xref: /linux/drivers/mtd/mtdcore.c (revision 8ccd54fe45713cd458015b5b08d6098545e70543)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 #include <linux/root_dev.h>
32 
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/partitions.h>
35 
36 #include "mtdcore.h"
37 
38 struct backing_dev_info *mtd_bdi;
39 
40 #ifdef CONFIG_PM_SLEEP
41 
42 static int mtd_cls_suspend(struct device *dev)
43 {
44 	struct mtd_info *mtd = dev_get_drvdata(dev);
45 
46 	return mtd ? mtd_suspend(mtd) : 0;
47 }
48 
49 static int mtd_cls_resume(struct device *dev)
50 {
51 	struct mtd_info *mtd = dev_get_drvdata(dev);
52 
53 	if (mtd)
54 		mtd_resume(mtd);
55 	return 0;
56 }
57 
58 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
59 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60 #else
61 #define MTD_CLS_PM_OPS NULL
62 #endif
63 
64 static struct class mtd_class = {
65 	.name = "mtd",
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101 
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104 
105 static ssize_t mtd_type_show(struct device *dev,
106 		struct device_attribute *attr, char *buf)
107 {
108 	struct mtd_info *mtd = dev_get_drvdata(dev);
109 	char *type;
110 
111 	switch (mtd->type) {
112 	case MTD_ABSENT:
113 		type = "absent";
114 		break;
115 	case MTD_RAM:
116 		type = "ram";
117 		break;
118 	case MTD_ROM:
119 		type = "rom";
120 		break;
121 	case MTD_NORFLASH:
122 		type = "nor";
123 		break;
124 	case MTD_NANDFLASH:
125 		type = "nand";
126 		break;
127 	case MTD_DATAFLASH:
128 		type = "dataflash";
129 		break;
130 	case MTD_UBIVOLUME:
131 		type = "ubi";
132 		break;
133 	case MTD_MLCNANDFLASH:
134 		type = "mlc-nand";
135 		break;
136 	default:
137 		type = "unknown";
138 	}
139 
140 	return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143 
144 static ssize_t mtd_flags_show(struct device *dev,
145 		struct device_attribute *attr, char *buf)
146 {
147 	struct mtd_info *mtd = dev_get_drvdata(dev);
148 
149 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152 
153 static ssize_t mtd_size_show(struct device *dev,
154 		struct device_attribute *attr, char *buf)
155 {
156 	struct mtd_info *mtd = dev_get_drvdata(dev);
157 
158 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161 
162 static ssize_t mtd_erasesize_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170 
171 static ssize_t mtd_writesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179 
180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185 
186 	return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189 
190 static ssize_t mtd_oobsize_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198 
199 static ssize_t mtd_oobavail_show(struct device *dev,
200 				 struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207 
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216 
217 static ssize_t mtd_name_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct mtd_info *mtd = dev_get_drvdata(dev);
221 
222 	return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225 
226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 				     struct device_attribute *attr, char *buf)
228 {
229 	struct mtd_info *mtd = dev_get_drvdata(dev);
230 
231 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234 
235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 					  struct device_attribute *attr,
237 					  char *buf)
238 {
239 	struct mtd_info *mtd = dev_get_drvdata(dev);
240 
241 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243 
244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 					   struct device_attribute *attr,
246 					   const char *buf, size_t count)
247 {
248 	struct mtd_info *mtd = dev_get_drvdata(dev);
249 	unsigned int bitflip_threshold;
250 	int retval;
251 
252 	retval = kstrtouint(buf, 0, &bitflip_threshold);
253 	if (retval)
254 		return retval;
255 
256 	mtd->bitflip_threshold = bitflip_threshold;
257 	return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260 
261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 		struct device_attribute *attr, char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267 
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270 
271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276 
277 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
280 
281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
290 
291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300 
301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310 
311 static struct attribute *mtd_attrs[] = {
312 	&dev_attr_type.attr,
313 	&dev_attr_flags.attr,
314 	&dev_attr_size.attr,
315 	&dev_attr_erasesize.attr,
316 	&dev_attr_writesize.attr,
317 	&dev_attr_subpagesize.attr,
318 	&dev_attr_oobsize.attr,
319 	&dev_attr_oobavail.attr,
320 	&dev_attr_numeraseregions.attr,
321 	&dev_attr_name.attr,
322 	&dev_attr_ecc_strength.attr,
323 	&dev_attr_ecc_step_size.attr,
324 	&dev_attr_corrected_bits.attr,
325 	&dev_attr_ecc_failures.attr,
326 	&dev_attr_bad_blocks.attr,
327 	&dev_attr_bbt_blocks.attr,
328 	&dev_attr_bitflip_threshold.attr,
329 	NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332 
333 static const struct device_type mtd_devtype = {
334 	.name		= "mtd",
335 	.groups		= mtd_groups,
336 	.release	= mtd_release,
337 };
338 
339 static bool mtd_expert_analysis_mode;
340 
341 #ifdef CONFIG_DEBUG_FS
342 bool mtd_check_expert_analysis_mode(void)
343 {
344 	const char *mtd_expert_analysis_warning =
345 		"Bad block checks have been entirely disabled.\n"
346 		"This is only reserved for post-mortem forensics and debug purposes.\n"
347 		"Never enable this mode if you do not know what you are doing!\n";
348 
349 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350 }
351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352 #endif
353 
354 static struct dentry *dfs_dir_mtd;
355 
356 static void mtd_debugfs_populate(struct mtd_info *mtd)
357 {
358 	struct device *dev = &mtd->dev;
359 
360 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 		return;
362 
363 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364 }
365 
366 #ifndef CONFIG_MMU
367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368 {
369 	switch (mtd->type) {
370 	case MTD_RAM:
371 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 	case MTD_ROM:
374 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 			NOMMU_MAP_READ;
376 	default:
377 		return NOMMU_MAP_COPY;
378 	}
379 }
380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381 #endif
382 
383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 			       void *cmd)
385 {
386 	struct mtd_info *mtd;
387 
388 	mtd = container_of(n, struct mtd_info, reboot_notifier);
389 	mtd->_reboot(mtd);
390 
391 	return NOTIFY_DONE;
392 }
393 
394 /**
395  * mtd_wunit_to_pairing_info - get pairing information of a wunit
396  * @mtd: pointer to new MTD device info structure
397  * @wunit: write unit we are interested in
398  * @info: returned pairing information
399  *
400  * Retrieve pairing information associated to the wunit.
401  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402  * paired together, and where programming a page may influence the page it is
403  * paired with.
404  * The notion of page is replaced by the term wunit (write-unit) to stay
405  * consistent with the ->writesize field.
406  *
407  * The @wunit argument can be extracted from an absolute offset using
408  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409  * to @wunit.
410  *
411  * From the pairing info the MTD user can find all the wunits paired with
412  * @wunit using the following loop:
413  *
414  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415  *	info.pair = i;
416  *	mtd_pairing_info_to_wunit(mtd, &info);
417  *	...
418  * }
419  */
420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 			      struct mtd_pairing_info *info)
422 {
423 	struct mtd_info *master = mtd_get_master(mtd);
424 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425 
426 	if (wunit < 0 || wunit >= npairs)
427 		return -EINVAL;
428 
429 	if (master->pairing && master->pairing->get_info)
430 		return master->pairing->get_info(master, wunit, info);
431 
432 	info->group = 0;
433 	info->pair = wunit;
434 
435 	return 0;
436 }
437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438 
439 /**
440  * mtd_pairing_info_to_wunit - get wunit from pairing information
441  * @mtd: pointer to new MTD device info structure
442  * @info: pairing information struct
443  *
444  * Returns a positive number representing the wunit associated to the info
445  * struct, or a negative error code.
446  *
447  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449  * doc).
450  *
451  * It can also be used to only program the first page of each pair (i.e.
452  * page attached to group 0), which allows one to use an MLC NAND in
453  * software-emulated SLC mode:
454  *
455  * info.group = 0;
456  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457  * for (info.pair = 0; info.pair < npairs; info.pair++) {
458  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
459  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
461  * }
462  */
463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 			      const struct mtd_pairing_info *info)
465 {
466 	struct mtd_info *master = mtd_get_master(mtd);
467 	int ngroups = mtd_pairing_groups(master);
468 	int npairs = mtd_wunit_per_eb(master) / ngroups;
469 
470 	if (!info || info->pair < 0 || info->pair >= npairs ||
471 	    info->group < 0 || info->group >= ngroups)
472 		return -EINVAL;
473 
474 	if (master->pairing && master->pairing->get_wunit)
475 		return mtd->pairing->get_wunit(master, info);
476 
477 	return info->pair;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480 
481 /**
482  * mtd_pairing_groups - get the number of pairing groups
483  * @mtd: pointer to new MTD device info structure
484  *
485  * Returns the number of pairing groups.
486  *
487  * This number is usually equal to the number of bits exposed by a single
488  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489  * to iterate over all pages of a given pair.
490  */
491 int mtd_pairing_groups(struct mtd_info *mtd)
492 {
493 	struct mtd_info *master = mtd_get_master(mtd);
494 
495 	if (!master->pairing || !master->pairing->ngroups)
496 		return 1;
497 
498 	return master->pairing->ngroups;
499 }
500 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501 
502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 			      void *val, size_t bytes)
504 {
505 	struct mtd_info *mtd = priv;
506 	size_t retlen;
507 	int err;
508 
509 	err = mtd_read(mtd, offset, bytes, &retlen, val);
510 	if (err && err != -EUCLEAN)
511 		return err;
512 
513 	return retlen == bytes ? 0 : -EIO;
514 }
515 
516 static int mtd_nvmem_add(struct mtd_info *mtd)
517 {
518 	struct device_node *node = mtd_get_of_node(mtd);
519 	struct nvmem_config config = {};
520 
521 	config.id = NVMEM_DEVID_NONE;
522 	config.dev = &mtd->dev;
523 	config.name = dev_name(&mtd->dev);
524 	config.owner = THIS_MODULE;
525 	config.reg_read = mtd_nvmem_reg_read;
526 	config.size = mtd->size;
527 	config.word_size = 1;
528 	config.stride = 1;
529 	config.read_only = true;
530 	config.root_only = true;
531 	config.ignore_wp = true;
532 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 	config.priv = mtd;
534 
535 	mtd->nvmem = nvmem_register(&config);
536 	if (IS_ERR(mtd->nvmem)) {
537 		/* Just ignore if there is no NVMEM support in the kernel */
538 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
539 			mtd->nvmem = NULL;
540 		else
541 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
542 					     "Failed to register NVMEM device\n");
543 	}
544 
545 	return 0;
546 }
547 
548 static void mtd_check_of_node(struct mtd_info *mtd)
549 {
550 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
551 	const char *pname, *prefix = "partition-";
552 	int plen, mtd_name_len, offset, prefix_len;
553 
554 	/* Check if MTD already has a device node */
555 	if (mtd_get_of_node(mtd))
556 		return;
557 
558 	if (!mtd_is_partition(mtd))
559 		return;
560 
561 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
562 	if (!parent_dn)
563 		return;
564 
565 	if (mtd_is_partition(mtd->parent))
566 		partitions = of_node_get(parent_dn);
567 	else
568 		partitions = of_get_child_by_name(parent_dn, "partitions");
569 	if (!partitions)
570 		goto exit_parent;
571 
572 	prefix_len = strlen(prefix);
573 	mtd_name_len = strlen(mtd->name);
574 
575 	/* Search if a partition is defined with the same name */
576 	for_each_child_of_node(partitions, mtd_dn) {
577 		/* Skip partition with no/wrong prefix */
578 		if (!of_node_name_prefix(mtd_dn, prefix))
579 			continue;
580 
581 		/* Label have priority. Check that first */
582 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
583 			offset = 0;
584 		} else {
585 			pname = mtd_dn->name;
586 			offset = prefix_len;
587 		}
588 
589 		plen = strlen(pname) - offset;
590 		if (plen == mtd_name_len &&
591 		    !strncmp(mtd->name, pname + offset, plen)) {
592 			mtd_set_of_node(mtd, mtd_dn);
593 			break;
594 		}
595 	}
596 
597 	of_node_put(partitions);
598 exit_parent:
599 	of_node_put(parent_dn);
600 }
601 
602 /**
603  *	add_mtd_device - register an MTD device
604  *	@mtd: pointer to new MTD device info structure
605  *
606  *	Add a device to the list of MTD devices present in the system, and
607  *	notify each currently active MTD 'user' of its arrival. Returns
608  *	zero on success or non-zero on failure.
609  */
610 
611 int add_mtd_device(struct mtd_info *mtd)
612 {
613 	struct device_node *np = mtd_get_of_node(mtd);
614 	struct mtd_info *master = mtd_get_master(mtd);
615 	struct mtd_notifier *not;
616 	int i, error, ofidx;
617 
618 	/*
619 	 * May occur, for instance, on buggy drivers which call
620 	 * mtd_device_parse_register() multiple times on the same master MTD,
621 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
622 	 */
623 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
624 		return -EEXIST;
625 
626 	BUG_ON(mtd->writesize == 0);
627 
628 	/*
629 	 * MTD drivers should implement ->_{write,read}() or
630 	 * ->_{write,read}_oob(), but not both.
631 	 */
632 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
633 		    (mtd->_read && mtd->_read_oob)))
634 		return -EINVAL;
635 
636 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
637 		    !(mtd->flags & MTD_NO_ERASE)))
638 		return -EINVAL;
639 
640 	/*
641 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
642 	 * master is an MLC NAND and has a proper pairing scheme defined.
643 	 * We also reject masters that implement ->_writev() for now, because
644 	 * NAND controller drivers don't implement this hook, and adding the
645 	 * SLC -> MLC address/length conversion to this path is useless if we
646 	 * don't have a user.
647 	 */
648 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
649 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
650 	     !master->pairing || master->_writev))
651 		return -EINVAL;
652 
653 	mutex_lock(&mtd_table_mutex);
654 
655 	ofidx = -1;
656 	if (np)
657 		ofidx = of_alias_get_id(np, "mtd");
658 	if (ofidx >= 0)
659 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
660 	else
661 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
662 	if (i < 0) {
663 		error = i;
664 		goto fail_locked;
665 	}
666 
667 	mtd->index = i;
668 	mtd->usecount = 0;
669 
670 	/* default value if not set by driver */
671 	if (mtd->bitflip_threshold == 0)
672 		mtd->bitflip_threshold = mtd->ecc_strength;
673 
674 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
675 		int ngroups = mtd_pairing_groups(master);
676 
677 		mtd->erasesize /= ngroups;
678 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
679 			    mtd->erasesize;
680 	}
681 
682 	if (is_power_of_2(mtd->erasesize))
683 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
684 	else
685 		mtd->erasesize_shift = 0;
686 
687 	if (is_power_of_2(mtd->writesize))
688 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
689 	else
690 		mtd->writesize_shift = 0;
691 
692 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
693 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
694 
695 	/* Some chips always power up locked. Unlock them now */
696 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
697 		error = mtd_unlock(mtd, 0, mtd->size);
698 		if (error && error != -EOPNOTSUPP)
699 			printk(KERN_WARNING
700 			       "%s: unlock failed, writes may not work\n",
701 			       mtd->name);
702 		/* Ignore unlock failures? */
703 		error = 0;
704 	}
705 
706 	/* Caller should have set dev.parent to match the
707 	 * physical device, if appropriate.
708 	 */
709 	mtd->dev.type = &mtd_devtype;
710 	mtd->dev.class = &mtd_class;
711 	mtd->dev.devt = MTD_DEVT(i);
712 	dev_set_name(&mtd->dev, "mtd%d", i);
713 	dev_set_drvdata(&mtd->dev, mtd);
714 	mtd_check_of_node(mtd);
715 	of_node_get(mtd_get_of_node(mtd));
716 	error = device_register(&mtd->dev);
717 	if (error) {
718 		put_device(&mtd->dev);
719 		goto fail_added;
720 	}
721 
722 	/* Add the nvmem provider */
723 	error = mtd_nvmem_add(mtd);
724 	if (error)
725 		goto fail_nvmem_add;
726 
727 	mtd_debugfs_populate(mtd);
728 
729 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
730 		      "mtd%dro", i);
731 
732 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
733 	/* No need to get a refcount on the module containing
734 	   the notifier, since we hold the mtd_table_mutex */
735 	list_for_each_entry(not, &mtd_notifiers, list)
736 		not->add(mtd);
737 
738 	mutex_unlock(&mtd_table_mutex);
739 
740 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
741 		if (IS_BUILTIN(CONFIG_MTD)) {
742 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
743 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
744 		} else {
745 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
746 				mtd->index, mtd->name);
747 		}
748 	}
749 
750 	/* We _know_ we aren't being removed, because
751 	   our caller is still holding us here. So none
752 	   of this try_ nonsense, and no bitching about it
753 	   either. :) */
754 	__module_get(THIS_MODULE);
755 	return 0;
756 
757 fail_nvmem_add:
758 	device_unregister(&mtd->dev);
759 fail_added:
760 	of_node_put(mtd_get_of_node(mtd));
761 	idr_remove(&mtd_idr, i);
762 fail_locked:
763 	mutex_unlock(&mtd_table_mutex);
764 	return error;
765 }
766 
767 /**
768  *	del_mtd_device - unregister an MTD device
769  *	@mtd: pointer to MTD device info structure
770  *
771  *	Remove a device from the list of MTD devices present in the system,
772  *	and notify each currently active MTD 'user' of its departure.
773  *	Returns zero on success or 1 on failure, which currently will happen
774  *	if the requested device does not appear to be present in the list.
775  */
776 
777 int del_mtd_device(struct mtd_info *mtd)
778 {
779 	int ret;
780 	struct mtd_notifier *not;
781 	struct device_node *mtd_of_node;
782 
783 	mutex_lock(&mtd_table_mutex);
784 
785 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
786 		ret = -ENODEV;
787 		goto out_error;
788 	}
789 
790 	/* No need to get a refcount on the module containing
791 		the notifier, since we hold the mtd_table_mutex */
792 	list_for_each_entry(not, &mtd_notifiers, list)
793 		not->remove(mtd);
794 
795 	if (mtd->usecount) {
796 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
797 		       mtd->index, mtd->name, mtd->usecount);
798 		ret = -EBUSY;
799 	} else {
800 		mtd_of_node = mtd_get_of_node(mtd);
801 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
802 
803 		/* Try to remove the NVMEM provider */
804 		nvmem_unregister(mtd->nvmem);
805 
806 		device_unregister(&mtd->dev);
807 
808 		/* Clear dev so mtd can be safely re-registered later if desired */
809 		memset(&mtd->dev, 0, sizeof(mtd->dev));
810 
811 		idr_remove(&mtd_idr, mtd->index);
812 		of_node_put(mtd_of_node);
813 
814 		module_put(THIS_MODULE);
815 		ret = 0;
816 	}
817 
818 out_error:
819 	mutex_unlock(&mtd_table_mutex);
820 	return ret;
821 }
822 
823 /*
824  * Set a few defaults based on the parent devices, if not provided by the
825  * driver
826  */
827 static void mtd_set_dev_defaults(struct mtd_info *mtd)
828 {
829 	if (mtd->dev.parent) {
830 		if (!mtd->owner && mtd->dev.parent->driver)
831 			mtd->owner = mtd->dev.parent->driver->owner;
832 		if (!mtd->name)
833 			mtd->name = dev_name(mtd->dev.parent);
834 	} else {
835 		pr_debug("mtd device won't show a device symlink in sysfs\n");
836 	}
837 
838 	INIT_LIST_HEAD(&mtd->partitions);
839 	mutex_init(&mtd->master.partitions_lock);
840 	mutex_init(&mtd->master.chrdev_lock);
841 }
842 
843 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
844 {
845 	struct otp_info *info;
846 	ssize_t size = 0;
847 	unsigned int i;
848 	size_t retlen;
849 	int ret;
850 
851 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
852 	if (!info)
853 		return -ENOMEM;
854 
855 	if (is_user)
856 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
857 	else
858 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
859 	if (ret)
860 		goto err;
861 
862 	for (i = 0; i < retlen / sizeof(*info); i++)
863 		size += info[i].length;
864 
865 	kfree(info);
866 	return size;
867 
868 err:
869 	kfree(info);
870 
871 	/* ENODATA means there is no OTP region. */
872 	return ret == -ENODATA ? 0 : ret;
873 }
874 
875 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
876 						   const char *compatible,
877 						   int size,
878 						   nvmem_reg_read_t reg_read)
879 {
880 	struct nvmem_device *nvmem = NULL;
881 	struct nvmem_config config = {};
882 	struct device_node *np;
883 
884 	/* DT binding is optional */
885 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
886 
887 	/* OTP nvmem will be registered on the physical device */
888 	config.dev = mtd->dev.parent;
889 	config.name = compatible;
890 	config.id = NVMEM_DEVID_AUTO;
891 	config.owner = THIS_MODULE;
892 	config.type = NVMEM_TYPE_OTP;
893 	config.root_only = true;
894 	config.ignore_wp = true;
895 	config.reg_read = reg_read;
896 	config.size = size;
897 	config.of_node = np;
898 	config.priv = mtd;
899 
900 	nvmem = nvmem_register(&config);
901 	/* Just ignore if there is no NVMEM support in the kernel */
902 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
903 		nvmem = NULL;
904 
905 	of_node_put(np);
906 
907 	return nvmem;
908 }
909 
910 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
911 				       void *val, size_t bytes)
912 {
913 	struct mtd_info *mtd = priv;
914 	size_t retlen;
915 	int ret;
916 
917 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
918 	if (ret)
919 		return ret;
920 
921 	return retlen == bytes ? 0 : -EIO;
922 }
923 
924 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
925 				       void *val, size_t bytes)
926 {
927 	struct mtd_info *mtd = priv;
928 	size_t retlen;
929 	int ret;
930 
931 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
932 	if (ret)
933 		return ret;
934 
935 	return retlen == bytes ? 0 : -EIO;
936 }
937 
938 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
939 {
940 	struct device *dev = mtd->dev.parent;
941 	struct nvmem_device *nvmem;
942 	ssize_t size;
943 	int err;
944 
945 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
946 		size = mtd_otp_size(mtd, true);
947 		if (size < 0)
948 			return size;
949 
950 		if (size > 0) {
951 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
952 						       mtd_nvmem_user_otp_reg_read);
953 			if (IS_ERR(nvmem)) {
954 				err = PTR_ERR(nvmem);
955 				goto err;
956 			}
957 			mtd->otp_user_nvmem = nvmem;
958 		}
959 	}
960 
961 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
962 		size = mtd_otp_size(mtd, false);
963 		if (size < 0) {
964 			err = size;
965 			goto err;
966 		}
967 
968 		if (size > 0) {
969 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
970 						       mtd_nvmem_fact_otp_reg_read);
971 			if (IS_ERR(nvmem)) {
972 				err = PTR_ERR(nvmem);
973 				goto err;
974 			}
975 			mtd->otp_factory_nvmem = nvmem;
976 		}
977 	}
978 
979 	return 0;
980 
981 err:
982 	nvmem_unregister(mtd->otp_user_nvmem);
983 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
984 }
985 
986 /**
987  * mtd_device_parse_register - parse partitions and register an MTD device.
988  *
989  * @mtd: the MTD device to register
990  * @types: the list of MTD partition probes to try, see
991  *         'parse_mtd_partitions()' for more information
992  * @parser_data: MTD partition parser-specific data
993  * @parts: fallback partition information to register, if parsing fails;
994  *         only valid if %nr_parts > %0
995  * @nr_parts: the number of partitions in parts, if zero then the full
996  *            MTD device is registered if no partition info is found
997  *
998  * This function aggregates MTD partitions parsing (done by
999  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1000  * basically follows the most common pattern found in many MTD drivers:
1001  *
1002  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1003  *   registered first.
1004  * * Then It tries to probe partitions on MTD device @mtd using parsers
1005  *   specified in @types (if @types is %NULL, then the default list of parsers
1006  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1007  *   found this functions tries to fallback to information specified in
1008  *   @parts/@nr_parts.
1009  * * If no partitions were found this function just registers the MTD device
1010  *   @mtd and exits.
1011  *
1012  * Returns zero in case of success and a negative error code in case of failure.
1013  */
1014 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1015 			      struct mtd_part_parser_data *parser_data,
1016 			      const struct mtd_partition *parts,
1017 			      int nr_parts)
1018 {
1019 	int ret;
1020 
1021 	mtd_set_dev_defaults(mtd);
1022 
1023 	ret = mtd_otp_nvmem_add(mtd);
1024 	if (ret)
1025 		goto out;
1026 
1027 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1028 		ret = add_mtd_device(mtd);
1029 		if (ret)
1030 			goto out;
1031 	}
1032 
1033 	/* Prefer parsed partitions over driver-provided fallback */
1034 	ret = parse_mtd_partitions(mtd, types, parser_data);
1035 	if (ret == -EPROBE_DEFER)
1036 		goto out;
1037 
1038 	if (ret > 0)
1039 		ret = 0;
1040 	else if (nr_parts)
1041 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1042 	else if (!device_is_registered(&mtd->dev))
1043 		ret = add_mtd_device(mtd);
1044 	else
1045 		ret = 0;
1046 
1047 	if (ret)
1048 		goto out;
1049 
1050 	/*
1051 	 * FIXME: some drivers unfortunately call this function more than once.
1052 	 * So we have to check if we've already assigned the reboot notifier.
1053 	 *
1054 	 * Generally, we can make multiple calls work for most cases, but it
1055 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1056 	 * cmdlineparts will register partitions more than once).
1057 	 */
1058 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1059 		  "MTD already registered\n");
1060 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1061 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1062 		register_reboot_notifier(&mtd->reboot_notifier);
1063 	}
1064 
1065 out:
1066 	if (ret) {
1067 		nvmem_unregister(mtd->otp_user_nvmem);
1068 		nvmem_unregister(mtd->otp_factory_nvmem);
1069 	}
1070 
1071 	if (ret && device_is_registered(&mtd->dev))
1072 		del_mtd_device(mtd);
1073 
1074 	return ret;
1075 }
1076 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1077 
1078 /**
1079  * mtd_device_unregister - unregister an existing MTD device.
1080  *
1081  * @master: the MTD device to unregister.  This will unregister both the master
1082  *          and any partitions if registered.
1083  */
1084 int mtd_device_unregister(struct mtd_info *master)
1085 {
1086 	int err;
1087 
1088 	if (master->_reboot) {
1089 		unregister_reboot_notifier(&master->reboot_notifier);
1090 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1091 	}
1092 
1093 	nvmem_unregister(master->otp_user_nvmem);
1094 	nvmem_unregister(master->otp_factory_nvmem);
1095 
1096 	err = del_mtd_partitions(master);
1097 	if (err)
1098 		return err;
1099 
1100 	if (!device_is_registered(&master->dev))
1101 		return 0;
1102 
1103 	return del_mtd_device(master);
1104 }
1105 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1106 
1107 /**
1108  *	register_mtd_user - register a 'user' of MTD devices.
1109  *	@new: pointer to notifier info structure
1110  *
1111  *	Registers a pair of callbacks function to be called upon addition
1112  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1113  *	invoked for each MTD device currently present in the system.
1114  */
1115 void register_mtd_user (struct mtd_notifier *new)
1116 {
1117 	struct mtd_info *mtd;
1118 
1119 	mutex_lock(&mtd_table_mutex);
1120 
1121 	list_add(&new->list, &mtd_notifiers);
1122 
1123 	__module_get(THIS_MODULE);
1124 
1125 	mtd_for_each_device(mtd)
1126 		new->add(mtd);
1127 
1128 	mutex_unlock(&mtd_table_mutex);
1129 }
1130 EXPORT_SYMBOL_GPL(register_mtd_user);
1131 
1132 /**
1133  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1134  *	@old: pointer to notifier info structure
1135  *
1136  *	Removes a callback function pair from the list of 'users' to be
1137  *	notified upon addition or removal of MTD devices. Causes the
1138  *	'remove' callback to be immediately invoked for each MTD device
1139  *	currently present in the system.
1140  */
1141 int unregister_mtd_user (struct mtd_notifier *old)
1142 {
1143 	struct mtd_info *mtd;
1144 
1145 	mutex_lock(&mtd_table_mutex);
1146 
1147 	module_put(THIS_MODULE);
1148 
1149 	mtd_for_each_device(mtd)
1150 		old->remove(mtd);
1151 
1152 	list_del(&old->list);
1153 	mutex_unlock(&mtd_table_mutex);
1154 	return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1157 
1158 /**
1159  *	get_mtd_device - obtain a validated handle for an MTD device
1160  *	@mtd: last known address of the required MTD device
1161  *	@num: internal device number of the required MTD device
1162  *
1163  *	Given a number and NULL address, return the num'th entry in the device
1164  *	table, if any.	Given an address and num == -1, search the device table
1165  *	for a device with that address and return if it's still present. Given
1166  *	both, return the num'th driver only if its address matches. Return
1167  *	error code if not.
1168  */
1169 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1170 {
1171 	struct mtd_info *ret = NULL, *other;
1172 	int err = -ENODEV;
1173 
1174 	mutex_lock(&mtd_table_mutex);
1175 
1176 	if (num == -1) {
1177 		mtd_for_each_device(other) {
1178 			if (other == mtd) {
1179 				ret = mtd;
1180 				break;
1181 			}
1182 		}
1183 	} else if (num >= 0) {
1184 		ret = idr_find(&mtd_idr, num);
1185 		if (mtd && mtd != ret)
1186 			ret = NULL;
1187 	}
1188 
1189 	if (!ret) {
1190 		ret = ERR_PTR(err);
1191 		goto out;
1192 	}
1193 
1194 	err = __get_mtd_device(ret);
1195 	if (err)
1196 		ret = ERR_PTR(err);
1197 out:
1198 	mutex_unlock(&mtd_table_mutex);
1199 	return ret;
1200 }
1201 EXPORT_SYMBOL_GPL(get_mtd_device);
1202 
1203 
1204 int __get_mtd_device(struct mtd_info *mtd)
1205 {
1206 	struct mtd_info *master = mtd_get_master(mtd);
1207 	int err;
1208 
1209 	if (!try_module_get(master->owner))
1210 		return -ENODEV;
1211 
1212 	if (master->_get_device) {
1213 		err = master->_get_device(mtd);
1214 
1215 		if (err) {
1216 			module_put(master->owner);
1217 			return err;
1218 		}
1219 	}
1220 
1221 	master->usecount++;
1222 
1223 	while (mtd->parent) {
1224 		mtd->usecount++;
1225 		mtd = mtd->parent;
1226 	}
1227 
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL_GPL(__get_mtd_device);
1231 
1232 /**
1233  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1234  *
1235  * @np: device tree node
1236  */
1237 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1238 {
1239 	struct mtd_info *mtd = NULL;
1240 	struct mtd_info *tmp;
1241 	int err;
1242 
1243 	mutex_lock(&mtd_table_mutex);
1244 
1245 	err = -EPROBE_DEFER;
1246 	mtd_for_each_device(tmp) {
1247 		if (mtd_get_of_node(tmp) == np) {
1248 			mtd = tmp;
1249 			err = __get_mtd_device(mtd);
1250 			break;
1251 		}
1252 	}
1253 
1254 	mutex_unlock(&mtd_table_mutex);
1255 
1256 	return err ? ERR_PTR(err) : mtd;
1257 }
1258 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1259 
1260 /**
1261  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1262  *	device name
1263  *	@name: MTD device name to open
1264  *
1265  * 	This function returns MTD device description structure in case of
1266  * 	success and an error code in case of failure.
1267  */
1268 struct mtd_info *get_mtd_device_nm(const char *name)
1269 {
1270 	int err = -ENODEV;
1271 	struct mtd_info *mtd = NULL, *other;
1272 
1273 	mutex_lock(&mtd_table_mutex);
1274 
1275 	mtd_for_each_device(other) {
1276 		if (!strcmp(name, other->name)) {
1277 			mtd = other;
1278 			break;
1279 		}
1280 	}
1281 
1282 	if (!mtd)
1283 		goto out_unlock;
1284 
1285 	err = __get_mtd_device(mtd);
1286 	if (err)
1287 		goto out_unlock;
1288 
1289 	mutex_unlock(&mtd_table_mutex);
1290 	return mtd;
1291 
1292 out_unlock:
1293 	mutex_unlock(&mtd_table_mutex);
1294 	return ERR_PTR(err);
1295 }
1296 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1297 
1298 void put_mtd_device(struct mtd_info *mtd)
1299 {
1300 	mutex_lock(&mtd_table_mutex);
1301 	__put_mtd_device(mtd);
1302 	mutex_unlock(&mtd_table_mutex);
1303 
1304 }
1305 EXPORT_SYMBOL_GPL(put_mtd_device);
1306 
1307 void __put_mtd_device(struct mtd_info *mtd)
1308 {
1309 	struct mtd_info *master = mtd_get_master(mtd);
1310 
1311 	while (mtd->parent) {
1312 		--mtd->usecount;
1313 		BUG_ON(mtd->usecount < 0);
1314 		mtd = mtd->parent;
1315 	}
1316 
1317 	master->usecount--;
1318 
1319 	if (master->_put_device)
1320 		master->_put_device(master);
1321 
1322 	module_put(master->owner);
1323 }
1324 EXPORT_SYMBOL_GPL(__put_mtd_device);
1325 
1326 /*
1327  * Erase is an synchronous operation. Device drivers are epected to return a
1328  * negative error code if the operation failed and update instr->fail_addr
1329  * to point the portion that was not properly erased.
1330  */
1331 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1332 {
1333 	struct mtd_info *master = mtd_get_master(mtd);
1334 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1335 	struct erase_info adjinstr;
1336 	int ret;
1337 
1338 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1339 	adjinstr = *instr;
1340 
1341 	if (!mtd->erasesize || !master->_erase)
1342 		return -ENOTSUPP;
1343 
1344 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1345 		return -EINVAL;
1346 	if (!(mtd->flags & MTD_WRITEABLE))
1347 		return -EROFS;
1348 
1349 	if (!instr->len)
1350 		return 0;
1351 
1352 	ledtrig_mtd_activity();
1353 
1354 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1355 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1356 				master->erasesize;
1357 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1358 				master->erasesize) -
1359 			       adjinstr.addr;
1360 	}
1361 
1362 	adjinstr.addr += mst_ofs;
1363 
1364 	ret = master->_erase(master, &adjinstr);
1365 
1366 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1367 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1368 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1369 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1370 							 master);
1371 			instr->fail_addr *= mtd->erasesize;
1372 		}
1373 	}
1374 
1375 	return ret;
1376 }
1377 EXPORT_SYMBOL_GPL(mtd_erase);
1378 
1379 /*
1380  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1381  */
1382 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1383 	      void **virt, resource_size_t *phys)
1384 {
1385 	struct mtd_info *master = mtd_get_master(mtd);
1386 
1387 	*retlen = 0;
1388 	*virt = NULL;
1389 	if (phys)
1390 		*phys = 0;
1391 	if (!master->_point)
1392 		return -EOPNOTSUPP;
1393 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1394 		return -EINVAL;
1395 	if (!len)
1396 		return 0;
1397 
1398 	from = mtd_get_master_ofs(mtd, from);
1399 	return master->_point(master, from, len, retlen, virt, phys);
1400 }
1401 EXPORT_SYMBOL_GPL(mtd_point);
1402 
1403 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1404 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1405 {
1406 	struct mtd_info *master = mtd_get_master(mtd);
1407 
1408 	if (!master->_unpoint)
1409 		return -EOPNOTSUPP;
1410 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1411 		return -EINVAL;
1412 	if (!len)
1413 		return 0;
1414 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_unpoint);
1417 
1418 /*
1419  * Allow NOMMU mmap() to directly map the device (if not NULL)
1420  * - return the address to which the offset maps
1421  * - return -ENOSYS to indicate refusal to do the mapping
1422  */
1423 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1424 				    unsigned long offset, unsigned long flags)
1425 {
1426 	size_t retlen;
1427 	void *virt;
1428 	int ret;
1429 
1430 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1431 	if (ret)
1432 		return ret;
1433 	if (retlen != len) {
1434 		mtd_unpoint(mtd, offset, retlen);
1435 		return -ENOSYS;
1436 	}
1437 	return (unsigned long)virt;
1438 }
1439 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1440 
1441 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1442 				 const struct mtd_ecc_stats *old_stats)
1443 {
1444 	struct mtd_ecc_stats diff;
1445 
1446 	if (master == mtd)
1447 		return;
1448 
1449 	diff = master->ecc_stats;
1450 	diff.failed -= old_stats->failed;
1451 	diff.corrected -= old_stats->corrected;
1452 
1453 	while (mtd->parent) {
1454 		mtd->ecc_stats.failed += diff.failed;
1455 		mtd->ecc_stats.corrected += diff.corrected;
1456 		mtd = mtd->parent;
1457 	}
1458 }
1459 
1460 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1461 	     u_char *buf)
1462 {
1463 	struct mtd_oob_ops ops = {
1464 		.len = len,
1465 		.datbuf = buf,
1466 	};
1467 	int ret;
1468 
1469 	ret = mtd_read_oob(mtd, from, &ops);
1470 	*retlen = ops.retlen;
1471 
1472 	return ret;
1473 }
1474 EXPORT_SYMBOL_GPL(mtd_read);
1475 
1476 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1477 	      const u_char *buf)
1478 {
1479 	struct mtd_oob_ops ops = {
1480 		.len = len,
1481 		.datbuf = (u8 *)buf,
1482 	};
1483 	int ret;
1484 
1485 	ret = mtd_write_oob(mtd, to, &ops);
1486 	*retlen = ops.retlen;
1487 
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL_GPL(mtd_write);
1491 
1492 /*
1493  * In blackbox flight recorder like scenarios we want to make successful writes
1494  * in interrupt context. panic_write() is only intended to be called when its
1495  * known the kernel is about to panic and we need the write to succeed. Since
1496  * the kernel is not going to be running for much longer, this function can
1497  * break locks and delay to ensure the write succeeds (but not sleep).
1498  */
1499 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1500 		    const u_char *buf)
1501 {
1502 	struct mtd_info *master = mtd_get_master(mtd);
1503 
1504 	*retlen = 0;
1505 	if (!master->_panic_write)
1506 		return -EOPNOTSUPP;
1507 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1508 		return -EINVAL;
1509 	if (!(mtd->flags & MTD_WRITEABLE))
1510 		return -EROFS;
1511 	if (!len)
1512 		return 0;
1513 	if (!master->oops_panic_write)
1514 		master->oops_panic_write = true;
1515 
1516 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1517 				    retlen, buf);
1518 }
1519 EXPORT_SYMBOL_GPL(mtd_panic_write);
1520 
1521 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1522 			     struct mtd_oob_ops *ops)
1523 {
1524 	/*
1525 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1526 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1527 	 *  this case.
1528 	 */
1529 	if (!ops->datbuf)
1530 		ops->len = 0;
1531 
1532 	if (!ops->oobbuf)
1533 		ops->ooblen = 0;
1534 
1535 	if (offs < 0 || offs + ops->len > mtd->size)
1536 		return -EINVAL;
1537 
1538 	if (ops->ooblen) {
1539 		size_t maxooblen;
1540 
1541 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1542 			return -EINVAL;
1543 
1544 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1545 				      mtd_div_by_ws(offs, mtd)) *
1546 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1547 		if (ops->ooblen > maxooblen)
1548 			return -EINVAL;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1555 			    struct mtd_oob_ops *ops)
1556 {
1557 	struct mtd_info *master = mtd_get_master(mtd);
1558 	int ret;
1559 
1560 	from = mtd_get_master_ofs(mtd, from);
1561 	if (master->_read_oob)
1562 		ret = master->_read_oob(master, from, ops);
1563 	else
1564 		ret = master->_read(master, from, ops->len, &ops->retlen,
1565 				    ops->datbuf);
1566 
1567 	return ret;
1568 }
1569 
1570 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1571 			     struct mtd_oob_ops *ops)
1572 {
1573 	struct mtd_info *master = mtd_get_master(mtd);
1574 	int ret;
1575 
1576 	to = mtd_get_master_ofs(mtd, to);
1577 	if (master->_write_oob)
1578 		ret = master->_write_oob(master, to, ops);
1579 	else
1580 		ret = master->_write(master, to, ops->len, &ops->retlen,
1581 				     ops->datbuf);
1582 
1583 	return ret;
1584 }
1585 
1586 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1587 			       struct mtd_oob_ops *ops)
1588 {
1589 	struct mtd_info *master = mtd_get_master(mtd);
1590 	int ngroups = mtd_pairing_groups(master);
1591 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1592 	struct mtd_oob_ops adjops = *ops;
1593 	unsigned int wunit, oobavail;
1594 	struct mtd_pairing_info info;
1595 	int max_bitflips = 0;
1596 	u32 ebofs, pageofs;
1597 	loff_t base, pos;
1598 
1599 	ebofs = mtd_mod_by_eb(start, mtd);
1600 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1601 	info.group = 0;
1602 	info.pair = mtd_div_by_ws(ebofs, mtd);
1603 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1604 	oobavail = mtd_oobavail(mtd, ops);
1605 
1606 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1607 		int ret;
1608 
1609 		if (info.pair >= npairs) {
1610 			info.pair = 0;
1611 			base += master->erasesize;
1612 		}
1613 
1614 		wunit = mtd_pairing_info_to_wunit(master, &info);
1615 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1616 
1617 		adjops.len = ops->len - ops->retlen;
1618 		if (adjops.len > mtd->writesize - pageofs)
1619 			adjops.len = mtd->writesize - pageofs;
1620 
1621 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1622 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1623 			adjops.ooblen = oobavail - adjops.ooboffs;
1624 
1625 		if (read) {
1626 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1627 			if (ret > 0)
1628 				max_bitflips = max(max_bitflips, ret);
1629 		} else {
1630 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1631 		}
1632 
1633 		if (ret < 0)
1634 			return ret;
1635 
1636 		max_bitflips = max(max_bitflips, ret);
1637 		ops->retlen += adjops.retlen;
1638 		ops->oobretlen += adjops.oobretlen;
1639 		adjops.datbuf += adjops.retlen;
1640 		adjops.oobbuf += adjops.oobretlen;
1641 		adjops.ooboffs = 0;
1642 		pageofs = 0;
1643 		info.pair++;
1644 	}
1645 
1646 	return max_bitflips;
1647 }
1648 
1649 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1650 {
1651 	struct mtd_info *master = mtd_get_master(mtd);
1652 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1653 	int ret_code;
1654 
1655 	ops->retlen = ops->oobretlen = 0;
1656 
1657 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1658 	if (ret_code)
1659 		return ret_code;
1660 
1661 	ledtrig_mtd_activity();
1662 
1663 	/* Check the validity of a potential fallback on mtd->_read */
1664 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1665 		return -EOPNOTSUPP;
1666 
1667 	if (ops->stats)
1668 		memset(ops->stats, 0, sizeof(*ops->stats));
1669 
1670 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1671 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1672 	else
1673 		ret_code = mtd_read_oob_std(mtd, from, ops);
1674 
1675 	mtd_update_ecc_stats(mtd, master, &old_stats);
1676 
1677 	/*
1678 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1679 	 * similar to mtd->_read(), returning a non-negative integer
1680 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1681 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1682 	 */
1683 	if (unlikely(ret_code < 0))
1684 		return ret_code;
1685 	if (mtd->ecc_strength == 0)
1686 		return 0;	/* device lacks ecc */
1687 	if (ops->stats)
1688 		ops->stats->max_bitflips = ret_code;
1689 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1690 }
1691 EXPORT_SYMBOL_GPL(mtd_read_oob);
1692 
1693 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1694 				struct mtd_oob_ops *ops)
1695 {
1696 	struct mtd_info *master = mtd_get_master(mtd);
1697 	int ret;
1698 
1699 	ops->retlen = ops->oobretlen = 0;
1700 
1701 	if (!(mtd->flags & MTD_WRITEABLE))
1702 		return -EROFS;
1703 
1704 	ret = mtd_check_oob_ops(mtd, to, ops);
1705 	if (ret)
1706 		return ret;
1707 
1708 	ledtrig_mtd_activity();
1709 
1710 	/* Check the validity of a potential fallback on mtd->_write */
1711 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1712 		return -EOPNOTSUPP;
1713 
1714 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1715 		return mtd_io_emulated_slc(mtd, to, false, ops);
1716 
1717 	return mtd_write_oob_std(mtd, to, ops);
1718 }
1719 EXPORT_SYMBOL_GPL(mtd_write_oob);
1720 
1721 /**
1722  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1723  * @mtd: MTD device structure
1724  * @section: ECC section. Depending on the layout you may have all the ECC
1725  *	     bytes stored in a single contiguous section, or one section
1726  *	     per ECC chunk (and sometime several sections for a single ECC
1727  *	     ECC chunk)
1728  * @oobecc: OOB region struct filled with the appropriate ECC position
1729  *	    information
1730  *
1731  * This function returns ECC section information in the OOB area. If you want
1732  * to get all the ECC bytes information, then you should call
1733  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1734  *
1735  * Returns zero on success, a negative error code otherwise.
1736  */
1737 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1738 		      struct mtd_oob_region *oobecc)
1739 {
1740 	struct mtd_info *master = mtd_get_master(mtd);
1741 
1742 	memset(oobecc, 0, sizeof(*oobecc));
1743 
1744 	if (!master || section < 0)
1745 		return -EINVAL;
1746 
1747 	if (!master->ooblayout || !master->ooblayout->ecc)
1748 		return -ENOTSUPP;
1749 
1750 	return master->ooblayout->ecc(master, section, oobecc);
1751 }
1752 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1753 
1754 /**
1755  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1756  *			section
1757  * @mtd: MTD device structure
1758  * @section: Free section you are interested in. Depending on the layout
1759  *	     you may have all the free bytes stored in a single contiguous
1760  *	     section, or one section per ECC chunk plus an extra section
1761  *	     for the remaining bytes (or other funky layout).
1762  * @oobfree: OOB region struct filled with the appropriate free position
1763  *	     information
1764  *
1765  * This function returns free bytes position in the OOB area. If you want
1766  * to get all the free bytes information, then you should call
1767  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1768  *
1769  * Returns zero on success, a negative error code otherwise.
1770  */
1771 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1772 		       struct mtd_oob_region *oobfree)
1773 {
1774 	struct mtd_info *master = mtd_get_master(mtd);
1775 
1776 	memset(oobfree, 0, sizeof(*oobfree));
1777 
1778 	if (!master || section < 0)
1779 		return -EINVAL;
1780 
1781 	if (!master->ooblayout || !master->ooblayout->free)
1782 		return -ENOTSUPP;
1783 
1784 	return master->ooblayout->free(master, section, oobfree);
1785 }
1786 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1787 
1788 /**
1789  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1790  * @mtd: mtd info structure
1791  * @byte: the byte we are searching for
1792  * @sectionp: pointer where the section id will be stored
1793  * @oobregion: used to retrieve the ECC position
1794  * @iter: iterator function. Should be either mtd_ooblayout_free or
1795  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1796  *
1797  * This function returns the section id and oobregion information of a
1798  * specific byte. For example, say you want to know where the 4th ECC byte is
1799  * stored, you'll use:
1800  *
1801  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1802  *
1803  * Returns zero on success, a negative error code otherwise.
1804  */
1805 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1806 				int *sectionp, struct mtd_oob_region *oobregion,
1807 				int (*iter)(struct mtd_info *,
1808 					    int section,
1809 					    struct mtd_oob_region *oobregion))
1810 {
1811 	int pos = 0, ret, section = 0;
1812 
1813 	memset(oobregion, 0, sizeof(*oobregion));
1814 
1815 	while (1) {
1816 		ret = iter(mtd, section, oobregion);
1817 		if (ret)
1818 			return ret;
1819 
1820 		if (pos + oobregion->length > byte)
1821 			break;
1822 
1823 		pos += oobregion->length;
1824 		section++;
1825 	}
1826 
1827 	/*
1828 	 * Adjust region info to make it start at the beginning at the
1829 	 * 'start' ECC byte.
1830 	 */
1831 	oobregion->offset += byte - pos;
1832 	oobregion->length -= byte - pos;
1833 	*sectionp = section;
1834 
1835 	return 0;
1836 }
1837 
1838 /**
1839  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1840  *				  ECC byte
1841  * @mtd: mtd info structure
1842  * @eccbyte: the byte we are searching for
1843  * @section: pointer where the section id will be stored
1844  * @oobregion: OOB region information
1845  *
1846  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1847  * byte.
1848  *
1849  * Returns zero on success, a negative error code otherwise.
1850  */
1851 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1852 				 int *section,
1853 				 struct mtd_oob_region *oobregion)
1854 {
1855 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1856 					 mtd_ooblayout_ecc);
1857 }
1858 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1859 
1860 /**
1861  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1862  * @mtd: mtd info structure
1863  * @buf: destination buffer to store OOB bytes
1864  * @oobbuf: OOB buffer
1865  * @start: first byte to retrieve
1866  * @nbytes: number of bytes to retrieve
1867  * @iter: section iterator
1868  *
1869  * Extract bytes attached to a specific category (ECC or free)
1870  * from the OOB buffer and copy them into buf.
1871  *
1872  * Returns zero on success, a negative error code otherwise.
1873  */
1874 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1875 				const u8 *oobbuf, int start, int nbytes,
1876 				int (*iter)(struct mtd_info *,
1877 					    int section,
1878 					    struct mtd_oob_region *oobregion))
1879 {
1880 	struct mtd_oob_region oobregion;
1881 	int section, ret;
1882 
1883 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1884 					&oobregion, iter);
1885 
1886 	while (!ret) {
1887 		int cnt;
1888 
1889 		cnt = min_t(int, nbytes, oobregion.length);
1890 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1891 		buf += cnt;
1892 		nbytes -= cnt;
1893 
1894 		if (!nbytes)
1895 			break;
1896 
1897 		ret = iter(mtd, ++section, &oobregion);
1898 	}
1899 
1900 	return ret;
1901 }
1902 
1903 /**
1904  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1905  * @mtd: mtd info structure
1906  * @buf: source buffer to get OOB bytes from
1907  * @oobbuf: OOB buffer
1908  * @start: first OOB byte to set
1909  * @nbytes: number of OOB bytes to set
1910  * @iter: section iterator
1911  *
1912  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1913  * is selected by passing the appropriate iterator.
1914  *
1915  * Returns zero on success, a negative error code otherwise.
1916  */
1917 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1918 				u8 *oobbuf, int start, int nbytes,
1919 				int (*iter)(struct mtd_info *,
1920 					    int section,
1921 					    struct mtd_oob_region *oobregion))
1922 {
1923 	struct mtd_oob_region oobregion;
1924 	int section, ret;
1925 
1926 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1927 					&oobregion, iter);
1928 
1929 	while (!ret) {
1930 		int cnt;
1931 
1932 		cnt = min_t(int, nbytes, oobregion.length);
1933 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1934 		buf += cnt;
1935 		nbytes -= cnt;
1936 
1937 		if (!nbytes)
1938 			break;
1939 
1940 		ret = iter(mtd, ++section, &oobregion);
1941 	}
1942 
1943 	return ret;
1944 }
1945 
1946 /**
1947  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1948  * @mtd: mtd info structure
1949  * @iter: category iterator
1950  *
1951  * Count the number of bytes in a given category.
1952  *
1953  * Returns a positive value on success, a negative error code otherwise.
1954  */
1955 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1956 				int (*iter)(struct mtd_info *,
1957 					    int section,
1958 					    struct mtd_oob_region *oobregion))
1959 {
1960 	struct mtd_oob_region oobregion;
1961 	int section = 0, ret, nbytes = 0;
1962 
1963 	while (1) {
1964 		ret = iter(mtd, section++, &oobregion);
1965 		if (ret) {
1966 			if (ret == -ERANGE)
1967 				ret = nbytes;
1968 			break;
1969 		}
1970 
1971 		nbytes += oobregion.length;
1972 	}
1973 
1974 	return ret;
1975 }
1976 
1977 /**
1978  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1979  * @mtd: mtd info structure
1980  * @eccbuf: destination buffer to store ECC bytes
1981  * @oobbuf: OOB buffer
1982  * @start: first ECC byte to retrieve
1983  * @nbytes: number of ECC bytes to retrieve
1984  *
1985  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1986  *
1987  * Returns zero on success, a negative error code otherwise.
1988  */
1989 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1990 			       const u8 *oobbuf, int start, int nbytes)
1991 {
1992 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1993 				       mtd_ooblayout_ecc);
1994 }
1995 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1996 
1997 /**
1998  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1999  * @mtd: mtd info structure
2000  * @eccbuf: source buffer to get ECC bytes from
2001  * @oobbuf: OOB buffer
2002  * @start: first ECC byte to set
2003  * @nbytes: number of ECC bytes to set
2004  *
2005  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2006  *
2007  * Returns zero on success, a negative error code otherwise.
2008  */
2009 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2010 			       u8 *oobbuf, int start, int nbytes)
2011 {
2012 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2013 				       mtd_ooblayout_ecc);
2014 }
2015 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2016 
2017 /**
2018  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2019  * @mtd: mtd info structure
2020  * @databuf: destination buffer to store ECC bytes
2021  * @oobbuf: OOB buffer
2022  * @start: first ECC byte to retrieve
2023  * @nbytes: number of ECC bytes to retrieve
2024  *
2025  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2026  *
2027  * Returns zero on success, a negative error code otherwise.
2028  */
2029 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2030 				const u8 *oobbuf, int start, int nbytes)
2031 {
2032 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2033 				       mtd_ooblayout_free);
2034 }
2035 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2036 
2037 /**
2038  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2039  * @mtd: mtd info structure
2040  * @databuf: source buffer to get data bytes from
2041  * @oobbuf: OOB buffer
2042  * @start: first ECC byte to set
2043  * @nbytes: number of ECC bytes to set
2044  *
2045  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2046  *
2047  * Returns zero on success, a negative error code otherwise.
2048  */
2049 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2050 				u8 *oobbuf, int start, int nbytes)
2051 {
2052 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2053 				       mtd_ooblayout_free);
2054 }
2055 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2056 
2057 /**
2058  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2059  * @mtd: mtd info structure
2060  *
2061  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2062  *
2063  * Returns zero on success, a negative error code otherwise.
2064  */
2065 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2066 {
2067 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2068 }
2069 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2070 
2071 /**
2072  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2073  * @mtd: mtd info structure
2074  *
2075  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2076  *
2077  * Returns zero on success, a negative error code otherwise.
2078  */
2079 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2080 {
2081 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2082 }
2083 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2084 
2085 /*
2086  * Method to access the protection register area, present in some flash
2087  * devices. The user data is one time programmable but the factory data is read
2088  * only.
2089  */
2090 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2091 			   struct otp_info *buf)
2092 {
2093 	struct mtd_info *master = mtd_get_master(mtd);
2094 
2095 	if (!master->_get_fact_prot_info)
2096 		return -EOPNOTSUPP;
2097 	if (!len)
2098 		return 0;
2099 	return master->_get_fact_prot_info(master, len, retlen, buf);
2100 }
2101 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2102 
2103 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2104 			   size_t *retlen, u_char *buf)
2105 {
2106 	struct mtd_info *master = mtd_get_master(mtd);
2107 
2108 	*retlen = 0;
2109 	if (!master->_read_fact_prot_reg)
2110 		return -EOPNOTSUPP;
2111 	if (!len)
2112 		return 0;
2113 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2114 }
2115 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2116 
2117 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2118 			   struct otp_info *buf)
2119 {
2120 	struct mtd_info *master = mtd_get_master(mtd);
2121 
2122 	if (!master->_get_user_prot_info)
2123 		return -EOPNOTSUPP;
2124 	if (!len)
2125 		return 0;
2126 	return master->_get_user_prot_info(master, len, retlen, buf);
2127 }
2128 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2129 
2130 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2131 			   size_t *retlen, u_char *buf)
2132 {
2133 	struct mtd_info *master = mtd_get_master(mtd);
2134 
2135 	*retlen = 0;
2136 	if (!master->_read_user_prot_reg)
2137 		return -EOPNOTSUPP;
2138 	if (!len)
2139 		return 0;
2140 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2141 }
2142 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2143 
2144 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2145 			    size_t *retlen, const u_char *buf)
2146 {
2147 	struct mtd_info *master = mtd_get_master(mtd);
2148 	int ret;
2149 
2150 	*retlen = 0;
2151 	if (!master->_write_user_prot_reg)
2152 		return -EOPNOTSUPP;
2153 	if (!len)
2154 		return 0;
2155 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2156 	if (ret)
2157 		return ret;
2158 
2159 	/*
2160 	 * If no data could be written at all, we are out of memory and
2161 	 * must return -ENOSPC.
2162 	 */
2163 	return (*retlen) ? 0 : -ENOSPC;
2164 }
2165 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2166 
2167 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2168 {
2169 	struct mtd_info *master = mtd_get_master(mtd);
2170 
2171 	if (!master->_lock_user_prot_reg)
2172 		return -EOPNOTSUPP;
2173 	if (!len)
2174 		return 0;
2175 	return master->_lock_user_prot_reg(master, from, len);
2176 }
2177 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2178 
2179 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2180 {
2181 	struct mtd_info *master = mtd_get_master(mtd);
2182 
2183 	if (!master->_erase_user_prot_reg)
2184 		return -EOPNOTSUPP;
2185 	if (!len)
2186 		return 0;
2187 	return master->_erase_user_prot_reg(master, from, len);
2188 }
2189 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2190 
2191 /* Chip-supported device locking */
2192 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2193 {
2194 	struct mtd_info *master = mtd_get_master(mtd);
2195 
2196 	if (!master->_lock)
2197 		return -EOPNOTSUPP;
2198 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2199 		return -EINVAL;
2200 	if (!len)
2201 		return 0;
2202 
2203 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2204 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2205 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2206 	}
2207 
2208 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2209 }
2210 EXPORT_SYMBOL_GPL(mtd_lock);
2211 
2212 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2213 {
2214 	struct mtd_info *master = mtd_get_master(mtd);
2215 
2216 	if (!master->_unlock)
2217 		return -EOPNOTSUPP;
2218 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2219 		return -EINVAL;
2220 	if (!len)
2221 		return 0;
2222 
2223 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2224 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2225 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2226 	}
2227 
2228 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2229 }
2230 EXPORT_SYMBOL_GPL(mtd_unlock);
2231 
2232 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2233 {
2234 	struct mtd_info *master = mtd_get_master(mtd);
2235 
2236 	if (!master->_is_locked)
2237 		return -EOPNOTSUPP;
2238 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2239 		return -EINVAL;
2240 	if (!len)
2241 		return 0;
2242 
2243 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2244 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2245 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2246 	}
2247 
2248 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2249 }
2250 EXPORT_SYMBOL_GPL(mtd_is_locked);
2251 
2252 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2253 {
2254 	struct mtd_info *master = mtd_get_master(mtd);
2255 
2256 	if (ofs < 0 || ofs >= mtd->size)
2257 		return -EINVAL;
2258 	if (!master->_block_isreserved)
2259 		return 0;
2260 
2261 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2262 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2263 
2264 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2265 }
2266 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2267 
2268 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2269 {
2270 	struct mtd_info *master = mtd_get_master(mtd);
2271 
2272 	if (ofs < 0 || ofs >= mtd->size)
2273 		return -EINVAL;
2274 	if (!master->_block_isbad)
2275 		return 0;
2276 
2277 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2278 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2279 
2280 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2281 }
2282 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2283 
2284 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2285 {
2286 	struct mtd_info *master = mtd_get_master(mtd);
2287 	int ret;
2288 
2289 	if (!master->_block_markbad)
2290 		return -EOPNOTSUPP;
2291 	if (ofs < 0 || ofs >= mtd->size)
2292 		return -EINVAL;
2293 	if (!(mtd->flags & MTD_WRITEABLE))
2294 		return -EROFS;
2295 
2296 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2297 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2298 
2299 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2300 	if (ret)
2301 		return ret;
2302 
2303 	while (mtd->parent) {
2304 		mtd->ecc_stats.badblocks++;
2305 		mtd = mtd->parent;
2306 	}
2307 
2308 	return 0;
2309 }
2310 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2311 
2312 /*
2313  * default_mtd_writev - the default writev method
2314  * @mtd: mtd device description object pointer
2315  * @vecs: the vectors to write
2316  * @count: count of vectors in @vecs
2317  * @to: the MTD device offset to write to
2318  * @retlen: on exit contains the count of bytes written to the MTD device.
2319  *
2320  * This function returns zero in case of success and a negative error code in
2321  * case of failure.
2322  */
2323 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2324 			      unsigned long count, loff_t to, size_t *retlen)
2325 {
2326 	unsigned long i;
2327 	size_t totlen = 0, thislen;
2328 	int ret = 0;
2329 
2330 	for (i = 0; i < count; i++) {
2331 		if (!vecs[i].iov_len)
2332 			continue;
2333 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2334 				vecs[i].iov_base);
2335 		totlen += thislen;
2336 		if (ret || thislen != vecs[i].iov_len)
2337 			break;
2338 		to += vecs[i].iov_len;
2339 	}
2340 	*retlen = totlen;
2341 	return ret;
2342 }
2343 
2344 /*
2345  * mtd_writev - the vector-based MTD write method
2346  * @mtd: mtd device description object pointer
2347  * @vecs: the vectors to write
2348  * @count: count of vectors in @vecs
2349  * @to: the MTD device offset to write to
2350  * @retlen: on exit contains the count of bytes written to the MTD device.
2351  *
2352  * This function returns zero in case of success and a negative error code in
2353  * case of failure.
2354  */
2355 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2356 	       unsigned long count, loff_t to, size_t *retlen)
2357 {
2358 	struct mtd_info *master = mtd_get_master(mtd);
2359 
2360 	*retlen = 0;
2361 	if (!(mtd->flags & MTD_WRITEABLE))
2362 		return -EROFS;
2363 
2364 	if (!master->_writev)
2365 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2366 
2367 	return master->_writev(master, vecs, count,
2368 			       mtd_get_master_ofs(mtd, to), retlen);
2369 }
2370 EXPORT_SYMBOL_GPL(mtd_writev);
2371 
2372 /**
2373  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2374  * @mtd: mtd device description object pointer
2375  * @size: a pointer to the ideal or maximum size of the allocation, points
2376  *        to the actual allocation size on success.
2377  *
2378  * This routine attempts to allocate a contiguous kernel buffer up to
2379  * the specified size, backing off the size of the request exponentially
2380  * until the request succeeds or until the allocation size falls below
2381  * the system page size. This attempts to make sure it does not adversely
2382  * impact system performance, so when allocating more than one page, we
2383  * ask the memory allocator to avoid re-trying, swapping, writing back
2384  * or performing I/O.
2385  *
2386  * Note, this function also makes sure that the allocated buffer is aligned to
2387  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2388  *
2389  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2390  * to handle smaller (i.e. degraded) buffer allocations under low- or
2391  * fragmented-memory situations where such reduced allocations, from a
2392  * requested ideal, are allowed.
2393  *
2394  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2395  */
2396 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2397 {
2398 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2399 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2400 	void *kbuf;
2401 
2402 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2403 
2404 	while (*size > min_alloc) {
2405 		kbuf = kmalloc(*size, flags);
2406 		if (kbuf)
2407 			return kbuf;
2408 
2409 		*size >>= 1;
2410 		*size = ALIGN(*size, mtd->writesize);
2411 	}
2412 
2413 	/*
2414 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2415 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2416 	 */
2417 	return kmalloc(*size, GFP_KERNEL);
2418 }
2419 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2420 
2421 #ifdef CONFIG_PROC_FS
2422 
2423 /*====================================================================*/
2424 /* Support for /proc/mtd */
2425 
2426 static int mtd_proc_show(struct seq_file *m, void *v)
2427 {
2428 	struct mtd_info *mtd;
2429 
2430 	seq_puts(m, "dev:    size   erasesize  name\n");
2431 	mutex_lock(&mtd_table_mutex);
2432 	mtd_for_each_device(mtd) {
2433 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2434 			   mtd->index, (unsigned long long)mtd->size,
2435 			   mtd->erasesize, mtd->name);
2436 	}
2437 	mutex_unlock(&mtd_table_mutex);
2438 	return 0;
2439 }
2440 #endif /* CONFIG_PROC_FS */
2441 
2442 /*====================================================================*/
2443 /* Init code */
2444 
2445 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2446 {
2447 	struct backing_dev_info *bdi;
2448 	int ret;
2449 
2450 	bdi = bdi_alloc(NUMA_NO_NODE);
2451 	if (!bdi)
2452 		return ERR_PTR(-ENOMEM);
2453 	bdi->ra_pages = 0;
2454 	bdi->io_pages = 0;
2455 
2456 	/*
2457 	 * We put '-0' suffix to the name to get the same name format as we
2458 	 * used to get. Since this is called only once, we get a unique name.
2459 	 */
2460 	ret = bdi_register(bdi, "%.28s-0", name);
2461 	if (ret)
2462 		bdi_put(bdi);
2463 
2464 	return ret ? ERR_PTR(ret) : bdi;
2465 }
2466 
2467 static struct proc_dir_entry *proc_mtd;
2468 
2469 static int __init init_mtd(void)
2470 {
2471 	int ret;
2472 
2473 	ret = class_register(&mtd_class);
2474 	if (ret)
2475 		goto err_reg;
2476 
2477 	mtd_bdi = mtd_bdi_init("mtd");
2478 	if (IS_ERR(mtd_bdi)) {
2479 		ret = PTR_ERR(mtd_bdi);
2480 		goto err_bdi;
2481 	}
2482 
2483 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2484 
2485 	ret = init_mtdchar();
2486 	if (ret)
2487 		goto out_procfs;
2488 
2489 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2490 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2491 			    &mtd_expert_analysis_mode);
2492 
2493 	return 0;
2494 
2495 out_procfs:
2496 	if (proc_mtd)
2497 		remove_proc_entry("mtd", NULL);
2498 	bdi_unregister(mtd_bdi);
2499 	bdi_put(mtd_bdi);
2500 err_bdi:
2501 	class_unregister(&mtd_class);
2502 err_reg:
2503 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2504 	return ret;
2505 }
2506 
2507 static void __exit cleanup_mtd(void)
2508 {
2509 	debugfs_remove_recursive(dfs_dir_mtd);
2510 	cleanup_mtdchar();
2511 	if (proc_mtd)
2512 		remove_proc_entry("mtd", NULL);
2513 	class_unregister(&mtd_class);
2514 	bdi_unregister(mtd_bdi);
2515 	bdi_put(mtd_bdi);
2516 	idr_destroy(&mtd_idr);
2517 }
2518 
2519 module_init(init_mtd);
2520 module_exit(cleanup_mtd);
2521 
2522 MODULE_LICENSE("GPL");
2523 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2524 MODULE_DESCRIPTION("Core MTD registration and access routines");
2525