1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 #include <linux/leds.h> 30 #include <linux/debugfs.h> 31 #include <linux/nvmem-provider.h> 32 #include <linux/root_dev.h> 33 #include <linux/error-injection.h> 34 35 #include <linux/mtd/mtd.h> 36 #include <linux/mtd/partitions.h> 37 38 #include "mtdcore.h" 39 40 struct backing_dev_info *mtd_bdi; 41 42 #ifdef CONFIG_PM_SLEEP 43 44 static int mtd_cls_suspend(struct device *dev) 45 { 46 struct mtd_info *mtd = dev_get_drvdata(dev); 47 48 return mtd ? mtd_suspend(mtd) : 0; 49 } 50 51 static int mtd_cls_resume(struct device *dev) 52 { 53 struct mtd_info *mtd = dev_get_drvdata(dev); 54 55 if (mtd) 56 mtd_resume(mtd); 57 return 0; 58 } 59 60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 62 #else 63 #define MTD_CLS_PM_OPS NULL 64 #endif 65 66 static struct class mtd_class = { 67 .name = "mtd", 68 .pm = MTD_CLS_PM_OPS, 69 }; 70 71 static DEFINE_IDR(mtd_idr); 72 73 /* These are exported solely for the purpose of mtd_blkdevs.c. You 74 should not use them for _anything_ else */ 75 DEFINE_MUTEX(mtd_table_mutex); 76 EXPORT_SYMBOL_GPL(mtd_table_mutex); 77 78 struct mtd_info *__mtd_next_device(int i) 79 { 80 return idr_get_next(&mtd_idr, &i); 81 } 82 EXPORT_SYMBOL_GPL(__mtd_next_device); 83 84 static LIST_HEAD(mtd_notifiers); 85 86 87 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 88 89 /* REVISIT once MTD uses the driver model better, whoever allocates 90 * the mtd_info will probably want to use the release() hook... 91 */ 92 static void mtd_release(struct device *dev) 93 { 94 struct mtd_info *mtd = dev_get_drvdata(dev); 95 dev_t index = MTD_DEVT(mtd->index); 96 97 idr_remove(&mtd_idr, mtd->index); 98 of_node_put(mtd_get_of_node(mtd)); 99 100 if (mtd_is_partition(mtd)) 101 release_mtd_partition(mtd); 102 103 /* remove /dev/mtdXro node */ 104 device_destroy(&mtd_class, index + 1); 105 } 106 107 static void mtd_device_release(struct kref *kref) 108 { 109 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt); 110 bool is_partition = mtd_is_partition(mtd); 111 112 debugfs_remove_recursive(mtd->dbg.dfs_dir); 113 114 /* Try to remove the NVMEM provider */ 115 nvmem_unregister(mtd->nvmem); 116 117 device_unregister(&mtd->dev); 118 119 /* 120 * Clear dev so mtd can be safely re-registered later if desired. 121 * Should not be done for partition, 122 * as it was already destroyed in device_unregister(). 123 */ 124 if (!is_partition) 125 memset(&mtd->dev, 0, sizeof(mtd->dev)); 126 127 module_put(THIS_MODULE); 128 } 129 130 #define MTD_DEVICE_ATTR_RO(name) \ 131 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 132 133 #define MTD_DEVICE_ATTR_RW(name) \ 134 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 135 136 static ssize_t mtd_type_show(struct device *dev, 137 struct device_attribute *attr, char *buf) 138 { 139 struct mtd_info *mtd = dev_get_drvdata(dev); 140 char *type; 141 142 switch (mtd->type) { 143 case MTD_ABSENT: 144 type = "absent"; 145 break; 146 case MTD_RAM: 147 type = "ram"; 148 break; 149 case MTD_ROM: 150 type = "rom"; 151 break; 152 case MTD_NORFLASH: 153 type = "nor"; 154 break; 155 case MTD_NANDFLASH: 156 type = "nand"; 157 break; 158 case MTD_DATAFLASH: 159 type = "dataflash"; 160 break; 161 case MTD_UBIVOLUME: 162 type = "ubi"; 163 break; 164 case MTD_MLCNANDFLASH: 165 type = "mlc-nand"; 166 break; 167 default: 168 type = "unknown"; 169 } 170 171 return sysfs_emit(buf, "%s\n", type); 172 } 173 MTD_DEVICE_ATTR_RO(type); 174 175 static ssize_t mtd_flags_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 180 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 181 } 182 MTD_DEVICE_ATTR_RO(flags); 183 184 static ssize_t mtd_size_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct mtd_info *mtd = dev_get_drvdata(dev); 188 189 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 190 } 191 MTD_DEVICE_ATTR_RO(size); 192 193 static ssize_t mtd_erasesize_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 198 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 199 } 200 MTD_DEVICE_ATTR_RO(erasesize); 201 202 static ssize_t mtd_writesize_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct mtd_info *mtd = dev_get_drvdata(dev); 206 207 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 208 } 209 MTD_DEVICE_ATTR_RO(writesize); 210 211 static ssize_t mtd_subpagesize_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 struct mtd_info *mtd = dev_get_drvdata(dev); 215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 216 217 return sysfs_emit(buf, "%u\n", subpagesize); 218 } 219 MTD_DEVICE_ATTR_RO(subpagesize); 220 221 static ssize_t mtd_oobsize_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 struct mtd_info *mtd = dev_get_drvdata(dev); 225 226 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 227 } 228 MTD_DEVICE_ATTR_RO(oobsize); 229 230 static ssize_t mtd_oobavail_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct mtd_info *mtd = dev_get_drvdata(dev); 234 235 return sysfs_emit(buf, "%u\n", mtd->oobavail); 236 } 237 MTD_DEVICE_ATTR_RO(oobavail); 238 239 static ssize_t mtd_numeraseregions_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct mtd_info *mtd = dev_get_drvdata(dev); 243 244 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 245 } 246 MTD_DEVICE_ATTR_RO(numeraseregions); 247 248 static ssize_t mtd_name_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 struct mtd_info *mtd = dev_get_drvdata(dev); 252 253 return sysfs_emit(buf, "%s\n", mtd->name); 254 } 255 MTD_DEVICE_ATTR_RO(name); 256 257 static ssize_t mtd_ecc_strength_show(struct device *dev, 258 struct device_attribute *attr, char *buf) 259 { 260 struct mtd_info *mtd = dev_get_drvdata(dev); 261 262 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 263 } 264 MTD_DEVICE_ATTR_RO(ecc_strength); 265 266 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 267 struct device_attribute *attr, 268 char *buf) 269 { 270 struct mtd_info *mtd = dev_get_drvdata(dev); 271 272 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 273 } 274 275 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 276 struct device_attribute *attr, 277 const char *buf, size_t count) 278 { 279 struct mtd_info *mtd = dev_get_drvdata(dev); 280 unsigned int bitflip_threshold; 281 int retval; 282 283 retval = kstrtouint(buf, 0, &bitflip_threshold); 284 if (retval) 285 return retval; 286 287 mtd->bitflip_threshold = bitflip_threshold; 288 return count; 289 } 290 MTD_DEVICE_ATTR_RW(bitflip_threshold); 291 292 static ssize_t mtd_ecc_step_size_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 297 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 298 299 } 300 MTD_DEVICE_ATTR_RO(ecc_step_size); 301 302 static ssize_t mtd_corrected_bits_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 309 } 310 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 311 312 static ssize_t mtd_ecc_failures_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 319 } 320 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 321 322 static ssize_t mtd_bad_blocks_show(struct device *dev, 323 struct device_attribute *attr, char *buf) 324 { 325 struct mtd_info *mtd = dev_get_drvdata(dev); 326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 327 328 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 329 } 330 MTD_DEVICE_ATTR_RO(bad_blocks); 331 332 static ssize_t mtd_bbt_blocks_show(struct device *dev, 333 struct device_attribute *attr, char *buf) 334 { 335 struct mtd_info *mtd = dev_get_drvdata(dev); 336 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 337 338 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 339 } 340 MTD_DEVICE_ATTR_RO(bbt_blocks); 341 342 static struct attribute *mtd_attrs[] = { 343 &dev_attr_type.attr, 344 &dev_attr_flags.attr, 345 &dev_attr_size.attr, 346 &dev_attr_erasesize.attr, 347 &dev_attr_writesize.attr, 348 &dev_attr_subpagesize.attr, 349 &dev_attr_oobsize.attr, 350 &dev_attr_oobavail.attr, 351 &dev_attr_numeraseregions.attr, 352 &dev_attr_name.attr, 353 &dev_attr_ecc_strength.attr, 354 &dev_attr_ecc_step_size.attr, 355 &dev_attr_corrected_bits.attr, 356 &dev_attr_ecc_failures.attr, 357 &dev_attr_bad_blocks.attr, 358 &dev_attr_bbt_blocks.attr, 359 &dev_attr_bitflip_threshold.attr, 360 NULL, 361 }; 362 ATTRIBUTE_GROUPS(mtd); 363 364 static const struct device_type mtd_devtype = { 365 .name = "mtd", 366 .groups = mtd_groups, 367 .release = mtd_release, 368 }; 369 370 static bool mtd_expert_analysis_mode; 371 372 #ifdef CONFIG_DEBUG_FS 373 bool mtd_check_expert_analysis_mode(void) 374 { 375 const char *mtd_expert_analysis_warning = 376 "Bad block checks have been entirely disabled.\n" 377 "This is only reserved for post-mortem forensics and debug purposes.\n" 378 "Never enable this mode if you do not know what you are doing!\n"; 379 380 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 381 } 382 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 383 #endif 384 385 static struct dentry *dfs_dir_mtd; 386 387 static void mtd_debugfs_populate(struct mtd_info *mtd) 388 { 389 struct device *dev = &mtd->dev; 390 391 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 392 return; 393 394 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 395 } 396 397 #ifndef CONFIG_MMU 398 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 399 { 400 switch (mtd->type) { 401 case MTD_RAM: 402 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 403 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 404 case MTD_ROM: 405 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 406 NOMMU_MAP_READ; 407 default: 408 return NOMMU_MAP_COPY; 409 } 410 } 411 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 412 #endif 413 414 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 415 void *cmd) 416 { 417 struct mtd_info *mtd; 418 419 mtd = container_of(n, struct mtd_info, reboot_notifier); 420 mtd->_reboot(mtd); 421 422 return NOTIFY_DONE; 423 } 424 425 /** 426 * mtd_wunit_to_pairing_info - get pairing information of a wunit 427 * @mtd: pointer to new MTD device info structure 428 * @wunit: write unit we are interested in 429 * @info: returned pairing information 430 * 431 * Retrieve pairing information associated to the wunit. 432 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 433 * paired together, and where programming a page may influence the page it is 434 * paired with. 435 * The notion of page is replaced by the term wunit (write-unit) to stay 436 * consistent with the ->writesize field. 437 * 438 * The @wunit argument can be extracted from an absolute offset using 439 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 440 * to @wunit. 441 * 442 * From the pairing info the MTD user can find all the wunits paired with 443 * @wunit using the following loop: 444 * 445 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 446 * info.pair = i; 447 * mtd_pairing_info_to_wunit(mtd, &info); 448 * ... 449 * } 450 */ 451 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 452 struct mtd_pairing_info *info) 453 { 454 struct mtd_info *master = mtd_get_master(mtd); 455 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 456 457 if (wunit < 0 || wunit >= npairs) 458 return -EINVAL; 459 460 if (master->pairing && master->pairing->get_info) 461 return master->pairing->get_info(master, wunit, info); 462 463 info->group = 0; 464 info->pair = wunit; 465 466 return 0; 467 } 468 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 469 470 /** 471 * mtd_pairing_info_to_wunit - get wunit from pairing information 472 * @mtd: pointer to new MTD device info structure 473 * @info: pairing information struct 474 * 475 * Returns a positive number representing the wunit associated to the info 476 * struct, or a negative error code. 477 * 478 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 479 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 480 * doc). 481 * 482 * It can also be used to only program the first page of each pair (i.e. 483 * page attached to group 0), which allows one to use an MLC NAND in 484 * software-emulated SLC mode: 485 * 486 * info.group = 0; 487 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 488 * for (info.pair = 0; info.pair < npairs; info.pair++) { 489 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 490 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 491 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 492 * } 493 */ 494 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 495 const struct mtd_pairing_info *info) 496 { 497 struct mtd_info *master = mtd_get_master(mtd); 498 int ngroups = mtd_pairing_groups(master); 499 int npairs = mtd_wunit_per_eb(master) / ngroups; 500 501 if (!info || info->pair < 0 || info->pair >= npairs || 502 info->group < 0 || info->group >= ngroups) 503 return -EINVAL; 504 505 if (master->pairing && master->pairing->get_wunit) 506 return mtd->pairing->get_wunit(master, info); 507 508 return info->pair; 509 } 510 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 511 512 /** 513 * mtd_pairing_groups - get the number of pairing groups 514 * @mtd: pointer to new MTD device info structure 515 * 516 * Returns the number of pairing groups. 517 * 518 * This number is usually equal to the number of bits exposed by a single 519 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 520 * to iterate over all pages of a given pair. 521 */ 522 int mtd_pairing_groups(struct mtd_info *mtd) 523 { 524 struct mtd_info *master = mtd_get_master(mtd); 525 526 if (!master->pairing || !master->pairing->ngroups) 527 return 1; 528 529 return master->pairing->ngroups; 530 } 531 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 532 533 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 534 void *val, size_t bytes) 535 { 536 struct mtd_info *mtd = priv; 537 size_t retlen; 538 int err; 539 540 err = mtd_read(mtd, offset, bytes, &retlen, val); 541 if (err && err != -EUCLEAN) 542 return err; 543 544 return retlen == bytes ? 0 : -EIO; 545 } 546 547 static int mtd_nvmem_add(struct mtd_info *mtd) 548 { 549 struct device_node *node = mtd_get_of_node(mtd); 550 struct nvmem_config config = {}; 551 552 config.id = NVMEM_DEVID_NONE; 553 config.dev = &mtd->dev; 554 config.name = dev_name(&mtd->dev); 555 config.owner = THIS_MODULE; 556 config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells"); 557 config.reg_read = mtd_nvmem_reg_read; 558 config.size = mtd->size; 559 config.word_size = 1; 560 config.stride = 1; 561 config.read_only = true; 562 config.root_only = true; 563 config.ignore_wp = true; 564 config.priv = mtd; 565 566 mtd->nvmem = nvmem_register(&config); 567 if (IS_ERR(mtd->nvmem)) { 568 /* Just ignore if there is no NVMEM support in the kernel */ 569 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 570 mtd->nvmem = NULL; 571 else 572 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 573 "Failed to register NVMEM device\n"); 574 } 575 576 return 0; 577 } 578 579 static void mtd_check_of_node(struct mtd_info *mtd) 580 { 581 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 582 const char *pname, *prefix = "partition-"; 583 int plen, mtd_name_len, offset, prefix_len; 584 585 /* Check if MTD already has a device node */ 586 if (mtd_get_of_node(mtd)) 587 return; 588 589 if (!mtd_is_partition(mtd)) 590 return; 591 592 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 593 if (!parent_dn) 594 return; 595 596 if (mtd_is_partition(mtd->parent)) 597 partitions = of_node_get(parent_dn); 598 else 599 partitions = of_get_child_by_name(parent_dn, "partitions"); 600 if (!partitions) 601 goto exit_parent; 602 603 prefix_len = strlen(prefix); 604 mtd_name_len = strlen(mtd->name); 605 606 /* Search if a partition is defined with the same name */ 607 for_each_child_of_node(partitions, mtd_dn) { 608 /* Skip partition with no/wrong prefix */ 609 if (!of_node_name_prefix(mtd_dn, prefix)) 610 continue; 611 612 /* Label have priority. Check that first */ 613 if (!of_property_read_string(mtd_dn, "label", &pname)) { 614 offset = 0; 615 } else { 616 pname = mtd_dn->name; 617 offset = prefix_len; 618 } 619 620 plen = strlen(pname) - offset; 621 if (plen == mtd_name_len && 622 !strncmp(mtd->name, pname + offset, plen)) { 623 mtd_set_of_node(mtd, mtd_dn); 624 of_node_put(mtd_dn); 625 break; 626 } 627 } 628 629 of_node_put(partitions); 630 exit_parent: 631 of_node_put(parent_dn); 632 } 633 634 /** 635 * add_mtd_device - register an MTD device 636 * @mtd: pointer to new MTD device info structure 637 * 638 * Add a device to the list of MTD devices present in the system, and 639 * notify each currently active MTD 'user' of its arrival. Returns 640 * zero on success or non-zero on failure. 641 */ 642 643 int add_mtd_device(struct mtd_info *mtd) 644 { 645 struct device_node *np = mtd_get_of_node(mtd); 646 struct mtd_info *master = mtd_get_master(mtd); 647 struct mtd_notifier *not; 648 int i, error, ofidx; 649 650 /* 651 * May occur, for instance, on buggy drivers which call 652 * mtd_device_parse_register() multiple times on the same master MTD, 653 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 654 */ 655 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 656 return -EEXIST; 657 658 BUG_ON(mtd->writesize == 0); 659 660 /* 661 * MTD drivers should implement ->_{write,read}() or 662 * ->_{write,read}_oob(), but not both. 663 */ 664 if (WARN_ON((mtd->_write && mtd->_write_oob) || 665 (mtd->_read && mtd->_read_oob))) 666 return -EINVAL; 667 668 if (WARN_ON((!mtd->erasesize || !master->_erase) && 669 !(mtd->flags & MTD_NO_ERASE))) 670 return -EINVAL; 671 672 /* 673 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 674 * master is an MLC NAND and has a proper pairing scheme defined. 675 * We also reject masters that implement ->_writev() for now, because 676 * NAND controller drivers don't implement this hook, and adding the 677 * SLC -> MLC address/length conversion to this path is useless if we 678 * don't have a user. 679 */ 680 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 681 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 682 !master->pairing || master->_writev)) 683 return -EINVAL; 684 685 mutex_lock(&mtd_table_mutex); 686 687 ofidx = -1; 688 if (np) 689 ofidx = of_alias_get_id(np, "mtd"); 690 if (ofidx >= 0) 691 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 692 else 693 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 694 if (i < 0) { 695 error = i; 696 goto fail_locked; 697 } 698 699 mtd->index = i; 700 kref_init(&mtd->refcnt); 701 702 /* default value if not set by driver */ 703 if (mtd->bitflip_threshold == 0) 704 mtd->bitflip_threshold = mtd->ecc_strength; 705 706 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 707 int ngroups = mtd_pairing_groups(master); 708 709 mtd->erasesize /= ngroups; 710 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 711 mtd->erasesize; 712 } 713 714 if (is_power_of_2(mtd->erasesize)) 715 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 716 else 717 mtd->erasesize_shift = 0; 718 719 if (is_power_of_2(mtd->writesize)) 720 mtd->writesize_shift = ffs(mtd->writesize) - 1; 721 else 722 mtd->writesize_shift = 0; 723 724 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 725 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 726 727 /* Some chips always power up locked. Unlock them now */ 728 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 729 error = mtd_unlock(mtd, 0, mtd->size); 730 if (error && error != -EOPNOTSUPP) 731 printk(KERN_WARNING 732 "%s: unlock failed, writes may not work\n", 733 mtd->name); 734 /* Ignore unlock failures? */ 735 error = 0; 736 } 737 738 /* Caller should have set dev.parent to match the 739 * physical device, if appropriate. 740 */ 741 mtd->dev.type = &mtd_devtype; 742 mtd->dev.class = &mtd_class; 743 mtd->dev.devt = MTD_DEVT(i); 744 error = dev_set_name(&mtd->dev, "mtd%d", i); 745 if (error) 746 goto fail_devname; 747 dev_set_drvdata(&mtd->dev, mtd); 748 mtd_check_of_node(mtd); 749 of_node_get(mtd_get_of_node(mtd)); 750 error = device_register(&mtd->dev); 751 if (error) { 752 put_device(&mtd->dev); 753 goto fail_added; 754 } 755 756 /* Add the nvmem provider */ 757 error = mtd_nvmem_add(mtd); 758 if (error) 759 goto fail_nvmem_add; 760 761 mtd_debugfs_populate(mtd); 762 763 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 764 "mtd%dro", i); 765 766 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 767 /* No need to get a refcount on the module containing 768 the notifier, since we hold the mtd_table_mutex */ 769 list_for_each_entry(not, &mtd_notifiers, list) 770 not->add(mtd); 771 772 mutex_unlock(&mtd_table_mutex); 773 774 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 775 if (IS_BUILTIN(CONFIG_MTD)) { 776 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 777 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 778 } else { 779 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 780 mtd->index, mtd->name); 781 } 782 } 783 784 /* We _know_ we aren't being removed, because 785 our caller is still holding us here. So none 786 of this try_ nonsense, and no bitching about it 787 either. :) */ 788 __module_get(THIS_MODULE); 789 return 0; 790 791 fail_nvmem_add: 792 device_unregister(&mtd->dev); 793 fail_added: 794 of_node_put(mtd_get_of_node(mtd)); 795 fail_devname: 796 idr_remove(&mtd_idr, i); 797 fail_locked: 798 mutex_unlock(&mtd_table_mutex); 799 return error; 800 } 801 802 /** 803 * del_mtd_device - unregister an MTD device 804 * @mtd: pointer to MTD device info structure 805 * 806 * Remove a device from the list of MTD devices present in the system, 807 * and notify each currently active MTD 'user' of its departure. 808 * Returns zero on success or 1 on failure, which currently will happen 809 * if the requested device does not appear to be present in the list. 810 */ 811 812 int del_mtd_device(struct mtd_info *mtd) 813 { 814 int ret; 815 struct mtd_notifier *not; 816 817 mutex_lock(&mtd_table_mutex); 818 819 if (idr_find(&mtd_idr, mtd->index) != mtd) { 820 ret = -ENODEV; 821 goto out_error; 822 } 823 824 /* No need to get a refcount on the module containing 825 the notifier, since we hold the mtd_table_mutex */ 826 list_for_each_entry(not, &mtd_notifiers, list) 827 not->remove(mtd); 828 829 kref_put(&mtd->refcnt, mtd_device_release); 830 ret = 0; 831 832 out_error: 833 mutex_unlock(&mtd_table_mutex); 834 return ret; 835 } 836 837 /* 838 * Set a few defaults based on the parent devices, if not provided by the 839 * driver 840 */ 841 static void mtd_set_dev_defaults(struct mtd_info *mtd) 842 { 843 if (mtd->dev.parent) { 844 if (!mtd->owner && mtd->dev.parent->driver) 845 mtd->owner = mtd->dev.parent->driver->owner; 846 if (!mtd->name) 847 mtd->name = dev_name(mtd->dev.parent); 848 } else { 849 pr_debug("mtd device won't show a device symlink in sysfs\n"); 850 } 851 852 INIT_LIST_HEAD(&mtd->partitions); 853 mutex_init(&mtd->master.partitions_lock); 854 mutex_init(&mtd->master.chrdev_lock); 855 } 856 857 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 858 { 859 struct otp_info *info; 860 ssize_t size = 0; 861 unsigned int i; 862 size_t retlen; 863 int ret; 864 865 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 866 if (!info) 867 return -ENOMEM; 868 869 if (is_user) 870 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 871 else 872 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 873 if (ret) 874 goto err; 875 876 for (i = 0; i < retlen / sizeof(*info); i++) 877 size += info[i].length; 878 879 kfree(info); 880 return size; 881 882 err: 883 kfree(info); 884 885 /* ENODATA means there is no OTP region. */ 886 return ret == -ENODATA ? 0 : ret; 887 } 888 889 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 890 const char *compatible, 891 int size, 892 nvmem_reg_read_t reg_read) 893 { 894 struct nvmem_device *nvmem = NULL; 895 struct nvmem_config config = {}; 896 struct device_node *np; 897 898 /* DT binding is optional */ 899 np = of_get_compatible_child(mtd->dev.of_node, compatible); 900 901 /* OTP nvmem will be registered on the physical device */ 902 config.dev = mtd->dev.parent; 903 config.name = compatible; 904 config.id = NVMEM_DEVID_AUTO; 905 config.owner = THIS_MODULE; 906 config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd); 907 config.type = NVMEM_TYPE_OTP; 908 config.root_only = true; 909 config.ignore_wp = true; 910 config.reg_read = reg_read; 911 config.size = size; 912 config.of_node = np; 913 config.priv = mtd; 914 915 nvmem = nvmem_register(&config); 916 /* Just ignore if there is no NVMEM support in the kernel */ 917 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 918 nvmem = NULL; 919 920 of_node_put(np); 921 922 return nvmem; 923 } 924 925 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 926 void *val, size_t bytes) 927 { 928 struct mtd_info *mtd = priv; 929 size_t retlen; 930 int ret; 931 932 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 933 if (ret) 934 return ret; 935 936 return retlen == bytes ? 0 : -EIO; 937 } 938 939 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 940 void *val, size_t bytes) 941 { 942 struct mtd_info *mtd = priv; 943 size_t retlen; 944 int ret; 945 946 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 947 if (ret) 948 return ret; 949 950 return retlen == bytes ? 0 : -EIO; 951 } 952 953 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 954 { 955 struct device *dev = mtd->dev.parent; 956 struct nvmem_device *nvmem; 957 ssize_t size; 958 int err; 959 960 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 961 size = mtd_otp_size(mtd, true); 962 if (size < 0) { 963 err = size; 964 goto err; 965 } 966 967 if (size > 0) { 968 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 969 mtd_nvmem_user_otp_reg_read); 970 if (IS_ERR(nvmem)) { 971 err = PTR_ERR(nvmem); 972 goto err; 973 } 974 mtd->otp_user_nvmem = nvmem; 975 } 976 } 977 978 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 979 size = mtd_otp_size(mtd, false); 980 if (size < 0) { 981 err = size; 982 goto err; 983 } 984 985 if (size > 0) { 986 /* 987 * The factory OTP contains thing such as a unique serial 988 * number and is small, so let's read it out and put it 989 * into the entropy pool. 990 */ 991 void *otp; 992 993 otp = kmalloc(size, GFP_KERNEL); 994 if (!otp) { 995 err = -ENOMEM; 996 goto err; 997 } 998 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); 999 if (err < 0) { 1000 kfree(otp); 1001 goto err; 1002 } 1003 add_device_randomness(otp, err); 1004 kfree(otp); 1005 1006 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 1007 mtd_nvmem_fact_otp_reg_read); 1008 if (IS_ERR(nvmem)) { 1009 err = PTR_ERR(nvmem); 1010 goto err; 1011 } 1012 mtd->otp_factory_nvmem = nvmem; 1013 } 1014 } 1015 1016 return 0; 1017 1018 err: 1019 nvmem_unregister(mtd->otp_user_nvmem); 1020 /* Don't report error if OTP is not supported. */ 1021 if (err == -EOPNOTSUPP) 1022 return 0; 1023 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 1024 } 1025 1026 /** 1027 * mtd_device_parse_register - parse partitions and register an MTD device. 1028 * 1029 * @mtd: the MTD device to register 1030 * @types: the list of MTD partition probes to try, see 1031 * 'parse_mtd_partitions()' for more information 1032 * @parser_data: MTD partition parser-specific data 1033 * @parts: fallback partition information to register, if parsing fails; 1034 * only valid if %nr_parts > %0 1035 * @nr_parts: the number of partitions in parts, if zero then the full 1036 * MTD device is registered if no partition info is found 1037 * 1038 * This function aggregates MTD partitions parsing (done by 1039 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1040 * basically follows the most common pattern found in many MTD drivers: 1041 * 1042 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1043 * registered first. 1044 * * Then It tries to probe partitions on MTD device @mtd using parsers 1045 * specified in @types (if @types is %NULL, then the default list of parsers 1046 * is used, see 'parse_mtd_partitions()' for more information). If none are 1047 * found this functions tries to fallback to information specified in 1048 * @parts/@nr_parts. 1049 * * If no partitions were found this function just registers the MTD device 1050 * @mtd and exits. 1051 * 1052 * Returns zero in case of success and a negative error code in case of failure. 1053 */ 1054 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1055 struct mtd_part_parser_data *parser_data, 1056 const struct mtd_partition *parts, 1057 int nr_parts) 1058 { 1059 int ret, err; 1060 1061 mtd_set_dev_defaults(mtd); 1062 1063 ret = mtd_otp_nvmem_add(mtd); 1064 if (ret) 1065 goto out; 1066 1067 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1068 ret = add_mtd_device(mtd); 1069 if (ret) 1070 goto out; 1071 } 1072 1073 /* Prefer parsed partitions over driver-provided fallback */ 1074 ret = parse_mtd_partitions(mtd, types, parser_data); 1075 if (ret == -EPROBE_DEFER) 1076 goto out; 1077 1078 if (ret > 0) 1079 ret = 0; 1080 else if (nr_parts) 1081 ret = add_mtd_partitions(mtd, parts, nr_parts); 1082 else if (!device_is_registered(&mtd->dev)) 1083 ret = add_mtd_device(mtd); 1084 else 1085 ret = 0; 1086 1087 if (ret) 1088 goto out; 1089 1090 /* 1091 * FIXME: some drivers unfortunately call this function more than once. 1092 * So we have to check if we've already assigned the reboot notifier. 1093 * 1094 * Generally, we can make multiple calls work for most cases, but it 1095 * does cause problems with parse_mtd_partitions() above (e.g., 1096 * cmdlineparts will register partitions more than once). 1097 */ 1098 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1099 "MTD already registered\n"); 1100 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1101 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1102 register_reboot_notifier(&mtd->reboot_notifier); 1103 } 1104 1105 out: 1106 if (ret) { 1107 nvmem_unregister(mtd->otp_user_nvmem); 1108 nvmem_unregister(mtd->otp_factory_nvmem); 1109 } 1110 1111 if (ret && device_is_registered(&mtd->dev)) { 1112 err = del_mtd_device(mtd); 1113 if (err) 1114 pr_err("Error when deleting MTD device (%d)\n", err); 1115 } 1116 1117 return ret; 1118 } 1119 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1120 1121 /** 1122 * mtd_device_unregister - unregister an existing MTD device. 1123 * 1124 * @master: the MTD device to unregister. This will unregister both the master 1125 * and any partitions if registered. 1126 */ 1127 int mtd_device_unregister(struct mtd_info *master) 1128 { 1129 int err; 1130 1131 if (master->_reboot) { 1132 unregister_reboot_notifier(&master->reboot_notifier); 1133 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1134 } 1135 1136 nvmem_unregister(master->otp_user_nvmem); 1137 nvmem_unregister(master->otp_factory_nvmem); 1138 1139 err = del_mtd_partitions(master); 1140 if (err) 1141 return err; 1142 1143 if (!device_is_registered(&master->dev)) 1144 return 0; 1145 1146 return del_mtd_device(master); 1147 } 1148 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1149 1150 /** 1151 * register_mtd_user - register a 'user' of MTD devices. 1152 * @new: pointer to notifier info structure 1153 * 1154 * Registers a pair of callbacks function to be called upon addition 1155 * or removal of MTD devices. Causes the 'add' callback to be immediately 1156 * invoked for each MTD device currently present in the system. 1157 */ 1158 void register_mtd_user (struct mtd_notifier *new) 1159 { 1160 struct mtd_info *mtd; 1161 1162 mutex_lock(&mtd_table_mutex); 1163 1164 list_add(&new->list, &mtd_notifiers); 1165 1166 __module_get(THIS_MODULE); 1167 1168 mtd_for_each_device(mtd) 1169 new->add(mtd); 1170 1171 mutex_unlock(&mtd_table_mutex); 1172 } 1173 EXPORT_SYMBOL_GPL(register_mtd_user); 1174 1175 /** 1176 * unregister_mtd_user - unregister a 'user' of MTD devices. 1177 * @old: pointer to notifier info structure 1178 * 1179 * Removes a callback function pair from the list of 'users' to be 1180 * notified upon addition or removal of MTD devices. Causes the 1181 * 'remove' callback to be immediately invoked for each MTD device 1182 * currently present in the system. 1183 */ 1184 int unregister_mtd_user (struct mtd_notifier *old) 1185 { 1186 struct mtd_info *mtd; 1187 1188 mutex_lock(&mtd_table_mutex); 1189 1190 module_put(THIS_MODULE); 1191 1192 mtd_for_each_device(mtd) 1193 old->remove(mtd); 1194 1195 list_del(&old->list); 1196 mutex_unlock(&mtd_table_mutex); 1197 return 0; 1198 } 1199 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1200 1201 /** 1202 * get_mtd_device - obtain a validated handle for an MTD device 1203 * @mtd: last known address of the required MTD device 1204 * @num: internal device number of the required MTD device 1205 * 1206 * Given a number and NULL address, return the num'th entry in the device 1207 * table, if any. Given an address and num == -1, search the device table 1208 * for a device with that address and return if it's still present. Given 1209 * both, return the num'th driver only if its address matches. Return 1210 * error code if not. 1211 */ 1212 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1213 { 1214 struct mtd_info *ret = NULL, *other; 1215 int err = -ENODEV; 1216 1217 mutex_lock(&mtd_table_mutex); 1218 1219 if (num == -1) { 1220 mtd_for_each_device(other) { 1221 if (other == mtd) { 1222 ret = mtd; 1223 break; 1224 } 1225 } 1226 } else if (num >= 0) { 1227 ret = idr_find(&mtd_idr, num); 1228 if (mtd && mtd != ret) 1229 ret = NULL; 1230 } 1231 1232 if (!ret) { 1233 ret = ERR_PTR(err); 1234 goto out; 1235 } 1236 1237 err = __get_mtd_device(ret); 1238 if (err) 1239 ret = ERR_PTR(err); 1240 out: 1241 mutex_unlock(&mtd_table_mutex); 1242 return ret; 1243 } 1244 EXPORT_SYMBOL_GPL(get_mtd_device); 1245 1246 1247 int __get_mtd_device(struct mtd_info *mtd) 1248 { 1249 struct mtd_info *master = mtd_get_master(mtd); 1250 int err; 1251 1252 if (master->_get_device) { 1253 err = master->_get_device(mtd); 1254 if (err) 1255 return err; 1256 } 1257 1258 if (!try_module_get(master->owner)) { 1259 if (master->_put_device) 1260 master->_put_device(master); 1261 return -ENODEV; 1262 } 1263 1264 while (mtd) { 1265 if (mtd != master) 1266 kref_get(&mtd->refcnt); 1267 mtd = mtd->parent; 1268 } 1269 1270 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1271 kref_get(&master->refcnt); 1272 1273 return 0; 1274 } 1275 EXPORT_SYMBOL_GPL(__get_mtd_device); 1276 1277 /** 1278 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1279 * 1280 * @np: device tree node 1281 */ 1282 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1283 { 1284 struct mtd_info *mtd = NULL; 1285 struct mtd_info *tmp; 1286 int err; 1287 1288 mutex_lock(&mtd_table_mutex); 1289 1290 err = -EPROBE_DEFER; 1291 mtd_for_each_device(tmp) { 1292 if (mtd_get_of_node(tmp) == np) { 1293 mtd = tmp; 1294 err = __get_mtd_device(mtd); 1295 break; 1296 } 1297 } 1298 1299 mutex_unlock(&mtd_table_mutex); 1300 1301 return err ? ERR_PTR(err) : mtd; 1302 } 1303 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1304 1305 /** 1306 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1307 * device name 1308 * @name: MTD device name to open 1309 * 1310 * This function returns MTD device description structure in case of 1311 * success and an error code in case of failure. 1312 */ 1313 struct mtd_info *get_mtd_device_nm(const char *name) 1314 { 1315 int err = -ENODEV; 1316 struct mtd_info *mtd = NULL, *other; 1317 1318 mutex_lock(&mtd_table_mutex); 1319 1320 mtd_for_each_device(other) { 1321 if (!strcmp(name, other->name)) { 1322 mtd = other; 1323 break; 1324 } 1325 } 1326 1327 if (!mtd) 1328 goto out_unlock; 1329 1330 err = __get_mtd_device(mtd); 1331 if (err) 1332 goto out_unlock; 1333 1334 mutex_unlock(&mtd_table_mutex); 1335 return mtd; 1336 1337 out_unlock: 1338 mutex_unlock(&mtd_table_mutex); 1339 return ERR_PTR(err); 1340 } 1341 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1342 1343 void put_mtd_device(struct mtd_info *mtd) 1344 { 1345 mutex_lock(&mtd_table_mutex); 1346 __put_mtd_device(mtd); 1347 mutex_unlock(&mtd_table_mutex); 1348 1349 } 1350 EXPORT_SYMBOL_GPL(put_mtd_device); 1351 1352 void __put_mtd_device(struct mtd_info *mtd) 1353 { 1354 struct mtd_info *master = mtd_get_master(mtd); 1355 1356 while (mtd) { 1357 /* kref_put() can relese mtd, so keep a reference mtd->parent */ 1358 struct mtd_info *parent = mtd->parent; 1359 1360 if (mtd != master) 1361 kref_put(&mtd->refcnt, mtd_device_release); 1362 mtd = parent; 1363 } 1364 1365 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1366 kref_put(&master->refcnt, mtd_device_release); 1367 1368 module_put(master->owner); 1369 1370 /* must be the last as master can be freed in the _put_device */ 1371 if (master->_put_device) 1372 master->_put_device(master); 1373 } 1374 EXPORT_SYMBOL_GPL(__put_mtd_device); 1375 1376 /* 1377 * Erase is an synchronous operation. Device drivers are epected to return a 1378 * negative error code if the operation failed and update instr->fail_addr 1379 * to point the portion that was not properly erased. 1380 */ 1381 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1382 { 1383 struct mtd_info *master = mtd_get_master(mtd); 1384 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1385 struct erase_info adjinstr; 1386 int ret; 1387 1388 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1389 adjinstr = *instr; 1390 1391 if (!mtd->erasesize || !master->_erase) 1392 return -ENOTSUPP; 1393 1394 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1395 return -EINVAL; 1396 if (!(mtd->flags & MTD_WRITEABLE)) 1397 return -EROFS; 1398 1399 if (!instr->len) 1400 return 0; 1401 1402 ledtrig_mtd_activity(); 1403 1404 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1405 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1406 master->erasesize; 1407 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1408 master->erasesize) - 1409 adjinstr.addr; 1410 } 1411 1412 adjinstr.addr += mst_ofs; 1413 1414 ret = master->_erase(master, &adjinstr); 1415 1416 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1417 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1418 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1419 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1420 master); 1421 instr->fail_addr *= mtd->erasesize; 1422 } 1423 } 1424 1425 return ret; 1426 } 1427 EXPORT_SYMBOL_GPL(mtd_erase); 1428 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO); 1429 1430 /* 1431 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1432 */ 1433 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1434 void **virt, resource_size_t *phys) 1435 { 1436 struct mtd_info *master = mtd_get_master(mtd); 1437 1438 *retlen = 0; 1439 *virt = NULL; 1440 if (phys) 1441 *phys = 0; 1442 if (!master->_point) 1443 return -EOPNOTSUPP; 1444 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1445 return -EINVAL; 1446 if (!len) 1447 return 0; 1448 1449 from = mtd_get_master_ofs(mtd, from); 1450 return master->_point(master, from, len, retlen, virt, phys); 1451 } 1452 EXPORT_SYMBOL_GPL(mtd_point); 1453 1454 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1455 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1456 { 1457 struct mtd_info *master = mtd_get_master(mtd); 1458 1459 if (!master->_unpoint) 1460 return -EOPNOTSUPP; 1461 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1462 return -EINVAL; 1463 if (!len) 1464 return 0; 1465 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1466 } 1467 EXPORT_SYMBOL_GPL(mtd_unpoint); 1468 1469 /* 1470 * Allow NOMMU mmap() to directly map the device (if not NULL) 1471 * - return the address to which the offset maps 1472 * - return -ENOSYS to indicate refusal to do the mapping 1473 */ 1474 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1475 unsigned long offset, unsigned long flags) 1476 { 1477 size_t retlen; 1478 void *virt; 1479 int ret; 1480 1481 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1482 if (ret) 1483 return ret; 1484 if (retlen != len) { 1485 mtd_unpoint(mtd, offset, retlen); 1486 return -ENOSYS; 1487 } 1488 return (unsigned long)virt; 1489 } 1490 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1491 1492 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1493 const struct mtd_ecc_stats *old_stats) 1494 { 1495 struct mtd_ecc_stats diff; 1496 1497 if (master == mtd) 1498 return; 1499 1500 diff = master->ecc_stats; 1501 diff.failed -= old_stats->failed; 1502 diff.corrected -= old_stats->corrected; 1503 1504 while (mtd->parent) { 1505 mtd->ecc_stats.failed += diff.failed; 1506 mtd->ecc_stats.corrected += diff.corrected; 1507 mtd = mtd->parent; 1508 } 1509 } 1510 1511 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1512 u_char *buf) 1513 { 1514 struct mtd_oob_ops ops = { 1515 .len = len, 1516 .datbuf = buf, 1517 }; 1518 int ret; 1519 1520 ret = mtd_read_oob(mtd, from, &ops); 1521 *retlen = ops.retlen; 1522 1523 WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret)); 1524 1525 return ret; 1526 } 1527 EXPORT_SYMBOL_GPL(mtd_read); 1528 ALLOW_ERROR_INJECTION(mtd_read, ERRNO); 1529 1530 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1531 const u_char *buf) 1532 { 1533 struct mtd_oob_ops ops = { 1534 .len = len, 1535 .datbuf = (u8 *)buf, 1536 }; 1537 int ret; 1538 1539 ret = mtd_write_oob(mtd, to, &ops); 1540 *retlen = ops.retlen; 1541 1542 return ret; 1543 } 1544 EXPORT_SYMBOL_GPL(mtd_write); 1545 ALLOW_ERROR_INJECTION(mtd_write, ERRNO); 1546 1547 /* 1548 * In blackbox flight recorder like scenarios we want to make successful writes 1549 * in interrupt context. panic_write() is only intended to be called when its 1550 * known the kernel is about to panic and we need the write to succeed. Since 1551 * the kernel is not going to be running for much longer, this function can 1552 * break locks and delay to ensure the write succeeds (but not sleep). 1553 */ 1554 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1555 const u_char *buf) 1556 { 1557 struct mtd_info *master = mtd_get_master(mtd); 1558 1559 *retlen = 0; 1560 if (!master->_panic_write) 1561 return -EOPNOTSUPP; 1562 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1563 return -EINVAL; 1564 if (!(mtd->flags & MTD_WRITEABLE)) 1565 return -EROFS; 1566 if (!len) 1567 return 0; 1568 if (!master->oops_panic_write) 1569 master->oops_panic_write = true; 1570 1571 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1572 retlen, buf); 1573 } 1574 EXPORT_SYMBOL_GPL(mtd_panic_write); 1575 1576 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1577 struct mtd_oob_ops *ops) 1578 { 1579 /* 1580 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1581 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1582 * this case. 1583 */ 1584 if (!ops->datbuf) 1585 ops->len = 0; 1586 1587 if (!ops->oobbuf) 1588 ops->ooblen = 0; 1589 1590 if (offs < 0 || offs + ops->len > mtd->size) 1591 return -EINVAL; 1592 1593 if (ops->ooblen) { 1594 size_t maxooblen; 1595 1596 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1597 return -EINVAL; 1598 1599 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1600 mtd_div_by_ws(offs, mtd)) * 1601 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1602 if (ops->ooblen > maxooblen) 1603 return -EINVAL; 1604 } 1605 1606 return 0; 1607 } 1608 1609 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1610 struct mtd_oob_ops *ops) 1611 { 1612 struct mtd_info *master = mtd_get_master(mtd); 1613 int ret; 1614 1615 from = mtd_get_master_ofs(mtd, from); 1616 if (master->_read_oob) 1617 ret = master->_read_oob(master, from, ops); 1618 else 1619 ret = master->_read(master, from, ops->len, &ops->retlen, 1620 ops->datbuf); 1621 1622 return ret; 1623 } 1624 1625 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1626 struct mtd_oob_ops *ops) 1627 { 1628 struct mtd_info *master = mtd_get_master(mtd); 1629 int ret; 1630 1631 to = mtd_get_master_ofs(mtd, to); 1632 if (master->_write_oob) 1633 ret = master->_write_oob(master, to, ops); 1634 else 1635 ret = master->_write(master, to, ops->len, &ops->retlen, 1636 ops->datbuf); 1637 1638 return ret; 1639 } 1640 1641 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1642 struct mtd_oob_ops *ops) 1643 { 1644 struct mtd_info *master = mtd_get_master(mtd); 1645 int ngroups = mtd_pairing_groups(master); 1646 int npairs = mtd_wunit_per_eb(master) / ngroups; 1647 struct mtd_oob_ops adjops = *ops; 1648 unsigned int wunit, oobavail; 1649 struct mtd_pairing_info info; 1650 int max_bitflips = 0; 1651 u32 ebofs, pageofs; 1652 loff_t base, pos; 1653 1654 ebofs = mtd_mod_by_eb(start, mtd); 1655 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1656 info.group = 0; 1657 info.pair = mtd_div_by_ws(ebofs, mtd); 1658 pageofs = mtd_mod_by_ws(ebofs, mtd); 1659 oobavail = mtd_oobavail(mtd, ops); 1660 1661 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1662 int ret; 1663 1664 if (info.pair >= npairs) { 1665 info.pair = 0; 1666 base += master->erasesize; 1667 } 1668 1669 wunit = mtd_pairing_info_to_wunit(master, &info); 1670 pos = mtd_wunit_to_offset(mtd, base, wunit); 1671 1672 adjops.len = ops->len - ops->retlen; 1673 if (adjops.len > mtd->writesize - pageofs) 1674 adjops.len = mtd->writesize - pageofs; 1675 1676 adjops.ooblen = ops->ooblen - ops->oobretlen; 1677 if (adjops.ooblen > oobavail - adjops.ooboffs) 1678 adjops.ooblen = oobavail - adjops.ooboffs; 1679 1680 if (read) { 1681 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1682 if (ret > 0) 1683 max_bitflips = max(max_bitflips, ret); 1684 } else { 1685 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1686 } 1687 1688 if (ret < 0) 1689 return ret; 1690 1691 max_bitflips = max(max_bitflips, ret); 1692 ops->retlen += adjops.retlen; 1693 ops->oobretlen += adjops.oobretlen; 1694 adjops.datbuf += adjops.retlen; 1695 adjops.oobbuf += adjops.oobretlen; 1696 adjops.ooboffs = 0; 1697 pageofs = 0; 1698 info.pair++; 1699 } 1700 1701 return max_bitflips; 1702 } 1703 1704 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1705 { 1706 struct mtd_info *master = mtd_get_master(mtd); 1707 struct mtd_ecc_stats old_stats = master->ecc_stats; 1708 int ret_code; 1709 1710 ops->retlen = ops->oobretlen = 0; 1711 1712 ret_code = mtd_check_oob_ops(mtd, from, ops); 1713 if (ret_code) 1714 return ret_code; 1715 1716 ledtrig_mtd_activity(); 1717 1718 /* Check the validity of a potential fallback on mtd->_read */ 1719 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1720 return -EOPNOTSUPP; 1721 1722 if (ops->stats) 1723 memset(ops->stats, 0, sizeof(*ops->stats)); 1724 1725 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1726 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1727 else 1728 ret_code = mtd_read_oob_std(mtd, from, ops); 1729 1730 mtd_update_ecc_stats(mtd, master, &old_stats); 1731 1732 /* 1733 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1734 * similar to mtd->_read(), returning a non-negative integer 1735 * representing max bitflips. In other cases, mtd->_read_oob() may 1736 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1737 */ 1738 if (unlikely(ret_code < 0)) 1739 return ret_code; 1740 if (mtd->ecc_strength == 0) 1741 return 0; /* device lacks ecc */ 1742 if (ops->stats) 1743 ops->stats->max_bitflips = ret_code; 1744 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1745 } 1746 EXPORT_SYMBOL_GPL(mtd_read_oob); 1747 1748 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1749 struct mtd_oob_ops *ops) 1750 { 1751 struct mtd_info *master = mtd_get_master(mtd); 1752 int ret; 1753 1754 ops->retlen = ops->oobretlen = 0; 1755 1756 if (!(mtd->flags & MTD_WRITEABLE)) 1757 return -EROFS; 1758 1759 ret = mtd_check_oob_ops(mtd, to, ops); 1760 if (ret) 1761 return ret; 1762 1763 ledtrig_mtd_activity(); 1764 1765 /* Check the validity of a potential fallback on mtd->_write */ 1766 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1767 return -EOPNOTSUPP; 1768 1769 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1770 return mtd_io_emulated_slc(mtd, to, false, ops); 1771 1772 return mtd_write_oob_std(mtd, to, ops); 1773 } 1774 EXPORT_SYMBOL_GPL(mtd_write_oob); 1775 1776 /** 1777 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1778 * @mtd: MTD device structure 1779 * @section: ECC section. Depending on the layout you may have all the ECC 1780 * bytes stored in a single contiguous section, or one section 1781 * per ECC chunk (and sometime several sections for a single ECC 1782 * ECC chunk) 1783 * @oobecc: OOB region struct filled with the appropriate ECC position 1784 * information 1785 * 1786 * This function returns ECC section information in the OOB area. If you want 1787 * to get all the ECC bytes information, then you should call 1788 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1789 * 1790 * Returns zero on success, a negative error code otherwise. 1791 */ 1792 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1793 struct mtd_oob_region *oobecc) 1794 { 1795 struct mtd_info *master = mtd_get_master(mtd); 1796 1797 memset(oobecc, 0, sizeof(*oobecc)); 1798 1799 if (!master || section < 0) 1800 return -EINVAL; 1801 1802 if (!master->ooblayout || !master->ooblayout->ecc) 1803 return -ENOTSUPP; 1804 1805 return master->ooblayout->ecc(master, section, oobecc); 1806 } 1807 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1808 1809 /** 1810 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1811 * section 1812 * @mtd: MTD device structure 1813 * @section: Free section you are interested in. Depending on the layout 1814 * you may have all the free bytes stored in a single contiguous 1815 * section, or one section per ECC chunk plus an extra section 1816 * for the remaining bytes (or other funky layout). 1817 * @oobfree: OOB region struct filled with the appropriate free position 1818 * information 1819 * 1820 * This function returns free bytes position in the OOB area. If you want 1821 * to get all the free bytes information, then you should call 1822 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1823 * 1824 * Returns zero on success, a negative error code otherwise. 1825 */ 1826 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1827 struct mtd_oob_region *oobfree) 1828 { 1829 struct mtd_info *master = mtd_get_master(mtd); 1830 1831 memset(oobfree, 0, sizeof(*oobfree)); 1832 1833 if (!master || section < 0) 1834 return -EINVAL; 1835 1836 if (!master->ooblayout || !master->ooblayout->free) 1837 return -ENOTSUPP; 1838 1839 return master->ooblayout->free(master, section, oobfree); 1840 } 1841 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1842 1843 /** 1844 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1845 * @mtd: mtd info structure 1846 * @byte: the byte we are searching for 1847 * @sectionp: pointer where the section id will be stored 1848 * @oobregion: used to retrieve the ECC position 1849 * @iter: iterator function. Should be either mtd_ooblayout_free or 1850 * mtd_ooblayout_ecc depending on the region type you're searching for 1851 * 1852 * This function returns the section id and oobregion information of a 1853 * specific byte. For example, say you want to know where the 4th ECC byte is 1854 * stored, you'll use: 1855 * 1856 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1857 * 1858 * Returns zero on success, a negative error code otherwise. 1859 */ 1860 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1861 int *sectionp, struct mtd_oob_region *oobregion, 1862 int (*iter)(struct mtd_info *, 1863 int section, 1864 struct mtd_oob_region *oobregion)) 1865 { 1866 int pos = 0, ret, section = 0; 1867 1868 memset(oobregion, 0, sizeof(*oobregion)); 1869 1870 while (1) { 1871 ret = iter(mtd, section, oobregion); 1872 if (ret) 1873 return ret; 1874 1875 if (pos + oobregion->length > byte) 1876 break; 1877 1878 pos += oobregion->length; 1879 section++; 1880 } 1881 1882 /* 1883 * Adjust region info to make it start at the beginning at the 1884 * 'start' ECC byte. 1885 */ 1886 oobregion->offset += byte - pos; 1887 oobregion->length -= byte - pos; 1888 *sectionp = section; 1889 1890 return 0; 1891 } 1892 1893 /** 1894 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1895 * ECC byte 1896 * @mtd: mtd info structure 1897 * @eccbyte: the byte we are searching for 1898 * @section: pointer where the section id will be stored 1899 * @oobregion: OOB region information 1900 * 1901 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1902 * byte. 1903 * 1904 * Returns zero on success, a negative error code otherwise. 1905 */ 1906 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1907 int *section, 1908 struct mtd_oob_region *oobregion) 1909 { 1910 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1911 mtd_ooblayout_ecc); 1912 } 1913 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1914 1915 /** 1916 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1917 * @mtd: mtd info structure 1918 * @buf: destination buffer to store OOB bytes 1919 * @oobbuf: OOB buffer 1920 * @start: first byte to retrieve 1921 * @nbytes: number of bytes to retrieve 1922 * @iter: section iterator 1923 * 1924 * Extract bytes attached to a specific category (ECC or free) 1925 * from the OOB buffer and copy them into buf. 1926 * 1927 * Returns zero on success, a negative error code otherwise. 1928 */ 1929 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1930 const u8 *oobbuf, int start, int nbytes, 1931 int (*iter)(struct mtd_info *, 1932 int section, 1933 struct mtd_oob_region *oobregion)) 1934 { 1935 struct mtd_oob_region oobregion; 1936 int section, ret; 1937 1938 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1939 &oobregion, iter); 1940 1941 while (!ret) { 1942 int cnt; 1943 1944 cnt = min_t(int, nbytes, oobregion.length); 1945 memcpy(buf, oobbuf + oobregion.offset, cnt); 1946 buf += cnt; 1947 nbytes -= cnt; 1948 1949 if (!nbytes) 1950 break; 1951 1952 ret = iter(mtd, ++section, &oobregion); 1953 } 1954 1955 return ret; 1956 } 1957 1958 /** 1959 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1960 * @mtd: mtd info structure 1961 * @buf: source buffer to get OOB bytes from 1962 * @oobbuf: OOB buffer 1963 * @start: first OOB byte to set 1964 * @nbytes: number of OOB bytes to set 1965 * @iter: section iterator 1966 * 1967 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1968 * is selected by passing the appropriate iterator. 1969 * 1970 * Returns zero on success, a negative error code otherwise. 1971 */ 1972 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1973 u8 *oobbuf, int start, int nbytes, 1974 int (*iter)(struct mtd_info *, 1975 int section, 1976 struct mtd_oob_region *oobregion)) 1977 { 1978 struct mtd_oob_region oobregion; 1979 int section, ret; 1980 1981 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1982 &oobregion, iter); 1983 1984 while (!ret) { 1985 int cnt; 1986 1987 cnt = min_t(int, nbytes, oobregion.length); 1988 memcpy(oobbuf + oobregion.offset, buf, cnt); 1989 buf += cnt; 1990 nbytes -= cnt; 1991 1992 if (!nbytes) 1993 break; 1994 1995 ret = iter(mtd, ++section, &oobregion); 1996 } 1997 1998 return ret; 1999 } 2000 2001 /** 2002 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 2003 * @mtd: mtd info structure 2004 * @iter: category iterator 2005 * 2006 * Count the number of bytes in a given category. 2007 * 2008 * Returns a positive value on success, a negative error code otherwise. 2009 */ 2010 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 2011 int (*iter)(struct mtd_info *, 2012 int section, 2013 struct mtd_oob_region *oobregion)) 2014 { 2015 struct mtd_oob_region oobregion; 2016 int section = 0, ret, nbytes = 0; 2017 2018 while (1) { 2019 ret = iter(mtd, section++, &oobregion); 2020 if (ret) { 2021 if (ret == -ERANGE) 2022 ret = nbytes; 2023 break; 2024 } 2025 2026 nbytes += oobregion.length; 2027 } 2028 2029 return ret; 2030 } 2031 2032 /** 2033 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 2034 * @mtd: mtd info structure 2035 * @eccbuf: destination buffer to store ECC bytes 2036 * @oobbuf: OOB buffer 2037 * @start: first ECC byte to retrieve 2038 * @nbytes: number of ECC bytes to retrieve 2039 * 2040 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 2041 * 2042 * Returns zero on success, a negative error code otherwise. 2043 */ 2044 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 2045 const u8 *oobbuf, int start, int nbytes) 2046 { 2047 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2048 mtd_ooblayout_ecc); 2049 } 2050 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 2051 2052 /** 2053 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 2054 * @mtd: mtd info structure 2055 * @eccbuf: source buffer to get ECC bytes from 2056 * @oobbuf: OOB buffer 2057 * @start: first ECC byte to set 2058 * @nbytes: number of ECC bytes to set 2059 * 2060 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2061 * 2062 * Returns zero on success, a negative error code otherwise. 2063 */ 2064 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2065 u8 *oobbuf, int start, int nbytes) 2066 { 2067 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2068 mtd_ooblayout_ecc); 2069 } 2070 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2071 2072 /** 2073 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2074 * @mtd: mtd info structure 2075 * @databuf: destination buffer to store ECC bytes 2076 * @oobbuf: OOB buffer 2077 * @start: first ECC byte to retrieve 2078 * @nbytes: number of ECC bytes to retrieve 2079 * 2080 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2081 * 2082 * Returns zero on success, a negative error code otherwise. 2083 */ 2084 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2085 const u8 *oobbuf, int start, int nbytes) 2086 { 2087 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2088 mtd_ooblayout_free); 2089 } 2090 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2091 2092 /** 2093 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2094 * @mtd: mtd info structure 2095 * @databuf: source buffer to get data bytes from 2096 * @oobbuf: OOB buffer 2097 * @start: first ECC byte to set 2098 * @nbytes: number of ECC bytes to set 2099 * 2100 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2101 * 2102 * Returns zero on success, a negative error code otherwise. 2103 */ 2104 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2105 u8 *oobbuf, int start, int nbytes) 2106 { 2107 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2108 mtd_ooblayout_free); 2109 } 2110 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2111 2112 /** 2113 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2114 * @mtd: mtd info structure 2115 * 2116 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2117 * 2118 * Returns zero on success, a negative error code otherwise. 2119 */ 2120 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2121 { 2122 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2123 } 2124 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2125 2126 /** 2127 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2128 * @mtd: mtd info structure 2129 * 2130 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2131 * 2132 * Returns zero on success, a negative error code otherwise. 2133 */ 2134 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2135 { 2136 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2137 } 2138 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2139 2140 /* 2141 * Method to access the protection register area, present in some flash 2142 * devices. The user data is one time programmable but the factory data is read 2143 * only. 2144 */ 2145 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2146 struct otp_info *buf) 2147 { 2148 struct mtd_info *master = mtd_get_master(mtd); 2149 2150 if (!master->_get_fact_prot_info) 2151 return -EOPNOTSUPP; 2152 if (!len) 2153 return 0; 2154 return master->_get_fact_prot_info(master, len, retlen, buf); 2155 } 2156 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2157 2158 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2159 size_t *retlen, u_char *buf) 2160 { 2161 struct mtd_info *master = mtd_get_master(mtd); 2162 2163 *retlen = 0; 2164 if (!master->_read_fact_prot_reg) 2165 return -EOPNOTSUPP; 2166 if (!len) 2167 return 0; 2168 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2169 } 2170 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2171 2172 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2173 struct otp_info *buf) 2174 { 2175 struct mtd_info *master = mtd_get_master(mtd); 2176 2177 if (!master->_get_user_prot_info) 2178 return -EOPNOTSUPP; 2179 if (!len) 2180 return 0; 2181 return master->_get_user_prot_info(master, len, retlen, buf); 2182 } 2183 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2184 2185 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2186 size_t *retlen, u_char *buf) 2187 { 2188 struct mtd_info *master = mtd_get_master(mtd); 2189 2190 *retlen = 0; 2191 if (!master->_read_user_prot_reg) 2192 return -EOPNOTSUPP; 2193 if (!len) 2194 return 0; 2195 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2196 } 2197 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2198 2199 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2200 size_t *retlen, const u_char *buf) 2201 { 2202 struct mtd_info *master = mtd_get_master(mtd); 2203 int ret; 2204 2205 *retlen = 0; 2206 if (!master->_write_user_prot_reg) 2207 return -EOPNOTSUPP; 2208 if (!len) 2209 return 0; 2210 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2211 if (ret) 2212 return ret; 2213 2214 /* 2215 * If no data could be written at all, we are out of memory and 2216 * must return -ENOSPC. 2217 */ 2218 return (*retlen) ? 0 : -ENOSPC; 2219 } 2220 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2221 2222 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2223 { 2224 struct mtd_info *master = mtd_get_master(mtd); 2225 2226 if (!master->_lock_user_prot_reg) 2227 return -EOPNOTSUPP; 2228 if (!len) 2229 return 0; 2230 return master->_lock_user_prot_reg(master, from, len); 2231 } 2232 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2233 2234 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2235 { 2236 struct mtd_info *master = mtd_get_master(mtd); 2237 2238 if (!master->_erase_user_prot_reg) 2239 return -EOPNOTSUPP; 2240 if (!len) 2241 return 0; 2242 return master->_erase_user_prot_reg(master, from, len); 2243 } 2244 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2245 2246 /* Chip-supported device locking */ 2247 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2248 { 2249 struct mtd_info *master = mtd_get_master(mtd); 2250 2251 if (!master->_lock) 2252 return -EOPNOTSUPP; 2253 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2254 return -EINVAL; 2255 if (!len) 2256 return 0; 2257 2258 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2259 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2260 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2261 } 2262 2263 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2264 } 2265 EXPORT_SYMBOL_GPL(mtd_lock); 2266 2267 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2268 { 2269 struct mtd_info *master = mtd_get_master(mtd); 2270 2271 if (!master->_unlock) 2272 return -EOPNOTSUPP; 2273 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2274 return -EINVAL; 2275 if (!len) 2276 return 0; 2277 2278 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2279 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2280 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2281 } 2282 2283 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2284 } 2285 EXPORT_SYMBOL_GPL(mtd_unlock); 2286 2287 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2288 { 2289 struct mtd_info *master = mtd_get_master(mtd); 2290 2291 if (!master->_is_locked) 2292 return -EOPNOTSUPP; 2293 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2294 return -EINVAL; 2295 if (!len) 2296 return 0; 2297 2298 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2299 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2300 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2301 } 2302 2303 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2304 } 2305 EXPORT_SYMBOL_GPL(mtd_is_locked); 2306 2307 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2308 { 2309 struct mtd_info *master = mtd_get_master(mtd); 2310 2311 if (ofs < 0 || ofs >= mtd->size) 2312 return -EINVAL; 2313 if (!master->_block_isreserved) 2314 return 0; 2315 2316 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2317 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2318 2319 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2320 } 2321 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2322 2323 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2324 { 2325 struct mtd_info *master = mtd_get_master(mtd); 2326 2327 if (ofs < 0 || ofs >= mtd->size) 2328 return -EINVAL; 2329 if (!master->_block_isbad) 2330 return 0; 2331 2332 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2333 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2334 2335 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2336 } 2337 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2338 2339 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2340 { 2341 struct mtd_info *master = mtd_get_master(mtd); 2342 int ret; 2343 2344 if (!master->_block_markbad) 2345 return -EOPNOTSUPP; 2346 if (ofs < 0 || ofs >= mtd->size) 2347 return -EINVAL; 2348 if (!(mtd->flags & MTD_WRITEABLE)) 2349 return -EROFS; 2350 2351 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2352 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2353 2354 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2355 if (ret) 2356 return ret; 2357 2358 while (mtd->parent) { 2359 mtd->ecc_stats.badblocks++; 2360 mtd = mtd->parent; 2361 } 2362 2363 return 0; 2364 } 2365 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2366 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO); 2367 2368 /* 2369 * default_mtd_writev - the default writev method 2370 * @mtd: mtd device description object pointer 2371 * @vecs: the vectors to write 2372 * @count: count of vectors in @vecs 2373 * @to: the MTD device offset to write to 2374 * @retlen: on exit contains the count of bytes written to the MTD device. 2375 * 2376 * This function returns zero in case of success and a negative error code in 2377 * case of failure. 2378 */ 2379 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2380 unsigned long count, loff_t to, size_t *retlen) 2381 { 2382 unsigned long i; 2383 size_t totlen = 0, thislen; 2384 int ret = 0; 2385 2386 for (i = 0; i < count; i++) { 2387 if (!vecs[i].iov_len) 2388 continue; 2389 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2390 vecs[i].iov_base); 2391 totlen += thislen; 2392 if (ret || thislen != vecs[i].iov_len) 2393 break; 2394 to += vecs[i].iov_len; 2395 } 2396 *retlen = totlen; 2397 return ret; 2398 } 2399 2400 /* 2401 * mtd_writev - the vector-based MTD write method 2402 * @mtd: mtd device description object pointer 2403 * @vecs: the vectors to write 2404 * @count: count of vectors in @vecs 2405 * @to: the MTD device offset to write to 2406 * @retlen: on exit contains the count of bytes written to the MTD device. 2407 * 2408 * This function returns zero in case of success and a negative error code in 2409 * case of failure. 2410 */ 2411 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2412 unsigned long count, loff_t to, size_t *retlen) 2413 { 2414 struct mtd_info *master = mtd_get_master(mtd); 2415 2416 *retlen = 0; 2417 if (!(mtd->flags & MTD_WRITEABLE)) 2418 return -EROFS; 2419 2420 if (!master->_writev) 2421 return default_mtd_writev(mtd, vecs, count, to, retlen); 2422 2423 return master->_writev(master, vecs, count, 2424 mtd_get_master_ofs(mtd, to), retlen); 2425 } 2426 EXPORT_SYMBOL_GPL(mtd_writev); 2427 2428 /** 2429 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2430 * @mtd: mtd device description object pointer 2431 * @size: a pointer to the ideal or maximum size of the allocation, points 2432 * to the actual allocation size on success. 2433 * 2434 * This routine attempts to allocate a contiguous kernel buffer up to 2435 * the specified size, backing off the size of the request exponentially 2436 * until the request succeeds or until the allocation size falls below 2437 * the system page size. This attempts to make sure it does not adversely 2438 * impact system performance, so when allocating more than one page, we 2439 * ask the memory allocator to avoid re-trying, swapping, writing back 2440 * or performing I/O. 2441 * 2442 * Note, this function also makes sure that the allocated buffer is aligned to 2443 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2444 * 2445 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2446 * to handle smaller (i.e. degraded) buffer allocations under low- or 2447 * fragmented-memory situations where such reduced allocations, from a 2448 * requested ideal, are allowed. 2449 * 2450 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2451 */ 2452 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2453 { 2454 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2455 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2456 void *kbuf; 2457 2458 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2459 2460 while (*size > min_alloc) { 2461 kbuf = kmalloc(*size, flags); 2462 if (kbuf) 2463 return kbuf; 2464 2465 *size >>= 1; 2466 *size = ALIGN(*size, mtd->writesize); 2467 } 2468 2469 /* 2470 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2471 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2472 */ 2473 return kmalloc(*size, GFP_KERNEL); 2474 } 2475 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2476 2477 #ifdef CONFIG_PROC_FS 2478 2479 /*====================================================================*/ 2480 /* Support for /proc/mtd */ 2481 2482 static int mtd_proc_show(struct seq_file *m, void *v) 2483 { 2484 struct mtd_info *mtd; 2485 2486 seq_puts(m, "dev: size erasesize name\n"); 2487 mutex_lock(&mtd_table_mutex); 2488 mtd_for_each_device(mtd) { 2489 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2490 mtd->index, (unsigned long long)mtd->size, 2491 mtd->erasesize, mtd->name); 2492 } 2493 mutex_unlock(&mtd_table_mutex); 2494 return 0; 2495 } 2496 #endif /* CONFIG_PROC_FS */ 2497 2498 /*====================================================================*/ 2499 /* Init code */ 2500 2501 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2502 { 2503 struct backing_dev_info *bdi; 2504 int ret; 2505 2506 bdi = bdi_alloc(NUMA_NO_NODE); 2507 if (!bdi) 2508 return ERR_PTR(-ENOMEM); 2509 bdi->ra_pages = 0; 2510 bdi->io_pages = 0; 2511 2512 /* 2513 * We put '-0' suffix to the name to get the same name format as we 2514 * used to get. Since this is called only once, we get a unique name. 2515 */ 2516 ret = bdi_register(bdi, "%.28s-0", name); 2517 if (ret) 2518 bdi_put(bdi); 2519 2520 return ret ? ERR_PTR(ret) : bdi; 2521 } 2522 2523 static struct proc_dir_entry *proc_mtd; 2524 2525 static int __init init_mtd(void) 2526 { 2527 int ret; 2528 2529 ret = class_register(&mtd_class); 2530 if (ret) 2531 goto err_reg; 2532 2533 mtd_bdi = mtd_bdi_init("mtd"); 2534 if (IS_ERR(mtd_bdi)) { 2535 ret = PTR_ERR(mtd_bdi); 2536 goto err_bdi; 2537 } 2538 2539 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2540 2541 ret = init_mtdchar(); 2542 if (ret) 2543 goto out_procfs; 2544 2545 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2546 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2547 &mtd_expert_analysis_mode); 2548 2549 return 0; 2550 2551 out_procfs: 2552 if (proc_mtd) 2553 remove_proc_entry("mtd", NULL); 2554 bdi_unregister(mtd_bdi); 2555 bdi_put(mtd_bdi); 2556 err_bdi: 2557 class_unregister(&mtd_class); 2558 err_reg: 2559 pr_err("Error registering mtd class or bdi: %d\n", ret); 2560 return ret; 2561 } 2562 2563 static void __exit cleanup_mtd(void) 2564 { 2565 debugfs_remove_recursive(dfs_dir_mtd); 2566 cleanup_mtdchar(); 2567 if (proc_mtd) 2568 remove_proc_entry("mtd", NULL); 2569 class_unregister(&mtd_class); 2570 bdi_unregister(mtd_bdi); 2571 bdi_put(mtd_bdi); 2572 idr_destroy(&mtd_idr); 2573 } 2574 2575 module_init(init_mtd); 2576 module_exit(cleanup_mtd); 2577 2578 MODULE_LICENSE("GPL"); 2579 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2580 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2581