xref: /linux/drivers/mtd/mtdcore.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 #include <linux/error-injection.h>
34 
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 struct backing_dev_info *mtd_bdi;
41 
42 #ifdef CONFIG_PM_SLEEP
43 
44 static int mtd_cls_suspend(struct device *dev)
45 {
46 	struct mtd_info *mtd = dev_get_drvdata(dev);
47 
48 	return mtd ? mtd_suspend(mtd) : 0;
49 }
50 
51 static int mtd_cls_resume(struct device *dev)
52 {
53 	struct mtd_info *mtd = dev_get_drvdata(dev);
54 
55 	if (mtd)
56 		mtd_resume(mtd);
57 	return 0;
58 }
59 
60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62 #else
63 #define MTD_CLS_PM_OPS NULL
64 #endif
65 
66 static struct class mtd_class = {
67 	.name = "mtd",
68 	.pm = MTD_CLS_PM_OPS,
69 };
70 
71 static DEFINE_IDR(mtd_idr);
72 
73 /* These are exported solely for the purpose of mtd_blkdevs.c. You
74    should not use them for _anything_ else */
75 DEFINE_MUTEX(mtd_table_mutex);
76 EXPORT_SYMBOL_GPL(mtd_table_mutex);
77 
78 struct mtd_info *__mtd_next_device(int i)
79 {
80 	return idr_get_next(&mtd_idr, &i);
81 }
82 EXPORT_SYMBOL_GPL(__mtd_next_device);
83 
84 static LIST_HEAD(mtd_notifiers);
85 
86 
87 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
88 
89 /* REVISIT once MTD uses the driver model better, whoever allocates
90  * the mtd_info will probably want to use the release() hook...
91  */
92 static void mtd_release(struct device *dev)
93 {
94 	struct mtd_info *mtd = dev_get_drvdata(dev);
95 	dev_t index = MTD_DEVT(mtd->index);
96 
97 	idr_remove(&mtd_idr, mtd->index);
98 	of_node_put(mtd_get_of_node(mtd));
99 
100 	if (mtd_is_partition(mtd))
101 		release_mtd_partition(mtd);
102 
103 	/* remove /dev/mtdXro node */
104 	device_destroy(&mtd_class, index + 1);
105 }
106 
107 static void mtd_device_release(struct kref *kref)
108 {
109 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
110 	bool is_partition = mtd_is_partition(mtd);
111 
112 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
113 
114 	/* Try to remove the NVMEM provider */
115 	nvmem_unregister(mtd->nvmem);
116 
117 	device_unregister(&mtd->dev);
118 
119 	/*
120 	 *  Clear dev so mtd can be safely re-registered later if desired.
121 	 *  Should not be done for partition,
122 	 *  as it was already destroyed in device_unregister().
123 	 */
124 	if (!is_partition)
125 		memset(&mtd->dev, 0, sizeof(mtd->dev));
126 
127 	module_put(THIS_MODULE);
128 }
129 
130 #define MTD_DEVICE_ATTR_RO(name) \
131 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
132 
133 #define MTD_DEVICE_ATTR_RW(name) \
134 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
135 
136 static ssize_t mtd_type_show(struct device *dev,
137 		struct device_attribute *attr, char *buf)
138 {
139 	struct mtd_info *mtd = dev_get_drvdata(dev);
140 	char *type;
141 
142 	switch (mtd->type) {
143 	case MTD_ABSENT:
144 		type = "absent";
145 		break;
146 	case MTD_RAM:
147 		type = "ram";
148 		break;
149 	case MTD_ROM:
150 		type = "rom";
151 		break;
152 	case MTD_NORFLASH:
153 		type = "nor";
154 		break;
155 	case MTD_NANDFLASH:
156 		type = "nand";
157 		break;
158 	case MTD_DATAFLASH:
159 		type = "dataflash";
160 		break;
161 	case MTD_UBIVOLUME:
162 		type = "ubi";
163 		break;
164 	case MTD_MLCNANDFLASH:
165 		type = "mlc-nand";
166 		break;
167 	default:
168 		type = "unknown";
169 	}
170 
171 	return sysfs_emit(buf, "%s\n", type);
172 }
173 MTD_DEVICE_ATTR_RO(type);
174 
175 static ssize_t mtd_flags_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 
180 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
181 }
182 MTD_DEVICE_ATTR_RO(flags);
183 
184 static ssize_t mtd_size_show(struct device *dev,
185 		struct device_attribute *attr, char *buf)
186 {
187 	struct mtd_info *mtd = dev_get_drvdata(dev);
188 
189 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
190 }
191 MTD_DEVICE_ATTR_RO(size);
192 
193 static ssize_t mtd_erasesize_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 
198 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
199 }
200 MTD_DEVICE_ATTR_RO(erasesize);
201 
202 static ssize_t mtd_writesize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
208 }
209 MTD_DEVICE_ATTR_RO(writesize);
210 
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct mtd_info *mtd = dev_get_drvdata(dev);
215 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216 
217 	return sysfs_emit(buf, "%u\n", subpagesize);
218 }
219 MTD_DEVICE_ATTR_RO(subpagesize);
220 
221 static ssize_t mtd_oobsize_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	struct mtd_info *mtd = dev_get_drvdata(dev);
225 
226 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
227 }
228 MTD_DEVICE_ATTR_RO(oobsize);
229 
230 static ssize_t mtd_oobavail_show(struct device *dev,
231 				 struct device_attribute *attr, char *buf)
232 {
233 	struct mtd_info *mtd = dev_get_drvdata(dev);
234 
235 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
236 }
237 MTD_DEVICE_ATTR_RO(oobavail);
238 
239 static ssize_t mtd_numeraseregions_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct mtd_info *mtd = dev_get_drvdata(dev);
243 
244 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
245 }
246 MTD_DEVICE_ATTR_RO(numeraseregions);
247 
248 static ssize_t mtd_name_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 
253 	return sysfs_emit(buf, "%s\n", mtd->name);
254 }
255 MTD_DEVICE_ATTR_RO(name);
256 
257 static ssize_t mtd_ecc_strength_show(struct device *dev,
258 				     struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
263 }
264 MTD_DEVICE_ATTR_RO(ecc_strength);
265 
266 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 					  struct device_attribute *attr,
268 					  char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
273 }
274 
275 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 					   struct device_attribute *attr,
277 					   const char *buf, size_t count)
278 {
279 	struct mtd_info *mtd = dev_get_drvdata(dev);
280 	unsigned int bitflip_threshold;
281 	int retval;
282 
283 	retval = kstrtouint(buf, 0, &bitflip_threshold);
284 	if (retval)
285 		return retval;
286 
287 	mtd->bitflip_threshold = bitflip_threshold;
288 	return count;
289 }
290 MTD_DEVICE_ATTR_RW(bitflip_threshold);
291 
292 static ssize_t mtd_ecc_step_size_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 
297 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
298 
299 }
300 MTD_DEVICE_ATTR_RO(ecc_step_size);
301 
302 static ssize_t mtd_corrected_bits_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
309 }
310 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
311 
312 static ssize_t mtd_ecc_failures_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
319 }
320 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
321 
322 static ssize_t mtd_bad_blocks_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct mtd_info *mtd = dev_get_drvdata(dev);
326 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327 
328 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
329 }
330 MTD_DEVICE_ATTR_RO(bad_blocks);
331 
332 static ssize_t mtd_bbt_blocks_show(struct device *dev,
333 		struct device_attribute *attr, char *buf)
334 {
335 	struct mtd_info *mtd = dev_get_drvdata(dev);
336 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337 
338 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
339 }
340 MTD_DEVICE_ATTR_RO(bbt_blocks);
341 
342 static struct attribute *mtd_attrs[] = {
343 	&dev_attr_type.attr,
344 	&dev_attr_flags.attr,
345 	&dev_attr_size.attr,
346 	&dev_attr_erasesize.attr,
347 	&dev_attr_writesize.attr,
348 	&dev_attr_subpagesize.attr,
349 	&dev_attr_oobsize.attr,
350 	&dev_attr_oobavail.attr,
351 	&dev_attr_numeraseregions.attr,
352 	&dev_attr_name.attr,
353 	&dev_attr_ecc_strength.attr,
354 	&dev_attr_ecc_step_size.attr,
355 	&dev_attr_corrected_bits.attr,
356 	&dev_attr_ecc_failures.attr,
357 	&dev_attr_bad_blocks.attr,
358 	&dev_attr_bbt_blocks.attr,
359 	&dev_attr_bitflip_threshold.attr,
360 	NULL,
361 };
362 ATTRIBUTE_GROUPS(mtd);
363 
364 static const struct device_type mtd_devtype = {
365 	.name		= "mtd",
366 	.groups		= mtd_groups,
367 	.release	= mtd_release,
368 };
369 
370 static bool mtd_expert_analysis_mode;
371 
372 #ifdef CONFIG_DEBUG_FS
373 bool mtd_check_expert_analysis_mode(void)
374 {
375 	const char *mtd_expert_analysis_warning =
376 		"Bad block checks have been entirely disabled.\n"
377 		"This is only reserved for post-mortem forensics and debug purposes.\n"
378 		"Never enable this mode if you do not know what you are doing!\n";
379 
380 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
381 }
382 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
383 #endif
384 
385 static struct dentry *dfs_dir_mtd;
386 
387 static void mtd_debugfs_populate(struct mtd_info *mtd)
388 {
389 	struct device *dev = &mtd->dev;
390 
391 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
392 		return;
393 
394 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
395 }
396 
397 #ifndef CONFIG_MMU
398 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
399 {
400 	switch (mtd->type) {
401 	case MTD_RAM:
402 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
403 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
404 	case MTD_ROM:
405 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
406 			NOMMU_MAP_READ;
407 	default:
408 		return NOMMU_MAP_COPY;
409 	}
410 }
411 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
412 #endif
413 
414 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
415 			       void *cmd)
416 {
417 	struct mtd_info *mtd;
418 
419 	mtd = container_of(n, struct mtd_info, reboot_notifier);
420 	mtd->_reboot(mtd);
421 
422 	return NOTIFY_DONE;
423 }
424 
425 /**
426  * mtd_wunit_to_pairing_info - get pairing information of a wunit
427  * @mtd: pointer to new MTD device info structure
428  * @wunit: write unit we are interested in
429  * @info: returned pairing information
430  *
431  * Retrieve pairing information associated to the wunit.
432  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
433  * paired together, and where programming a page may influence the page it is
434  * paired with.
435  * The notion of page is replaced by the term wunit (write-unit) to stay
436  * consistent with the ->writesize field.
437  *
438  * The @wunit argument can be extracted from an absolute offset using
439  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
440  * to @wunit.
441  *
442  * From the pairing info the MTD user can find all the wunits paired with
443  * @wunit using the following loop:
444  *
445  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
446  *	info.pair = i;
447  *	mtd_pairing_info_to_wunit(mtd, &info);
448  *	...
449  * }
450  */
451 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
452 			      struct mtd_pairing_info *info)
453 {
454 	struct mtd_info *master = mtd_get_master(mtd);
455 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
456 
457 	if (wunit < 0 || wunit >= npairs)
458 		return -EINVAL;
459 
460 	if (master->pairing && master->pairing->get_info)
461 		return master->pairing->get_info(master, wunit, info);
462 
463 	info->group = 0;
464 	info->pair = wunit;
465 
466 	return 0;
467 }
468 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
469 
470 /**
471  * mtd_pairing_info_to_wunit - get wunit from pairing information
472  * @mtd: pointer to new MTD device info structure
473  * @info: pairing information struct
474  *
475  * Returns a positive number representing the wunit associated to the info
476  * struct, or a negative error code.
477  *
478  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
479  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
480  * doc).
481  *
482  * It can also be used to only program the first page of each pair (i.e.
483  * page attached to group 0), which allows one to use an MLC NAND in
484  * software-emulated SLC mode:
485  *
486  * info.group = 0;
487  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
488  * for (info.pair = 0; info.pair < npairs; info.pair++) {
489  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
490  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
491  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
492  * }
493  */
494 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
495 			      const struct mtd_pairing_info *info)
496 {
497 	struct mtd_info *master = mtd_get_master(mtd);
498 	int ngroups = mtd_pairing_groups(master);
499 	int npairs = mtd_wunit_per_eb(master) / ngroups;
500 
501 	if (!info || info->pair < 0 || info->pair >= npairs ||
502 	    info->group < 0 || info->group >= ngroups)
503 		return -EINVAL;
504 
505 	if (master->pairing && master->pairing->get_wunit)
506 		return mtd->pairing->get_wunit(master, info);
507 
508 	return info->pair;
509 }
510 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
511 
512 /**
513  * mtd_pairing_groups - get the number of pairing groups
514  * @mtd: pointer to new MTD device info structure
515  *
516  * Returns the number of pairing groups.
517  *
518  * This number is usually equal to the number of bits exposed by a single
519  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
520  * to iterate over all pages of a given pair.
521  */
522 int mtd_pairing_groups(struct mtd_info *mtd)
523 {
524 	struct mtd_info *master = mtd_get_master(mtd);
525 
526 	if (!master->pairing || !master->pairing->ngroups)
527 		return 1;
528 
529 	return master->pairing->ngroups;
530 }
531 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
532 
533 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
534 			      void *val, size_t bytes)
535 {
536 	struct mtd_info *mtd = priv;
537 	size_t retlen;
538 	int err;
539 
540 	err = mtd_read(mtd, offset, bytes, &retlen, val);
541 	if (err && err != -EUCLEAN)
542 		return err;
543 
544 	return retlen == bytes ? 0 : -EIO;
545 }
546 
547 static int mtd_nvmem_add(struct mtd_info *mtd)
548 {
549 	struct device_node *node = mtd_get_of_node(mtd);
550 	struct nvmem_config config = {};
551 
552 	config.id = NVMEM_DEVID_NONE;
553 	config.dev = &mtd->dev;
554 	config.name = dev_name(&mtd->dev);
555 	config.owner = THIS_MODULE;
556 	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
557 	config.reg_read = mtd_nvmem_reg_read;
558 	config.size = mtd->size;
559 	config.word_size = 1;
560 	config.stride = 1;
561 	config.read_only = true;
562 	config.root_only = true;
563 	config.ignore_wp = true;
564 	config.priv = mtd;
565 
566 	mtd->nvmem = nvmem_register(&config);
567 	if (IS_ERR(mtd->nvmem)) {
568 		/* Just ignore if there is no NVMEM support in the kernel */
569 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
570 			mtd->nvmem = NULL;
571 		else
572 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573 					     "Failed to register NVMEM device\n");
574 	}
575 
576 	return 0;
577 }
578 
579 static void mtd_check_of_node(struct mtd_info *mtd)
580 {
581 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582 	const char *pname, *prefix = "partition-";
583 	int plen, mtd_name_len, offset, prefix_len;
584 
585 	/* Check if MTD already has a device node */
586 	if (mtd_get_of_node(mtd))
587 		return;
588 
589 	if (!mtd_is_partition(mtd))
590 		return;
591 
592 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
593 	if (!parent_dn)
594 		return;
595 
596 	if (mtd_is_partition(mtd->parent))
597 		partitions = of_node_get(parent_dn);
598 	else
599 		partitions = of_get_child_by_name(parent_dn, "partitions");
600 	if (!partitions)
601 		goto exit_parent;
602 
603 	prefix_len = strlen(prefix);
604 	mtd_name_len = strlen(mtd->name);
605 
606 	/* Search if a partition is defined with the same name */
607 	for_each_child_of_node(partitions, mtd_dn) {
608 		/* Skip partition with no/wrong prefix */
609 		if (!of_node_name_prefix(mtd_dn, prefix))
610 			continue;
611 
612 		/* Label have priority. Check that first */
613 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
614 			offset = 0;
615 		} else {
616 			pname = mtd_dn->name;
617 			offset = prefix_len;
618 		}
619 
620 		plen = strlen(pname) - offset;
621 		if (plen == mtd_name_len &&
622 		    !strncmp(mtd->name, pname + offset, plen)) {
623 			mtd_set_of_node(mtd, mtd_dn);
624 			of_node_put(mtd_dn);
625 			break;
626 		}
627 	}
628 
629 	of_node_put(partitions);
630 exit_parent:
631 	of_node_put(parent_dn);
632 }
633 
634 /**
635  *	add_mtd_device - register an MTD device
636  *	@mtd: pointer to new MTD device info structure
637  *
638  *	Add a device to the list of MTD devices present in the system, and
639  *	notify each currently active MTD 'user' of its arrival. Returns
640  *	zero on success or non-zero on failure.
641  */
642 
643 int add_mtd_device(struct mtd_info *mtd)
644 {
645 	struct device_node *np = mtd_get_of_node(mtd);
646 	struct mtd_info *master = mtd_get_master(mtd);
647 	struct mtd_notifier *not;
648 	int i, error, ofidx;
649 
650 	/*
651 	 * May occur, for instance, on buggy drivers which call
652 	 * mtd_device_parse_register() multiple times on the same master MTD,
653 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
654 	 */
655 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
656 		return -EEXIST;
657 
658 	BUG_ON(mtd->writesize == 0);
659 
660 	/*
661 	 * MTD drivers should implement ->_{write,read}() or
662 	 * ->_{write,read}_oob(), but not both.
663 	 */
664 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
665 		    (mtd->_read && mtd->_read_oob)))
666 		return -EINVAL;
667 
668 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
669 		    !(mtd->flags & MTD_NO_ERASE)))
670 		return -EINVAL;
671 
672 	/*
673 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
674 	 * master is an MLC NAND and has a proper pairing scheme defined.
675 	 * We also reject masters that implement ->_writev() for now, because
676 	 * NAND controller drivers don't implement this hook, and adding the
677 	 * SLC -> MLC address/length conversion to this path is useless if we
678 	 * don't have a user.
679 	 */
680 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
681 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
682 	     !master->pairing || master->_writev))
683 		return -EINVAL;
684 
685 	mutex_lock(&mtd_table_mutex);
686 
687 	ofidx = -1;
688 	if (np)
689 		ofidx = of_alias_get_id(np, "mtd");
690 	if (ofidx >= 0)
691 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
692 	else
693 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
694 	if (i < 0) {
695 		error = i;
696 		goto fail_locked;
697 	}
698 
699 	mtd->index = i;
700 	kref_init(&mtd->refcnt);
701 
702 	/* default value if not set by driver */
703 	if (mtd->bitflip_threshold == 0)
704 		mtd->bitflip_threshold = mtd->ecc_strength;
705 
706 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
707 		int ngroups = mtd_pairing_groups(master);
708 
709 		mtd->erasesize /= ngroups;
710 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
711 			    mtd->erasesize;
712 	}
713 
714 	if (is_power_of_2(mtd->erasesize))
715 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
716 	else
717 		mtd->erasesize_shift = 0;
718 
719 	if (is_power_of_2(mtd->writesize))
720 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
721 	else
722 		mtd->writesize_shift = 0;
723 
724 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
725 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
726 
727 	/* Some chips always power up locked. Unlock them now */
728 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
729 		error = mtd_unlock(mtd, 0, mtd->size);
730 		if (error && error != -EOPNOTSUPP)
731 			printk(KERN_WARNING
732 			       "%s: unlock failed, writes may not work\n",
733 			       mtd->name);
734 		/* Ignore unlock failures? */
735 		error = 0;
736 	}
737 
738 	/* Caller should have set dev.parent to match the
739 	 * physical device, if appropriate.
740 	 */
741 	mtd->dev.type = &mtd_devtype;
742 	mtd->dev.class = &mtd_class;
743 	mtd->dev.devt = MTD_DEVT(i);
744 	dev_set_name(&mtd->dev, "mtd%d", i);
745 	dev_set_drvdata(&mtd->dev, mtd);
746 	mtd_check_of_node(mtd);
747 	of_node_get(mtd_get_of_node(mtd));
748 	error = device_register(&mtd->dev);
749 	if (error) {
750 		put_device(&mtd->dev);
751 		goto fail_added;
752 	}
753 
754 	/* Add the nvmem provider */
755 	error = mtd_nvmem_add(mtd);
756 	if (error)
757 		goto fail_nvmem_add;
758 
759 	mtd_debugfs_populate(mtd);
760 
761 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
762 		      "mtd%dro", i);
763 
764 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
765 	/* No need to get a refcount on the module containing
766 	   the notifier, since we hold the mtd_table_mutex */
767 	list_for_each_entry(not, &mtd_notifiers, list)
768 		not->add(mtd);
769 
770 	mutex_unlock(&mtd_table_mutex);
771 
772 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
773 		if (IS_BUILTIN(CONFIG_MTD)) {
774 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
775 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
776 		} else {
777 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
778 				mtd->index, mtd->name);
779 		}
780 	}
781 
782 	/* We _know_ we aren't being removed, because
783 	   our caller is still holding us here. So none
784 	   of this try_ nonsense, and no bitching about it
785 	   either. :) */
786 	__module_get(THIS_MODULE);
787 	return 0;
788 
789 fail_nvmem_add:
790 	device_unregister(&mtd->dev);
791 fail_added:
792 	of_node_put(mtd_get_of_node(mtd));
793 	idr_remove(&mtd_idr, i);
794 fail_locked:
795 	mutex_unlock(&mtd_table_mutex);
796 	return error;
797 }
798 
799 /**
800  *	del_mtd_device - unregister an MTD device
801  *	@mtd: pointer to MTD device info structure
802  *
803  *	Remove a device from the list of MTD devices present in the system,
804  *	and notify each currently active MTD 'user' of its departure.
805  *	Returns zero on success or 1 on failure, which currently will happen
806  *	if the requested device does not appear to be present in the list.
807  */
808 
809 int del_mtd_device(struct mtd_info *mtd)
810 {
811 	int ret;
812 	struct mtd_notifier *not;
813 
814 	mutex_lock(&mtd_table_mutex);
815 
816 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
817 		ret = -ENODEV;
818 		goto out_error;
819 	}
820 
821 	/* No need to get a refcount on the module containing
822 		the notifier, since we hold the mtd_table_mutex */
823 	list_for_each_entry(not, &mtd_notifiers, list)
824 		not->remove(mtd);
825 
826 	kref_put(&mtd->refcnt, mtd_device_release);
827 	ret = 0;
828 
829 out_error:
830 	mutex_unlock(&mtd_table_mutex);
831 	return ret;
832 }
833 
834 /*
835  * Set a few defaults based on the parent devices, if not provided by the
836  * driver
837  */
838 static void mtd_set_dev_defaults(struct mtd_info *mtd)
839 {
840 	if (mtd->dev.parent) {
841 		if (!mtd->owner && mtd->dev.parent->driver)
842 			mtd->owner = mtd->dev.parent->driver->owner;
843 		if (!mtd->name)
844 			mtd->name = dev_name(mtd->dev.parent);
845 	} else {
846 		pr_debug("mtd device won't show a device symlink in sysfs\n");
847 	}
848 
849 	INIT_LIST_HEAD(&mtd->partitions);
850 	mutex_init(&mtd->master.partitions_lock);
851 	mutex_init(&mtd->master.chrdev_lock);
852 }
853 
854 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
855 {
856 	struct otp_info *info;
857 	ssize_t size = 0;
858 	unsigned int i;
859 	size_t retlen;
860 	int ret;
861 
862 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
863 	if (!info)
864 		return -ENOMEM;
865 
866 	if (is_user)
867 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
868 	else
869 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
870 	if (ret)
871 		goto err;
872 
873 	for (i = 0; i < retlen / sizeof(*info); i++)
874 		size += info[i].length;
875 
876 	kfree(info);
877 	return size;
878 
879 err:
880 	kfree(info);
881 
882 	/* ENODATA means there is no OTP region. */
883 	return ret == -ENODATA ? 0 : ret;
884 }
885 
886 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
887 						   const char *compatible,
888 						   int size,
889 						   nvmem_reg_read_t reg_read)
890 {
891 	struct nvmem_device *nvmem = NULL;
892 	struct nvmem_config config = {};
893 	struct device_node *np;
894 
895 	/* DT binding is optional */
896 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
897 
898 	/* OTP nvmem will be registered on the physical device */
899 	config.dev = mtd->dev.parent;
900 	config.name = compatible;
901 	config.id = NVMEM_DEVID_AUTO;
902 	config.owner = THIS_MODULE;
903 	config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd);
904 	config.type = NVMEM_TYPE_OTP;
905 	config.root_only = true;
906 	config.ignore_wp = true;
907 	config.reg_read = reg_read;
908 	config.size = size;
909 	config.of_node = np;
910 	config.priv = mtd;
911 
912 	nvmem = nvmem_register(&config);
913 	/* Just ignore if there is no NVMEM support in the kernel */
914 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
915 		nvmem = NULL;
916 
917 	of_node_put(np);
918 
919 	return nvmem;
920 }
921 
922 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
923 				       void *val, size_t bytes)
924 {
925 	struct mtd_info *mtd = priv;
926 	size_t retlen;
927 	int ret;
928 
929 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
930 	if (ret)
931 		return ret;
932 
933 	return retlen == bytes ? 0 : -EIO;
934 }
935 
936 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
937 				       void *val, size_t bytes)
938 {
939 	struct mtd_info *mtd = priv;
940 	size_t retlen;
941 	int ret;
942 
943 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
944 	if (ret)
945 		return ret;
946 
947 	return retlen == bytes ? 0 : -EIO;
948 }
949 
950 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
951 {
952 	struct device *dev = mtd->dev.parent;
953 	struct nvmem_device *nvmem;
954 	ssize_t size;
955 	int err;
956 
957 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
958 		size = mtd_otp_size(mtd, true);
959 		if (size < 0) {
960 			err = size;
961 			goto err;
962 		}
963 
964 		if (size > 0) {
965 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
966 						       mtd_nvmem_user_otp_reg_read);
967 			if (IS_ERR(nvmem)) {
968 				err = PTR_ERR(nvmem);
969 				goto err;
970 			}
971 			mtd->otp_user_nvmem = nvmem;
972 		}
973 	}
974 
975 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
976 		size = mtd_otp_size(mtd, false);
977 		if (size < 0) {
978 			err = size;
979 			goto err;
980 		}
981 
982 		if (size > 0) {
983 			/*
984 			 * The factory OTP contains thing such as a unique serial
985 			 * number and is small, so let's read it out and put it
986 			 * into the entropy pool.
987 			 */
988 			void *otp;
989 
990 			otp = kmalloc(size, GFP_KERNEL);
991 			if (!otp) {
992 				err = -ENOMEM;
993 				goto err;
994 			}
995 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
996 			if (err < 0) {
997 				kfree(otp);
998 				goto err;
999 			}
1000 			add_device_randomness(otp, err);
1001 			kfree(otp);
1002 
1003 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1004 						       mtd_nvmem_fact_otp_reg_read);
1005 			if (IS_ERR(nvmem)) {
1006 				err = PTR_ERR(nvmem);
1007 				goto err;
1008 			}
1009 			mtd->otp_factory_nvmem = nvmem;
1010 		}
1011 	}
1012 
1013 	return 0;
1014 
1015 err:
1016 	nvmem_unregister(mtd->otp_user_nvmem);
1017 	/* Don't report error if OTP is not supported. */
1018 	if (err == -EOPNOTSUPP)
1019 		return 0;
1020 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1021 }
1022 
1023 /**
1024  * mtd_device_parse_register - parse partitions and register an MTD device.
1025  *
1026  * @mtd: the MTD device to register
1027  * @types: the list of MTD partition probes to try, see
1028  *         'parse_mtd_partitions()' for more information
1029  * @parser_data: MTD partition parser-specific data
1030  * @parts: fallback partition information to register, if parsing fails;
1031  *         only valid if %nr_parts > %0
1032  * @nr_parts: the number of partitions in parts, if zero then the full
1033  *            MTD device is registered if no partition info is found
1034  *
1035  * This function aggregates MTD partitions parsing (done by
1036  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1037  * basically follows the most common pattern found in many MTD drivers:
1038  *
1039  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1040  *   registered first.
1041  * * Then It tries to probe partitions on MTD device @mtd using parsers
1042  *   specified in @types (if @types is %NULL, then the default list of parsers
1043  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1044  *   found this functions tries to fallback to information specified in
1045  *   @parts/@nr_parts.
1046  * * If no partitions were found this function just registers the MTD device
1047  *   @mtd and exits.
1048  *
1049  * Returns zero in case of success and a negative error code in case of failure.
1050  */
1051 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1052 			      struct mtd_part_parser_data *parser_data,
1053 			      const struct mtd_partition *parts,
1054 			      int nr_parts)
1055 {
1056 	int ret;
1057 
1058 	mtd_set_dev_defaults(mtd);
1059 
1060 	ret = mtd_otp_nvmem_add(mtd);
1061 	if (ret)
1062 		goto out;
1063 
1064 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1065 		ret = add_mtd_device(mtd);
1066 		if (ret)
1067 			goto out;
1068 	}
1069 
1070 	/* Prefer parsed partitions over driver-provided fallback */
1071 	ret = parse_mtd_partitions(mtd, types, parser_data);
1072 	if (ret == -EPROBE_DEFER)
1073 		goto out;
1074 
1075 	if (ret > 0)
1076 		ret = 0;
1077 	else if (nr_parts)
1078 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1079 	else if (!device_is_registered(&mtd->dev))
1080 		ret = add_mtd_device(mtd);
1081 	else
1082 		ret = 0;
1083 
1084 	if (ret)
1085 		goto out;
1086 
1087 	/*
1088 	 * FIXME: some drivers unfortunately call this function more than once.
1089 	 * So we have to check if we've already assigned the reboot notifier.
1090 	 *
1091 	 * Generally, we can make multiple calls work for most cases, but it
1092 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1093 	 * cmdlineparts will register partitions more than once).
1094 	 */
1095 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1096 		  "MTD already registered\n");
1097 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1098 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1099 		register_reboot_notifier(&mtd->reboot_notifier);
1100 	}
1101 
1102 out:
1103 	if (ret) {
1104 		nvmem_unregister(mtd->otp_user_nvmem);
1105 		nvmem_unregister(mtd->otp_factory_nvmem);
1106 	}
1107 
1108 	if (ret && device_is_registered(&mtd->dev))
1109 		del_mtd_device(mtd);
1110 
1111 	return ret;
1112 }
1113 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1114 
1115 /**
1116  * mtd_device_unregister - unregister an existing MTD device.
1117  *
1118  * @master: the MTD device to unregister.  This will unregister both the master
1119  *          and any partitions if registered.
1120  */
1121 int mtd_device_unregister(struct mtd_info *master)
1122 {
1123 	int err;
1124 
1125 	if (master->_reboot) {
1126 		unregister_reboot_notifier(&master->reboot_notifier);
1127 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1128 	}
1129 
1130 	nvmem_unregister(master->otp_user_nvmem);
1131 	nvmem_unregister(master->otp_factory_nvmem);
1132 
1133 	err = del_mtd_partitions(master);
1134 	if (err)
1135 		return err;
1136 
1137 	if (!device_is_registered(&master->dev))
1138 		return 0;
1139 
1140 	return del_mtd_device(master);
1141 }
1142 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1143 
1144 /**
1145  *	register_mtd_user - register a 'user' of MTD devices.
1146  *	@new: pointer to notifier info structure
1147  *
1148  *	Registers a pair of callbacks function to be called upon addition
1149  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1150  *	invoked for each MTD device currently present in the system.
1151  */
1152 void register_mtd_user (struct mtd_notifier *new)
1153 {
1154 	struct mtd_info *mtd;
1155 
1156 	mutex_lock(&mtd_table_mutex);
1157 
1158 	list_add(&new->list, &mtd_notifiers);
1159 
1160 	__module_get(THIS_MODULE);
1161 
1162 	mtd_for_each_device(mtd)
1163 		new->add(mtd);
1164 
1165 	mutex_unlock(&mtd_table_mutex);
1166 }
1167 EXPORT_SYMBOL_GPL(register_mtd_user);
1168 
1169 /**
1170  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1171  *	@old: pointer to notifier info structure
1172  *
1173  *	Removes a callback function pair from the list of 'users' to be
1174  *	notified upon addition or removal of MTD devices. Causes the
1175  *	'remove' callback to be immediately invoked for each MTD device
1176  *	currently present in the system.
1177  */
1178 int unregister_mtd_user (struct mtd_notifier *old)
1179 {
1180 	struct mtd_info *mtd;
1181 
1182 	mutex_lock(&mtd_table_mutex);
1183 
1184 	module_put(THIS_MODULE);
1185 
1186 	mtd_for_each_device(mtd)
1187 		old->remove(mtd);
1188 
1189 	list_del(&old->list);
1190 	mutex_unlock(&mtd_table_mutex);
1191 	return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1194 
1195 /**
1196  *	get_mtd_device - obtain a validated handle for an MTD device
1197  *	@mtd: last known address of the required MTD device
1198  *	@num: internal device number of the required MTD device
1199  *
1200  *	Given a number and NULL address, return the num'th entry in the device
1201  *	table, if any.	Given an address and num == -1, search the device table
1202  *	for a device with that address and return if it's still present. Given
1203  *	both, return the num'th driver only if its address matches. Return
1204  *	error code if not.
1205  */
1206 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1207 {
1208 	struct mtd_info *ret = NULL, *other;
1209 	int err = -ENODEV;
1210 
1211 	mutex_lock(&mtd_table_mutex);
1212 
1213 	if (num == -1) {
1214 		mtd_for_each_device(other) {
1215 			if (other == mtd) {
1216 				ret = mtd;
1217 				break;
1218 			}
1219 		}
1220 	} else if (num >= 0) {
1221 		ret = idr_find(&mtd_idr, num);
1222 		if (mtd && mtd != ret)
1223 			ret = NULL;
1224 	}
1225 
1226 	if (!ret) {
1227 		ret = ERR_PTR(err);
1228 		goto out;
1229 	}
1230 
1231 	err = __get_mtd_device(ret);
1232 	if (err)
1233 		ret = ERR_PTR(err);
1234 out:
1235 	mutex_unlock(&mtd_table_mutex);
1236 	return ret;
1237 }
1238 EXPORT_SYMBOL_GPL(get_mtd_device);
1239 
1240 
1241 int __get_mtd_device(struct mtd_info *mtd)
1242 {
1243 	struct mtd_info *master = mtd_get_master(mtd);
1244 	int err;
1245 
1246 	if (master->_get_device) {
1247 		err = master->_get_device(mtd);
1248 		if (err)
1249 			return err;
1250 	}
1251 
1252 	if (!try_module_get(master->owner)) {
1253 		if (master->_put_device)
1254 			master->_put_device(master);
1255 		return -ENODEV;
1256 	}
1257 
1258 	while (mtd) {
1259 		if (mtd != master)
1260 			kref_get(&mtd->refcnt);
1261 		mtd = mtd->parent;
1262 	}
1263 
1264 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1265 		kref_get(&master->refcnt);
1266 
1267 	return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(__get_mtd_device);
1270 
1271 /**
1272  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1273  *
1274  * @np: device tree node
1275  */
1276 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1277 {
1278 	struct mtd_info *mtd = NULL;
1279 	struct mtd_info *tmp;
1280 	int err;
1281 
1282 	mutex_lock(&mtd_table_mutex);
1283 
1284 	err = -EPROBE_DEFER;
1285 	mtd_for_each_device(tmp) {
1286 		if (mtd_get_of_node(tmp) == np) {
1287 			mtd = tmp;
1288 			err = __get_mtd_device(mtd);
1289 			break;
1290 		}
1291 	}
1292 
1293 	mutex_unlock(&mtd_table_mutex);
1294 
1295 	return err ? ERR_PTR(err) : mtd;
1296 }
1297 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1298 
1299 /**
1300  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1301  *	device name
1302  *	@name: MTD device name to open
1303  *
1304  * 	This function returns MTD device description structure in case of
1305  * 	success and an error code in case of failure.
1306  */
1307 struct mtd_info *get_mtd_device_nm(const char *name)
1308 {
1309 	int err = -ENODEV;
1310 	struct mtd_info *mtd = NULL, *other;
1311 
1312 	mutex_lock(&mtd_table_mutex);
1313 
1314 	mtd_for_each_device(other) {
1315 		if (!strcmp(name, other->name)) {
1316 			mtd = other;
1317 			break;
1318 		}
1319 	}
1320 
1321 	if (!mtd)
1322 		goto out_unlock;
1323 
1324 	err = __get_mtd_device(mtd);
1325 	if (err)
1326 		goto out_unlock;
1327 
1328 	mutex_unlock(&mtd_table_mutex);
1329 	return mtd;
1330 
1331 out_unlock:
1332 	mutex_unlock(&mtd_table_mutex);
1333 	return ERR_PTR(err);
1334 }
1335 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1336 
1337 void put_mtd_device(struct mtd_info *mtd)
1338 {
1339 	mutex_lock(&mtd_table_mutex);
1340 	__put_mtd_device(mtd);
1341 	mutex_unlock(&mtd_table_mutex);
1342 
1343 }
1344 EXPORT_SYMBOL_GPL(put_mtd_device);
1345 
1346 void __put_mtd_device(struct mtd_info *mtd)
1347 {
1348 	struct mtd_info *master = mtd_get_master(mtd);
1349 
1350 	while (mtd) {
1351 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1352 		struct mtd_info *parent = mtd->parent;
1353 
1354 		if (mtd != master)
1355 			kref_put(&mtd->refcnt, mtd_device_release);
1356 		mtd = parent;
1357 	}
1358 
1359 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1360 		kref_put(&master->refcnt, mtd_device_release);
1361 
1362 	module_put(master->owner);
1363 
1364 	/* must be the last as master can be freed in the _put_device */
1365 	if (master->_put_device)
1366 		master->_put_device(master);
1367 }
1368 EXPORT_SYMBOL_GPL(__put_mtd_device);
1369 
1370 /*
1371  * Erase is an synchronous operation. Device drivers are epected to return a
1372  * negative error code if the operation failed and update instr->fail_addr
1373  * to point the portion that was not properly erased.
1374  */
1375 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1376 {
1377 	struct mtd_info *master = mtd_get_master(mtd);
1378 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1379 	struct erase_info adjinstr;
1380 	int ret;
1381 
1382 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1383 	adjinstr = *instr;
1384 
1385 	if (!mtd->erasesize || !master->_erase)
1386 		return -ENOTSUPP;
1387 
1388 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1389 		return -EINVAL;
1390 	if (!(mtd->flags & MTD_WRITEABLE))
1391 		return -EROFS;
1392 
1393 	if (!instr->len)
1394 		return 0;
1395 
1396 	ledtrig_mtd_activity();
1397 
1398 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1399 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1400 				master->erasesize;
1401 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1402 				master->erasesize) -
1403 			       adjinstr.addr;
1404 	}
1405 
1406 	adjinstr.addr += mst_ofs;
1407 
1408 	ret = master->_erase(master, &adjinstr);
1409 
1410 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1411 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1412 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1413 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1414 							 master);
1415 			instr->fail_addr *= mtd->erasesize;
1416 		}
1417 	}
1418 
1419 	return ret;
1420 }
1421 EXPORT_SYMBOL_GPL(mtd_erase);
1422 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1423 
1424 /*
1425  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1426  */
1427 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1428 	      void **virt, resource_size_t *phys)
1429 {
1430 	struct mtd_info *master = mtd_get_master(mtd);
1431 
1432 	*retlen = 0;
1433 	*virt = NULL;
1434 	if (phys)
1435 		*phys = 0;
1436 	if (!master->_point)
1437 		return -EOPNOTSUPP;
1438 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1439 		return -EINVAL;
1440 	if (!len)
1441 		return 0;
1442 
1443 	from = mtd_get_master_ofs(mtd, from);
1444 	return master->_point(master, from, len, retlen, virt, phys);
1445 }
1446 EXPORT_SYMBOL_GPL(mtd_point);
1447 
1448 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1449 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1450 {
1451 	struct mtd_info *master = mtd_get_master(mtd);
1452 
1453 	if (!master->_unpoint)
1454 		return -EOPNOTSUPP;
1455 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1456 		return -EINVAL;
1457 	if (!len)
1458 		return 0;
1459 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1460 }
1461 EXPORT_SYMBOL_GPL(mtd_unpoint);
1462 
1463 /*
1464  * Allow NOMMU mmap() to directly map the device (if not NULL)
1465  * - return the address to which the offset maps
1466  * - return -ENOSYS to indicate refusal to do the mapping
1467  */
1468 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1469 				    unsigned long offset, unsigned long flags)
1470 {
1471 	size_t retlen;
1472 	void *virt;
1473 	int ret;
1474 
1475 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1476 	if (ret)
1477 		return ret;
1478 	if (retlen != len) {
1479 		mtd_unpoint(mtd, offset, retlen);
1480 		return -ENOSYS;
1481 	}
1482 	return (unsigned long)virt;
1483 }
1484 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1485 
1486 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1487 				 const struct mtd_ecc_stats *old_stats)
1488 {
1489 	struct mtd_ecc_stats diff;
1490 
1491 	if (master == mtd)
1492 		return;
1493 
1494 	diff = master->ecc_stats;
1495 	diff.failed -= old_stats->failed;
1496 	diff.corrected -= old_stats->corrected;
1497 
1498 	while (mtd->parent) {
1499 		mtd->ecc_stats.failed += diff.failed;
1500 		mtd->ecc_stats.corrected += diff.corrected;
1501 		mtd = mtd->parent;
1502 	}
1503 }
1504 
1505 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1506 	     u_char *buf)
1507 {
1508 	struct mtd_oob_ops ops = {
1509 		.len = len,
1510 		.datbuf = buf,
1511 	};
1512 	int ret;
1513 
1514 	ret = mtd_read_oob(mtd, from, &ops);
1515 	*retlen = ops.retlen;
1516 
1517 	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL_GPL(mtd_read);
1522 ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1523 
1524 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1525 	      const u_char *buf)
1526 {
1527 	struct mtd_oob_ops ops = {
1528 		.len = len,
1529 		.datbuf = (u8 *)buf,
1530 	};
1531 	int ret;
1532 
1533 	ret = mtd_write_oob(mtd, to, &ops);
1534 	*retlen = ops.retlen;
1535 
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL_GPL(mtd_write);
1539 ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1540 
1541 /*
1542  * In blackbox flight recorder like scenarios we want to make successful writes
1543  * in interrupt context. panic_write() is only intended to be called when its
1544  * known the kernel is about to panic and we need the write to succeed. Since
1545  * the kernel is not going to be running for much longer, this function can
1546  * break locks and delay to ensure the write succeeds (but not sleep).
1547  */
1548 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1549 		    const u_char *buf)
1550 {
1551 	struct mtd_info *master = mtd_get_master(mtd);
1552 
1553 	*retlen = 0;
1554 	if (!master->_panic_write)
1555 		return -EOPNOTSUPP;
1556 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1557 		return -EINVAL;
1558 	if (!(mtd->flags & MTD_WRITEABLE))
1559 		return -EROFS;
1560 	if (!len)
1561 		return 0;
1562 	if (!master->oops_panic_write)
1563 		master->oops_panic_write = true;
1564 
1565 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1566 				    retlen, buf);
1567 }
1568 EXPORT_SYMBOL_GPL(mtd_panic_write);
1569 
1570 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1571 			     struct mtd_oob_ops *ops)
1572 {
1573 	/*
1574 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1575 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1576 	 *  this case.
1577 	 */
1578 	if (!ops->datbuf)
1579 		ops->len = 0;
1580 
1581 	if (!ops->oobbuf)
1582 		ops->ooblen = 0;
1583 
1584 	if (offs < 0 || offs + ops->len > mtd->size)
1585 		return -EINVAL;
1586 
1587 	if (ops->ooblen) {
1588 		size_t maxooblen;
1589 
1590 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1591 			return -EINVAL;
1592 
1593 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1594 				      mtd_div_by_ws(offs, mtd)) *
1595 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1596 		if (ops->ooblen > maxooblen)
1597 			return -EINVAL;
1598 	}
1599 
1600 	return 0;
1601 }
1602 
1603 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1604 			    struct mtd_oob_ops *ops)
1605 {
1606 	struct mtd_info *master = mtd_get_master(mtd);
1607 	int ret;
1608 
1609 	from = mtd_get_master_ofs(mtd, from);
1610 	if (master->_read_oob)
1611 		ret = master->_read_oob(master, from, ops);
1612 	else
1613 		ret = master->_read(master, from, ops->len, &ops->retlen,
1614 				    ops->datbuf);
1615 
1616 	return ret;
1617 }
1618 
1619 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1620 			     struct mtd_oob_ops *ops)
1621 {
1622 	struct mtd_info *master = mtd_get_master(mtd);
1623 	int ret;
1624 
1625 	to = mtd_get_master_ofs(mtd, to);
1626 	if (master->_write_oob)
1627 		ret = master->_write_oob(master, to, ops);
1628 	else
1629 		ret = master->_write(master, to, ops->len, &ops->retlen,
1630 				     ops->datbuf);
1631 
1632 	return ret;
1633 }
1634 
1635 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1636 			       struct mtd_oob_ops *ops)
1637 {
1638 	struct mtd_info *master = mtd_get_master(mtd);
1639 	int ngroups = mtd_pairing_groups(master);
1640 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1641 	struct mtd_oob_ops adjops = *ops;
1642 	unsigned int wunit, oobavail;
1643 	struct mtd_pairing_info info;
1644 	int max_bitflips = 0;
1645 	u32 ebofs, pageofs;
1646 	loff_t base, pos;
1647 
1648 	ebofs = mtd_mod_by_eb(start, mtd);
1649 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1650 	info.group = 0;
1651 	info.pair = mtd_div_by_ws(ebofs, mtd);
1652 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1653 	oobavail = mtd_oobavail(mtd, ops);
1654 
1655 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1656 		int ret;
1657 
1658 		if (info.pair >= npairs) {
1659 			info.pair = 0;
1660 			base += master->erasesize;
1661 		}
1662 
1663 		wunit = mtd_pairing_info_to_wunit(master, &info);
1664 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1665 
1666 		adjops.len = ops->len - ops->retlen;
1667 		if (adjops.len > mtd->writesize - pageofs)
1668 			adjops.len = mtd->writesize - pageofs;
1669 
1670 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1671 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1672 			adjops.ooblen = oobavail - adjops.ooboffs;
1673 
1674 		if (read) {
1675 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1676 			if (ret > 0)
1677 				max_bitflips = max(max_bitflips, ret);
1678 		} else {
1679 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1680 		}
1681 
1682 		if (ret < 0)
1683 			return ret;
1684 
1685 		max_bitflips = max(max_bitflips, ret);
1686 		ops->retlen += adjops.retlen;
1687 		ops->oobretlen += adjops.oobretlen;
1688 		adjops.datbuf += adjops.retlen;
1689 		adjops.oobbuf += adjops.oobretlen;
1690 		adjops.ooboffs = 0;
1691 		pageofs = 0;
1692 		info.pair++;
1693 	}
1694 
1695 	return max_bitflips;
1696 }
1697 
1698 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1699 {
1700 	struct mtd_info *master = mtd_get_master(mtd);
1701 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1702 	int ret_code;
1703 
1704 	ops->retlen = ops->oobretlen = 0;
1705 
1706 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1707 	if (ret_code)
1708 		return ret_code;
1709 
1710 	ledtrig_mtd_activity();
1711 
1712 	/* Check the validity of a potential fallback on mtd->_read */
1713 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1714 		return -EOPNOTSUPP;
1715 
1716 	if (ops->stats)
1717 		memset(ops->stats, 0, sizeof(*ops->stats));
1718 
1719 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1720 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1721 	else
1722 		ret_code = mtd_read_oob_std(mtd, from, ops);
1723 
1724 	mtd_update_ecc_stats(mtd, master, &old_stats);
1725 
1726 	/*
1727 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1728 	 * similar to mtd->_read(), returning a non-negative integer
1729 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1730 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1731 	 */
1732 	if (unlikely(ret_code < 0))
1733 		return ret_code;
1734 	if (mtd->ecc_strength == 0)
1735 		return 0;	/* device lacks ecc */
1736 	if (ops->stats)
1737 		ops->stats->max_bitflips = ret_code;
1738 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1739 }
1740 EXPORT_SYMBOL_GPL(mtd_read_oob);
1741 
1742 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1743 				struct mtd_oob_ops *ops)
1744 {
1745 	struct mtd_info *master = mtd_get_master(mtd);
1746 	int ret;
1747 
1748 	ops->retlen = ops->oobretlen = 0;
1749 
1750 	if (!(mtd->flags & MTD_WRITEABLE))
1751 		return -EROFS;
1752 
1753 	ret = mtd_check_oob_ops(mtd, to, ops);
1754 	if (ret)
1755 		return ret;
1756 
1757 	ledtrig_mtd_activity();
1758 
1759 	/* Check the validity of a potential fallback on mtd->_write */
1760 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1761 		return -EOPNOTSUPP;
1762 
1763 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1764 		return mtd_io_emulated_slc(mtd, to, false, ops);
1765 
1766 	return mtd_write_oob_std(mtd, to, ops);
1767 }
1768 EXPORT_SYMBOL_GPL(mtd_write_oob);
1769 
1770 /**
1771  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1772  * @mtd: MTD device structure
1773  * @section: ECC section. Depending on the layout you may have all the ECC
1774  *	     bytes stored in a single contiguous section, or one section
1775  *	     per ECC chunk (and sometime several sections for a single ECC
1776  *	     ECC chunk)
1777  * @oobecc: OOB region struct filled with the appropriate ECC position
1778  *	    information
1779  *
1780  * This function returns ECC section information in the OOB area. If you want
1781  * to get all the ECC bytes information, then you should call
1782  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1783  *
1784  * Returns zero on success, a negative error code otherwise.
1785  */
1786 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1787 		      struct mtd_oob_region *oobecc)
1788 {
1789 	struct mtd_info *master = mtd_get_master(mtd);
1790 
1791 	memset(oobecc, 0, sizeof(*oobecc));
1792 
1793 	if (!master || section < 0)
1794 		return -EINVAL;
1795 
1796 	if (!master->ooblayout || !master->ooblayout->ecc)
1797 		return -ENOTSUPP;
1798 
1799 	return master->ooblayout->ecc(master, section, oobecc);
1800 }
1801 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1802 
1803 /**
1804  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1805  *			section
1806  * @mtd: MTD device structure
1807  * @section: Free section you are interested in. Depending on the layout
1808  *	     you may have all the free bytes stored in a single contiguous
1809  *	     section, or one section per ECC chunk plus an extra section
1810  *	     for the remaining bytes (or other funky layout).
1811  * @oobfree: OOB region struct filled with the appropriate free position
1812  *	     information
1813  *
1814  * This function returns free bytes position in the OOB area. If you want
1815  * to get all the free bytes information, then you should call
1816  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1817  *
1818  * Returns zero on success, a negative error code otherwise.
1819  */
1820 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1821 		       struct mtd_oob_region *oobfree)
1822 {
1823 	struct mtd_info *master = mtd_get_master(mtd);
1824 
1825 	memset(oobfree, 0, sizeof(*oobfree));
1826 
1827 	if (!master || section < 0)
1828 		return -EINVAL;
1829 
1830 	if (!master->ooblayout || !master->ooblayout->free)
1831 		return -ENOTSUPP;
1832 
1833 	return master->ooblayout->free(master, section, oobfree);
1834 }
1835 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1836 
1837 /**
1838  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1839  * @mtd: mtd info structure
1840  * @byte: the byte we are searching for
1841  * @sectionp: pointer where the section id will be stored
1842  * @oobregion: used to retrieve the ECC position
1843  * @iter: iterator function. Should be either mtd_ooblayout_free or
1844  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1845  *
1846  * This function returns the section id and oobregion information of a
1847  * specific byte. For example, say you want to know where the 4th ECC byte is
1848  * stored, you'll use:
1849  *
1850  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1851  *
1852  * Returns zero on success, a negative error code otherwise.
1853  */
1854 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1855 				int *sectionp, struct mtd_oob_region *oobregion,
1856 				int (*iter)(struct mtd_info *,
1857 					    int section,
1858 					    struct mtd_oob_region *oobregion))
1859 {
1860 	int pos = 0, ret, section = 0;
1861 
1862 	memset(oobregion, 0, sizeof(*oobregion));
1863 
1864 	while (1) {
1865 		ret = iter(mtd, section, oobregion);
1866 		if (ret)
1867 			return ret;
1868 
1869 		if (pos + oobregion->length > byte)
1870 			break;
1871 
1872 		pos += oobregion->length;
1873 		section++;
1874 	}
1875 
1876 	/*
1877 	 * Adjust region info to make it start at the beginning at the
1878 	 * 'start' ECC byte.
1879 	 */
1880 	oobregion->offset += byte - pos;
1881 	oobregion->length -= byte - pos;
1882 	*sectionp = section;
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1889  *				  ECC byte
1890  * @mtd: mtd info structure
1891  * @eccbyte: the byte we are searching for
1892  * @section: pointer where the section id will be stored
1893  * @oobregion: OOB region information
1894  *
1895  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1896  * byte.
1897  *
1898  * Returns zero on success, a negative error code otherwise.
1899  */
1900 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1901 				 int *section,
1902 				 struct mtd_oob_region *oobregion)
1903 {
1904 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1905 					 mtd_ooblayout_ecc);
1906 }
1907 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1908 
1909 /**
1910  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1911  * @mtd: mtd info structure
1912  * @buf: destination buffer to store OOB bytes
1913  * @oobbuf: OOB buffer
1914  * @start: first byte to retrieve
1915  * @nbytes: number of bytes to retrieve
1916  * @iter: section iterator
1917  *
1918  * Extract bytes attached to a specific category (ECC or free)
1919  * from the OOB buffer and copy them into buf.
1920  *
1921  * Returns zero on success, a negative error code otherwise.
1922  */
1923 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1924 				const u8 *oobbuf, int start, int nbytes,
1925 				int (*iter)(struct mtd_info *,
1926 					    int section,
1927 					    struct mtd_oob_region *oobregion))
1928 {
1929 	struct mtd_oob_region oobregion;
1930 	int section, ret;
1931 
1932 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1933 					&oobregion, iter);
1934 
1935 	while (!ret) {
1936 		int cnt;
1937 
1938 		cnt = min_t(int, nbytes, oobregion.length);
1939 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1940 		buf += cnt;
1941 		nbytes -= cnt;
1942 
1943 		if (!nbytes)
1944 			break;
1945 
1946 		ret = iter(mtd, ++section, &oobregion);
1947 	}
1948 
1949 	return ret;
1950 }
1951 
1952 /**
1953  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1954  * @mtd: mtd info structure
1955  * @buf: source buffer to get OOB bytes from
1956  * @oobbuf: OOB buffer
1957  * @start: first OOB byte to set
1958  * @nbytes: number of OOB bytes to set
1959  * @iter: section iterator
1960  *
1961  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1962  * is selected by passing the appropriate iterator.
1963  *
1964  * Returns zero on success, a negative error code otherwise.
1965  */
1966 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1967 				u8 *oobbuf, int start, int nbytes,
1968 				int (*iter)(struct mtd_info *,
1969 					    int section,
1970 					    struct mtd_oob_region *oobregion))
1971 {
1972 	struct mtd_oob_region oobregion;
1973 	int section, ret;
1974 
1975 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1976 					&oobregion, iter);
1977 
1978 	while (!ret) {
1979 		int cnt;
1980 
1981 		cnt = min_t(int, nbytes, oobregion.length);
1982 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1983 		buf += cnt;
1984 		nbytes -= cnt;
1985 
1986 		if (!nbytes)
1987 			break;
1988 
1989 		ret = iter(mtd, ++section, &oobregion);
1990 	}
1991 
1992 	return ret;
1993 }
1994 
1995 /**
1996  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1997  * @mtd: mtd info structure
1998  * @iter: category iterator
1999  *
2000  * Count the number of bytes in a given category.
2001  *
2002  * Returns a positive value on success, a negative error code otherwise.
2003  */
2004 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2005 				int (*iter)(struct mtd_info *,
2006 					    int section,
2007 					    struct mtd_oob_region *oobregion))
2008 {
2009 	struct mtd_oob_region oobregion;
2010 	int section = 0, ret, nbytes = 0;
2011 
2012 	while (1) {
2013 		ret = iter(mtd, section++, &oobregion);
2014 		if (ret) {
2015 			if (ret == -ERANGE)
2016 				ret = nbytes;
2017 			break;
2018 		}
2019 
2020 		nbytes += oobregion.length;
2021 	}
2022 
2023 	return ret;
2024 }
2025 
2026 /**
2027  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2028  * @mtd: mtd info structure
2029  * @eccbuf: destination buffer to store ECC bytes
2030  * @oobbuf: OOB buffer
2031  * @start: first ECC byte to retrieve
2032  * @nbytes: number of ECC bytes to retrieve
2033  *
2034  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2035  *
2036  * Returns zero on success, a negative error code otherwise.
2037  */
2038 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2039 			       const u8 *oobbuf, int start, int nbytes)
2040 {
2041 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2042 				       mtd_ooblayout_ecc);
2043 }
2044 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2045 
2046 /**
2047  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2048  * @mtd: mtd info structure
2049  * @eccbuf: source buffer to get ECC bytes from
2050  * @oobbuf: OOB buffer
2051  * @start: first ECC byte to set
2052  * @nbytes: number of ECC bytes to set
2053  *
2054  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2055  *
2056  * Returns zero on success, a negative error code otherwise.
2057  */
2058 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2059 			       u8 *oobbuf, int start, int nbytes)
2060 {
2061 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2062 				       mtd_ooblayout_ecc);
2063 }
2064 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2065 
2066 /**
2067  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2068  * @mtd: mtd info structure
2069  * @databuf: destination buffer to store ECC bytes
2070  * @oobbuf: OOB buffer
2071  * @start: first ECC byte to retrieve
2072  * @nbytes: number of ECC bytes to retrieve
2073  *
2074  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2075  *
2076  * Returns zero on success, a negative error code otherwise.
2077  */
2078 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2079 				const u8 *oobbuf, int start, int nbytes)
2080 {
2081 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2082 				       mtd_ooblayout_free);
2083 }
2084 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2085 
2086 /**
2087  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2088  * @mtd: mtd info structure
2089  * @databuf: source buffer to get data bytes from
2090  * @oobbuf: OOB buffer
2091  * @start: first ECC byte to set
2092  * @nbytes: number of ECC bytes to set
2093  *
2094  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2095  *
2096  * Returns zero on success, a negative error code otherwise.
2097  */
2098 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2099 				u8 *oobbuf, int start, int nbytes)
2100 {
2101 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2102 				       mtd_ooblayout_free);
2103 }
2104 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2105 
2106 /**
2107  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2108  * @mtd: mtd info structure
2109  *
2110  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2111  *
2112  * Returns zero on success, a negative error code otherwise.
2113  */
2114 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2115 {
2116 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2117 }
2118 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2119 
2120 /**
2121  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2122  * @mtd: mtd info structure
2123  *
2124  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2125  *
2126  * Returns zero on success, a negative error code otherwise.
2127  */
2128 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2129 {
2130 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2131 }
2132 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2133 
2134 /*
2135  * Method to access the protection register area, present in some flash
2136  * devices. The user data is one time programmable but the factory data is read
2137  * only.
2138  */
2139 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2140 			   struct otp_info *buf)
2141 {
2142 	struct mtd_info *master = mtd_get_master(mtd);
2143 
2144 	if (!master->_get_fact_prot_info)
2145 		return -EOPNOTSUPP;
2146 	if (!len)
2147 		return 0;
2148 	return master->_get_fact_prot_info(master, len, retlen, buf);
2149 }
2150 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2151 
2152 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2153 			   size_t *retlen, u_char *buf)
2154 {
2155 	struct mtd_info *master = mtd_get_master(mtd);
2156 
2157 	*retlen = 0;
2158 	if (!master->_read_fact_prot_reg)
2159 		return -EOPNOTSUPP;
2160 	if (!len)
2161 		return 0;
2162 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2163 }
2164 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2165 
2166 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2167 			   struct otp_info *buf)
2168 {
2169 	struct mtd_info *master = mtd_get_master(mtd);
2170 
2171 	if (!master->_get_user_prot_info)
2172 		return -EOPNOTSUPP;
2173 	if (!len)
2174 		return 0;
2175 	return master->_get_user_prot_info(master, len, retlen, buf);
2176 }
2177 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2178 
2179 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2180 			   size_t *retlen, u_char *buf)
2181 {
2182 	struct mtd_info *master = mtd_get_master(mtd);
2183 
2184 	*retlen = 0;
2185 	if (!master->_read_user_prot_reg)
2186 		return -EOPNOTSUPP;
2187 	if (!len)
2188 		return 0;
2189 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2190 }
2191 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2192 
2193 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2194 			    size_t *retlen, const u_char *buf)
2195 {
2196 	struct mtd_info *master = mtd_get_master(mtd);
2197 	int ret;
2198 
2199 	*retlen = 0;
2200 	if (!master->_write_user_prot_reg)
2201 		return -EOPNOTSUPP;
2202 	if (!len)
2203 		return 0;
2204 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2205 	if (ret)
2206 		return ret;
2207 
2208 	/*
2209 	 * If no data could be written at all, we are out of memory and
2210 	 * must return -ENOSPC.
2211 	 */
2212 	return (*retlen) ? 0 : -ENOSPC;
2213 }
2214 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2215 
2216 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2217 {
2218 	struct mtd_info *master = mtd_get_master(mtd);
2219 
2220 	if (!master->_lock_user_prot_reg)
2221 		return -EOPNOTSUPP;
2222 	if (!len)
2223 		return 0;
2224 	return master->_lock_user_prot_reg(master, from, len);
2225 }
2226 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2227 
2228 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2229 {
2230 	struct mtd_info *master = mtd_get_master(mtd);
2231 
2232 	if (!master->_erase_user_prot_reg)
2233 		return -EOPNOTSUPP;
2234 	if (!len)
2235 		return 0;
2236 	return master->_erase_user_prot_reg(master, from, len);
2237 }
2238 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2239 
2240 /* Chip-supported device locking */
2241 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2242 {
2243 	struct mtd_info *master = mtd_get_master(mtd);
2244 
2245 	if (!master->_lock)
2246 		return -EOPNOTSUPP;
2247 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2248 		return -EINVAL;
2249 	if (!len)
2250 		return 0;
2251 
2252 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2253 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2254 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2255 	}
2256 
2257 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2258 }
2259 EXPORT_SYMBOL_GPL(mtd_lock);
2260 
2261 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2262 {
2263 	struct mtd_info *master = mtd_get_master(mtd);
2264 
2265 	if (!master->_unlock)
2266 		return -EOPNOTSUPP;
2267 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2268 		return -EINVAL;
2269 	if (!len)
2270 		return 0;
2271 
2272 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2273 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2274 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2275 	}
2276 
2277 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2278 }
2279 EXPORT_SYMBOL_GPL(mtd_unlock);
2280 
2281 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2282 {
2283 	struct mtd_info *master = mtd_get_master(mtd);
2284 
2285 	if (!master->_is_locked)
2286 		return -EOPNOTSUPP;
2287 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2288 		return -EINVAL;
2289 	if (!len)
2290 		return 0;
2291 
2292 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2293 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2294 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2295 	}
2296 
2297 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2298 }
2299 EXPORT_SYMBOL_GPL(mtd_is_locked);
2300 
2301 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2302 {
2303 	struct mtd_info *master = mtd_get_master(mtd);
2304 
2305 	if (ofs < 0 || ofs >= mtd->size)
2306 		return -EINVAL;
2307 	if (!master->_block_isreserved)
2308 		return 0;
2309 
2310 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2311 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2312 
2313 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2314 }
2315 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2316 
2317 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2318 {
2319 	struct mtd_info *master = mtd_get_master(mtd);
2320 
2321 	if (ofs < 0 || ofs >= mtd->size)
2322 		return -EINVAL;
2323 	if (!master->_block_isbad)
2324 		return 0;
2325 
2326 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2327 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2328 
2329 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2330 }
2331 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2332 
2333 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2334 {
2335 	struct mtd_info *master = mtd_get_master(mtd);
2336 	int ret;
2337 
2338 	if (!master->_block_markbad)
2339 		return -EOPNOTSUPP;
2340 	if (ofs < 0 || ofs >= mtd->size)
2341 		return -EINVAL;
2342 	if (!(mtd->flags & MTD_WRITEABLE))
2343 		return -EROFS;
2344 
2345 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2346 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2347 
2348 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2349 	if (ret)
2350 		return ret;
2351 
2352 	while (mtd->parent) {
2353 		mtd->ecc_stats.badblocks++;
2354 		mtd = mtd->parent;
2355 	}
2356 
2357 	return 0;
2358 }
2359 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2360 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2361 
2362 /*
2363  * default_mtd_writev - the default writev method
2364  * @mtd: mtd device description object pointer
2365  * @vecs: the vectors to write
2366  * @count: count of vectors in @vecs
2367  * @to: the MTD device offset to write to
2368  * @retlen: on exit contains the count of bytes written to the MTD device.
2369  *
2370  * This function returns zero in case of success and a negative error code in
2371  * case of failure.
2372  */
2373 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2374 			      unsigned long count, loff_t to, size_t *retlen)
2375 {
2376 	unsigned long i;
2377 	size_t totlen = 0, thislen;
2378 	int ret = 0;
2379 
2380 	for (i = 0; i < count; i++) {
2381 		if (!vecs[i].iov_len)
2382 			continue;
2383 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2384 				vecs[i].iov_base);
2385 		totlen += thislen;
2386 		if (ret || thislen != vecs[i].iov_len)
2387 			break;
2388 		to += vecs[i].iov_len;
2389 	}
2390 	*retlen = totlen;
2391 	return ret;
2392 }
2393 
2394 /*
2395  * mtd_writev - the vector-based MTD write method
2396  * @mtd: mtd device description object pointer
2397  * @vecs: the vectors to write
2398  * @count: count of vectors in @vecs
2399  * @to: the MTD device offset to write to
2400  * @retlen: on exit contains the count of bytes written to the MTD device.
2401  *
2402  * This function returns zero in case of success and a negative error code in
2403  * case of failure.
2404  */
2405 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2406 	       unsigned long count, loff_t to, size_t *retlen)
2407 {
2408 	struct mtd_info *master = mtd_get_master(mtd);
2409 
2410 	*retlen = 0;
2411 	if (!(mtd->flags & MTD_WRITEABLE))
2412 		return -EROFS;
2413 
2414 	if (!master->_writev)
2415 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2416 
2417 	return master->_writev(master, vecs, count,
2418 			       mtd_get_master_ofs(mtd, to), retlen);
2419 }
2420 EXPORT_SYMBOL_GPL(mtd_writev);
2421 
2422 /**
2423  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2424  * @mtd: mtd device description object pointer
2425  * @size: a pointer to the ideal or maximum size of the allocation, points
2426  *        to the actual allocation size on success.
2427  *
2428  * This routine attempts to allocate a contiguous kernel buffer up to
2429  * the specified size, backing off the size of the request exponentially
2430  * until the request succeeds or until the allocation size falls below
2431  * the system page size. This attempts to make sure it does not adversely
2432  * impact system performance, so when allocating more than one page, we
2433  * ask the memory allocator to avoid re-trying, swapping, writing back
2434  * or performing I/O.
2435  *
2436  * Note, this function also makes sure that the allocated buffer is aligned to
2437  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2438  *
2439  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2440  * to handle smaller (i.e. degraded) buffer allocations under low- or
2441  * fragmented-memory situations where such reduced allocations, from a
2442  * requested ideal, are allowed.
2443  *
2444  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2445  */
2446 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2447 {
2448 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2449 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2450 	void *kbuf;
2451 
2452 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2453 
2454 	while (*size > min_alloc) {
2455 		kbuf = kmalloc(*size, flags);
2456 		if (kbuf)
2457 			return kbuf;
2458 
2459 		*size >>= 1;
2460 		*size = ALIGN(*size, mtd->writesize);
2461 	}
2462 
2463 	/*
2464 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2465 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2466 	 */
2467 	return kmalloc(*size, GFP_KERNEL);
2468 }
2469 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2470 
2471 #ifdef CONFIG_PROC_FS
2472 
2473 /*====================================================================*/
2474 /* Support for /proc/mtd */
2475 
2476 static int mtd_proc_show(struct seq_file *m, void *v)
2477 {
2478 	struct mtd_info *mtd;
2479 
2480 	seq_puts(m, "dev:    size   erasesize  name\n");
2481 	mutex_lock(&mtd_table_mutex);
2482 	mtd_for_each_device(mtd) {
2483 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2484 			   mtd->index, (unsigned long long)mtd->size,
2485 			   mtd->erasesize, mtd->name);
2486 	}
2487 	mutex_unlock(&mtd_table_mutex);
2488 	return 0;
2489 }
2490 #endif /* CONFIG_PROC_FS */
2491 
2492 /*====================================================================*/
2493 /* Init code */
2494 
2495 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2496 {
2497 	struct backing_dev_info *bdi;
2498 	int ret;
2499 
2500 	bdi = bdi_alloc(NUMA_NO_NODE);
2501 	if (!bdi)
2502 		return ERR_PTR(-ENOMEM);
2503 	bdi->ra_pages = 0;
2504 	bdi->io_pages = 0;
2505 
2506 	/*
2507 	 * We put '-0' suffix to the name to get the same name format as we
2508 	 * used to get. Since this is called only once, we get a unique name.
2509 	 */
2510 	ret = bdi_register(bdi, "%.28s-0", name);
2511 	if (ret)
2512 		bdi_put(bdi);
2513 
2514 	return ret ? ERR_PTR(ret) : bdi;
2515 }
2516 
2517 static struct proc_dir_entry *proc_mtd;
2518 
2519 static int __init init_mtd(void)
2520 {
2521 	int ret;
2522 
2523 	ret = class_register(&mtd_class);
2524 	if (ret)
2525 		goto err_reg;
2526 
2527 	mtd_bdi = mtd_bdi_init("mtd");
2528 	if (IS_ERR(mtd_bdi)) {
2529 		ret = PTR_ERR(mtd_bdi);
2530 		goto err_bdi;
2531 	}
2532 
2533 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2534 
2535 	ret = init_mtdchar();
2536 	if (ret)
2537 		goto out_procfs;
2538 
2539 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2540 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2541 			    &mtd_expert_analysis_mode);
2542 
2543 	return 0;
2544 
2545 out_procfs:
2546 	if (proc_mtd)
2547 		remove_proc_entry("mtd", NULL);
2548 	bdi_unregister(mtd_bdi);
2549 	bdi_put(mtd_bdi);
2550 err_bdi:
2551 	class_unregister(&mtd_class);
2552 err_reg:
2553 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2554 	return ret;
2555 }
2556 
2557 static void __exit cleanup_mtd(void)
2558 {
2559 	debugfs_remove_recursive(dfs_dir_mtd);
2560 	cleanup_mtdchar();
2561 	if (proc_mtd)
2562 		remove_proc_entry("mtd", NULL);
2563 	class_unregister(&mtd_class);
2564 	bdi_unregister(mtd_bdi);
2565 	bdi_put(mtd_bdi);
2566 	idr_destroy(&mtd_idr);
2567 }
2568 
2569 module_init(init_mtd);
2570 module_exit(cleanup_mtd);
2571 
2572 MODULE_LICENSE("GPL");
2573 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2574 MODULE_DESCRIPTION("Core MTD registration and access routines");
2575