xref: /linux/drivers/mtd/mtdcore.c (revision 7482c19173b7eb044d476b3444d7ee55bc669d03)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 #include <linux/root_dev.h>
32 
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/partitions.h>
35 
36 #include "mtdcore.h"
37 
38 struct backing_dev_info *mtd_bdi;
39 
40 #ifdef CONFIG_PM_SLEEP
41 
42 static int mtd_cls_suspend(struct device *dev)
43 {
44 	struct mtd_info *mtd = dev_get_drvdata(dev);
45 
46 	return mtd ? mtd_suspend(mtd) : 0;
47 }
48 
49 static int mtd_cls_resume(struct device *dev)
50 {
51 	struct mtd_info *mtd = dev_get_drvdata(dev);
52 
53 	if (mtd)
54 		mtd_resume(mtd);
55 	return 0;
56 }
57 
58 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
59 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60 #else
61 #define MTD_CLS_PM_OPS NULL
62 #endif
63 
64 static struct class mtd_class = {
65 	.name = "mtd",
66 	.owner = THIS_MODULE,
67 	.pm = MTD_CLS_PM_OPS,
68 };
69 
70 static DEFINE_IDR(mtd_idr);
71 
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73    should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 
77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89  * the mtd_info will probably want to use the release() hook...
90  */
91 static void mtd_release(struct device *dev)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 	dev_t index = MTD_DEVT(mtd->index);
95 
96 	/* remove /dev/mtdXro node */
97 	device_destroy(&mtd_class, index + 1);
98 }
99 
100 #define MTD_DEVICE_ATTR_RO(name) \
101 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
102 
103 #define MTD_DEVICE_ATTR_RW(name) \
104 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
105 
106 static ssize_t mtd_type_show(struct device *dev,
107 		struct device_attribute *attr, char *buf)
108 {
109 	struct mtd_info *mtd = dev_get_drvdata(dev);
110 	char *type;
111 
112 	switch (mtd->type) {
113 	case MTD_ABSENT:
114 		type = "absent";
115 		break;
116 	case MTD_RAM:
117 		type = "ram";
118 		break;
119 	case MTD_ROM:
120 		type = "rom";
121 		break;
122 	case MTD_NORFLASH:
123 		type = "nor";
124 		break;
125 	case MTD_NANDFLASH:
126 		type = "nand";
127 		break;
128 	case MTD_DATAFLASH:
129 		type = "dataflash";
130 		break;
131 	case MTD_UBIVOLUME:
132 		type = "ubi";
133 		break;
134 	case MTD_MLCNANDFLASH:
135 		type = "mlc-nand";
136 		break;
137 	default:
138 		type = "unknown";
139 	}
140 
141 	return sysfs_emit(buf, "%s\n", type);
142 }
143 MTD_DEVICE_ATTR_RO(type);
144 
145 static ssize_t mtd_flags_show(struct device *dev,
146 		struct device_attribute *attr, char *buf)
147 {
148 	struct mtd_info *mtd = dev_get_drvdata(dev);
149 
150 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
151 }
152 MTD_DEVICE_ATTR_RO(flags);
153 
154 static ssize_t mtd_size_show(struct device *dev,
155 		struct device_attribute *attr, char *buf)
156 {
157 	struct mtd_info *mtd = dev_get_drvdata(dev);
158 
159 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
160 }
161 MTD_DEVICE_ATTR_RO(size);
162 
163 static ssize_t mtd_erasesize_show(struct device *dev,
164 		struct device_attribute *attr, char *buf)
165 {
166 	struct mtd_info *mtd = dev_get_drvdata(dev);
167 
168 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
169 }
170 MTD_DEVICE_ATTR_RO(erasesize);
171 
172 static ssize_t mtd_writesize_show(struct device *dev,
173 		struct device_attribute *attr, char *buf)
174 {
175 	struct mtd_info *mtd = dev_get_drvdata(dev);
176 
177 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
178 }
179 MTD_DEVICE_ATTR_RO(writesize);
180 
181 static ssize_t mtd_subpagesize_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
186 
187 	return sysfs_emit(buf, "%u\n", subpagesize);
188 }
189 MTD_DEVICE_ATTR_RO(subpagesize);
190 
191 static ssize_t mtd_oobsize_show(struct device *dev,
192 		struct device_attribute *attr, char *buf)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 
196 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
197 }
198 MTD_DEVICE_ATTR_RO(oobsize);
199 
200 static ssize_t mtd_oobavail_show(struct device *dev,
201 				 struct device_attribute *attr, char *buf)
202 {
203 	struct mtd_info *mtd = dev_get_drvdata(dev);
204 
205 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
206 }
207 MTD_DEVICE_ATTR_RO(oobavail);
208 
209 static ssize_t mtd_numeraseregions_show(struct device *dev,
210 		struct device_attribute *attr, char *buf)
211 {
212 	struct mtd_info *mtd = dev_get_drvdata(dev);
213 
214 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
215 }
216 MTD_DEVICE_ATTR_RO(numeraseregions);
217 
218 static ssize_t mtd_name_show(struct device *dev,
219 		struct device_attribute *attr, char *buf)
220 {
221 	struct mtd_info *mtd = dev_get_drvdata(dev);
222 
223 	return sysfs_emit(buf, "%s\n", mtd->name);
224 }
225 MTD_DEVICE_ATTR_RO(name);
226 
227 static ssize_t mtd_ecc_strength_show(struct device *dev,
228 				     struct device_attribute *attr, char *buf)
229 {
230 	struct mtd_info *mtd = dev_get_drvdata(dev);
231 
232 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
233 }
234 MTD_DEVICE_ATTR_RO(ecc_strength);
235 
236 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
237 					  struct device_attribute *attr,
238 					  char *buf)
239 {
240 	struct mtd_info *mtd = dev_get_drvdata(dev);
241 
242 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
243 }
244 
245 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
246 					   struct device_attribute *attr,
247 					   const char *buf, size_t count)
248 {
249 	struct mtd_info *mtd = dev_get_drvdata(dev);
250 	unsigned int bitflip_threshold;
251 	int retval;
252 
253 	retval = kstrtouint(buf, 0, &bitflip_threshold);
254 	if (retval)
255 		return retval;
256 
257 	mtd->bitflip_threshold = bitflip_threshold;
258 	return count;
259 }
260 MTD_DEVICE_ATTR_RW(bitflip_threshold);
261 
262 static ssize_t mtd_ecc_step_size_show(struct device *dev,
263 		struct device_attribute *attr, char *buf)
264 {
265 	struct mtd_info *mtd = dev_get_drvdata(dev);
266 
267 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
268 
269 }
270 MTD_DEVICE_ATTR_RO(ecc_step_size);
271 
272 static ssize_t mtd_corrected_bits_show(struct device *dev,
273 		struct device_attribute *attr, char *buf)
274 {
275 	struct mtd_info *mtd = dev_get_drvdata(dev);
276 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
277 
278 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
279 }
280 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
281 
282 static ssize_t mtd_ecc_failures_show(struct device *dev,
283 		struct device_attribute *attr, char *buf)
284 {
285 	struct mtd_info *mtd = dev_get_drvdata(dev);
286 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 
288 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
289 }
290 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
291 
292 static ssize_t mtd_bad_blocks_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297 
298 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
299 }
300 MTD_DEVICE_ATTR_RO(bad_blocks);
301 
302 static ssize_t mtd_bbt_blocks_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
309 }
310 MTD_DEVICE_ATTR_RO(bbt_blocks);
311 
312 static struct attribute *mtd_attrs[] = {
313 	&dev_attr_type.attr,
314 	&dev_attr_flags.attr,
315 	&dev_attr_size.attr,
316 	&dev_attr_erasesize.attr,
317 	&dev_attr_writesize.attr,
318 	&dev_attr_subpagesize.attr,
319 	&dev_attr_oobsize.attr,
320 	&dev_attr_oobavail.attr,
321 	&dev_attr_numeraseregions.attr,
322 	&dev_attr_name.attr,
323 	&dev_attr_ecc_strength.attr,
324 	&dev_attr_ecc_step_size.attr,
325 	&dev_attr_corrected_bits.attr,
326 	&dev_attr_ecc_failures.attr,
327 	&dev_attr_bad_blocks.attr,
328 	&dev_attr_bbt_blocks.attr,
329 	&dev_attr_bitflip_threshold.attr,
330 	NULL,
331 };
332 ATTRIBUTE_GROUPS(mtd);
333 
334 static const struct device_type mtd_devtype = {
335 	.name		= "mtd",
336 	.groups		= mtd_groups,
337 	.release	= mtd_release,
338 };
339 
340 static bool mtd_expert_analysis_mode;
341 
342 #ifdef CONFIG_DEBUG_FS
343 bool mtd_check_expert_analysis_mode(void)
344 {
345 	const char *mtd_expert_analysis_warning =
346 		"Bad block checks have been entirely disabled.\n"
347 		"This is only reserved for post-mortem forensics and debug purposes.\n"
348 		"Never enable this mode if you do not know what you are doing!\n";
349 
350 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
351 }
352 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
353 #endif
354 
355 static struct dentry *dfs_dir_mtd;
356 
357 static void mtd_debugfs_populate(struct mtd_info *mtd)
358 {
359 	struct device *dev = &mtd->dev;
360 
361 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
362 		return;
363 
364 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
365 }
366 
367 #ifndef CONFIG_MMU
368 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
369 {
370 	switch (mtd->type) {
371 	case MTD_RAM:
372 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
373 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
374 	case MTD_ROM:
375 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
376 			NOMMU_MAP_READ;
377 	default:
378 		return NOMMU_MAP_COPY;
379 	}
380 }
381 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
382 #endif
383 
384 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
385 			       void *cmd)
386 {
387 	struct mtd_info *mtd;
388 
389 	mtd = container_of(n, struct mtd_info, reboot_notifier);
390 	mtd->_reboot(mtd);
391 
392 	return NOTIFY_DONE;
393 }
394 
395 /**
396  * mtd_wunit_to_pairing_info - get pairing information of a wunit
397  * @mtd: pointer to new MTD device info structure
398  * @wunit: write unit we are interested in
399  * @info: returned pairing information
400  *
401  * Retrieve pairing information associated to the wunit.
402  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
403  * paired together, and where programming a page may influence the page it is
404  * paired with.
405  * The notion of page is replaced by the term wunit (write-unit) to stay
406  * consistent with the ->writesize field.
407  *
408  * The @wunit argument can be extracted from an absolute offset using
409  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
410  * to @wunit.
411  *
412  * From the pairing info the MTD user can find all the wunits paired with
413  * @wunit using the following loop:
414  *
415  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
416  *	info.pair = i;
417  *	mtd_pairing_info_to_wunit(mtd, &info);
418  *	...
419  * }
420  */
421 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
422 			      struct mtd_pairing_info *info)
423 {
424 	struct mtd_info *master = mtd_get_master(mtd);
425 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
426 
427 	if (wunit < 0 || wunit >= npairs)
428 		return -EINVAL;
429 
430 	if (master->pairing && master->pairing->get_info)
431 		return master->pairing->get_info(master, wunit, info);
432 
433 	info->group = 0;
434 	info->pair = wunit;
435 
436 	return 0;
437 }
438 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
439 
440 /**
441  * mtd_pairing_info_to_wunit - get wunit from pairing information
442  * @mtd: pointer to new MTD device info structure
443  * @info: pairing information struct
444  *
445  * Returns a positive number representing the wunit associated to the info
446  * struct, or a negative error code.
447  *
448  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
449  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
450  * doc).
451  *
452  * It can also be used to only program the first page of each pair (i.e.
453  * page attached to group 0), which allows one to use an MLC NAND in
454  * software-emulated SLC mode:
455  *
456  * info.group = 0;
457  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
458  * for (info.pair = 0; info.pair < npairs; info.pair++) {
459  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
460  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
461  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
462  * }
463  */
464 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
465 			      const struct mtd_pairing_info *info)
466 {
467 	struct mtd_info *master = mtd_get_master(mtd);
468 	int ngroups = mtd_pairing_groups(master);
469 	int npairs = mtd_wunit_per_eb(master) / ngroups;
470 
471 	if (!info || info->pair < 0 || info->pair >= npairs ||
472 	    info->group < 0 || info->group >= ngroups)
473 		return -EINVAL;
474 
475 	if (master->pairing && master->pairing->get_wunit)
476 		return mtd->pairing->get_wunit(master, info);
477 
478 	return info->pair;
479 }
480 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
481 
482 /**
483  * mtd_pairing_groups - get the number of pairing groups
484  * @mtd: pointer to new MTD device info structure
485  *
486  * Returns the number of pairing groups.
487  *
488  * This number is usually equal to the number of bits exposed by a single
489  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
490  * to iterate over all pages of a given pair.
491  */
492 int mtd_pairing_groups(struct mtd_info *mtd)
493 {
494 	struct mtd_info *master = mtd_get_master(mtd);
495 
496 	if (!master->pairing || !master->pairing->ngroups)
497 		return 1;
498 
499 	return master->pairing->ngroups;
500 }
501 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
502 
503 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
504 			      void *val, size_t bytes)
505 {
506 	struct mtd_info *mtd = priv;
507 	size_t retlen;
508 	int err;
509 
510 	err = mtd_read(mtd, offset, bytes, &retlen, val);
511 	if (err && err != -EUCLEAN)
512 		return err;
513 
514 	return retlen == bytes ? 0 : -EIO;
515 }
516 
517 static int mtd_nvmem_add(struct mtd_info *mtd)
518 {
519 	struct device_node *node = mtd_get_of_node(mtd);
520 	struct nvmem_config config = {};
521 
522 	config.id = -1;
523 	config.dev = &mtd->dev;
524 	config.name = dev_name(&mtd->dev);
525 	config.owner = THIS_MODULE;
526 	config.reg_read = mtd_nvmem_reg_read;
527 	config.size = mtd->size;
528 	config.word_size = 1;
529 	config.stride = 1;
530 	config.read_only = true;
531 	config.root_only = true;
532 	config.ignore_wp = true;
533 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
534 	config.priv = mtd;
535 
536 	mtd->nvmem = nvmem_register(&config);
537 	if (IS_ERR(mtd->nvmem)) {
538 		/* Just ignore if there is no NVMEM support in the kernel */
539 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
540 			mtd->nvmem = NULL;
541 		} else {
542 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
543 			return PTR_ERR(mtd->nvmem);
544 		}
545 	}
546 
547 	return 0;
548 }
549 
550 static void mtd_check_of_node(struct mtd_info *mtd)
551 {
552 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
553 	const char *pname, *prefix = "partition-";
554 	int plen, mtd_name_len, offset, prefix_len;
555 
556 	/* Check if MTD already has a device node */
557 	if (mtd_get_of_node(mtd))
558 		return;
559 
560 	if (!mtd_is_partition(mtd))
561 		return;
562 
563 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
564 	if (!parent_dn)
565 		return;
566 
567 	if (mtd_is_partition(mtd->parent))
568 		partitions = of_node_get(parent_dn);
569 	else
570 		partitions = of_get_child_by_name(parent_dn, "partitions");
571 	if (!partitions)
572 		goto exit_parent;
573 
574 	prefix_len = strlen(prefix);
575 	mtd_name_len = strlen(mtd->name);
576 
577 	/* Search if a partition is defined with the same name */
578 	for_each_child_of_node(partitions, mtd_dn) {
579 		/* Skip partition with no/wrong prefix */
580 		if (!of_node_name_prefix(mtd_dn, prefix))
581 			continue;
582 
583 		/* Label have priority. Check that first */
584 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
585 			offset = 0;
586 		} else {
587 			pname = mtd_dn->name;
588 			offset = prefix_len;
589 		}
590 
591 		plen = strlen(pname) - offset;
592 		if (plen == mtd_name_len &&
593 		    !strncmp(mtd->name, pname + offset, plen)) {
594 			mtd_set_of_node(mtd, mtd_dn);
595 			break;
596 		}
597 	}
598 
599 	of_node_put(partitions);
600 exit_parent:
601 	of_node_put(parent_dn);
602 }
603 
604 /**
605  *	add_mtd_device - register an MTD device
606  *	@mtd: pointer to new MTD device info structure
607  *
608  *	Add a device to the list of MTD devices present in the system, and
609  *	notify each currently active MTD 'user' of its arrival. Returns
610  *	zero on success or non-zero on failure.
611  */
612 
613 int add_mtd_device(struct mtd_info *mtd)
614 {
615 	struct device_node *np = mtd_get_of_node(mtd);
616 	struct mtd_info *master = mtd_get_master(mtd);
617 	struct mtd_notifier *not;
618 	int i, error, ofidx;
619 
620 	/*
621 	 * May occur, for instance, on buggy drivers which call
622 	 * mtd_device_parse_register() multiple times on the same master MTD,
623 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
624 	 */
625 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
626 		return -EEXIST;
627 
628 	BUG_ON(mtd->writesize == 0);
629 
630 	/*
631 	 * MTD drivers should implement ->_{write,read}() or
632 	 * ->_{write,read}_oob(), but not both.
633 	 */
634 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
635 		    (mtd->_read && mtd->_read_oob)))
636 		return -EINVAL;
637 
638 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
639 		    !(mtd->flags & MTD_NO_ERASE)))
640 		return -EINVAL;
641 
642 	/*
643 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
644 	 * master is an MLC NAND and has a proper pairing scheme defined.
645 	 * We also reject masters that implement ->_writev() for now, because
646 	 * NAND controller drivers don't implement this hook, and adding the
647 	 * SLC -> MLC address/length conversion to this path is useless if we
648 	 * don't have a user.
649 	 */
650 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
651 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
652 	     !master->pairing || master->_writev))
653 		return -EINVAL;
654 
655 	mutex_lock(&mtd_table_mutex);
656 
657 	ofidx = -1;
658 	if (np)
659 		ofidx = of_alias_get_id(np, "mtd");
660 	if (ofidx >= 0)
661 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
662 	else
663 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
664 	if (i < 0) {
665 		error = i;
666 		goto fail_locked;
667 	}
668 
669 	mtd->index = i;
670 	mtd->usecount = 0;
671 
672 	/* default value if not set by driver */
673 	if (mtd->bitflip_threshold == 0)
674 		mtd->bitflip_threshold = mtd->ecc_strength;
675 
676 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
677 		int ngroups = mtd_pairing_groups(master);
678 
679 		mtd->erasesize /= ngroups;
680 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
681 			    mtd->erasesize;
682 	}
683 
684 	if (is_power_of_2(mtd->erasesize))
685 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
686 	else
687 		mtd->erasesize_shift = 0;
688 
689 	if (is_power_of_2(mtd->writesize))
690 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
691 	else
692 		mtd->writesize_shift = 0;
693 
694 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
695 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
696 
697 	/* Some chips always power up locked. Unlock them now */
698 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
699 		error = mtd_unlock(mtd, 0, mtd->size);
700 		if (error && error != -EOPNOTSUPP)
701 			printk(KERN_WARNING
702 			       "%s: unlock failed, writes may not work\n",
703 			       mtd->name);
704 		/* Ignore unlock failures? */
705 		error = 0;
706 	}
707 
708 	/* Caller should have set dev.parent to match the
709 	 * physical device, if appropriate.
710 	 */
711 	mtd->dev.type = &mtd_devtype;
712 	mtd->dev.class = &mtd_class;
713 	mtd->dev.devt = MTD_DEVT(i);
714 	dev_set_name(&mtd->dev, "mtd%d", i);
715 	dev_set_drvdata(&mtd->dev, mtd);
716 	mtd_check_of_node(mtd);
717 	of_node_get(mtd_get_of_node(mtd));
718 	error = device_register(&mtd->dev);
719 	if (error) {
720 		put_device(&mtd->dev);
721 		goto fail_added;
722 	}
723 
724 	/* Add the nvmem provider */
725 	error = mtd_nvmem_add(mtd);
726 	if (error)
727 		goto fail_nvmem_add;
728 
729 	mtd_debugfs_populate(mtd);
730 
731 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
732 		      "mtd%dro", i);
733 
734 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
735 	/* No need to get a refcount on the module containing
736 	   the notifier, since we hold the mtd_table_mutex */
737 	list_for_each_entry(not, &mtd_notifiers, list)
738 		not->add(mtd);
739 
740 	mutex_unlock(&mtd_table_mutex);
741 
742 	if (of_find_property(mtd_get_of_node(mtd), "linux,rootfs", NULL)) {
743 		if (IS_BUILTIN(CONFIG_MTD)) {
744 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
745 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
746 		} else {
747 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
748 				mtd->index, mtd->name);
749 		}
750 	}
751 
752 	/* We _know_ we aren't being removed, because
753 	   our caller is still holding us here. So none
754 	   of this try_ nonsense, and no bitching about it
755 	   either. :) */
756 	__module_get(THIS_MODULE);
757 	return 0;
758 
759 fail_nvmem_add:
760 	device_unregister(&mtd->dev);
761 fail_added:
762 	of_node_put(mtd_get_of_node(mtd));
763 	idr_remove(&mtd_idr, i);
764 fail_locked:
765 	mutex_unlock(&mtd_table_mutex);
766 	return error;
767 }
768 
769 /**
770  *	del_mtd_device - unregister an MTD device
771  *	@mtd: pointer to MTD device info structure
772  *
773  *	Remove a device from the list of MTD devices present in the system,
774  *	and notify each currently active MTD 'user' of its departure.
775  *	Returns zero on success or 1 on failure, which currently will happen
776  *	if the requested device does not appear to be present in the list.
777  */
778 
779 int del_mtd_device(struct mtd_info *mtd)
780 {
781 	int ret;
782 	struct mtd_notifier *not;
783 	struct device_node *mtd_of_node;
784 
785 	mutex_lock(&mtd_table_mutex);
786 
787 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
788 		ret = -ENODEV;
789 		goto out_error;
790 	}
791 
792 	/* No need to get a refcount on the module containing
793 		the notifier, since we hold the mtd_table_mutex */
794 	list_for_each_entry(not, &mtd_notifiers, list)
795 		not->remove(mtd);
796 
797 	if (mtd->usecount) {
798 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
799 		       mtd->index, mtd->name, mtd->usecount);
800 		ret = -EBUSY;
801 	} else {
802 		mtd_of_node = mtd_get_of_node(mtd);
803 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
804 
805 		/* Try to remove the NVMEM provider */
806 		nvmem_unregister(mtd->nvmem);
807 
808 		device_unregister(&mtd->dev);
809 
810 		/* Clear dev so mtd can be safely re-registered later if desired */
811 		memset(&mtd->dev, 0, sizeof(mtd->dev));
812 
813 		idr_remove(&mtd_idr, mtd->index);
814 		of_node_put(mtd_of_node);
815 
816 		module_put(THIS_MODULE);
817 		ret = 0;
818 	}
819 
820 out_error:
821 	mutex_unlock(&mtd_table_mutex);
822 	return ret;
823 }
824 
825 /*
826  * Set a few defaults based on the parent devices, if not provided by the
827  * driver
828  */
829 static void mtd_set_dev_defaults(struct mtd_info *mtd)
830 {
831 	if (mtd->dev.parent) {
832 		if (!mtd->owner && mtd->dev.parent->driver)
833 			mtd->owner = mtd->dev.parent->driver->owner;
834 		if (!mtd->name)
835 			mtd->name = dev_name(mtd->dev.parent);
836 	} else {
837 		pr_debug("mtd device won't show a device symlink in sysfs\n");
838 	}
839 
840 	INIT_LIST_HEAD(&mtd->partitions);
841 	mutex_init(&mtd->master.partitions_lock);
842 	mutex_init(&mtd->master.chrdev_lock);
843 }
844 
845 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
846 {
847 	struct otp_info *info;
848 	ssize_t size = 0;
849 	unsigned int i;
850 	size_t retlen;
851 	int ret;
852 
853 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
854 	if (!info)
855 		return -ENOMEM;
856 
857 	if (is_user)
858 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
859 	else
860 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
861 	if (ret)
862 		goto err;
863 
864 	for (i = 0; i < retlen / sizeof(*info); i++)
865 		size += info[i].length;
866 
867 	kfree(info);
868 	return size;
869 
870 err:
871 	kfree(info);
872 
873 	/* ENODATA means there is no OTP region. */
874 	return ret == -ENODATA ? 0 : ret;
875 }
876 
877 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
878 						   const char *compatible,
879 						   int size,
880 						   nvmem_reg_read_t reg_read)
881 {
882 	struct nvmem_device *nvmem = NULL;
883 	struct nvmem_config config = {};
884 	struct device_node *np;
885 
886 	/* DT binding is optional */
887 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
888 
889 	/* OTP nvmem will be registered on the physical device */
890 	config.dev = mtd->dev.parent;
891 	config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
892 	config.id = NVMEM_DEVID_NONE;
893 	config.owner = THIS_MODULE;
894 	config.type = NVMEM_TYPE_OTP;
895 	config.root_only = true;
896 	config.ignore_wp = true;
897 	config.reg_read = reg_read;
898 	config.size = size;
899 	config.of_node = np;
900 	config.priv = mtd;
901 
902 	nvmem = nvmem_register(&config);
903 	/* Just ignore if there is no NVMEM support in the kernel */
904 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
905 		nvmem = NULL;
906 
907 	of_node_put(np);
908 	kfree(config.name);
909 
910 	return nvmem;
911 }
912 
913 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
914 				       void *val, size_t bytes)
915 {
916 	struct mtd_info *mtd = priv;
917 	size_t retlen;
918 	int ret;
919 
920 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
921 	if (ret)
922 		return ret;
923 
924 	return retlen == bytes ? 0 : -EIO;
925 }
926 
927 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
928 				       void *val, size_t bytes)
929 {
930 	struct mtd_info *mtd = priv;
931 	size_t retlen;
932 	int ret;
933 
934 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
935 	if (ret)
936 		return ret;
937 
938 	return retlen == bytes ? 0 : -EIO;
939 }
940 
941 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
942 {
943 	struct nvmem_device *nvmem;
944 	ssize_t size;
945 	int err;
946 
947 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
948 		size = mtd_otp_size(mtd, true);
949 		if (size < 0)
950 			return size;
951 
952 		if (size > 0) {
953 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
954 						       mtd_nvmem_user_otp_reg_read);
955 			if (IS_ERR(nvmem)) {
956 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
957 				return PTR_ERR(nvmem);
958 			}
959 			mtd->otp_user_nvmem = nvmem;
960 		}
961 	}
962 
963 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
964 		size = mtd_otp_size(mtd, false);
965 		if (size < 0) {
966 			err = size;
967 			goto err;
968 		}
969 
970 		if (size > 0) {
971 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
972 						       mtd_nvmem_fact_otp_reg_read);
973 			if (IS_ERR(nvmem)) {
974 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
975 				err = PTR_ERR(nvmem);
976 				goto err;
977 			}
978 			mtd->otp_factory_nvmem = nvmem;
979 		}
980 	}
981 
982 	return 0;
983 
984 err:
985 	nvmem_unregister(mtd->otp_user_nvmem);
986 	return err;
987 }
988 
989 /**
990  * mtd_device_parse_register - parse partitions and register an MTD device.
991  *
992  * @mtd: the MTD device to register
993  * @types: the list of MTD partition probes to try, see
994  *         'parse_mtd_partitions()' for more information
995  * @parser_data: MTD partition parser-specific data
996  * @parts: fallback partition information to register, if parsing fails;
997  *         only valid if %nr_parts > %0
998  * @nr_parts: the number of partitions in parts, if zero then the full
999  *            MTD device is registered if no partition info is found
1000  *
1001  * This function aggregates MTD partitions parsing (done by
1002  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1003  * basically follows the most common pattern found in many MTD drivers:
1004  *
1005  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1006  *   registered first.
1007  * * Then It tries to probe partitions on MTD device @mtd using parsers
1008  *   specified in @types (if @types is %NULL, then the default list of parsers
1009  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1010  *   found this functions tries to fallback to information specified in
1011  *   @parts/@nr_parts.
1012  * * If no partitions were found this function just registers the MTD device
1013  *   @mtd and exits.
1014  *
1015  * Returns zero in case of success and a negative error code in case of failure.
1016  */
1017 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1018 			      struct mtd_part_parser_data *parser_data,
1019 			      const struct mtd_partition *parts,
1020 			      int nr_parts)
1021 {
1022 	int ret;
1023 
1024 	mtd_set_dev_defaults(mtd);
1025 
1026 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1027 		ret = add_mtd_device(mtd);
1028 		if (ret)
1029 			return ret;
1030 	}
1031 
1032 	/* Prefer parsed partitions over driver-provided fallback */
1033 	ret = parse_mtd_partitions(mtd, types, parser_data);
1034 	if (ret == -EPROBE_DEFER)
1035 		goto out;
1036 
1037 	if (ret > 0)
1038 		ret = 0;
1039 	else if (nr_parts)
1040 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1041 	else if (!device_is_registered(&mtd->dev))
1042 		ret = add_mtd_device(mtd);
1043 	else
1044 		ret = 0;
1045 
1046 	if (ret)
1047 		goto out;
1048 
1049 	/*
1050 	 * FIXME: some drivers unfortunately call this function more than once.
1051 	 * So we have to check if we've already assigned the reboot notifier.
1052 	 *
1053 	 * Generally, we can make multiple calls work for most cases, but it
1054 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1055 	 * cmdlineparts will register partitions more than once).
1056 	 */
1057 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1058 		  "MTD already registered\n");
1059 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1060 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1061 		register_reboot_notifier(&mtd->reboot_notifier);
1062 	}
1063 
1064 	ret = mtd_otp_nvmem_add(mtd);
1065 
1066 out:
1067 	if (ret && device_is_registered(&mtd->dev))
1068 		del_mtd_device(mtd);
1069 
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1073 
1074 /**
1075  * mtd_device_unregister - unregister an existing MTD device.
1076  *
1077  * @master: the MTD device to unregister.  This will unregister both the master
1078  *          and any partitions if registered.
1079  */
1080 int mtd_device_unregister(struct mtd_info *master)
1081 {
1082 	int err;
1083 
1084 	if (master->_reboot) {
1085 		unregister_reboot_notifier(&master->reboot_notifier);
1086 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1087 	}
1088 
1089 	nvmem_unregister(master->otp_user_nvmem);
1090 	nvmem_unregister(master->otp_factory_nvmem);
1091 
1092 	err = del_mtd_partitions(master);
1093 	if (err)
1094 		return err;
1095 
1096 	if (!device_is_registered(&master->dev))
1097 		return 0;
1098 
1099 	return del_mtd_device(master);
1100 }
1101 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1102 
1103 /**
1104  *	register_mtd_user - register a 'user' of MTD devices.
1105  *	@new: pointer to notifier info structure
1106  *
1107  *	Registers a pair of callbacks function to be called upon addition
1108  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1109  *	invoked for each MTD device currently present in the system.
1110  */
1111 void register_mtd_user (struct mtd_notifier *new)
1112 {
1113 	struct mtd_info *mtd;
1114 
1115 	mutex_lock(&mtd_table_mutex);
1116 
1117 	list_add(&new->list, &mtd_notifiers);
1118 
1119 	__module_get(THIS_MODULE);
1120 
1121 	mtd_for_each_device(mtd)
1122 		new->add(mtd);
1123 
1124 	mutex_unlock(&mtd_table_mutex);
1125 }
1126 EXPORT_SYMBOL_GPL(register_mtd_user);
1127 
1128 /**
1129  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1130  *	@old: pointer to notifier info structure
1131  *
1132  *	Removes a callback function pair from the list of 'users' to be
1133  *	notified upon addition or removal of MTD devices. Causes the
1134  *	'remove' callback to be immediately invoked for each MTD device
1135  *	currently present in the system.
1136  */
1137 int unregister_mtd_user (struct mtd_notifier *old)
1138 {
1139 	struct mtd_info *mtd;
1140 
1141 	mutex_lock(&mtd_table_mutex);
1142 
1143 	module_put(THIS_MODULE);
1144 
1145 	mtd_for_each_device(mtd)
1146 		old->remove(mtd);
1147 
1148 	list_del(&old->list);
1149 	mutex_unlock(&mtd_table_mutex);
1150 	return 0;
1151 }
1152 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1153 
1154 /**
1155  *	get_mtd_device - obtain a validated handle for an MTD device
1156  *	@mtd: last known address of the required MTD device
1157  *	@num: internal device number of the required MTD device
1158  *
1159  *	Given a number and NULL address, return the num'th entry in the device
1160  *	table, if any.	Given an address and num == -1, search the device table
1161  *	for a device with that address and return if it's still present. Given
1162  *	both, return the num'th driver only if its address matches. Return
1163  *	error code if not.
1164  */
1165 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1166 {
1167 	struct mtd_info *ret = NULL, *other;
1168 	int err = -ENODEV;
1169 
1170 	mutex_lock(&mtd_table_mutex);
1171 
1172 	if (num == -1) {
1173 		mtd_for_each_device(other) {
1174 			if (other == mtd) {
1175 				ret = mtd;
1176 				break;
1177 			}
1178 		}
1179 	} else if (num >= 0) {
1180 		ret = idr_find(&mtd_idr, num);
1181 		if (mtd && mtd != ret)
1182 			ret = NULL;
1183 	}
1184 
1185 	if (!ret) {
1186 		ret = ERR_PTR(err);
1187 		goto out;
1188 	}
1189 
1190 	err = __get_mtd_device(ret);
1191 	if (err)
1192 		ret = ERR_PTR(err);
1193 out:
1194 	mutex_unlock(&mtd_table_mutex);
1195 	return ret;
1196 }
1197 EXPORT_SYMBOL_GPL(get_mtd_device);
1198 
1199 
1200 int __get_mtd_device(struct mtd_info *mtd)
1201 {
1202 	struct mtd_info *master = mtd_get_master(mtd);
1203 	int err;
1204 
1205 	if (!try_module_get(master->owner))
1206 		return -ENODEV;
1207 
1208 	if (master->_get_device) {
1209 		err = master->_get_device(mtd);
1210 
1211 		if (err) {
1212 			module_put(master->owner);
1213 			return err;
1214 		}
1215 	}
1216 
1217 	master->usecount++;
1218 
1219 	while (mtd->parent) {
1220 		mtd->usecount++;
1221 		mtd = mtd->parent;
1222 	}
1223 
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(__get_mtd_device);
1227 
1228 /**
1229  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1230  *
1231  * @np: device tree node
1232  */
1233 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1234 {
1235 	struct mtd_info *mtd = NULL;
1236 	struct mtd_info *tmp;
1237 	int err;
1238 
1239 	mutex_lock(&mtd_table_mutex);
1240 
1241 	err = -EPROBE_DEFER;
1242 	mtd_for_each_device(tmp) {
1243 		if (mtd_get_of_node(tmp) == np) {
1244 			mtd = tmp;
1245 			err = __get_mtd_device(mtd);
1246 			break;
1247 		}
1248 	}
1249 
1250 	mutex_unlock(&mtd_table_mutex);
1251 
1252 	return err ? ERR_PTR(err) : mtd;
1253 }
1254 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1255 
1256 /**
1257  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1258  *	device name
1259  *	@name: MTD device name to open
1260  *
1261  * 	This function returns MTD device description structure in case of
1262  * 	success and an error code in case of failure.
1263  */
1264 struct mtd_info *get_mtd_device_nm(const char *name)
1265 {
1266 	int err = -ENODEV;
1267 	struct mtd_info *mtd = NULL, *other;
1268 
1269 	mutex_lock(&mtd_table_mutex);
1270 
1271 	mtd_for_each_device(other) {
1272 		if (!strcmp(name, other->name)) {
1273 			mtd = other;
1274 			break;
1275 		}
1276 	}
1277 
1278 	if (!mtd)
1279 		goto out_unlock;
1280 
1281 	err = __get_mtd_device(mtd);
1282 	if (err)
1283 		goto out_unlock;
1284 
1285 	mutex_unlock(&mtd_table_mutex);
1286 	return mtd;
1287 
1288 out_unlock:
1289 	mutex_unlock(&mtd_table_mutex);
1290 	return ERR_PTR(err);
1291 }
1292 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1293 
1294 void put_mtd_device(struct mtd_info *mtd)
1295 {
1296 	mutex_lock(&mtd_table_mutex);
1297 	__put_mtd_device(mtd);
1298 	mutex_unlock(&mtd_table_mutex);
1299 
1300 }
1301 EXPORT_SYMBOL_GPL(put_mtd_device);
1302 
1303 void __put_mtd_device(struct mtd_info *mtd)
1304 {
1305 	struct mtd_info *master = mtd_get_master(mtd);
1306 
1307 	while (mtd->parent) {
1308 		--mtd->usecount;
1309 		BUG_ON(mtd->usecount < 0);
1310 		mtd = mtd->parent;
1311 	}
1312 
1313 	master->usecount--;
1314 
1315 	if (master->_put_device)
1316 		master->_put_device(master);
1317 
1318 	module_put(master->owner);
1319 }
1320 EXPORT_SYMBOL_GPL(__put_mtd_device);
1321 
1322 /*
1323  * Erase is an synchronous operation. Device drivers are epected to return a
1324  * negative error code if the operation failed and update instr->fail_addr
1325  * to point the portion that was not properly erased.
1326  */
1327 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1328 {
1329 	struct mtd_info *master = mtd_get_master(mtd);
1330 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1331 	struct erase_info adjinstr;
1332 	int ret;
1333 
1334 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1335 	adjinstr = *instr;
1336 
1337 	if (!mtd->erasesize || !master->_erase)
1338 		return -ENOTSUPP;
1339 
1340 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1341 		return -EINVAL;
1342 	if (!(mtd->flags & MTD_WRITEABLE))
1343 		return -EROFS;
1344 
1345 	if (!instr->len)
1346 		return 0;
1347 
1348 	ledtrig_mtd_activity();
1349 
1350 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1351 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1352 				master->erasesize;
1353 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1354 				master->erasesize) -
1355 			       adjinstr.addr;
1356 	}
1357 
1358 	adjinstr.addr += mst_ofs;
1359 
1360 	ret = master->_erase(master, &adjinstr);
1361 
1362 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1363 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1364 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1365 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1366 							 master);
1367 			instr->fail_addr *= mtd->erasesize;
1368 		}
1369 	}
1370 
1371 	return ret;
1372 }
1373 EXPORT_SYMBOL_GPL(mtd_erase);
1374 
1375 /*
1376  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1377  */
1378 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1379 	      void **virt, resource_size_t *phys)
1380 {
1381 	struct mtd_info *master = mtd_get_master(mtd);
1382 
1383 	*retlen = 0;
1384 	*virt = NULL;
1385 	if (phys)
1386 		*phys = 0;
1387 	if (!master->_point)
1388 		return -EOPNOTSUPP;
1389 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1390 		return -EINVAL;
1391 	if (!len)
1392 		return 0;
1393 
1394 	from = mtd_get_master_ofs(mtd, from);
1395 	return master->_point(master, from, len, retlen, virt, phys);
1396 }
1397 EXPORT_SYMBOL_GPL(mtd_point);
1398 
1399 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1400 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1401 {
1402 	struct mtd_info *master = mtd_get_master(mtd);
1403 
1404 	if (!master->_unpoint)
1405 		return -EOPNOTSUPP;
1406 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1407 		return -EINVAL;
1408 	if (!len)
1409 		return 0;
1410 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1411 }
1412 EXPORT_SYMBOL_GPL(mtd_unpoint);
1413 
1414 /*
1415  * Allow NOMMU mmap() to directly map the device (if not NULL)
1416  * - return the address to which the offset maps
1417  * - return -ENOSYS to indicate refusal to do the mapping
1418  */
1419 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1420 				    unsigned long offset, unsigned long flags)
1421 {
1422 	size_t retlen;
1423 	void *virt;
1424 	int ret;
1425 
1426 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1427 	if (ret)
1428 		return ret;
1429 	if (retlen != len) {
1430 		mtd_unpoint(mtd, offset, retlen);
1431 		return -ENOSYS;
1432 	}
1433 	return (unsigned long)virt;
1434 }
1435 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1436 
1437 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1438 				 const struct mtd_ecc_stats *old_stats)
1439 {
1440 	struct mtd_ecc_stats diff;
1441 
1442 	if (master == mtd)
1443 		return;
1444 
1445 	diff = master->ecc_stats;
1446 	diff.failed -= old_stats->failed;
1447 	diff.corrected -= old_stats->corrected;
1448 
1449 	while (mtd->parent) {
1450 		mtd->ecc_stats.failed += diff.failed;
1451 		mtd->ecc_stats.corrected += diff.corrected;
1452 		mtd = mtd->parent;
1453 	}
1454 }
1455 
1456 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1457 	     u_char *buf)
1458 {
1459 	struct mtd_oob_ops ops = {
1460 		.len = len,
1461 		.datbuf = buf,
1462 	};
1463 	int ret;
1464 
1465 	ret = mtd_read_oob(mtd, from, &ops);
1466 	*retlen = ops.retlen;
1467 
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL_GPL(mtd_read);
1471 
1472 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1473 	      const u_char *buf)
1474 {
1475 	struct mtd_oob_ops ops = {
1476 		.len = len,
1477 		.datbuf = (u8 *)buf,
1478 	};
1479 	int ret;
1480 
1481 	ret = mtd_write_oob(mtd, to, &ops);
1482 	*retlen = ops.retlen;
1483 
1484 	return ret;
1485 }
1486 EXPORT_SYMBOL_GPL(mtd_write);
1487 
1488 /*
1489  * In blackbox flight recorder like scenarios we want to make successful writes
1490  * in interrupt context. panic_write() is only intended to be called when its
1491  * known the kernel is about to panic and we need the write to succeed. Since
1492  * the kernel is not going to be running for much longer, this function can
1493  * break locks and delay to ensure the write succeeds (but not sleep).
1494  */
1495 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1496 		    const u_char *buf)
1497 {
1498 	struct mtd_info *master = mtd_get_master(mtd);
1499 
1500 	*retlen = 0;
1501 	if (!master->_panic_write)
1502 		return -EOPNOTSUPP;
1503 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1504 		return -EINVAL;
1505 	if (!(mtd->flags & MTD_WRITEABLE))
1506 		return -EROFS;
1507 	if (!len)
1508 		return 0;
1509 	if (!master->oops_panic_write)
1510 		master->oops_panic_write = true;
1511 
1512 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1513 				    retlen, buf);
1514 }
1515 EXPORT_SYMBOL_GPL(mtd_panic_write);
1516 
1517 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1518 			     struct mtd_oob_ops *ops)
1519 {
1520 	/*
1521 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1522 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1523 	 *  this case.
1524 	 */
1525 	if (!ops->datbuf)
1526 		ops->len = 0;
1527 
1528 	if (!ops->oobbuf)
1529 		ops->ooblen = 0;
1530 
1531 	if (offs < 0 || offs + ops->len > mtd->size)
1532 		return -EINVAL;
1533 
1534 	if (ops->ooblen) {
1535 		size_t maxooblen;
1536 
1537 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1538 			return -EINVAL;
1539 
1540 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1541 				      mtd_div_by_ws(offs, mtd)) *
1542 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1543 		if (ops->ooblen > maxooblen)
1544 			return -EINVAL;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1551 			    struct mtd_oob_ops *ops)
1552 {
1553 	struct mtd_info *master = mtd_get_master(mtd);
1554 	int ret;
1555 
1556 	from = mtd_get_master_ofs(mtd, from);
1557 	if (master->_read_oob)
1558 		ret = master->_read_oob(master, from, ops);
1559 	else
1560 		ret = master->_read(master, from, ops->len, &ops->retlen,
1561 				    ops->datbuf);
1562 
1563 	return ret;
1564 }
1565 
1566 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1567 			     struct mtd_oob_ops *ops)
1568 {
1569 	struct mtd_info *master = mtd_get_master(mtd);
1570 	int ret;
1571 
1572 	to = mtd_get_master_ofs(mtd, to);
1573 	if (master->_write_oob)
1574 		ret = master->_write_oob(master, to, ops);
1575 	else
1576 		ret = master->_write(master, to, ops->len, &ops->retlen,
1577 				     ops->datbuf);
1578 
1579 	return ret;
1580 }
1581 
1582 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1583 			       struct mtd_oob_ops *ops)
1584 {
1585 	struct mtd_info *master = mtd_get_master(mtd);
1586 	int ngroups = mtd_pairing_groups(master);
1587 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1588 	struct mtd_oob_ops adjops = *ops;
1589 	unsigned int wunit, oobavail;
1590 	struct mtd_pairing_info info;
1591 	int max_bitflips = 0;
1592 	u32 ebofs, pageofs;
1593 	loff_t base, pos;
1594 
1595 	ebofs = mtd_mod_by_eb(start, mtd);
1596 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1597 	info.group = 0;
1598 	info.pair = mtd_div_by_ws(ebofs, mtd);
1599 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1600 	oobavail = mtd_oobavail(mtd, ops);
1601 
1602 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1603 		int ret;
1604 
1605 		if (info.pair >= npairs) {
1606 			info.pair = 0;
1607 			base += master->erasesize;
1608 		}
1609 
1610 		wunit = mtd_pairing_info_to_wunit(master, &info);
1611 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1612 
1613 		adjops.len = ops->len - ops->retlen;
1614 		if (adjops.len > mtd->writesize - pageofs)
1615 			adjops.len = mtd->writesize - pageofs;
1616 
1617 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1618 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1619 			adjops.ooblen = oobavail - adjops.ooboffs;
1620 
1621 		if (read) {
1622 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1623 			if (ret > 0)
1624 				max_bitflips = max(max_bitflips, ret);
1625 		} else {
1626 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1627 		}
1628 
1629 		if (ret < 0)
1630 			return ret;
1631 
1632 		max_bitflips = max(max_bitflips, ret);
1633 		ops->retlen += adjops.retlen;
1634 		ops->oobretlen += adjops.oobretlen;
1635 		adjops.datbuf += adjops.retlen;
1636 		adjops.oobbuf += adjops.oobretlen;
1637 		adjops.ooboffs = 0;
1638 		pageofs = 0;
1639 		info.pair++;
1640 	}
1641 
1642 	return max_bitflips;
1643 }
1644 
1645 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1646 {
1647 	struct mtd_info *master = mtd_get_master(mtd);
1648 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1649 	int ret_code;
1650 
1651 	ops->retlen = ops->oobretlen = 0;
1652 
1653 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1654 	if (ret_code)
1655 		return ret_code;
1656 
1657 	ledtrig_mtd_activity();
1658 
1659 	/* Check the validity of a potential fallback on mtd->_read */
1660 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1661 		return -EOPNOTSUPP;
1662 
1663 	if (ops->stats)
1664 		memset(ops->stats, 0, sizeof(*ops->stats));
1665 
1666 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1667 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1668 	else
1669 		ret_code = mtd_read_oob_std(mtd, from, ops);
1670 
1671 	mtd_update_ecc_stats(mtd, master, &old_stats);
1672 
1673 	/*
1674 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1675 	 * similar to mtd->_read(), returning a non-negative integer
1676 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1677 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1678 	 */
1679 	if (unlikely(ret_code < 0))
1680 		return ret_code;
1681 	if (mtd->ecc_strength == 0)
1682 		return 0;	/* device lacks ecc */
1683 	if (ops->stats)
1684 		ops->stats->max_bitflips = ret_code;
1685 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1686 }
1687 EXPORT_SYMBOL_GPL(mtd_read_oob);
1688 
1689 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1690 				struct mtd_oob_ops *ops)
1691 {
1692 	struct mtd_info *master = mtd_get_master(mtd);
1693 	int ret;
1694 
1695 	ops->retlen = ops->oobretlen = 0;
1696 
1697 	if (!(mtd->flags & MTD_WRITEABLE))
1698 		return -EROFS;
1699 
1700 	ret = mtd_check_oob_ops(mtd, to, ops);
1701 	if (ret)
1702 		return ret;
1703 
1704 	ledtrig_mtd_activity();
1705 
1706 	/* Check the validity of a potential fallback on mtd->_write */
1707 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1708 		return -EOPNOTSUPP;
1709 
1710 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1711 		return mtd_io_emulated_slc(mtd, to, false, ops);
1712 
1713 	return mtd_write_oob_std(mtd, to, ops);
1714 }
1715 EXPORT_SYMBOL_GPL(mtd_write_oob);
1716 
1717 /**
1718  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1719  * @mtd: MTD device structure
1720  * @section: ECC section. Depending on the layout you may have all the ECC
1721  *	     bytes stored in a single contiguous section, or one section
1722  *	     per ECC chunk (and sometime several sections for a single ECC
1723  *	     ECC chunk)
1724  * @oobecc: OOB region struct filled with the appropriate ECC position
1725  *	    information
1726  *
1727  * This function returns ECC section information in the OOB area. If you want
1728  * to get all the ECC bytes information, then you should call
1729  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1730  *
1731  * Returns zero on success, a negative error code otherwise.
1732  */
1733 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1734 		      struct mtd_oob_region *oobecc)
1735 {
1736 	struct mtd_info *master = mtd_get_master(mtd);
1737 
1738 	memset(oobecc, 0, sizeof(*oobecc));
1739 
1740 	if (!master || section < 0)
1741 		return -EINVAL;
1742 
1743 	if (!master->ooblayout || !master->ooblayout->ecc)
1744 		return -ENOTSUPP;
1745 
1746 	return master->ooblayout->ecc(master, section, oobecc);
1747 }
1748 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1749 
1750 /**
1751  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1752  *			section
1753  * @mtd: MTD device structure
1754  * @section: Free section you are interested in. Depending on the layout
1755  *	     you may have all the free bytes stored in a single contiguous
1756  *	     section, or one section per ECC chunk plus an extra section
1757  *	     for the remaining bytes (or other funky layout).
1758  * @oobfree: OOB region struct filled with the appropriate free position
1759  *	     information
1760  *
1761  * This function returns free bytes position in the OOB area. If you want
1762  * to get all the free bytes information, then you should call
1763  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1764  *
1765  * Returns zero on success, a negative error code otherwise.
1766  */
1767 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1768 		       struct mtd_oob_region *oobfree)
1769 {
1770 	struct mtd_info *master = mtd_get_master(mtd);
1771 
1772 	memset(oobfree, 0, sizeof(*oobfree));
1773 
1774 	if (!master || section < 0)
1775 		return -EINVAL;
1776 
1777 	if (!master->ooblayout || !master->ooblayout->free)
1778 		return -ENOTSUPP;
1779 
1780 	return master->ooblayout->free(master, section, oobfree);
1781 }
1782 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1783 
1784 /**
1785  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1786  * @mtd: mtd info structure
1787  * @byte: the byte we are searching for
1788  * @sectionp: pointer where the section id will be stored
1789  * @oobregion: used to retrieve the ECC position
1790  * @iter: iterator function. Should be either mtd_ooblayout_free or
1791  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1792  *
1793  * This function returns the section id and oobregion information of a
1794  * specific byte. For example, say you want to know where the 4th ECC byte is
1795  * stored, you'll use:
1796  *
1797  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1798  *
1799  * Returns zero on success, a negative error code otherwise.
1800  */
1801 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1802 				int *sectionp, struct mtd_oob_region *oobregion,
1803 				int (*iter)(struct mtd_info *,
1804 					    int section,
1805 					    struct mtd_oob_region *oobregion))
1806 {
1807 	int pos = 0, ret, section = 0;
1808 
1809 	memset(oobregion, 0, sizeof(*oobregion));
1810 
1811 	while (1) {
1812 		ret = iter(mtd, section, oobregion);
1813 		if (ret)
1814 			return ret;
1815 
1816 		if (pos + oobregion->length > byte)
1817 			break;
1818 
1819 		pos += oobregion->length;
1820 		section++;
1821 	}
1822 
1823 	/*
1824 	 * Adjust region info to make it start at the beginning at the
1825 	 * 'start' ECC byte.
1826 	 */
1827 	oobregion->offset += byte - pos;
1828 	oobregion->length -= byte - pos;
1829 	*sectionp = section;
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1836  *				  ECC byte
1837  * @mtd: mtd info structure
1838  * @eccbyte: the byte we are searching for
1839  * @section: pointer where the section id will be stored
1840  * @oobregion: OOB region information
1841  *
1842  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1843  * byte.
1844  *
1845  * Returns zero on success, a negative error code otherwise.
1846  */
1847 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1848 				 int *section,
1849 				 struct mtd_oob_region *oobregion)
1850 {
1851 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1852 					 mtd_ooblayout_ecc);
1853 }
1854 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1855 
1856 /**
1857  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1858  * @mtd: mtd info structure
1859  * @buf: destination buffer to store OOB bytes
1860  * @oobbuf: OOB buffer
1861  * @start: first byte to retrieve
1862  * @nbytes: number of bytes to retrieve
1863  * @iter: section iterator
1864  *
1865  * Extract bytes attached to a specific category (ECC or free)
1866  * from the OOB buffer and copy them into buf.
1867  *
1868  * Returns zero on success, a negative error code otherwise.
1869  */
1870 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1871 				const u8 *oobbuf, int start, int nbytes,
1872 				int (*iter)(struct mtd_info *,
1873 					    int section,
1874 					    struct mtd_oob_region *oobregion))
1875 {
1876 	struct mtd_oob_region oobregion;
1877 	int section, ret;
1878 
1879 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1880 					&oobregion, iter);
1881 
1882 	while (!ret) {
1883 		int cnt;
1884 
1885 		cnt = min_t(int, nbytes, oobregion.length);
1886 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1887 		buf += cnt;
1888 		nbytes -= cnt;
1889 
1890 		if (!nbytes)
1891 			break;
1892 
1893 		ret = iter(mtd, ++section, &oobregion);
1894 	}
1895 
1896 	return ret;
1897 }
1898 
1899 /**
1900  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1901  * @mtd: mtd info structure
1902  * @buf: source buffer to get OOB bytes from
1903  * @oobbuf: OOB buffer
1904  * @start: first OOB byte to set
1905  * @nbytes: number of OOB bytes to set
1906  * @iter: section iterator
1907  *
1908  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1909  * is selected by passing the appropriate iterator.
1910  *
1911  * Returns zero on success, a negative error code otherwise.
1912  */
1913 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1914 				u8 *oobbuf, int start, int nbytes,
1915 				int (*iter)(struct mtd_info *,
1916 					    int section,
1917 					    struct mtd_oob_region *oobregion))
1918 {
1919 	struct mtd_oob_region oobregion;
1920 	int section, ret;
1921 
1922 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1923 					&oobregion, iter);
1924 
1925 	while (!ret) {
1926 		int cnt;
1927 
1928 		cnt = min_t(int, nbytes, oobregion.length);
1929 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1930 		buf += cnt;
1931 		nbytes -= cnt;
1932 
1933 		if (!nbytes)
1934 			break;
1935 
1936 		ret = iter(mtd, ++section, &oobregion);
1937 	}
1938 
1939 	return ret;
1940 }
1941 
1942 /**
1943  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1944  * @mtd: mtd info structure
1945  * @iter: category iterator
1946  *
1947  * Count the number of bytes in a given category.
1948  *
1949  * Returns a positive value on success, a negative error code otherwise.
1950  */
1951 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1952 				int (*iter)(struct mtd_info *,
1953 					    int section,
1954 					    struct mtd_oob_region *oobregion))
1955 {
1956 	struct mtd_oob_region oobregion;
1957 	int section = 0, ret, nbytes = 0;
1958 
1959 	while (1) {
1960 		ret = iter(mtd, section++, &oobregion);
1961 		if (ret) {
1962 			if (ret == -ERANGE)
1963 				ret = nbytes;
1964 			break;
1965 		}
1966 
1967 		nbytes += oobregion.length;
1968 	}
1969 
1970 	return ret;
1971 }
1972 
1973 /**
1974  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1975  * @mtd: mtd info structure
1976  * @eccbuf: destination buffer to store ECC bytes
1977  * @oobbuf: OOB buffer
1978  * @start: first ECC byte to retrieve
1979  * @nbytes: number of ECC bytes to retrieve
1980  *
1981  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1982  *
1983  * Returns zero on success, a negative error code otherwise.
1984  */
1985 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1986 			       const u8 *oobbuf, int start, int nbytes)
1987 {
1988 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1989 				       mtd_ooblayout_ecc);
1990 }
1991 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1992 
1993 /**
1994  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1995  * @mtd: mtd info structure
1996  * @eccbuf: source buffer to get ECC bytes from
1997  * @oobbuf: OOB buffer
1998  * @start: first ECC byte to set
1999  * @nbytes: number of ECC bytes to set
2000  *
2001  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2002  *
2003  * Returns zero on success, a negative error code otherwise.
2004  */
2005 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2006 			       u8 *oobbuf, int start, int nbytes)
2007 {
2008 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2009 				       mtd_ooblayout_ecc);
2010 }
2011 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2012 
2013 /**
2014  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2015  * @mtd: mtd info structure
2016  * @databuf: destination buffer to store ECC bytes
2017  * @oobbuf: OOB buffer
2018  * @start: first ECC byte to retrieve
2019  * @nbytes: number of ECC bytes to retrieve
2020  *
2021  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2022  *
2023  * Returns zero on success, a negative error code otherwise.
2024  */
2025 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2026 				const u8 *oobbuf, int start, int nbytes)
2027 {
2028 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2029 				       mtd_ooblayout_free);
2030 }
2031 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2032 
2033 /**
2034  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2035  * @mtd: mtd info structure
2036  * @databuf: source buffer to get data bytes from
2037  * @oobbuf: OOB buffer
2038  * @start: first ECC byte to set
2039  * @nbytes: number of ECC bytes to set
2040  *
2041  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2042  *
2043  * Returns zero on success, a negative error code otherwise.
2044  */
2045 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2046 				u8 *oobbuf, int start, int nbytes)
2047 {
2048 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2049 				       mtd_ooblayout_free);
2050 }
2051 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2052 
2053 /**
2054  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2055  * @mtd: mtd info structure
2056  *
2057  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2058  *
2059  * Returns zero on success, a negative error code otherwise.
2060  */
2061 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2062 {
2063 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2064 }
2065 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2066 
2067 /**
2068  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2069  * @mtd: mtd info structure
2070  *
2071  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2072  *
2073  * Returns zero on success, a negative error code otherwise.
2074  */
2075 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2076 {
2077 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2078 }
2079 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2080 
2081 /*
2082  * Method to access the protection register area, present in some flash
2083  * devices. The user data is one time programmable but the factory data is read
2084  * only.
2085  */
2086 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2087 			   struct otp_info *buf)
2088 {
2089 	struct mtd_info *master = mtd_get_master(mtd);
2090 
2091 	if (!master->_get_fact_prot_info)
2092 		return -EOPNOTSUPP;
2093 	if (!len)
2094 		return 0;
2095 	return master->_get_fact_prot_info(master, len, retlen, buf);
2096 }
2097 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2098 
2099 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2100 			   size_t *retlen, u_char *buf)
2101 {
2102 	struct mtd_info *master = mtd_get_master(mtd);
2103 
2104 	*retlen = 0;
2105 	if (!master->_read_fact_prot_reg)
2106 		return -EOPNOTSUPP;
2107 	if (!len)
2108 		return 0;
2109 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2110 }
2111 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2112 
2113 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2114 			   struct otp_info *buf)
2115 {
2116 	struct mtd_info *master = mtd_get_master(mtd);
2117 
2118 	if (!master->_get_user_prot_info)
2119 		return -EOPNOTSUPP;
2120 	if (!len)
2121 		return 0;
2122 	return master->_get_user_prot_info(master, len, retlen, buf);
2123 }
2124 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2125 
2126 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2127 			   size_t *retlen, u_char *buf)
2128 {
2129 	struct mtd_info *master = mtd_get_master(mtd);
2130 
2131 	*retlen = 0;
2132 	if (!master->_read_user_prot_reg)
2133 		return -EOPNOTSUPP;
2134 	if (!len)
2135 		return 0;
2136 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2137 }
2138 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2139 
2140 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2141 			    size_t *retlen, const u_char *buf)
2142 {
2143 	struct mtd_info *master = mtd_get_master(mtd);
2144 	int ret;
2145 
2146 	*retlen = 0;
2147 	if (!master->_write_user_prot_reg)
2148 		return -EOPNOTSUPP;
2149 	if (!len)
2150 		return 0;
2151 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2152 	if (ret)
2153 		return ret;
2154 
2155 	/*
2156 	 * If no data could be written at all, we are out of memory and
2157 	 * must return -ENOSPC.
2158 	 */
2159 	return (*retlen) ? 0 : -ENOSPC;
2160 }
2161 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2162 
2163 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2164 {
2165 	struct mtd_info *master = mtd_get_master(mtd);
2166 
2167 	if (!master->_lock_user_prot_reg)
2168 		return -EOPNOTSUPP;
2169 	if (!len)
2170 		return 0;
2171 	return master->_lock_user_prot_reg(master, from, len);
2172 }
2173 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2174 
2175 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2176 {
2177 	struct mtd_info *master = mtd_get_master(mtd);
2178 
2179 	if (!master->_erase_user_prot_reg)
2180 		return -EOPNOTSUPP;
2181 	if (!len)
2182 		return 0;
2183 	return master->_erase_user_prot_reg(master, from, len);
2184 }
2185 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2186 
2187 /* Chip-supported device locking */
2188 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2189 {
2190 	struct mtd_info *master = mtd_get_master(mtd);
2191 
2192 	if (!master->_lock)
2193 		return -EOPNOTSUPP;
2194 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2195 		return -EINVAL;
2196 	if (!len)
2197 		return 0;
2198 
2199 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2200 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2201 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2202 	}
2203 
2204 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2205 }
2206 EXPORT_SYMBOL_GPL(mtd_lock);
2207 
2208 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2209 {
2210 	struct mtd_info *master = mtd_get_master(mtd);
2211 
2212 	if (!master->_unlock)
2213 		return -EOPNOTSUPP;
2214 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2215 		return -EINVAL;
2216 	if (!len)
2217 		return 0;
2218 
2219 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2220 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2221 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2222 	}
2223 
2224 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2225 }
2226 EXPORT_SYMBOL_GPL(mtd_unlock);
2227 
2228 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2229 {
2230 	struct mtd_info *master = mtd_get_master(mtd);
2231 
2232 	if (!master->_is_locked)
2233 		return -EOPNOTSUPP;
2234 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2235 		return -EINVAL;
2236 	if (!len)
2237 		return 0;
2238 
2239 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2240 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2241 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2242 	}
2243 
2244 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2245 }
2246 EXPORT_SYMBOL_GPL(mtd_is_locked);
2247 
2248 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2249 {
2250 	struct mtd_info *master = mtd_get_master(mtd);
2251 
2252 	if (ofs < 0 || ofs >= mtd->size)
2253 		return -EINVAL;
2254 	if (!master->_block_isreserved)
2255 		return 0;
2256 
2257 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2258 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2259 
2260 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2261 }
2262 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2263 
2264 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2265 {
2266 	struct mtd_info *master = mtd_get_master(mtd);
2267 
2268 	if (ofs < 0 || ofs >= mtd->size)
2269 		return -EINVAL;
2270 	if (!master->_block_isbad)
2271 		return 0;
2272 
2273 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2274 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2275 
2276 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2277 }
2278 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2279 
2280 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2281 {
2282 	struct mtd_info *master = mtd_get_master(mtd);
2283 	int ret;
2284 
2285 	if (!master->_block_markbad)
2286 		return -EOPNOTSUPP;
2287 	if (ofs < 0 || ofs >= mtd->size)
2288 		return -EINVAL;
2289 	if (!(mtd->flags & MTD_WRITEABLE))
2290 		return -EROFS;
2291 
2292 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2293 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2294 
2295 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2296 	if (ret)
2297 		return ret;
2298 
2299 	while (mtd->parent) {
2300 		mtd->ecc_stats.badblocks++;
2301 		mtd = mtd->parent;
2302 	}
2303 
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2307 
2308 /*
2309  * default_mtd_writev - the default writev method
2310  * @mtd: mtd device description object pointer
2311  * @vecs: the vectors to write
2312  * @count: count of vectors in @vecs
2313  * @to: the MTD device offset to write to
2314  * @retlen: on exit contains the count of bytes written to the MTD device.
2315  *
2316  * This function returns zero in case of success and a negative error code in
2317  * case of failure.
2318  */
2319 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2320 			      unsigned long count, loff_t to, size_t *retlen)
2321 {
2322 	unsigned long i;
2323 	size_t totlen = 0, thislen;
2324 	int ret = 0;
2325 
2326 	for (i = 0; i < count; i++) {
2327 		if (!vecs[i].iov_len)
2328 			continue;
2329 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2330 				vecs[i].iov_base);
2331 		totlen += thislen;
2332 		if (ret || thislen != vecs[i].iov_len)
2333 			break;
2334 		to += vecs[i].iov_len;
2335 	}
2336 	*retlen = totlen;
2337 	return ret;
2338 }
2339 
2340 /*
2341  * mtd_writev - the vector-based MTD write method
2342  * @mtd: mtd device description object pointer
2343  * @vecs: the vectors to write
2344  * @count: count of vectors in @vecs
2345  * @to: the MTD device offset to write to
2346  * @retlen: on exit contains the count of bytes written to the MTD device.
2347  *
2348  * This function returns zero in case of success and a negative error code in
2349  * case of failure.
2350  */
2351 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2352 	       unsigned long count, loff_t to, size_t *retlen)
2353 {
2354 	struct mtd_info *master = mtd_get_master(mtd);
2355 
2356 	*retlen = 0;
2357 	if (!(mtd->flags & MTD_WRITEABLE))
2358 		return -EROFS;
2359 
2360 	if (!master->_writev)
2361 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2362 
2363 	return master->_writev(master, vecs, count,
2364 			       mtd_get_master_ofs(mtd, to), retlen);
2365 }
2366 EXPORT_SYMBOL_GPL(mtd_writev);
2367 
2368 /**
2369  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2370  * @mtd: mtd device description object pointer
2371  * @size: a pointer to the ideal or maximum size of the allocation, points
2372  *        to the actual allocation size on success.
2373  *
2374  * This routine attempts to allocate a contiguous kernel buffer up to
2375  * the specified size, backing off the size of the request exponentially
2376  * until the request succeeds or until the allocation size falls below
2377  * the system page size. This attempts to make sure it does not adversely
2378  * impact system performance, so when allocating more than one page, we
2379  * ask the memory allocator to avoid re-trying, swapping, writing back
2380  * or performing I/O.
2381  *
2382  * Note, this function also makes sure that the allocated buffer is aligned to
2383  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2384  *
2385  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2386  * to handle smaller (i.e. degraded) buffer allocations under low- or
2387  * fragmented-memory situations where such reduced allocations, from a
2388  * requested ideal, are allowed.
2389  *
2390  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2391  */
2392 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2393 {
2394 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2395 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2396 	void *kbuf;
2397 
2398 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2399 
2400 	while (*size > min_alloc) {
2401 		kbuf = kmalloc(*size, flags);
2402 		if (kbuf)
2403 			return kbuf;
2404 
2405 		*size >>= 1;
2406 		*size = ALIGN(*size, mtd->writesize);
2407 	}
2408 
2409 	/*
2410 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2411 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2412 	 */
2413 	return kmalloc(*size, GFP_KERNEL);
2414 }
2415 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2416 
2417 #ifdef CONFIG_PROC_FS
2418 
2419 /*====================================================================*/
2420 /* Support for /proc/mtd */
2421 
2422 static int mtd_proc_show(struct seq_file *m, void *v)
2423 {
2424 	struct mtd_info *mtd;
2425 
2426 	seq_puts(m, "dev:    size   erasesize  name\n");
2427 	mutex_lock(&mtd_table_mutex);
2428 	mtd_for_each_device(mtd) {
2429 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2430 			   mtd->index, (unsigned long long)mtd->size,
2431 			   mtd->erasesize, mtd->name);
2432 	}
2433 	mutex_unlock(&mtd_table_mutex);
2434 	return 0;
2435 }
2436 #endif /* CONFIG_PROC_FS */
2437 
2438 /*====================================================================*/
2439 /* Init code */
2440 
2441 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2442 {
2443 	struct backing_dev_info *bdi;
2444 	int ret;
2445 
2446 	bdi = bdi_alloc(NUMA_NO_NODE);
2447 	if (!bdi)
2448 		return ERR_PTR(-ENOMEM);
2449 	bdi->ra_pages = 0;
2450 	bdi->io_pages = 0;
2451 
2452 	/*
2453 	 * We put '-0' suffix to the name to get the same name format as we
2454 	 * used to get. Since this is called only once, we get a unique name.
2455 	 */
2456 	ret = bdi_register(bdi, "%.28s-0", name);
2457 	if (ret)
2458 		bdi_put(bdi);
2459 
2460 	return ret ? ERR_PTR(ret) : bdi;
2461 }
2462 
2463 static struct proc_dir_entry *proc_mtd;
2464 
2465 static int __init init_mtd(void)
2466 {
2467 	int ret;
2468 
2469 	ret = class_register(&mtd_class);
2470 	if (ret)
2471 		goto err_reg;
2472 
2473 	mtd_bdi = mtd_bdi_init("mtd");
2474 	if (IS_ERR(mtd_bdi)) {
2475 		ret = PTR_ERR(mtd_bdi);
2476 		goto err_bdi;
2477 	}
2478 
2479 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2480 
2481 	ret = init_mtdchar();
2482 	if (ret)
2483 		goto out_procfs;
2484 
2485 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2486 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2487 			    &mtd_expert_analysis_mode);
2488 
2489 	return 0;
2490 
2491 out_procfs:
2492 	if (proc_mtd)
2493 		remove_proc_entry("mtd", NULL);
2494 	bdi_unregister(mtd_bdi);
2495 	bdi_put(mtd_bdi);
2496 err_bdi:
2497 	class_unregister(&mtd_class);
2498 err_reg:
2499 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2500 	return ret;
2501 }
2502 
2503 static void __exit cleanup_mtd(void)
2504 {
2505 	debugfs_remove_recursive(dfs_dir_mtd);
2506 	cleanup_mtdchar();
2507 	if (proc_mtd)
2508 		remove_proc_entry("mtd", NULL);
2509 	class_unregister(&mtd_class);
2510 	bdi_unregister(mtd_bdi);
2511 	bdi_put(mtd_bdi);
2512 	idr_destroy(&mtd_idr);
2513 }
2514 
2515 module_init(init_mtd);
2516 module_exit(cleanup_mtd);
2517 
2518 MODULE_LICENSE("GPL");
2519 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2520 MODULE_DESCRIPTION("Core MTD registration and access routines");
2521