1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 #include <linux/root_dev.h> 32 33 #include <linux/mtd/mtd.h> 34 #include <linux/mtd/partitions.h> 35 36 #include "mtdcore.h" 37 38 struct backing_dev_info *mtd_bdi; 39 40 #ifdef CONFIG_PM_SLEEP 41 42 static int mtd_cls_suspend(struct device *dev) 43 { 44 struct mtd_info *mtd = dev_get_drvdata(dev); 45 46 return mtd ? mtd_suspend(mtd) : 0; 47 } 48 49 static int mtd_cls_resume(struct device *dev) 50 { 51 struct mtd_info *mtd = dev_get_drvdata(dev); 52 53 if (mtd) 54 mtd_resume(mtd); 55 return 0; 56 } 57 58 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 59 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 60 #else 61 #define MTD_CLS_PM_OPS NULL 62 #endif 63 64 static struct class mtd_class = { 65 .name = "mtd", 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 #define MTD_DEVICE_ATTR_RO(name) \ 100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 101 102 #define MTD_DEVICE_ATTR_RW(name) \ 103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 104 105 static ssize_t mtd_type_show(struct device *dev, 106 struct device_attribute *attr, char *buf) 107 { 108 struct mtd_info *mtd = dev_get_drvdata(dev); 109 char *type; 110 111 switch (mtd->type) { 112 case MTD_ABSENT: 113 type = "absent"; 114 break; 115 case MTD_RAM: 116 type = "ram"; 117 break; 118 case MTD_ROM: 119 type = "rom"; 120 break; 121 case MTD_NORFLASH: 122 type = "nor"; 123 break; 124 case MTD_NANDFLASH: 125 type = "nand"; 126 break; 127 case MTD_DATAFLASH: 128 type = "dataflash"; 129 break; 130 case MTD_UBIVOLUME: 131 type = "ubi"; 132 break; 133 case MTD_MLCNANDFLASH: 134 type = "mlc-nand"; 135 break; 136 default: 137 type = "unknown"; 138 } 139 140 return sysfs_emit(buf, "%s\n", type); 141 } 142 MTD_DEVICE_ATTR_RO(type); 143 144 static ssize_t mtd_flags_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct mtd_info *mtd = dev_get_drvdata(dev); 148 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 150 } 151 MTD_DEVICE_ATTR_RO(flags); 152 153 static ssize_t mtd_size_show(struct device *dev, 154 struct device_attribute *attr, char *buf) 155 { 156 struct mtd_info *mtd = dev_get_drvdata(dev); 157 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 159 } 160 MTD_DEVICE_ATTR_RO(size); 161 162 static ssize_t mtd_erasesize_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 168 } 169 MTD_DEVICE_ATTR_RO(erasesize); 170 171 static ssize_t mtd_writesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 177 } 178 MTD_DEVICE_ATTR_RO(writesize); 179 180 static ssize_t mtd_subpagesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 185 186 return sysfs_emit(buf, "%u\n", subpagesize); 187 } 188 MTD_DEVICE_ATTR_RO(subpagesize); 189 190 static ssize_t mtd_oobsize_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 196 } 197 MTD_DEVICE_ATTR_RO(oobsize); 198 199 static ssize_t mtd_oobavail_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return sysfs_emit(buf, "%u\n", mtd->oobavail); 205 } 206 MTD_DEVICE_ATTR_RO(oobavail); 207 208 static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 214 } 215 MTD_DEVICE_ATTR_RO(numeraseregions); 216 217 static ssize_t mtd_name_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return sysfs_emit(buf, "%s\n", mtd->name); 223 } 224 MTD_DEVICE_ATTR_RO(name); 225 226 static ssize_t mtd_ecc_strength_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct mtd_info *mtd = dev_get_drvdata(dev); 230 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 232 } 233 MTD_DEVICE_ATTR_RO(ecc_strength); 234 235 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 242 } 243 244 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 unsigned int bitflip_threshold; 250 int retval; 251 252 retval = kstrtouint(buf, 0, &bitflip_threshold); 253 if (retval) 254 return retval; 255 256 mtd->bitflip_threshold = bitflip_threshold; 257 return count; 258 } 259 MTD_DEVICE_ATTR_RW(bitflip_threshold); 260 261 static ssize_t mtd_ecc_step_size_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 267 268 } 269 MTD_DEVICE_ATTR_RO(ecc_step_size); 270 271 static ssize_t mtd_corrected_bits_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 276 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 278 } 279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 280 281 static ssize_t mtd_ecc_failures_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 288 } 289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 290 291 static ssize_t mtd_bad_blocks_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 298 } 299 MTD_DEVICE_ATTR_RO(bad_blocks); 300 301 static ssize_t mtd_bbt_blocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 308 } 309 MTD_DEVICE_ATTR_RO(bbt_blocks); 310 311 static struct attribute *mtd_attrs[] = { 312 &dev_attr_type.attr, 313 &dev_attr_flags.attr, 314 &dev_attr_size.attr, 315 &dev_attr_erasesize.attr, 316 &dev_attr_writesize.attr, 317 &dev_attr_subpagesize.attr, 318 &dev_attr_oobsize.attr, 319 &dev_attr_oobavail.attr, 320 &dev_attr_numeraseregions.attr, 321 &dev_attr_name.attr, 322 &dev_attr_ecc_strength.attr, 323 &dev_attr_ecc_step_size.attr, 324 &dev_attr_corrected_bits.attr, 325 &dev_attr_ecc_failures.attr, 326 &dev_attr_bad_blocks.attr, 327 &dev_attr_bbt_blocks.attr, 328 &dev_attr_bitflip_threshold.attr, 329 NULL, 330 }; 331 ATTRIBUTE_GROUPS(mtd); 332 333 static const struct device_type mtd_devtype = { 334 .name = "mtd", 335 .groups = mtd_groups, 336 .release = mtd_release, 337 }; 338 339 static bool mtd_expert_analysis_mode; 340 341 #ifdef CONFIG_DEBUG_FS 342 bool mtd_check_expert_analysis_mode(void) 343 { 344 const char *mtd_expert_analysis_warning = 345 "Bad block checks have been entirely disabled.\n" 346 "This is only reserved for post-mortem forensics and debug purposes.\n" 347 "Never enable this mode if you do not know what you are doing!\n"; 348 349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 350 } 351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 352 #endif 353 354 static struct dentry *dfs_dir_mtd; 355 356 static void mtd_debugfs_populate(struct mtd_info *mtd) 357 { 358 struct device *dev = &mtd->dev; 359 360 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 361 return; 362 363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 364 } 365 366 #ifndef CONFIG_MMU 367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 368 { 369 switch (mtd->type) { 370 case MTD_RAM: 371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 372 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 373 case MTD_ROM: 374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 375 NOMMU_MAP_READ; 376 default: 377 return NOMMU_MAP_COPY; 378 } 379 } 380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 381 #endif 382 383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 384 void *cmd) 385 { 386 struct mtd_info *mtd; 387 388 mtd = container_of(n, struct mtd_info, reboot_notifier); 389 mtd->_reboot(mtd); 390 391 return NOTIFY_DONE; 392 } 393 394 /** 395 * mtd_wunit_to_pairing_info - get pairing information of a wunit 396 * @mtd: pointer to new MTD device info structure 397 * @wunit: write unit we are interested in 398 * @info: returned pairing information 399 * 400 * Retrieve pairing information associated to the wunit. 401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 402 * paired together, and where programming a page may influence the page it is 403 * paired with. 404 * The notion of page is replaced by the term wunit (write-unit) to stay 405 * consistent with the ->writesize field. 406 * 407 * The @wunit argument can be extracted from an absolute offset using 408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 409 * to @wunit. 410 * 411 * From the pairing info the MTD user can find all the wunits paired with 412 * @wunit using the following loop: 413 * 414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 415 * info.pair = i; 416 * mtd_pairing_info_to_wunit(mtd, &info); 417 * ... 418 * } 419 */ 420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 421 struct mtd_pairing_info *info) 422 { 423 struct mtd_info *master = mtd_get_master(mtd); 424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 425 426 if (wunit < 0 || wunit >= npairs) 427 return -EINVAL; 428 429 if (master->pairing && master->pairing->get_info) 430 return master->pairing->get_info(master, wunit, info); 431 432 info->group = 0; 433 info->pair = wunit; 434 435 return 0; 436 } 437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 438 439 /** 440 * mtd_pairing_info_to_wunit - get wunit from pairing information 441 * @mtd: pointer to new MTD device info structure 442 * @info: pairing information struct 443 * 444 * Returns a positive number representing the wunit associated to the info 445 * struct, or a negative error code. 446 * 447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 449 * doc). 450 * 451 * It can also be used to only program the first page of each pair (i.e. 452 * page attached to group 0), which allows one to use an MLC NAND in 453 * software-emulated SLC mode: 454 * 455 * info.group = 0; 456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 457 * for (info.pair = 0; info.pair < npairs; info.pair++) { 458 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 460 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 461 * } 462 */ 463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 464 const struct mtd_pairing_info *info) 465 { 466 struct mtd_info *master = mtd_get_master(mtd); 467 int ngroups = mtd_pairing_groups(master); 468 int npairs = mtd_wunit_per_eb(master) / ngroups; 469 470 if (!info || info->pair < 0 || info->pair >= npairs || 471 info->group < 0 || info->group >= ngroups) 472 return -EINVAL; 473 474 if (master->pairing && master->pairing->get_wunit) 475 return mtd->pairing->get_wunit(master, info); 476 477 return info->pair; 478 } 479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 480 481 /** 482 * mtd_pairing_groups - get the number of pairing groups 483 * @mtd: pointer to new MTD device info structure 484 * 485 * Returns the number of pairing groups. 486 * 487 * This number is usually equal to the number of bits exposed by a single 488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 489 * to iterate over all pages of a given pair. 490 */ 491 int mtd_pairing_groups(struct mtd_info *mtd) 492 { 493 struct mtd_info *master = mtd_get_master(mtd); 494 495 if (!master->pairing || !master->pairing->ngroups) 496 return 1; 497 498 return master->pairing->ngroups; 499 } 500 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 501 502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 503 void *val, size_t bytes) 504 { 505 struct mtd_info *mtd = priv; 506 size_t retlen; 507 int err; 508 509 err = mtd_read(mtd, offset, bytes, &retlen, val); 510 if (err && err != -EUCLEAN) 511 return err; 512 513 return retlen == bytes ? 0 : -EIO; 514 } 515 516 static int mtd_nvmem_add(struct mtd_info *mtd) 517 { 518 struct device_node *node = mtd_get_of_node(mtd); 519 struct nvmem_config config = {}; 520 521 config.id = NVMEM_DEVID_NONE; 522 config.dev = &mtd->dev; 523 config.name = dev_name(&mtd->dev); 524 config.owner = THIS_MODULE; 525 config.reg_read = mtd_nvmem_reg_read; 526 config.size = mtd->size; 527 config.word_size = 1; 528 config.stride = 1; 529 config.read_only = true; 530 config.root_only = true; 531 config.ignore_wp = true; 532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 533 config.priv = mtd; 534 535 mtd->nvmem = nvmem_register(&config); 536 if (IS_ERR(mtd->nvmem)) { 537 /* Just ignore if there is no NVMEM support in the kernel */ 538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 539 mtd->nvmem = NULL; 540 else 541 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 542 "Failed to register NVMEM device\n"); 543 } 544 545 return 0; 546 } 547 548 static void mtd_check_of_node(struct mtd_info *mtd) 549 { 550 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 551 const char *pname, *prefix = "partition-"; 552 int plen, mtd_name_len, offset, prefix_len; 553 554 /* Check if MTD already has a device node */ 555 if (mtd_get_of_node(mtd)) 556 return; 557 558 if (!mtd_is_partition(mtd)) 559 return; 560 561 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 562 if (!parent_dn) 563 return; 564 565 if (mtd_is_partition(mtd->parent)) 566 partitions = of_node_get(parent_dn); 567 else 568 partitions = of_get_child_by_name(parent_dn, "partitions"); 569 if (!partitions) 570 goto exit_parent; 571 572 prefix_len = strlen(prefix); 573 mtd_name_len = strlen(mtd->name); 574 575 /* Search if a partition is defined with the same name */ 576 for_each_child_of_node(partitions, mtd_dn) { 577 /* Skip partition with no/wrong prefix */ 578 if (!of_node_name_prefix(mtd_dn, prefix)) 579 continue; 580 581 /* Label have priority. Check that first */ 582 if (!of_property_read_string(mtd_dn, "label", &pname)) { 583 offset = 0; 584 } else { 585 pname = mtd_dn->name; 586 offset = prefix_len; 587 } 588 589 plen = strlen(pname) - offset; 590 if (plen == mtd_name_len && 591 !strncmp(mtd->name, pname + offset, plen)) { 592 mtd_set_of_node(mtd, mtd_dn); 593 break; 594 } 595 } 596 597 of_node_put(partitions); 598 exit_parent: 599 of_node_put(parent_dn); 600 } 601 602 /** 603 * add_mtd_device - register an MTD device 604 * @mtd: pointer to new MTD device info structure 605 * 606 * Add a device to the list of MTD devices present in the system, and 607 * notify each currently active MTD 'user' of its arrival. Returns 608 * zero on success or non-zero on failure. 609 */ 610 611 int add_mtd_device(struct mtd_info *mtd) 612 { 613 struct device_node *np = mtd_get_of_node(mtd); 614 struct mtd_info *master = mtd_get_master(mtd); 615 struct mtd_notifier *not; 616 int i, error, ofidx; 617 618 /* 619 * May occur, for instance, on buggy drivers which call 620 * mtd_device_parse_register() multiple times on the same master MTD, 621 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 622 */ 623 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 624 return -EEXIST; 625 626 BUG_ON(mtd->writesize == 0); 627 628 /* 629 * MTD drivers should implement ->_{write,read}() or 630 * ->_{write,read}_oob(), but not both. 631 */ 632 if (WARN_ON((mtd->_write && mtd->_write_oob) || 633 (mtd->_read && mtd->_read_oob))) 634 return -EINVAL; 635 636 if (WARN_ON((!mtd->erasesize || !master->_erase) && 637 !(mtd->flags & MTD_NO_ERASE))) 638 return -EINVAL; 639 640 /* 641 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 642 * master is an MLC NAND and has a proper pairing scheme defined. 643 * We also reject masters that implement ->_writev() for now, because 644 * NAND controller drivers don't implement this hook, and adding the 645 * SLC -> MLC address/length conversion to this path is useless if we 646 * don't have a user. 647 */ 648 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 649 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 650 !master->pairing || master->_writev)) 651 return -EINVAL; 652 653 mutex_lock(&mtd_table_mutex); 654 655 ofidx = -1; 656 if (np) 657 ofidx = of_alias_get_id(np, "mtd"); 658 if (ofidx >= 0) 659 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 660 else 661 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 662 if (i < 0) { 663 error = i; 664 goto fail_locked; 665 } 666 667 mtd->index = i; 668 mtd->usecount = 0; 669 670 /* default value if not set by driver */ 671 if (mtd->bitflip_threshold == 0) 672 mtd->bitflip_threshold = mtd->ecc_strength; 673 674 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 675 int ngroups = mtd_pairing_groups(master); 676 677 mtd->erasesize /= ngroups; 678 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 679 mtd->erasesize; 680 } 681 682 if (is_power_of_2(mtd->erasesize)) 683 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 684 else 685 mtd->erasesize_shift = 0; 686 687 if (is_power_of_2(mtd->writesize)) 688 mtd->writesize_shift = ffs(mtd->writesize) - 1; 689 else 690 mtd->writesize_shift = 0; 691 692 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 693 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 694 695 /* Some chips always power up locked. Unlock them now */ 696 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 697 error = mtd_unlock(mtd, 0, mtd->size); 698 if (error && error != -EOPNOTSUPP) 699 printk(KERN_WARNING 700 "%s: unlock failed, writes may not work\n", 701 mtd->name); 702 /* Ignore unlock failures? */ 703 error = 0; 704 } 705 706 /* Caller should have set dev.parent to match the 707 * physical device, if appropriate. 708 */ 709 mtd->dev.type = &mtd_devtype; 710 mtd->dev.class = &mtd_class; 711 mtd->dev.devt = MTD_DEVT(i); 712 dev_set_name(&mtd->dev, "mtd%d", i); 713 dev_set_drvdata(&mtd->dev, mtd); 714 mtd_check_of_node(mtd); 715 of_node_get(mtd_get_of_node(mtd)); 716 error = device_register(&mtd->dev); 717 if (error) { 718 put_device(&mtd->dev); 719 goto fail_added; 720 } 721 722 /* Add the nvmem provider */ 723 error = mtd_nvmem_add(mtd); 724 if (error) 725 goto fail_nvmem_add; 726 727 mtd_debugfs_populate(mtd); 728 729 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 730 "mtd%dro", i); 731 732 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 733 /* No need to get a refcount on the module containing 734 the notifier, since we hold the mtd_table_mutex */ 735 list_for_each_entry(not, &mtd_notifiers, list) 736 not->add(mtd); 737 738 mutex_unlock(&mtd_table_mutex); 739 740 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 741 if (IS_BUILTIN(CONFIG_MTD)) { 742 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 743 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 744 } else { 745 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 746 mtd->index, mtd->name); 747 } 748 } 749 750 /* We _know_ we aren't being removed, because 751 our caller is still holding us here. So none 752 of this try_ nonsense, and no bitching about it 753 either. :) */ 754 __module_get(THIS_MODULE); 755 return 0; 756 757 fail_nvmem_add: 758 device_unregister(&mtd->dev); 759 fail_added: 760 of_node_put(mtd_get_of_node(mtd)); 761 idr_remove(&mtd_idr, i); 762 fail_locked: 763 mutex_unlock(&mtd_table_mutex); 764 return error; 765 } 766 767 /** 768 * del_mtd_device - unregister an MTD device 769 * @mtd: pointer to MTD device info structure 770 * 771 * Remove a device from the list of MTD devices present in the system, 772 * and notify each currently active MTD 'user' of its departure. 773 * Returns zero on success or 1 on failure, which currently will happen 774 * if the requested device does not appear to be present in the list. 775 */ 776 777 int del_mtd_device(struct mtd_info *mtd) 778 { 779 int ret; 780 struct mtd_notifier *not; 781 struct device_node *mtd_of_node; 782 783 mutex_lock(&mtd_table_mutex); 784 785 if (idr_find(&mtd_idr, mtd->index) != mtd) { 786 ret = -ENODEV; 787 goto out_error; 788 } 789 790 /* No need to get a refcount on the module containing 791 the notifier, since we hold the mtd_table_mutex */ 792 list_for_each_entry(not, &mtd_notifiers, list) 793 not->remove(mtd); 794 795 if (mtd->usecount) { 796 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 797 mtd->index, mtd->name, mtd->usecount); 798 ret = -EBUSY; 799 } else { 800 mtd_of_node = mtd_get_of_node(mtd); 801 debugfs_remove_recursive(mtd->dbg.dfs_dir); 802 803 /* Try to remove the NVMEM provider */ 804 nvmem_unregister(mtd->nvmem); 805 806 device_unregister(&mtd->dev); 807 808 /* Clear dev so mtd can be safely re-registered later if desired */ 809 memset(&mtd->dev, 0, sizeof(mtd->dev)); 810 811 idr_remove(&mtd_idr, mtd->index); 812 of_node_put(mtd_of_node); 813 814 module_put(THIS_MODULE); 815 ret = 0; 816 } 817 818 out_error: 819 mutex_unlock(&mtd_table_mutex); 820 return ret; 821 } 822 823 /* 824 * Set a few defaults based on the parent devices, if not provided by the 825 * driver 826 */ 827 static void mtd_set_dev_defaults(struct mtd_info *mtd) 828 { 829 if (mtd->dev.parent) { 830 if (!mtd->owner && mtd->dev.parent->driver) 831 mtd->owner = mtd->dev.parent->driver->owner; 832 if (!mtd->name) 833 mtd->name = dev_name(mtd->dev.parent); 834 } else { 835 pr_debug("mtd device won't show a device symlink in sysfs\n"); 836 } 837 838 INIT_LIST_HEAD(&mtd->partitions); 839 mutex_init(&mtd->master.partitions_lock); 840 mutex_init(&mtd->master.chrdev_lock); 841 } 842 843 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 844 { 845 struct otp_info *info; 846 ssize_t size = 0; 847 unsigned int i; 848 size_t retlen; 849 int ret; 850 851 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 852 if (!info) 853 return -ENOMEM; 854 855 if (is_user) 856 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 857 else 858 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 859 if (ret) 860 goto err; 861 862 for (i = 0; i < retlen / sizeof(*info); i++) 863 size += info[i].length; 864 865 kfree(info); 866 return size; 867 868 err: 869 kfree(info); 870 871 /* ENODATA means there is no OTP region. */ 872 return ret == -ENODATA ? 0 : ret; 873 } 874 875 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 876 const char *compatible, 877 int size, 878 nvmem_reg_read_t reg_read) 879 { 880 struct nvmem_device *nvmem = NULL; 881 struct nvmem_config config = {}; 882 struct device_node *np; 883 884 /* DT binding is optional */ 885 np = of_get_compatible_child(mtd->dev.of_node, compatible); 886 887 /* OTP nvmem will be registered on the physical device */ 888 config.dev = mtd->dev.parent; 889 config.name = compatible; 890 config.id = NVMEM_DEVID_AUTO; 891 config.owner = THIS_MODULE; 892 config.type = NVMEM_TYPE_OTP; 893 config.root_only = true; 894 config.ignore_wp = true; 895 config.reg_read = reg_read; 896 config.size = size; 897 config.of_node = np; 898 config.priv = mtd; 899 900 nvmem = nvmem_register(&config); 901 /* Just ignore if there is no NVMEM support in the kernel */ 902 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 903 nvmem = NULL; 904 905 of_node_put(np); 906 907 return nvmem; 908 } 909 910 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 911 void *val, size_t bytes) 912 { 913 struct mtd_info *mtd = priv; 914 size_t retlen; 915 int ret; 916 917 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 918 if (ret) 919 return ret; 920 921 return retlen == bytes ? 0 : -EIO; 922 } 923 924 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 925 void *val, size_t bytes) 926 { 927 struct mtd_info *mtd = priv; 928 size_t retlen; 929 int ret; 930 931 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 932 if (ret) 933 return ret; 934 935 return retlen == bytes ? 0 : -EIO; 936 } 937 938 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 939 { 940 struct device *dev = mtd->dev.parent; 941 struct nvmem_device *nvmem; 942 ssize_t size; 943 int err; 944 945 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 946 size = mtd_otp_size(mtd, true); 947 if (size < 0) 948 return size; 949 950 if (size > 0) { 951 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 952 mtd_nvmem_user_otp_reg_read); 953 if (IS_ERR(nvmem)) { 954 err = PTR_ERR(nvmem); 955 goto err; 956 } 957 mtd->otp_user_nvmem = nvmem; 958 } 959 } 960 961 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 962 size = mtd_otp_size(mtd, false); 963 if (size < 0) { 964 err = size; 965 goto err; 966 } 967 968 if (size > 0) { 969 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 970 mtd_nvmem_fact_otp_reg_read); 971 if (IS_ERR(nvmem)) { 972 err = PTR_ERR(nvmem); 973 goto err; 974 } 975 mtd->otp_factory_nvmem = nvmem; 976 } 977 } 978 979 return 0; 980 981 err: 982 nvmem_unregister(mtd->otp_user_nvmem); 983 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 984 } 985 986 /** 987 * mtd_device_parse_register - parse partitions and register an MTD device. 988 * 989 * @mtd: the MTD device to register 990 * @types: the list of MTD partition probes to try, see 991 * 'parse_mtd_partitions()' for more information 992 * @parser_data: MTD partition parser-specific data 993 * @parts: fallback partition information to register, if parsing fails; 994 * only valid if %nr_parts > %0 995 * @nr_parts: the number of partitions in parts, if zero then the full 996 * MTD device is registered if no partition info is found 997 * 998 * This function aggregates MTD partitions parsing (done by 999 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1000 * basically follows the most common pattern found in many MTD drivers: 1001 * 1002 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1003 * registered first. 1004 * * Then It tries to probe partitions on MTD device @mtd using parsers 1005 * specified in @types (if @types is %NULL, then the default list of parsers 1006 * is used, see 'parse_mtd_partitions()' for more information). If none are 1007 * found this functions tries to fallback to information specified in 1008 * @parts/@nr_parts. 1009 * * If no partitions were found this function just registers the MTD device 1010 * @mtd and exits. 1011 * 1012 * Returns zero in case of success and a negative error code in case of failure. 1013 */ 1014 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1015 struct mtd_part_parser_data *parser_data, 1016 const struct mtd_partition *parts, 1017 int nr_parts) 1018 { 1019 int ret; 1020 1021 mtd_set_dev_defaults(mtd); 1022 1023 ret = mtd_otp_nvmem_add(mtd); 1024 if (ret) 1025 goto out; 1026 1027 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1028 ret = add_mtd_device(mtd); 1029 if (ret) 1030 goto out; 1031 } 1032 1033 /* Prefer parsed partitions over driver-provided fallback */ 1034 ret = parse_mtd_partitions(mtd, types, parser_data); 1035 if (ret == -EPROBE_DEFER) 1036 goto out; 1037 1038 if (ret > 0) 1039 ret = 0; 1040 else if (nr_parts) 1041 ret = add_mtd_partitions(mtd, parts, nr_parts); 1042 else if (!device_is_registered(&mtd->dev)) 1043 ret = add_mtd_device(mtd); 1044 else 1045 ret = 0; 1046 1047 if (ret) 1048 goto out; 1049 1050 /* 1051 * FIXME: some drivers unfortunately call this function more than once. 1052 * So we have to check if we've already assigned the reboot notifier. 1053 * 1054 * Generally, we can make multiple calls work for most cases, but it 1055 * does cause problems with parse_mtd_partitions() above (e.g., 1056 * cmdlineparts will register partitions more than once). 1057 */ 1058 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1059 "MTD already registered\n"); 1060 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1061 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1062 register_reboot_notifier(&mtd->reboot_notifier); 1063 } 1064 1065 out: 1066 if (ret) { 1067 nvmem_unregister(mtd->otp_user_nvmem); 1068 nvmem_unregister(mtd->otp_factory_nvmem); 1069 } 1070 1071 if (ret && device_is_registered(&mtd->dev)) 1072 del_mtd_device(mtd); 1073 1074 return ret; 1075 } 1076 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1077 1078 /** 1079 * mtd_device_unregister - unregister an existing MTD device. 1080 * 1081 * @master: the MTD device to unregister. This will unregister both the master 1082 * and any partitions if registered. 1083 */ 1084 int mtd_device_unregister(struct mtd_info *master) 1085 { 1086 int err; 1087 1088 if (master->_reboot) { 1089 unregister_reboot_notifier(&master->reboot_notifier); 1090 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1091 } 1092 1093 nvmem_unregister(master->otp_user_nvmem); 1094 nvmem_unregister(master->otp_factory_nvmem); 1095 1096 err = del_mtd_partitions(master); 1097 if (err) 1098 return err; 1099 1100 if (!device_is_registered(&master->dev)) 1101 return 0; 1102 1103 return del_mtd_device(master); 1104 } 1105 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1106 1107 /** 1108 * register_mtd_user - register a 'user' of MTD devices. 1109 * @new: pointer to notifier info structure 1110 * 1111 * Registers a pair of callbacks function to be called upon addition 1112 * or removal of MTD devices. Causes the 'add' callback to be immediately 1113 * invoked for each MTD device currently present in the system. 1114 */ 1115 void register_mtd_user (struct mtd_notifier *new) 1116 { 1117 struct mtd_info *mtd; 1118 1119 mutex_lock(&mtd_table_mutex); 1120 1121 list_add(&new->list, &mtd_notifiers); 1122 1123 __module_get(THIS_MODULE); 1124 1125 mtd_for_each_device(mtd) 1126 new->add(mtd); 1127 1128 mutex_unlock(&mtd_table_mutex); 1129 } 1130 EXPORT_SYMBOL_GPL(register_mtd_user); 1131 1132 /** 1133 * unregister_mtd_user - unregister a 'user' of MTD devices. 1134 * @old: pointer to notifier info structure 1135 * 1136 * Removes a callback function pair from the list of 'users' to be 1137 * notified upon addition or removal of MTD devices. Causes the 1138 * 'remove' callback to be immediately invoked for each MTD device 1139 * currently present in the system. 1140 */ 1141 int unregister_mtd_user (struct mtd_notifier *old) 1142 { 1143 struct mtd_info *mtd; 1144 1145 mutex_lock(&mtd_table_mutex); 1146 1147 module_put(THIS_MODULE); 1148 1149 mtd_for_each_device(mtd) 1150 old->remove(mtd); 1151 1152 list_del(&old->list); 1153 mutex_unlock(&mtd_table_mutex); 1154 return 0; 1155 } 1156 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1157 1158 /** 1159 * get_mtd_device - obtain a validated handle for an MTD device 1160 * @mtd: last known address of the required MTD device 1161 * @num: internal device number of the required MTD device 1162 * 1163 * Given a number and NULL address, return the num'th entry in the device 1164 * table, if any. Given an address and num == -1, search the device table 1165 * for a device with that address and return if it's still present. Given 1166 * both, return the num'th driver only if its address matches. Return 1167 * error code if not. 1168 */ 1169 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1170 { 1171 struct mtd_info *ret = NULL, *other; 1172 int err = -ENODEV; 1173 1174 mutex_lock(&mtd_table_mutex); 1175 1176 if (num == -1) { 1177 mtd_for_each_device(other) { 1178 if (other == mtd) { 1179 ret = mtd; 1180 break; 1181 } 1182 } 1183 } else if (num >= 0) { 1184 ret = idr_find(&mtd_idr, num); 1185 if (mtd && mtd != ret) 1186 ret = NULL; 1187 } 1188 1189 if (!ret) { 1190 ret = ERR_PTR(err); 1191 goto out; 1192 } 1193 1194 err = __get_mtd_device(ret); 1195 if (err) 1196 ret = ERR_PTR(err); 1197 out: 1198 mutex_unlock(&mtd_table_mutex); 1199 return ret; 1200 } 1201 EXPORT_SYMBOL_GPL(get_mtd_device); 1202 1203 1204 int __get_mtd_device(struct mtd_info *mtd) 1205 { 1206 struct mtd_info *master = mtd_get_master(mtd); 1207 int err; 1208 1209 if (!try_module_get(master->owner)) 1210 return -ENODEV; 1211 1212 if (master->_get_device) { 1213 err = master->_get_device(mtd); 1214 1215 if (err) { 1216 module_put(master->owner); 1217 return err; 1218 } 1219 } 1220 1221 master->usecount++; 1222 1223 while (mtd->parent) { 1224 mtd->usecount++; 1225 mtd = mtd->parent; 1226 } 1227 1228 return 0; 1229 } 1230 EXPORT_SYMBOL_GPL(__get_mtd_device); 1231 1232 /** 1233 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1234 * 1235 * @np: device tree node 1236 */ 1237 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1238 { 1239 struct mtd_info *mtd = NULL; 1240 struct mtd_info *tmp; 1241 int err; 1242 1243 mutex_lock(&mtd_table_mutex); 1244 1245 err = -EPROBE_DEFER; 1246 mtd_for_each_device(tmp) { 1247 if (mtd_get_of_node(tmp) == np) { 1248 mtd = tmp; 1249 err = __get_mtd_device(mtd); 1250 break; 1251 } 1252 } 1253 1254 mutex_unlock(&mtd_table_mutex); 1255 1256 return err ? ERR_PTR(err) : mtd; 1257 } 1258 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1259 1260 /** 1261 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1262 * device name 1263 * @name: MTD device name to open 1264 * 1265 * This function returns MTD device description structure in case of 1266 * success and an error code in case of failure. 1267 */ 1268 struct mtd_info *get_mtd_device_nm(const char *name) 1269 { 1270 int err = -ENODEV; 1271 struct mtd_info *mtd = NULL, *other; 1272 1273 mutex_lock(&mtd_table_mutex); 1274 1275 mtd_for_each_device(other) { 1276 if (!strcmp(name, other->name)) { 1277 mtd = other; 1278 break; 1279 } 1280 } 1281 1282 if (!mtd) 1283 goto out_unlock; 1284 1285 err = __get_mtd_device(mtd); 1286 if (err) 1287 goto out_unlock; 1288 1289 mutex_unlock(&mtd_table_mutex); 1290 return mtd; 1291 1292 out_unlock: 1293 mutex_unlock(&mtd_table_mutex); 1294 return ERR_PTR(err); 1295 } 1296 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1297 1298 void put_mtd_device(struct mtd_info *mtd) 1299 { 1300 mutex_lock(&mtd_table_mutex); 1301 __put_mtd_device(mtd); 1302 mutex_unlock(&mtd_table_mutex); 1303 1304 } 1305 EXPORT_SYMBOL_GPL(put_mtd_device); 1306 1307 void __put_mtd_device(struct mtd_info *mtd) 1308 { 1309 struct mtd_info *master = mtd_get_master(mtd); 1310 1311 while (mtd->parent) { 1312 --mtd->usecount; 1313 BUG_ON(mtd->usecount < 0); 1314 mtd = mtd->parent; 1315 } 1316 1317 master->usecount--; 1318 1319 if (master->_put_device) 1320 master->_put_device(master); 1321 1322 module_put(master->owner); 1323 } 1324 EXPORT_SYMBOL_GPL(__put_mtd_device); 1325 1326 /* 1327 * Erase is an synchronous operation. Device drivers are epected to return a 1328 * negative error code if the operation failed and update instr->fail_addr 1329 * to point the portion that was not properly erased. 1330 */ 1331 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1332 { 1333 struct mtd_info *master = mtd_get_master(mtd); 1334 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1335 struct erase_info adjinstr; 1336 int ret; 1337 1338 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1339 adjinstr = *instr; 1340 1341 if (!mtd->erasesize || !master->_erase) 1342 return -ENOTSUPP; 1343 1344 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1345 return -EINVAL; 1346 if (!(mtd->flags & MTD_WRITEABLE)) 1347 return -EROFS; 1348 1349 if (!instr->len) 1350 return 0; 1351 1352 ledtrig_mtd_activity(); 1353 1354 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1355 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1356 master->erasesize; 1357 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1358 master->erasesize) - 1359 adjinstr.addr; 1360 } 1361 1362 adjinstr.addr += mst_ofs; 1363 1364 ret = master->_erase(master, &adjinstr); 1365 1366 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1367 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1368 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1369 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1370 master); 1371 instr->fail_addr *= mtd->erasesize; 1372 } 1373 } 1374 1375 return ret; 1376 } 1377 EXPORT_SYMBOL_GPL(mtd_erase); 1378 1379 /* 1380 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1381 */ 1382 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1383 void **virt, resource_size_t *phys) 1384 { 1385 struct mtd_info *master = mtd_get_master(mtd); 1386 1387 *retlen = 0; 1388 *virt = NULL; 1389 if (phys) 1390 *phys = 0; 1391 if (!master->_point) 1392 return -EOPNOTSUPP; 1393 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1394 return -EINVAL; 1395 if (!len) 1396 return 0; 1397 1398 from = mtd_get_master_ofs(mtd, from); 1399 return master->_point(master, from, len, retlen, virt, phys); 1400 } 1401 EXPORT_SYMBOL_GPL(mtd_point); 1402 1403 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1404 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1405 { 1406 struct mtd_info *master = mtd_get_master(mtd); 1407 1408 if (!master->_unpoint) 1409 return -EOPNOTSUPP; 1410 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1411 return -EINVAL; 1412 if (!len) 1413 return 0; 1414 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1415 } 1416 EXPORT_SYMBOL_GPL(mtd_unpoint); 1417 1418 /* 1419 * Allow NOMMU mmap() to directly map the device (if not NULL) 1420 * - return the address to which the offset maps 1421 * - return -ENOSYS to indicate refusal to do the mapping 1422 */ 1423 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1424 unsigned long offset, unsigned long flags) 1425 { 1426 size_t retlen; 1427 void *virt; 1428 int ret; 1429 1430 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1431 if (ret) 1432 return ret; 1433 if (retlen != len) { 1434 mtd_unpoint(mtd, offset, retlen); 1435 return -ENOSYS; 1436 } 1437 return (unsigned long)virt; 1438 } 1439 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1440 1441 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1442 const struct mtd_ecc_stats *old_stats) 1443 { 1444 struct mtd_ecc_stats diff; 1445 1446 if (master == mtd) 1447 return; 1448 1449 diff = master->ecc_stats; 1450 diff.failed -= old_stats->failed; 1451 diff.corrected -= old_stats->corrected; 1452 1453 while (mtd->parent) { 1454 mtd->ecc_stats.failed += diff.failed; 1455 mtd->ecc_stats.corrected += diff.corrected; 1456 mtd = mtd->parent; 1457 } 1458 } 1459 1460 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1461 u_char *buf) 1462 { 1463 struct mtd_oob_ops ops = { 1464 .len = len, 1465 .datbuf = buf, 1466 }; 1467 int ret; 1468 1469 ret = mtd_read_oob(mtd, from, &ops); 1470 *retlen = ops.retlen; 1471 1472 return ret; 1473 } 1474 EXPORT_SYMBOL_GPL(mtd_read); 1475 1476 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1477 const u_char *buf) 1478 { 1479 struct mtd_oob_ops ops = { 1480 .len = len, 1481 .datbuf = (u8 *)buf, 1482 }; 1483 int ret; 1484 1485 ret = mtd_write_oob(mtd, to, &ops); 1486 *retlen = ops.retlen; 1487 1488 return ret; 1489 } 1490 EXPORT_SYMBOL_GPL(mtd_write); 1491 1492 /* 1493 * In blackbox flight recorder like scenarios we want to make successful writes 1494 * in interrupt context. panic_write() is only intended to be called when its 1495 * known the kernel is about to panic and we need the write to succeed. Since 1496 * the kernel is not going to be running for much longer, this function can 1497 * break locks and delay to ensure the write succeeds (but not sleep). 1498 */ 1499 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1500 const u_char *buf) 1501 { 1502 struct mtd_info *master = mtd_get_master(mtd); 1503 1504 *retlen = 0; 1505 if (!master->_panic_write) 1506 return -EOPNOTSUPP; 1507 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1508 return -EINVAL; 1509 if (!(mtd->flags & MTD_WRITEABLE)) 1510 return -EROFS; 1511 if (!len) 1512 return 0; 1513 if (!master->oops_panic_write) 1514 master->oops_panic_write = true; 1515 1516 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1517 retlen, buf); 1518 } 1519 EXPORT_SYMBOL_GPL(mtd_panic_write); 1520 1521 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1522 struct mtd_oob_ops *ops) 1523 { 1524 /* 1525 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1526 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1527 * this case. 1528 */ 1529 if (!ops->datbuf) 1530 ops->len = 0; 1531 1532 if (!ops->oobbuf) 1533 ops->ooblen = 0; 1534 1535 if (offs < 0 || offs + ops->len > mtd->size) 1536 return -EINVAL; 1537 1538 if (ops->ooblen) { 1539 size_t maxooblen; 1540 1541 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1542 return -EINVAL; 1543 1544 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1545 mtd_div_by_ws(offs, mtd)) * 1546 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1547 if (ops->ooblen > maxooblen) 1548 return -EINVAL; 1549 } 1550 1551 return 0; 1552 } 1553 1554 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1555 struct mtd_oob_ops *ops) 1556 { 1557 struct mtd_info *master = mtd_get_master(mtd); 1558 int ret; 1559 1560 from = mtd_get_master_ofs(mtd, from); 1561 if (master->_read_oob) 1562 ret = master->_read_oob(master, from, ops); 1563 else 1564 ret = master->_read(master, from, ops->len, &ops->retlen, 1565 ops->datbuf); 1566 1567 return ret; 1568 } 1569 1570 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1571 struct mtd_oob_ops *ops) 1572 { 1573 struct mtd_info *master = mtd_get_master(mtd); 1574 int ret; 1575 1576 to = mtd_get_master_ofs(mtd, to); 1577 if (master->_write_oob) 1578 ret = master->_write_oob(master, to, ops); 1579 else 1580 ret = master->_write(master, to, ops->len, &ops->retlen, 1581 ops->datbuf); 1582 1583 return ret; 1584 } 1585 1586 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1587 struct mtd_oob_ops *ops) 1588 { 1589 struct mtd_info *master = mtd_get_master(mtd); 1590 int ngroups = mtd_pairing_groups(master); 1591 int npairs = mtd_wunit_per_eb(master) / ngroups; 1592 struct mtd_oob_ops adjops = *ops; 1593 unsigned int wunit, oobavail; 1594 struct mtd_pairing_info info; 1595 int max_bitflips = 0; 1596 u32 ebofs, pageofs; 1597 loff_t base, pos; 1598 1599 ebofs = mtd_mod_by_eb(start, mtd); 1600 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1601 info.group = 0; 1602 info.pair = mtd_div_by_ws(ebofs, mtd); 1603 pageofs = mtd_mod_by_ws(ebofs, mtd); 1604 oobavail = mtd_oobavail(mtd, ops); 1605 1606 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1607 int ret; 1608 1609 if (info.pair >= npairs) { 1610 info.pair = 0; 1611 base += master->erasesize; 1612 } 1613 1614 wunit = mtd_pairing_info_to_wunit(master, &info); 1615 pos = mtd_wunit_to_offset(mtd, base, wunit); 1616 1617 adjops.len = ops->len - ops->retlen; 1618 if (adjops.len > mtd->writesize - pageofs) 1619 adjops.len = mtd->writesize - pageofs; 1620 1621 adjops.ooblen = ops->ooblen - ops->oobretlen; 1622 if (adjops.ooblen > oobavail - adjops.ooboffs) 1623 adjops.ooblen = oobavail - adjops.ooboffs; 1624 1625 if (read) { 1626 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1627 if (ret > 0) 1628 max_bitflips = max(max_bitflips, ret); 1629 } else { 1630 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1631 } 1632 1633 if (ret < 0) 1634 return ret; 1635 1636 max_bitflips = max(max_bitflips, ret); 1637 ops->retlen += adjops.retlen; 1638 ops->oobretlen += adjops.oobretlen; 1639 adjops.datbuf += adjops.retlen; 1640 adjops.oobbuf += adjops.oobretlen; 1641 adjops.ooboffs = 0; 1642 pageofs = 0; 1643 info.pair++; 1644 } 1645 1646 return max_bitflips; 1647 } 1648 1649 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1650 { 1651 struct mtd_info *master = mtd_get_master(mtd); 1652 struct mtd_ecc_stats old_stats = master->ecc_stats; 1653 int ret_code; 1654 1655 ops->retlen = ops->oobretlen = 0; 1656 1657 ret_code = mtd_check_oob_ops(mtd, from, ops); 1658 if (ret_code) 1659 return ret_code; 1660 1661 ledtrig_mtd_activity(); 1662 1663 /* Check the validity of a potential fallback on mtd->_read */ 1664 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1665 return -EOPNOTSUPP; 1666 1667 if (ops->stats) 1668 memset(ops->stats, 0, sizeof(*ops->stats)); 1669 1670 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1671 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1672 else 1673 ret_code = mtd_read_oob_std(mtd, from, ops); 1674 1675 mtd_update_ecc_stats(mtd, master, &old_stats); 1676 1677 /* 1678 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1679 * similar to mtd->_read(), returning a non-negative integer 1680 * representing max bitflips. In other cases, mtd->_read_oob() may 1681 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1682 */ 1683 if (unlikely(ret_code < 0)) 1684 return ret_code; 1685 if (mtd->ecc_strength == 0) 1686 return 0; /* device lacks ecc */ 1687 if (ops->stats) 1688 ops->stats->max_bitflips = ret_code; 1689 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1690 } 1691 EXPORT_SYMBOL_GPL(mtd_read_oob); 1692 1693 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1694 struct mtd_oob_ops *ops) 1695 { 1696 struct mtd_info *master = mtd_get_master(mtd); 1697 int ret; 1698 1699 ops->retlen = ops->oobretlen = 0; 1700 1701 if (!(mtd->flags & MTD_WRITEABLE)) 1702 return -EROFS; 1703 1704 ret = mtd_check_oob_ops(mtd, to, ops); 1705 if (ret) 1706 return ret; 1707 1708 ledtrig_mtd_activity(); 1709 1710 /* Check the validity of a potential fallback on mtd->_write */ 1711 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1712 return -EOPNOTSUPP; 1713 1714 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1715 return mtd_io_emulated_slc(mtd, to, false, ops); 1716 1717 return mtd_write_oob_std(mtd, to, ops); 1718 } 1719 EXPORT_SYMBOL_GPL(mtd_write_oob); 1720 1721 /** 1722 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1723 * @mtd: MTD device structure 1724 * @section: ECC section. Depending on the layout you may have all the ECC 1725 * bytes stored in a single contiguous section, or one section 1726 * per ECC chunk (and sometime several sections for a single ECC 1727 * ECC chunk) 1728 * @oobecc: OOB region struct filled with the appropriate ECC position 1729 * information 1730 * 1731 * This function returns ECC section information in the OOB area. If you want 1732 * to get all the ECC bytes information, then you should call 1733 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1734 * 1735 * Returns zero on success, a negative error code otherwise. 1736 */ 1737 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1738 struct mtd_oob_region *oobecc) 1739 { 1740 struct mtd_info *master = mtd_get_master(mtd); 1741 1742 memset(oobecc, 0, sizeof(*oobecc)); 1743 1744 if (!master || section < 0) 1745 return -EINVAL; 1746 1747 if (!master->ooblayout || !master->ooblayout->ecc) 1748 return -ENOTSUPP; 1749 1750 return master->ooblayout->ecc(master, section, oobecc); 1751 } 1752 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1753 1754 /** 1755 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1756 * section 1757 * @mtd: MTD device structure 1758 * @section: Free section you are interested in. Depending on the layout 1759 * you may have all the free bytes stored in a single contiguous 1760 * section, or one section per ECC chunk plus an extra section 1761 * for the remaining bytes (or other funky layout). 1762 * @oobfree: OOB region struct filled with the appropriate free position 1763 * information 1764 * 1765 * This function returns free bytes position in the OOB area. If you want 1766 * to get all the free bytes information, then you should call 1767 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1768 * 1769 * Returns zero on success, a negative error code otherwise. 1770 */ 1771 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1772 struct mtd_oob_region *oobfree) 1773 { 1774 struct mtd_info *master = mtd_get_master(mtd); 1775 1776 memset(oobfree, 0, sizeof(*oobfree)); 1777 1778 if (!master || section < 0) 1779 return -EINVAL; 1780 1781 if (!master->ooblayout || !master->ooblayout->free) 1782 return -ENOTSUPP; 1783 1784 return master->ooblayout->free(master, section, oobfree); 1785 } 1786 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1787 1788 /** 1789 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1790 * @mtd: mtd info structure 1791 * @byte: the byte we are searching for 1792 * @sectionp: pointer where the section id will be stored 1793 * @oobregion: used to retrieve the ECC position 1794 * @iter: iterator function. Should be either mtd_ooblayout_free or 1795 * mtd_ooblayout_ecc depending on the region type you're searching for 1796 * 1797 * This function returns the section id and oobregion information of a 1798 * specific byte. For example, say you want to know where the 4th ECC byte is 1799 * stored, you'll use: 1800 * 1801 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1802 * 1803 * Returns zero on success, a negative error code otherwise. 1804 */ 1805 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1806 int *sectionp, struct mtd_oob_region *oobregion, 1807 int (*iter)(struct mtd_info *, 1808 int section, 1809 struct mtd_oob_region *oobregion)) 1810 { 1811 int pos = 0, ret, section = 0; 1812 1813 memset(oobregion, 0, sizeof(*oobregion)); 1814 1815 while (1) { 1816 ret = iter(mtd, section, oobregion); 1817 if (ret) 1818 return ret; 1819 1820 if (pos + oobregion->length > byte) 1821 break; 1822 1823 pos += oobregion->length; 1824 section++; 1825 } 1826 1827 /* 1828 * Adjust region info to make it start at the beginning at the 1829 * 'start' ECC byte. 1830 */ 1831 oobregion->offset += byte - pos; 1832 oobregion->length -= byte - pos; 1833 *sectionp = section; 1834 1835 return 0; 1836 } 1837 1838 /** 1839 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1840 * ECC byte 1841 * @mtd: mtd info structure 1842 * @eccbyte: the byte we are searching for 1843 * @section: pointer where the section id will be stored 1844 * @oobregion: OOB region information 1845 * 1846 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1847 * byte. 1848 * 1849 * Returns zero on success, a negative error code otherwise. 1850 */ 1851 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1852 int *section, 1853 struct mtd_oob_region *oobregion) 1854 { 1855 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1856 mtd_ooblayout_ecc); 1857 } 1858 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1859 1860 /** 1861 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1862 * @mtd: mtd info structure 1863 * @buf: destination buffer to store OOB bytes 1864 * @oobbuf: OOB buffer 1865 * @start: first byte to retrieve 1866 * @nbytes: number of bytes to retrieve 1867 * @iter: section iterator 1868 * 1869 * Extract bytes attached to a specific category (ECC or free) 1870 * from the OOB buffer and copy them into buf. 1871 * 1872 * Returns zero on success, a negative error code otherwise. 1873 */ 1874 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1875 const u8 *oobbuf, int start, int nbytes, 1876 int (*iter)(struct mtd_info *, 1877 int section, 1878 struct mtd_oob_region *oobregion)) 1879 { 1880 struct mtd_oob_region oobregion; 1881 int section, ret; 1882 1883 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1884 &oobregion, iter); 1885 1886 while (!ret) { 1887 int cnt; 1888 1889 cnt = min_t(int, nbytes, oobregion.length); 1890 memcpy(buf, oobbuf + oobregion.offset, cnt); 1891 buf += cnt; 1892 nbytes -= cnt; 1893 1894 if (!nbytes) 1895 break; 1896 1897 ret = iter(mtd, ++section, &oobregion); 1898 } 1899 1900 return ret; 1901 } 1902 1903 /** 1904 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1905 * @mtd: mtd info structure 1906 * @buf: source buffer to get OOB bytes from 1907 * @oobbuf: OOB buffer 1908 * @start: first OOB byte to set 1909 * @nbytes: number of OOB bytes to set 1910 * @iter: section iterator 1911 * 1912 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1913 * is selected by passing the appropriate iterator. 1914 * 1915 * Returns zero on success, a negative error code otherwise. 1916 */ 1917 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1918 u8 *oobbuf, int start, int nbytes, 1919 int (*iter)(struct mtd_info *, 1920 int section, 1921 struct mtd_oob_region *oobregion)) 1922 { 1923 struct mtd_oob_region oobregion; 1924 int section, ret; 1925 1926 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1927 &oobregion, iter); 1928 1929 while (!ret) { 1930 int cnt; 1931 1932 cnt = min_t(int, nbytes, oobregion.length); 1933 memcpy(oobbuf + oobregion.offset, buf, cnt); 1934 buf += cnt; 1935 nbytes -= cnt; 1936 1937 if (!nbytes) 1938 break; 1939 1940 ret = iter(mtd, ++section, &oobregion); 1941 } 1942 1943 return ret; 1944 } 1945 1946 /** 1947 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1948 * @mtd: mtd info structure 1949 * @iter: category iterator 1950 * 1951 * Count the number of bytes in a given category. 1952 * 1953 * Returns a positive value on success, a negative error code otherwise. 1954 */ 1955 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1956 int (*iter)(struct mtd_info *, 1957 int section, 1958 struct mtd_oob_region *oobregion)) 1959 { 1960 struct mtd_oob_region oobregion; 1961 int section = 0, ret, nbytes = 0; 1962 1963 while (1) { 1964 ret = iter(mtd, section++, &oobregion); 1965 if (ret) { 1966 if (ret == -ERANGE) 1967 ret = nbytes; 1968 break; 1969 } 1970 1971 nbytes += oobregion.length; 1972 } 1973 1974 return ret; 1975 } 1976 1977 /** 1978 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1979 * @mtd: mtd info structure 1980 * @eccbuf: destination buffer to store ECC bytes 1981 * @oobbuf: OOB buffer 1982 * @start: first ECC byte to retrieve 1983 * @nbytes: number of ECC bytes to retrieve 1984 * 1985 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1986 * 1987 * Returns zero on success, a negative error code otherwise. 1988 */ 1989 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1990 const u8 *oobbuf, int start, int nbytes) 1991 { 1992 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1993 mtd_ooblayout_ecc); 1994 } 1995 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1996 1997 /** 1998 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1999 * @mtd: mtd info structure 2000 * @eccbuf: source buffer to get ECC bytes from 2001 * @oobbuf: OOB buffer 2002 * @start: first ECC byte to set 2003 * @nbytes: number of ECC bytes to set 2004 * 2005 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2006 * 2007 * Returns zero on success, a negative error code otherwise. 2008 */ 2009 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2010 u8 *oobbuf, int start, int nbytes) 2011 { 2012 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2013 mtd_ooblayout_ecc); 2014 } 2015 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2016 2017 /** 2018 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2019 * @mtd: mtd info structure 2020 * @databuf: destination buffer to store ECC bytes 2021 * @oobbuf: OOB buffer 2022 * @start: first ECC byte to retrieve 2023 * @nbytes: number of ECC bytes to retrieve 2024 * 2025 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2026 * 2027 * Returns zero on success, a negative error code otherwise. 2028 */ 2029 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2030 const u8 *oobbuf, int start, int nbytes) 2031 { 2032 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2033 mtd_ooblayout_free); 2034 } 2035 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2036 2037 /** 2038 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2039 * @mtd: mtd info structure 2040 * @databuf: source buffer to get data bytes from 2041 * @oobbuf: OOB buffer 2042 * @start: first ECC byte to set 2043 * @nbytes: number of ECC bytes to set 2044 * 2045 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2046 * 2047 * Returns zero on success, a negative error code otherwise. 2048 */ 2049 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2050 u8 *oobbuf, int start, int nbytes) 2051 { 2052 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2053 mtd_ooblayout_free); 2054 } 2055 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2056 2057 /** 2058 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2059 * @mtd: mtd info structure 2060 * 2061 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2062 * 2063 * Returns zero on success, a negative error code otherwise. 2064 */ 2065 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2066 { 2067 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2068 } 2069 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2070 2071 /** 2072 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2073 * @mtd: mtd info structure 2074 * 2075 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2076 * 2077 * Returns zero on success, a negative error code otherwise. 2078 */ 2079 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2080 { 2081 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2082 } 2083 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2084 2085 /* 2086 * Method to access the protection register area, present in some flash 2087 * devices. The user data is one time programmable but the factory data is read 2088 * only. 2089 */ 2090 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2091 struct otp_info *buf) 2092 { 2093 struct mtd_info *master = mtd_get_master(mtd); 2094 2095 if (!master->_get_fact_prot_info) 2096 return -EOPNOTSUPP; 2097 if (!len) 2098 return 0; 2099 return master->_get_fact_prot_info(master, len, retlen, buf); 2100 } 2101 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2102 2103 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2104 size_t *retlen, u_char *buf) 2105 { 2106 struct mtd_info *master = mtd_get_master(mtd); 2107 2108 *retlen = 0; 2109 if (!master->_read_fact_prot_reg) 2110 return -EOPNOTSUPP; 2111 if (!len) 2112 return 0; 2113 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2114 } 2115 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2116 2117 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2118 struct otp_info *buf) 2119 { 2120 struct mtd_info *master = mtd_get_master(mtd); 2121 2122 if (!master->_get_user_prot_info) 2123 return -EOPNOTSUPP; 2124 if (!len) 2125 return 0; 2126 return master->_get_user_prot_info(master, len, retlen, buf); 2127 } 2128 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2129 2130 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2131 size_t *retlen, u_char *buf) 2132 { 2133 struct mtd_info *master = mtd_get_master(mtd); 2134 2135 *retlen = 0; 2136 if (!master->_read_user_prot_reg) 2137 return -EOPNOTSUPP; 2138 if (!len) 2139 return 0; 2140 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2141 } 2142 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2143 2144 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2145 size_t *retlen, const u_char *buf) 2146 { 2147 struct mtd_info *master = mtd_get_master(mtd); 2148 int ret; 2149 2150 *retlen = 0; 2151 if (!master->_write_user_prot_reg) 2152 return -EOPNOTSUPP; 2153 if (!len) 2154 return 0; 2155 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2156 if (ret) 2157 return ret; 2158 2159 /* 2160 * If no data could be written at all, we are out of memory and 2161 * must return -ENOSPC. 2162 */ 2163 return (*retlen) ? 0 : -ENOSPC; 2164 } 2165 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2166 2167 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2168 { 2169 struct mtd_info *master = mtd_get_master(mtd); 2170 2171 if (!master->_lock_user_prot_reg) 2172 return -EOPNOTSUPP; 2173 if (!len) 2174 return 0; 2175 return master->_lock_user_prot_reg(master, from, len); 2176 } 2177 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2178 2179 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2180 { 2181 struct mtd_info *master = mtd_get_master(mtd); 2182 2183 if (!master->_erase_user_prot_reg) 2184 return -EOPNOTSUPP; 2185 if (!len) 2186 return 0; 2187 return master->_erase_user_prot_reg(master, from, len); 2188 } 2189 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2190 2191 /* Chip-supported device locking */ 2192 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2193 { 2194 struct mtd_info *master = mtd_get_master(mtd); 2195 2196 if (!master->_lock) 2197 return -EOPNOTSUPP; 2198 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2199 return -EINVAL; 2200 if (!len) 2201 return 0; 2202 2203 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2204 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2205 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2206 } 2207 2208 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2209 } 2210 EXPORT_SYMBOL_GPL(mtd_lock); 2211 2212 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2213 { 2214 struct mtd_info *master = mtd_get_master(mtd); 2215 2216 if (!master->_unlock) 2217 return -EOPNOTSUPP; 2218 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2219 return -EINVAL; 2220 if (!len) 2221 return 0; 2222 2223 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2224 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2225 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2226 } 2227 2228 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2229 } 2230 EXPORT_SYMBOL_GPL(mtd_unlock); 2231 2232 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2233 { 2234 struct mtd_info *master = mtd_get_master(mtd); 2235 2236 if (!master->_is_locked) 2237 return -EOPNOTSUPP; 2238 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2239 return -EINVAL; 2240 if (!len) 2241 return 0; 2242 2243 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2244 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2245 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2246 } 2247 2248 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2249 } 2250 EXPORT_SYMBOL_GPL(mtd_is_locked); 2251 2252 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2253 { 2254 struct mtd_info *master = mtd_get_master(mtd); 2255 2256 if (ofs < 0 || ofs >= mtd->size) 2257 return -EINVAL; 2258 if (!master->_block_isreserved) 2259 return 0; 2260 2261 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2262 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2263 2264 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2265 } 2266 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2267 2268 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2269 { 2270 struct mtd_info *master = mtd_get_master(mtd); 2271 2272 if (ofs < 0 || ofs >= mtd->size) 2273 return -EINVAL; 2274 if (!master->_block_isbad) 2275 return 0; 2276 2277 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2278 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2279 2280 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2281 } 2282 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2283 2284 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2285 { 2286 struct mtd_info *master = mtd_get_master(mtd); 2287 int ret; 2288 2289 if (!master->_block_markbad) 2290 return -EOPNOTSUPP; 2291 if (ofs < 0 || ofs >= mtd->size) 2292 return -EINVAL; 2293 if (!(mtd->flags & MTD_WRITEABLE)) 2294 return -EROFS; 2295 2296 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2297 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2298 2299 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2300 if (ret) 2301 return ret; 2302 2303 while (mtd->parent) { 2304 mtd->ecc_stats.badblocks++; 2305 mtd = mtd->parent; 2306 } 2307 2308 return 0; 2309 } 2310 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2311 2312 /* 2313 * default_mtd_writev - the default writev method 2314 * @mtd: mtd device description object pointer 2315 * @vecs: the vectors to write 2316 * @count: count of vectors in @vecs 2317 * @to: the MTD device offset to write to 2318 * @retlen: on exit contains the count of bytes written to the MTD device. 2319 * 2320 * This function returns zero in case of success and a negative error code in 2321 * case of failure. 2322 */ 2323 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2324 unsigned long count, loff_t to, size_t *retlen) 2325 { 2326 unsigned long i; 2327 size_t totlen = 0, thislen; 2328 int ret = 0; 2329 2330 for (i = 0; i < count; i++) { 2331 if (!vecs[i].iov_len) 2332 continue; 2333 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2334 vecs[i].iov_base); 2335 totlen += thislen; 2336 if (ret || thislen != vecs[i].iov_len) 2337 break; 2338 to += vecs[i].iov_len; 2339 } 2340 *retlen = totlen; 2341 return ret; 2342 } 2343 2344 /* 2345 * mtd_writev - the vector-based MTD write method 2346 * @mtd: mtd device description object pointer 2347 * @vecs: the vectors to write 2348 * @count: count of vectors in @vecs 2349 * @to: the MTD device offset to write to 2350 * @retlen: on exit contains the count of bytes written to the MTD device. 2351 * 2352 * This function returns zero in case of success and a negative error code in 2353 * case of failure. 2354 */ 2355 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2356 unsigned long count, loff_t to, size_t *retlen) 2357 { 2358 struct mtd_info *master = mtd_get_master(mtd); 2359 2360 *retlen = 0; 2361 if (!(mtd->flags & MTD_WRITEABLE)) 2362 return -EROFS; 2363 2364 if (!master->_writev) 2365 return default_mtd_writev(mtd, vecs, count, to, retlen); 2366 2367 return master->_writev(master, vecs, count, 2368 mtd_get_master_ofs(mtd, to), retlen); 2369 } 2370 EXPORT_SYMBOL_GPL(mtd_writev); 2371 2372 /** 2373 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2374 * @mtd: mtd device description object pointer 2375 * @size: a pointer to the ideal or maximum size of the allocation, points 2376 * to the actual allocation size on success. 2377 * 2378 * This routine attempts to allocate a contiguous kernel buffer up to 2379 * the specified size, backing off the size of the request exponentially 2380 * until the request succeeds or until the allocation size falls below 2381 * the system page size. This attempts to make sure it does not adversely 2382 * impact system performance, so when allocating more than one page, we 2383 * ask the memory allocator to avoid re-trying, swapping, writing back 2384 * or performing I/O. 2385 * 2386 * Note, this function also makes sure that the allocated buffer is aligned to 2387 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2388 * 2389 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2390 * to handle smaller (i.e. degraded) buffer allocations under low- or 2391 * fragmented-memory situations where such reduced allocations, from a 2392 * requested ideal, are allowed. 2393 * 2394 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2395 */ 2396 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2397 { 2398 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2399 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2400 void *kbuf; 2401 2402 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2403 2404 while (*size > min_alloc) { 2405 kbuf = kmalloc(*size, flags); 2406 if (kbuf) 2407 return kbuf; 2408 2409 *size >>= 1; 2410 *size = ALIGN(*size, mtd->writesize); 2411 } 2412 2413 /* 2414 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2415 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2416 */ 2417 return kmalloc(*size, GFP_KERNEL); 2418 } 2419 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2420 2421 #ifdef CONFIG_PROC_FS 2422 2423 /*====================================================================*/ 2424 /* Support for /proc/mtd */ 2425 2426 static int mtd_proc_show(struct seq_file *m, void *v) 2427 { 2428 struct mtd_info *mtd; 2429 2430 seq_puts(m, "dev: size erasesize name\n"); 2431 mutex_lock(&mtd_table_mutex); 2432 mtd_for_each_device(mtd) { 2433 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2434 mtd->index, (unsigned long long)mtd->size, 2435 mtd->erasesize, mtd->name); 2436 } 2437 mutex_unlock(&mtd_table_mutex); 2438 return 0; 2439 } 2440 #endif /* CONFIG_PROC_FS */ 2441 2442 /*====================================================================*/ 2443 /* Init code */ 2444 2445 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2446 { 2447 struct backing_dev_info *bdi; 2448 int ret; 2449 2450 bdi = bdi_alloc(NUMA_NO_NODE); 2451 if (!bdi) 2452 return ERR_PTR(-ENOMEM); 2453 bdi->ra_pages = 0; 2454 bdi->io_pages = 0; 2455 2456 /* 2457 * We put '-0' suffix to the name to get the same name format as we 2458 * used to get. Since this is called only once, we get a unique name. 2459 */ 2460 ret = bdi_register(bdi, "%.28s-0", name); 2461 if (ret) 2462 bdi_put(bdi); 2463 2464 return ret ? ERR_PTR(ret) : bdi; 2465 } 2466 2467 static struct proc_dir_entry *proc_mtd; 2468 2469 static int __init init_mtd(void) 2470 { 2471 int ret; 2472 2473 ret = class_register(&mtd_class); 2474 if (ret) 2475 goto err_reg; 2476 2477 mtd_bdi = mtd_bdi_init("mtd"); 2478 if (IS_ERR(mtd_bdi)) { 2479 ret = PTR_ERR(mtd_bdi); 2480 goto err_bdi; 2481 } 2482 2483 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2484 2485 ret = init_mtdchar(); 2486 if (ret) 2487 goto out_procfs; 2488 2489 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2490 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2491 &mtd_expert_analysis_mode); 2492 2493 return 0; 2494 2495 out_procfs: 2496 if (proc_mtd) 2497 remove_proc_entry("mtd", NULL); 2498 bdi_unregister(mtd_bdi); 2499 bdi_put(mtd_bdi); 2500 err_bdi: 2501 class_unregister(&mtd_class); 2502 err_reg: 2503 pr_err("Error registering mtd class or bdi: %d\n", ret); 2504 return ret; 2505 } 2506 2507 static void __exit cleanup_mtd(void) 2508 { 2509 debugfs_remove_recursive(dfs_dir_mtd); 2510 cleanup_mtdchar(); 2511 if (proc_mtd) 2512 remove_proc_entry("mtd", NULL); 2513 class_unregister(&mtd_class); 2514 bdi_unregister(mtd_bdi); 2515 bdi_put(mtd_bdi); 2516 idr_destroy(&mtd_idr); 2517 } 2518 2519 module_init(init_mtd); 2520 module_exit(cleanup_mtd); 2521 2522 MODULE_LICENSE("GPL"); 2523 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2524 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2525