block_isbad(mtd, ofs);
1123 }
1124 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1125 
1126 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1127 {
1128 	if (!mtd->_block_markbad)
1129 		return -EOPNOTSUPP;
1130 	if (ofs < 0 || ofs >= mtd->size)
1131 		return -EINVAL;
1132 	if (!(mtd->flags & MTD_WRITEABLE))
1133 		return -EROFS;
1134 	return mtd->_block_markbad(mtd, ofs);
1135 }
1136 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1137 
1138 /*
1139  * default_mtd_writev - the default writev method
1140  * @mtd: mtd device description object pointer
1141  * @vecs: the vectors to write
1142  * @count: count of vectors in @vecs
1143  * @to: the MTD device offset to write to
1144  * @retlen: on exit contains the count of bytes written to the MTD device.
1145  *
1146  * This function returns zero in case of success and a negative error code in
1147  * case of failure.
1148  */
1149 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1150 			      unsigned long count, loff_t to, size_t *retlen)
1151 {
1152 	unsigned long i;
1153 	size_t totlen = 0, thislen;
1154 	int ret = 0;
1155 
1156 	for (i = 0; i < count; i++) {
1157 		if (!vecs[i].iov_len)
1158 			continue;
1159 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1160 				vecs[i].iov_base);
1161 		totlen += thislen;
1162 		if (ret || thislen != vecs[i].iov_len)
1163 			break;
1164 		to += vecs[i].iov_len;
1165 	}
1166 	*retlen = totlen;
1167 	return ret;
1168 }
1169 
1170 /*
1171  * mtd_writev - the vector-based MTD write method
1172  * @mtd: mtd device description object pointer
1173  * @vecs: the vectors to write
1174  * @count: count of vectors in @vecs
1175  * @to: the MTD device offset to write to
1176  * @retlen: on exit contains the count of bytes written to the MTD device.
1177  *
1178  * This function returns zero in case of success and a negative error code in
1179  * case of failure.
1180  */
1181 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1182 	       unsigned long count, loff_t to, size_t *retlen)
1183 {
1184 	*retlen = 0;
1185 	if (!(mtd->flags & MTD_WRITEABLE))
1186 		return -EROFS;
1187 	if (!mtd->_writev)
1188 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1189 	return mtd->_writev(mtd, vecs, count, to, retlen);
1190 }
1191 EXPORT_SYMBOL_GPL(mtd_writev);
1192 
1193 /**
1194  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1195  * @mtd: mtd device description object pointer
1196  * @size: a pointer to the ideal or maximum size of the allocation, points
1197  *        to the actual allocation size on success.
1198  *
1199  * This routine attempts to allocate a contiguous kernel buffer up to
1200  * the specified size, backing off the size of the request exponentially
1201  * until the request succeeds or until the allocation size falls below
1202  * the system page size. This attempts to make sure it does not adversely
1203  * impact system performance, so when allocating more than one page, we
1204  * ask the memory allocator to avoid re-trying, swapping, writing back
1205  * or performing I/O.
1206  *
1207  * Note, this function also makes sure that the allocated buffer is aligned to
1208  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1209  *
1210  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1211  * to handle smaller (i.e. degraded) buffer allocations under low- or
1212  * fragmented-memory situations where such reduced allocations, from a
1213  * requested ideal, are allowed.
1214  *
1215  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1216  */
1217 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1218 {
1219 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1220 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1221 	void *kbuf;
1222 
1223 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1224 
1225 	while (*size > min_alloc) {
1226 		kbuf = kmalloc(*size, flags);
1227 		if (kbuf)
1228 			return kbuf;
1229 
1230 		*size >>= 1;
1231 		*size = ALIGN(*size, mtd->writesize);
1232 	}
1233 
1234 	/*
1235 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1236 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1237 	 */
1238 	return kmalloc(*size, GFP_KERNEL);
1239 }
1240 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1241 
1242 #ifdef CONFIG_PROC_FS
1243 
1244 /*====================================================================*/
1245 /* Support for /proc/mtd */
1246 
1247 static int mtd_proc_show(struct seq_file *m, void *v)
1248 {
1249 	struct mtd_info *mtd;
1250 
1251 	seq_puts(m, "dev:    size   erasesize  name\n");
1252 	mutex_lock(&mtd_table_mutex);
1253 	mtd_for_each_device(mtd) {
1254 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1255 			   mtd->index, (unsigned long long)mtd->size,
1256 			   mtd->erasesize, mtd->name);
1257 	}
1258 	mutex_unlock(&mtd_table_mutex);
1259 	return 0;
1260 }
1261 
1262 static int mtd_proc_open(struct inode *inode, struct file *file)
1263 {
1264 	return single_open(file, mtd_proc_show, NULL);
1265 }
1266 
1267 static const struct file_operations mtd_proc_ops = {
1268 	.open		= mtd_proc_open,
1269 	.read		= seq_read,
1270 	.llseek		= seq_lseek,
1271 	.release	= single_release,
1272 };
1273 #endif /* CONFIG_PROC_FS */
1274 
1275 /*====================================================================*/
1276 /* Init code */
1277 
1278 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1279 {
1280 	int ret;
1281 
1282 	ret = bdi_init(bdi);
1283 	if (!ret)
1284 		ret = bdi_register(bdi, NULL, "%s", name);
1285 
1286 	if (ret)
1287 		bdi_destroy(bdi);
1288 
1289 	return ret;
1290 }
1291 
1292 static struct proc_dir_entry *proc_mtd;
1293 
1294 static int __init init_mtd(void)
1295 {
1296 	int ret;
1297 
1298 	ret = class_register(&mtd_class);
1299 	if (ret)
1300 		goto err_reg;
1301 
1302 	ret = mtd_bdi_init(&mtd_bdi, "mtd");
1303 	if (ret)
1304 		goto err_bdi;
1305 
1306 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1307 
1308 	ret = init_mtdchar();
1309 	if (ret)
1310 		goto out_procfs;
1311 
1312 	return 0;
1313 
1314 out_procfs:
1315 	if (proc_mtd)
1316 		remove_proc_entry("mtd", NULL);
1317 err_bdi:
1318 	class_unregister(&mtd_class);
1319 err_reg:
1320 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1321 	return ret;
1322 }
1323 
1324 static void __exit cleanup_mtd(void)
1325 {
1326 	cleanup_mtdchar();
1327 	if (proc_mtd)
1328 		remove_proc_entry("mtd", NULL);
1329 	class_unregister(&mtd_class);
1330 	bdi_destroy(&mtd_bdi);
1331 	idr_destroy(&mtd_idr);
1332 }
1333 
1334 module_init(init_mtd);
1335 module_exit(cleanup_mtd);
1336 
1337 MODULE_LICENSE("GPL");
1338 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1339 MODULE_DESCRIPTION("Core MTD registration and access routines");
1340