1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 #define MTD_DEVICE_ATTR_RO(name) \ 100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 101 102 #define MTD_DEVICE_ATTR_RW(name) \ 103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 104 105 static ssize_t mtd_type_show(struct device *dev, 106 struct device_attribute *attr, char *buf) 107 { 108 struct mtd_info *mtd = dev_get_drvdata(dev); 109 char *type; 110 111 switch (mtd->type) { 112 case MTD_ABSENT: 113 type = "absent"; 114 break; 115 case MTD_RAM: 116 type = "ram"; 117 break; 118 case MTD_ROM: 119 type = "rom"; 120 break; 121 case MTD_NORFLASH: 122 type = "nor"; 123 break; 124 case MTD_NANDFLASH: 125 type = "nand"; 126 break; 127 case MTD_DATAFLASH: 128 type = "dataflash"; 129 break; 130 case MTD_UBIVOLUME: 131 type = "ubi"; 132 break; 133 case MTD_MLCNANDFLASH: 134 type = "mlc-nand"; 135 break; 136 default: 137 type = "unknown"; 138 } 139 140 return sysfs_emit(buf, "%s\n", type); 141 } 142 MTD_DEVICE_ATTR_RO(type); 143 144 static ssize_t mtd_flags_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct mtd_info *mtd = dev_get_drvdata(dev); 148 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 150 } 151 MTD_DEVICE_ATTR_RO(flags); 152 153 static ssize_t mtd_size_show(struct device *dev, 154 struct device_attribute *attr, char *buf) 155 { 156 struct mtd_info *mtd = dev_get_drvdata(dev); 157 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 159 } 160 MTD_DEVICE_ATTR_RO(size); 161 162 static ssize_t mtd_erasesize_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 168 } 169 MTD_DEVICE_ATTR_RO(erasesize); 170 171 static ssize_t mtd_writesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 177 } 178 MTD_DEVICE_ATTR_RO(writesize); 179 180 static ssize_t mtd_subpagesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 185 186 return sysfs_emit(buf, "%u\n", subpagesize); 187 } 188 MTD_DEVICE_ATTR_RO(subpagesize); 189 190 static ssize_t mtd_oobsize_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 196 } 197 MTD_DEVICE_ATTR_RO(oobsize); 198 199 static ssize_t mtd_oobavail_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return sysfs_emit(buf, "%u\n", mtd->oobavail); 205 } 206 MTD_DEVICE_ATTR_RO(oobavail); 207 208 static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 214 } 215 MTD_DEVICE_ATTR_RO(numeraseregions); 216 217 static ssize_t mtd_name_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return sysfs_emit(buf, "%s\n", mtd->name); 223 } 224 MTD_DEVICE_ATTR_RO(name); 225 226 static ssize_t mtd_ecc_strength_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct mtd_info *mtd = dev_get_drvdata(dev); 230 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 232 } 233 MTD_DEVICE_ATTR_RO(ecc_strength); 234 235 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 242 } 243 244 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 unsigned int bitflip_threshold; 250 int retval; 251 252 retval = kstrtouint(buf, 0, &bitflip_threshold); 253 if (retval) 254 return retval; 255 256 mtd->bitflip_threshold = bitflip_threshold; 257 return count; 258 } 259 MTD_DEVICE_ATTR_RW(bitflip_threshold); 260 261 static ssize_t mtd_ecc_step_size_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 267 268 } 269 MTD_DEVICE_ATTR_RO(ecc_step_size); 270 271 static ssize_t mtd_corrected_bits_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 276 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 278 } 279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 280 281 static ssize_t mtd_ecc_failures_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 288 } 289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 290 291 static ssize_t mtd_bad_blocks_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 298 } 299 MTD_DEVICE_ATTR_RO(bad_blocks); 300 301 static ssize_t mtd_bbt_blocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 308 } 309 MTD_DEVICE_ATTR_RO(bbt_blocks); 310 311 static struct attribute *mtd_attrs[] = { 312 &dev_attr_type.attr, 313 &dev_attr_flags.attr, 314 &dev_attr_size.attr, 315 &dev_attr_erasesize.attr, 316 &dev_attr_writesize.attr, 317 &dev_attr_subpagesize.attr, 318 &dev_attr_oobsize.attr, 319 &dev_attr_oobavail.attr, 320 &dev_attr_numeraseregions.attr, 321 &dev_attr_name.attr, 322 &dev_attr_ecc_strength.attr, 323 &dev_attr_ecc_step_size.attr, 324 &dev_attr_corrected_bits.attr, 325 &dev_attr_ecc_failures.attr, 326 &dev_attr_bad_blocks.attr, 327 &dev_attr_bbt_blocks.attr, 328 &dev_attr_bitflip_threshold.attr, 329 NULL, 330 }; 331 ATTRIBUTE_GROUPS(mtd); 332 333 static const struct device_type mtd_devtype = { 334 .name = "mtd", 335 .groups = mtd_groups, 336 .release = mtd_release, 337 }; 338 339 static int mtd_partid_debug_show(struct seq_file *s, void *p) 340 { 341 struct mtd_info *mtd = s->private; 342 343 seq_printf(s, "%s\n", mtd->dbg.partid); 344 345 return 0; 346 } 347 348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug); 349 350 static int mtd_partname_debug_show(struct seq_file *s, void *p) 351 { 352 struct mtd_info *mtd = s->private; 353 354 seq_printf(s, "%s\n", mtd->dbg.partname); 355 356 return 0; 357 } 358 359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug); 360 361 static struct dentry *dfs_dir_mtd; 362 363 static void mtd_debugfs_populate(struct mtd_info *mtd) 364 { 365 struct mtd_info *master = mtd_get_master(mtd); 366 struct device *dev = &mtd->dev; 367 struct dentry *root; 368 369 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 370 return; 371 372 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 373 mtd->dbg.dfs_dir = root; 374 375 if (master->dbg.partid) 376 debugfs_create_file("partid", 0400, root, master, 377 &mtd_partid_debug_fops); 378 379 if (master->dbg.partname) 380 debugfs_create_file("partname", 0400, root, master, 381 &mtd_partname_debug_fops); 382 } 383 384 #ifndef CONFIG_MMU 385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 386 { 387 switch (mtd->type) { 388 case MTD_RAM: 389 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 390 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 391 case MTD_ROM: 392 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 393 NOMMU_MAP_READ; 394 default: 395 return NOMMU_MAP_COPY; 396 } 397 } 398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 399 #endif 400 401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 402 void *cmd) 403 { 404 struct mtd_info *mtd; 405 406 mtd = container_of(n, struct mtd_info, reboot_notifier); 407 mtd->_reboot(mtd); 408 409 return NOTIFY_DONE; 410 } 411 412 /** 413 * mtd_wunit_to_pairing_info - get pairing information of a wunit 414 * @mtd: pointer to new MTD device info structure 415 * @wunit: write unit we are interested in 416 * @info: returned pairing information 417 * 418 * Retrieve pairing information associated to the wunit. 419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 420 * paired together, and where programming a page may influence the page it is 421 * paired with. 422 * The notion of page is replaced by the term wunit (write-unit) to stay 423 * consistent with the ->writesize field. 424 * 425 * The @wunit argument can be extracted from an absolute offset using 426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 427 * to @wunit. 428 * 429 * From the pairing info the MTD user can find all the wunits paired with 430 * @wunit using the following loop: 431 * 432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 433 * info.pair = i; 434 * mtd_pairing_info_to_wunit(mtd, &info); 435 * ... 436 * } 437 */ 438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 439 struct mtd_pairing_info *info) 440 { 441 struct mtd_info *master = mtd_get_master(mtd); 442 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 443 444 if (wunit < 0 || wunit >= npairs) 445 return -EINVAL; 446 447 if (master->pairing && master->pairing->get_info) 448 return master->pairing->get_info(master, wunit, info); 449 450 info->group = 0; 451 info->pair = wunit; 452 453 return 0; 454 } 455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 456 457 /** 458 * mtd_pairing_info_to_wunit - get wunit from pairing information 459 * @mtd: pointer to new MTD device info structure 460 * @info: pairing information struct 461 * 462 * Returns a positive number representing the wunit associated to the info 463 * struct, or a negative error code. 464 * 465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 467 * doc). 468 * 469 * It can also be used to only program the first page of each pair (i.e. 470 * page attached to group 0), which allows one to use an MLC NAND in 471 * software-emulated SLC mode: 472 * 473 * info.group = 0; 474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 475 * for (info.pair = 0; info.pair < npairs; info.pair++) { 476 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 477 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 478 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 479 * } 480 */ 481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 482 const struct mtd_pairing_info *info) 483 { 484 struct mtd_info *master = mtd_get_master(mtd); 485 int ngroups = mtd_pairing_groups(master); 486 int npairs = mtd_wunit_per_eb(master) / ngroups; 487 488 if (!info || info->pair < 0 || info->pair >= npairs || 489 info->group < 0 || info->group >= ngroups) 490 return -EINVAL; 491 492 if (master->pairing && master->pairing->get_wunit) 493 return mtd->pairing->get_wunit(master, info); 494 495 return info->pair; 496 } 497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 498 499 /** 500 * mtd_pairing_groups - get the number of pairing groups 501 * @mtd: pointer to new MTD device info structure 502 * 503 * Returns the number of pairing groups. 504 * 505 * This number is usually equal to the number of bits exposed by a single 506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 507 * to iterate over all pages of a given pair. 508 */ 509 int mtd_pairing_groups(struct mtd_info *mtd) 510 { 511 struct mtd_info *master = mtd_get_master(mtd); 512 513 if (!master->pairing || !master->pairing->ngroups) 514 return 1; 515 516 return master->pairing->ngroups; 517 } 518 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 519 520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 521 void *val, size_t bytes) 522 { 523 struct mtd_info *mtd = priv; 524 size_t retlen; 525 int err; 526 527 err = mtd_read(mtd, offset, bytes, &retlen, val); 528 if (err && err != -EUCLEAN) 529 return err; 530 531 return retlen == bytes ? 0 : -EIO; 532 } 533 534 static int mtd_nvmem_add(struct mtd_info *mtd) 535 { 536 struct device_node *node = mtd_get_of_node(mtd); 537 struct nvmem_config config = {}; 538 539 config.id = -1; 540 config.dev = &mtd->dev; 541 config.name = dev_name(&mtd->dev); 542 config.owner = THIS_MODULE; 543 config.reg_read = mtd_nvmem_reg_read; 544 config.size = mtd->size; 545 config.word_size = 1; 546 config.stride = 1; 547 config.read_only = true; 548 config.root_only = true; 549 config.ignore_wp = true; 550 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 551 config.priv = mtd; 552 553 mtd->nvmem = nvmem_register(&config); 554 if (IS_ERR(mtd->nvmem)) { 555 /* Just ignore if there is no NVMEM support in the kernel */ 556 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 557 mtd->nvmem = NULL; 558 } else { 559 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 560 return PTR_ERR(mtd->nvmem); 561 } 562 } 563 564 return 0; 565 } 566 567 /** 568 * add_mtd_device - register an MTD device 569 * @mtd: pointer to new MTD device info structure 570 * 571 * Add a device to the list of MTD devices present in the system, and 572 * notify each currently active MTD 'user' of its arrival. Returns 573 * zero on success or non-zero on failure. 574 */ 575 576 int add_mtd_device(struct mtd_info *mtd) 577 { 578 struct mtd_info *master = mtd_get_master(mtd); 579 struct mtd_notifier *not; 580 int i, error; 581 582 /* 583 * May occur, for instance, on buggy drivers which call 584 * mtd_device_parse_register() multiple times on the same master MTD, 585 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 586 */ 587 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 588 return -EEXIST; 589 590 BUG_ON(mtd->writesize == 0); 591 592 /* 593 * MTD drivers should implement ->_{write,read}() or 594 * ->_{write,read}_oob(), but not both. 595 */ 596 if (WARN_ON((mtd->_write && mtd->_write_oob) || 597 (mtd->_read && mtd->_read_oob))) 598 return -EINVAL; 599 600 if (WARN_ON((!mtd->erasesize || !master->_erase) && 601 !(mtd->flags & MTD_NO_ERASE))) 602 return -EINVAL; 603 604 /* 605 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 606 * master is an MLC NAND and has a proper pairing scheme defined. 607 * We also reject masters that implement ->_writev() for now, because 608 * NAND controller drivers don't implement this hook, and adding the 609 * SLC -> MLC address/length conversion to this path is useless if we 610 * don't have a user. 611 */ 612 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 613 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 614 !master->pairing || master->_writev)) 615 return -EINVAL; 616 617 mutex_lock(&mtd_table_mutex); 618 619 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 620 if (i < 0) { 621 error = i; 622 goto fail_locked; 623 } 624 625 mtd->index = i; 626 mtd->usecount = 0; 627 628 /* default value if not set by driver */ 629 if (mtd->bitflip_threshold == 0) 630 mtd->bitflip_threshold = mtd->ecc_strength; 631 632 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 633 int ngroups = mtd_pairing_groups(master); 634 635 mtd->erasesize /= ngroups; 636 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 637 mtd->erasesize; 638 } 639 640 if (is_power_of_2(mtd->erasesize)) 641 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 642 else 643 mtd->erasesize_shift = 0; 644 645 if (is_power_of_2(mtd->writesize)) 646 mtd->writesize_shift = ffs(mtd->writesize) - 1; 647 else 648 mtd->writesize_shift = 0; 649 650 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 651 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 652 653 /* Some chips always power up locked. Unlock them now */ 654 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 655 error = mtd_unlock(mtd, 0, mtd->size); 656 if (error && error != -EOPNOTSUPP) 657 printk(KERN_WARNING 658 "%s: unlock failed, writes may not work\n", 659 mtd->name); 660 /* Ignore unlock failures? */ 661 error = 0; 662 } 663 664 /* Caller should have set dev.parent to match the 665 * physical device, if appropriate. 666 */ 667 mtd->dev.type = &mtd_devtype; 668 mtd->dev.class = &mtd_class; 669 mtd->dev.devt = MTD_DEVT(i); 670 dev_set_name(&mtd->dev, "mtd%d", i); 671 dev_set_drvdata(&mtd->dev, mtd); 672 of_node_get(mtd_get_of_node(mtd)); 673 error = device_register(&mtd->dev); 674 if (error) 675 goto fail_added; 676 677 /* Add the nvmem provider */ 678 error = mtd_nvmem_add(mtd); 679 if (error) 680 goto fail_nvmem_add; 681 682 mtd_debugfs_populate(mtd); 683 684 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 685 "mtd%dro", i); 686 687 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 688 /* No need to get a refcount on the module containing 689 the notifier, since we hold the mtd_table_mutex */ 690 list_for_each_entry(not, &mtd_notifiers, list) 691 not->add(mtd); 692 693 mutex_unlock(&mtd_table_mutex); 694 /* We _know_ we aren't being removed, because 695 our caller is still holding us here. So none 696 of this try_ nonsense, and no bitching about it 697 either. :) */ 698 __module_get(THIS_MODULE); 699 return 0; 700 701 fail_nvmem_add: 702 device_unregister(&mtd->dev); 703 fail_added: 704 of_node_put(mtd_get_of_node(mtd)); 705 idr_remove(&mtd_idr, i); 706 fail_locked: 707 mutex_unlock(&mtd_table_mutex); 708 return error; 709 } 710 711 /** 712 * del_mtd_device - unregister an MTD device 713 * @mtd: pointer to MTD device info structure 714 * 715 * Remove a device from the list of MTD devices present in the system, 716 * and notify each currently active MTD 'user' of its departure. 717 * Returns zero on success or 1 on failure, which currently will happen 718 * if the requested device does not appear to be present in the list. 719 */ 720 721 int del_mtd_device(struct mtd_info *mtd) 722 { 723 int ret; 724 struct mtd_notifier *not; 725 726 mutex_lock(&mtd_table_mutex); 727 728 if (idr_find(&mtd_idr, mtd->index) != mtd) { 729 ret = -ENODEV; 730 goto out_error; 731 } 732 733 /* No need to get a refcount on the module containing 734 the notifier, since we hold the mtd_table_mutex */ 735 list_for_each_entry(not, &mtd_notifiers, list) 736 not->remove(mtd); 737 738 if (mtd->usecount) { 739 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 740 mtd->index, mtd->name, mtd->usecount); 741 ret = -EBUSY; 742 } else { 743 debugfs_remove_recursive(mtd->dbg.dfs_dir); 744 745 /* Try to remove the NVMEM provider */ 746 if (mtd->nvmem) 747 nvmem_unregister(mtd->nvmem); 748 749 device_unregister(&mtd->dev); 750 751 /* Clear dev so mtd can be safely re-registered later if desired */ 752 memset(&mtd->dev, 0, sizeof(mtd->dev)); 753 754 idr_remove(&mtd_idr, mtd->index); 755 of_node_put(mtd_get_of_node(mtd)); 756 757 module_put(THIS_MODULE); 758 ret = 0; 759 } 760 761 out_error: 762 mutex_unlock(&mtd_table_mutex); 763 return ret; 764 } 765 766 /* 767 * Set a few defaults based on the parent devices, if not provided by the 768 * driver 769 */ 770 static void mtd_set_dev_defaults(struct mtd_info *mtd) 771 { 772 if (mtd->dev.parent) { 773 if (!mtd->owner && mtd->dev.parent->driver) 774 mtd->owner = mtd->dev.parent->driver->owner; 775 if (!mtd->name) 776 mtd->name = dev_name(mtd->dev.parent); 777 } else { 778 pr_debug("mtd device won't show a device symlink in sysfs\n"); 779 } 780 781 INIT_LIST_HEAD(&mtd->partitions); 782 mutex_init(&mtd->master.partitions_lock); 783 mutex_init(&mtd->master.chrdev_lock); 784 } 785 786 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 787 { 788 struct otp_info *info; 789 ssize_t size = 0; 790 unsigned int i; 791 size_t retlen; 792 int ret; 793 794 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 795 if (!info) 796 return -ENOMEM; 797 798 if (is_user) 799 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 800 else 801 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 802 if (ret) 803 goto err; 804 805 for (i = 0; i < retlen / sizeof(*info); i++) 806 size += info[i].length; 807 808 kfree(info); 809 return size; 810 811 err: 812 kfree(info); 813 814 /* ENODATA means there is no OTP region. */ 815 return ret == -ENODATA ? 0 : ret; 816 } 817 818 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 819 const char *compatible, 820 int size, 821 nvmem_reg_read_t reg_read) 822 { 823 struct nvmem_device *nvmem = NULL; 824 struct nvmem_config config = {}; 825 struct device_node *np; 826 827 /* DT binding is optional */ 828 np = of_get_compatible_child(mtd->dev.of_node, compatible); 829 830 /* OTP nvmem will be registered on the physical device */ 831 config.dev = mtd->dev.parent; 832 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 833 config.id = NVMEM_DEVID_NONE; 834 config.owner = THIS_MODULE; 835 config.type = NVMEM_TYPE_OTP; 836 config.root_only = true; 837 config.ignore_wp = true; 838 config.reg_read = reg_read; 839 config.size = size; 840 config.of_node = np; 841 config.priv = mtd; 842 843 nvmem = nvmem_register(&config); 844 /* Just ignore if there is no NVMEM support in the kernel */ 845 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 846 nvmem = NULL; 847 848 of_node_put(np); 849 kfree(config.name); 850 851 return nvmem; 852 } 853 854 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 855 void *val, size_t bytes) 856 { 857 struct mtd_info *mtd = priv; 858 size_t retlen; 859 int ret; 860 861 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 862 if (ret) 863 return ret; 864 865 return retlen == bytes ? 0 : -EIO; 866 } 867 868 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 869 void *val, size_t bytes) 870 { 871 struct mtd_info *mtd = priv; 872 size_t retlen; 873 int ret; 874 875 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 876 if (ret) 877 return ret; 878 879 return retlen == bytes ? 0 : -EIO; 880 } 881 882 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 883 { 884 struct nvmem_device *nvmem; 885 ssize_t size; 886 int err; 887 888 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 889 size = mtd_otp_size(mtd, true); 890 if (size < 0) 891 return size; 892 893 if (size > 0) { 894 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 895 mtd_nvmem_user_otp_reg_read); 896 if (IS_ERR(nvmem)) { 897 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 898 return PTR_ERR(nvmem); 899 } 900 mtd->otp_user_nvmem = nvmem; 901 } 902 } 903 904 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 905 size = mtd_otp_size(mtd, false); 906 if (size < 0) { 907 err = size; 908 goto err; 909 } 910 911 if (size > 0) { 912 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 913 mtd_nvmem_fact_otp_reg_read); 914 if (IS_ERR(nvmem)) { 915 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 916 err = PTR_ERR(nvmem); 917 goto err; 918 } 919 mtd->otp_factory_nvmem = nvmem; 920 } 921 } 922 923 return 0; 924 925 err: 926 if (mtd->otp_user_nvmem) 927 nvmem_unregister(mtd->otp_user_nvmem); 928 return err; 929 } 930 931 /** 932 * mtd_device_parse_register - parse partitions and register an MTD device. 933 * 934 * @mtd: the MTD device to register 935 * @types: the list of MTD partition probes to try, see 936 * 'parse_mtd_partitions()' for more information 937 * @parser_data: MTD partition parser-specific data 938 * @parts: fallback partition information to register, if parsing fails; 939 * only valid if %nr_parts > %0 940 * @nr_parts: the number of partitions in parts, if zero then the full 941 * MTD device is registered if no partition info is found 942 * 943 * This function aggregates MTD partitions parsing (done by 944 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 945 * basically follows the most common pattern found in many MTD drivers: 946 * 947 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 948 * registered first. 949 * * Then It tries to probe partitions on MTD device @mtd using parsers 950 * specified in @types (if @types is %NULL, then the default list of parsers 951 * is used, see 'parse_mtd_partitions()' for more information). If none are 952 * found this functions tries to fallback to information specified in 953 * @parts/@nr_parts. 954 * * If no partitions were found this function just registers the MTD device 955 * @mtd and exits. 956 * 957 * Returns zero in case of success and a negative error code in case of failure. 958 */ 959 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 960 struct mtd_part_parser_data *parser_data, 961 const struct mtd_partition *parts, 962 int nr_parts) 963 { 964 int ret; 965 966 mtd_set_dev_defaults(mtd); 967 968 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 969 ret = add_mtd_device(mtd); 970 if (ret) 971 return ret; 972 } 973 974 /* Prefer parsed partitions over driver-provided fallback */ 975 ret = parse_mtd_partitions(mtd, types, parser_data); 976 if (ret == -EPROBE_DEFER) 977 goto out; 978 979 if (ret > 0) 980 ret = 0; 981 else if (nr_parts) 982 ret = add_mtd_partitions(mtd, parts, nr_parts); 983 else if (!device_is_registered(&mtd->dev)) 984 ret = add_mtd_device(mtd); 985 else 986 ret = 0; 987 988 if (ret) 989 goto out; 990 991 /* 992 * FIXME: some drivers unfortunately call this function more than once. 993 * So we have to check if we've already assigned the reboot notifier. 994 * 995 * Generally, we can make multiple calls work for most cases, but it 996 * does cause problems with parse_mtd_partitions() above (e.g., 997 * cmdlineparts will register partitions more than once). 998 */ 999 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1000 "MTD already registered\n"); 1001 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1002 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1003 register_reboot_notifier(&mtd->reboot_notifier); 1004 } 1005 1006 ret = mtd_otp_nvmem_add(mtd); 1007 1008 out: 1009 if (ret && device_is_registered(&mtd->dev)) 1010 del_mtd_device(mtd); 1011 1012 return ret; 1013 } 1014 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1015 1016 /** 1017 * mtd_device_unregister - unregister an existing MTD device. 1018 * 1019 * @master: the MTD device to unregister. This will unregister both the master 1020 * and any partitions if registered. 1021 */ 1022 int mtd_device_unregister(struct mtd_info *master) 1023 { 1024 int err; 1025 1026 if (master->_reboot) { 1027 unregister_reboot_notifier(&master->reboot_notifier); 1028 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1029 } 1030 1031 if (master->otp_user_nvmem) 1032 nvmem_unregister(master->otp_user_nvmem); 1033 1034 if (master->otp_factory_nvmem) 1035 nvmem_unregister(master->otp_factory_nvmem); 1036 1037 err = del_mtd_partitions(master); 1038 if (err) 1039 return err; 1040 1041 if (!device_is_registered(&master->dev)) 1042 return 0; 1043 1044 return del_mtd_device(master); 1045 } 1046 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1047 1048 /** 1049 * register_mtd_user - register a 'user' of MTD devices. 1050 * @new: pointer to notifier info structure 1051 * 1052 * Registers a pair of callbacks function to be called upon addition 1053 * or removal of MTD devices. Causes the 'add' callback to be immediately 1054 * invoked for each MTD device currently present in the system. 1055 */ 1056 void register_mtd_user (struct mtd_notifier *new) 1057 { 1058 struct mtd_info *mtd; 1059 1060 mutex_lock(&mtd_table_mutex); 1061 1062 list_add(&new->list, &mtd_notifiers); 1063 1064 __module_get(THIS_MODULE); 1065 1066 mtd_for_each_device(mtd) 1067 new->add(mtd); 1068 1069 mutex_unlock(&mtd_table_mutex); 1070 } 1071 EXPORT_SYMBOL_GPL(register_mtd_user); 1072 1073 /** 1074 * unregister_mtd_user - unregister a 'user' of MTD devices. 1075 * @old: pointer to notifier info structure 1076 * 1077 * Removes a callback function pair from the list of 'users' to be 1078 * notified upon addition or removal of MTD devices. Causes the 1079 * 'remove' callback to be immediately invoked for each MTD device 1080 * currently present in the system. 1081 */ 1082 int unregister_mtd_user (struct mtd_notifier *old) 1083 { 1084 struct mtd_info *mtd; 1085 1086 mutex_lock(&mtd_table_mutex); 1087 1088 module_put(THIS_MODULE); 1089 1090 mtd_for_each_device(mtd) 1091 old->remove(mtd); 1092 1093 list_del(&old->list); 1094 mutex_unlock(&mtd_table_mutex); 1095 return 0; 1096 } 1097 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1098 1099 /** 1100 * get_mtd_device - obtain a validated handle for an MTD device 1101 * @mtd: last known address of the required MTD device 1102 * @num: internal device number of the required MTD device 1103 * 1104 * Given a number and NULL address, return the num'th entry in the device 1105 * table, if any. Given an address and num == -1, search the device table 1106 * for a device with that address and return if it's still present. Given 1107 * both, return the num'th driver only if its address matches. Return 1108 * error code if not. 1109 */ 1110 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1111 { 1112 struct mtd_info *ret = NULL, *other; 1113 int err = -ENODEV; 1114 1115 mutex_lock(&mtd_table_mutex); 1116 1117 if (num == -1) { 1118 mtd_for_each_device(other) { 1119 if (other == mtd) { 1120 ret = mtd; 1121 break; 1122 } 1123 } 1124 } else if (num >= 0) { 1125 ret = idr_find(&mtd_idr, num); 1126 if (mtd && mtd != ret) 1127 ret = NULL; 1128 } 1129 1130 if (!ret) { 1131 ret = ERR_PTR(err); 1132 goto out; 1133 } 1134 1135 err = __get_mtd_device(ret); 1136 if (err) 1137 ret = ERR_PTR(err); 1138 out: 1139 mutex_unlock(&mtd_table_mutex); 1140 return ret; 1141 } 1142 EXPORT_SYMBOL_GPL(get_mtd_device); 1143 1144 1145 int __get_mtd_device(struct mtd_info *mtd) 1146 { 1147 struct mtd_info *master = mtd_get_master(mtd); 1148 int err; 1149 1150 if (!try_module_get(master->owner)) 1151 return -ENODEV; 1152 1153 if (master->_get_device) { 1154 err = master->_get_device(mtd); 1155 1156 if (err) { 1157 module_put(master->owner); 1158 return err; 1159 } 1160 } 1161 1162 master->usecount++; 1163 1164 while (mtd->parent) { 1165 mtd->usecount++; 1166 mtd = mtd->parent; 1167 } 1168 1169 return 0; 1170 } 1171 EXPORT_SYMBOL_GPL(__get_mtd_device); 1172 1173 /** 1174 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1175 * device name 1176 * @name: MTD device name to open 1177 * 1178 * This function returns MTD device description structure in case of 1179 * success and an error code in case of failure. 1180 */ 1181 struct mtd_info *get_mtd_device_nm(const char *name) 1182 { 1183 int err = -ENODEV; 1184 struct mtd_info *mtd = NULL, *other; 1185 1186 mutex_lock(&mtd_table_mutex); 1187 1188 mtd_for_each_device(other) { 1189 if (!strcmp(name, other->name)) { 1190 mtd = other; 1191 break; 1192 } 1193 } 1194 1195 if (!mtd) 1196 goto out_unlock; 1197 1198 err = __get_mtd_device(mtd); 1199 if (err) 1200 goto out_unlock; 1201 1202 mutex_unlock(&mtd_table_mutex); 1203 return mtd; 1204 1205 out_unlock: 1206 mutex_unlock(&mtd_table_mutex); 1207 return ERR_PTR(err); 1208 } 1209 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1210 1211 void put_mtd_device(struct mtd_info *mtd) 1212 { 1213 mutex_lock(&mtd_table_mutex); 1214 __put_mtd_device(mtd); 1215 mutex_unlock(&mtd_table_mutex); 1216 1217 } 1218 EXPORT_SYMBOL_GPL(put_mtd_device); 1219 1220 void __put_mtd_device(struct mtd_info *mtd) 1221 { 1222 struct mtd_info *master = mtd_get_master(mtd); 1223 1224 while (mtd->parent) { 1225 --mtd->usecount; 1226 BUG_ON(mtd->usecount < 0); 1227 mtd = mtd->parent; 1228 } 1229 1230 master->usecount--; 1231 1232 if (master->_put_device) 1233 master->_put_device(master); 1234 1235 module_put(master->owner); 1236 } 1237 EXPORT_SYMBOL_GPL(__put_mtd_device); 1238 1239 /* 1240 * Erase is an synchronous operation. Device drivers are epected to return a 1241 * negative error code if the operation failed and update instr->fail_addr 1242 * to point the portion that was not properly erased. 1243 */ 1244 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1245 { 1246 struct mtd_info *master = mtd_get_master(mtd); 1247 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1248 struct erase_info adjinstr; 1249 int ret; 1250 1251 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1252 adjinstr = *instr; 1253 1254 if (!mtd->erasesize || !master->_erase) 1255 return -ENOTSUPP; 1256 1257 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1258 return -EINVAL; 1259 if (!(mtd->flags & MTD_WRITEABLE)) 1260 return -EROFS; 1261 1262 if (!instr->len) 1263 return 0; 1264 1265 ledtrig_mtd_activity(); 1266 1267 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1268 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1269 master->erasesize; 1270 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1271 master->erasesize) - 1272 adjinstr.addr; 1273 } 1274 1275 adjinstr.addr += mst_ofs; 1276 1277 ret = master->_erase(master, &adjinstr); 1278 1279 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1280 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1281 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1282 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1283 master); 1284 instr->fail_addr *= mtd->erasesize; 1285 } 1286 } 1287 1288 return ret; 1289 } 1290 EXPORT_SYMBOL_GPL(mtd_erase); 1291 1292 /* 1293 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1294 */ 1295 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1296 void **virt, resource_size_t *phys) 1297 { 1298 struct mtd_info *master = mtd_get_master(mtd); 1299 1300 *retlen = 0; 1301 *virt = NULL; 1302 if (phys) 1303 *phys = 0; 1304 if (!master->_point) 1305 return -EOPNOTSUPP; 1306 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1307 return -EINVAL; 1308 if (!len) 1309 return 0; 1310 1311 from = mtd_get_master_ofs(mtd, from); 1312 return master->_point(master, from, len, retlen, virt, phys); 1313 } 1314 EXPORT_SYMBOL_GPL(mtd_point); 1315 1316 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1317 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1318 { 1319 struct mtd_info *master = mtd_get_master(mtd); 1320 1321 if (!master->_unpoint) 1322 return -EOPNOTSUPP; 1323 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1324 return -EINVAL; 1325 if (!len) 1326 return 0; 1327 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1328 } 1329 EXPORT_SYMBOL_GPL(mtd_unpoint); 1330 1331 /* 1332 * Allow NOMMU mmap() to directly map the device (if not NULL) 1333 * - return the address to which the offset maps 1334 * - return -ENOSYS to indicate refusal to do the mapping 1335 */ 1336 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1337 unsigned long offset, unsigned long flags) 1338 { 1339 size_t retlen; 1340 void *virt; 1341 int ret; 1342 1343 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1344 if (ret) 1345 return ret; 1346 if (retlen != len) { 1347 mtd_unpoint(mtd, offset, retlen); 1348 return -ENOSYS; 1349 } 1350 return (unsigned long)virt; 1351 } 1352 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1353 1354 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1355 const struct mtd_ecc_stats *old_stats) 1356 { 1357 struct mtd_ecc_stats diff; 1358 1359 if (master == mtd) 1360 return; 1361 1362 diff = master->ecc_stats; 1363 diff.failed -= old_stats->failed; 1364 diff.corrected -= old_stats->corrected; 1365 1366 while (mtd->parent) { 1367 mtd->ecc_stats.failed += diff.failed; 1368 mtd->ecc_stats.corrected += diff.corrected; 1369 mtd = mtd->parent; 1370 } 1371 } 1372 1373 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1374 u_char *buf) 1375 { 1376 struct mtd_oob_ops ops = { 1377 .len = len, 1378 .datbuf = buf, 1379 }; 1380 int ret; 1381 1382 ret = mtd_read_oob(mtd, from, &ops); 1383 *retlen = ops.retlen; 1384 1385 return ret; 1386 } 1387 EXPORT_SYMBOL_GPL(mtd_read); 1388 1389 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1390 const u_char *buf) 1391 { 1392 struct mtd_oob_ops ops = { 1393 .len = len, 1394 .datbuf = (u8 *)buf, 1395 }; 1396 int ret; 1397 1398 ret = mtd_write_oob(mtd, to, &ops); 1399 *retlen = ops.retlen; 1400 1401 return ret; 1402 } 1403 EXPORT_SYMBOL_GPL(mtd_write); 1404 1405 /* 1406 * In blackbox flight recorder like scenarios we want to make successful writes 1407 * in interrupt context. panic_write() is only intended to be called when its 1408 * known the kernel is about to panic and we need the write to succeed. Since 1409 * the kernel is not going to be running for much longer, this function can 1410 * break locks and delay to ensure the write succeeds (but not sleep). 1411 */ 1412 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1413 const u_char *buf) 1414 { 1415 struct mtd_info *master = mtd_get_master(mtd); 1416 1417 *retlen = 0; 1418 if (!master->_panic_write) 1419 return -EOPNOTSUPP; 1420 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1421 return -EINVAL; 1422 if (!(mtd->flags & MTD_WRITEABLE)) 1423 return -EROFS; 1424 if (!len) 1425 return 0; 1426 if (!master->oops_panic_write) 1427 master->oops_panic_write = true; 1428 1429 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1430 retlen, buf); 1431 } 1432 EXPORT_SYMBOL_GPL(mtd_panic_write); 1433 1434 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1435 struct mtd_oob_ops *ops) 1436 { 1437 /* 1438 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1439 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1440 * this case. 1441 */ 1442 if (!ops->datbuf) 1443 ops->len = 0; 1444 1445 if (!ops->oobbuf) 1446 ops->ooblen = 0; 1447 1448 if (offs < 0 || offs + ops->len > mtd->size) 1449 return -EINVAL; 1450 1451 if (ops->ooblen) { 1452 size_t maxooblen; 1453 1454 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1455 return -EINVAL; 1456 1457 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1458 mtd_div_by_ws(offs, mtd)) * 1459 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1460 if (ops->ooblen > maxooblen) 1461 return -EINVAL; 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1468 struct mtd_oob_ops *ops) 1469 { 1470 struct mtd_info *master = mtd_get_master(mtd); 1471 int ret; 1472 1473 from = mtd_get_master_ofs(mtd, from); 1474 if (master->_read_oob) 1475 ret = master->_read_oob(master, from, ops); 1476 else 1477 ret = master->_read(master, from, ops->len, &ops->retlen, 1478 ops->datbuf); 1479 1480 return ret; 1481 } 1482 1483 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1484 struct mtd_oob_ops *ops) 1485 { 1486 struct mtd_info *master = mtd_get_master(mtd); 1487 int ret; 1488 1489 to = mtd_get_master_ofs(mtd, to); 1490 if (master->_write_oob) 1491 ret = master->_write_oob(master, to, ops); 1492 else 1493 ret = master->_write(master, to, ops->len, &ops->retlen, 1494 ops->datbuf); 1495 1496 return ret; 1497 } 1498 1499 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1500 struct mtd_oob_ops *ops) 1501 { 1502 struct mtd_info *master = mtd_get_master(mtd); 1503 int ngroups = mtd_pairing_groups(master); 1504 int npairs = mtd_wunit_per_eb(master) / ngroups; 1505 struct mtd_oob_ops adjops = *ops; 1506 unsigned int wunit, oobavail; 1507 struct mtd_pairing_info info; 1508 int max_bitflips = 0; 1509 u32 ebofs, pageofs; 1510 loff_t base, pos; 1511 1512 ebofs = mtd_mod_by_eb(start, mtd); 1513 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1514 info.group = 0; 1515 info.pair = mtd_div_by_ws(ebofs, mtd); 1516 pageofs = mtd_mod_by_ws(ebofs, mtd); 1517 oobavail = mtd_oobavail(mtd, ops); 1518 1519 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1520 int ret; 1521 1522 if (info.pair >= npairs) { 1523 info.pair = 0; 1524 base += master->erasesize; 1525 } 1526 1527 wunit = mtd_pairing_info_to_wunit(master, &info); 1528 pos = mtd_wunit_to_offset(mtd, base, wunit); 1529 1530 adjops.len = ops->len - ops->retlen; 1531 if (adjops.len > mtd->writesize - pageofs) 1532 adjops.len = mtd->writesize - pageofs; 1533 1534 adjops.ooblen = ops->ooblen - ops->oobretlen; 1535 if (adjops.ooblen > oobavail - adjops.ooboffs) 1536 adjops.ooblen = oobavail - adjops.ooboffs; 1537 1538 if (read) { 1539 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1540 if (ret > 0) 1541 max_bitflips = max(max_bitflips, ret); 1542 } else { 1543 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1544 } 1545 1546 if (ret < 0) 1547 return ret; 1548 1549 max_bitflips = max(max_bitflips, ret); 1550 ops->retlen += adjops.retlen; 1551 ops->oobretlen += adjops.oobretlen; 1552 adjops.datbuf += adjops.retlen; 1553 adjops.oobbuf += adjops.oobretlen; 1554 adjops.ooboffs = 0; 1555 pageofs = 0; 1556 info.pair++; 1557 } 1558 1559 return max_bitflips; 1560 } 1561 1562 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1563 { 1564 struct mtd_info *master = mtd_get_master(mtd); 1565 struct mtd_ecc_stats old_stats = master->ecc_stats; 1566 int ret_code; 1567 1568 ops->retlen = ops->oobretlen = 0; 1569 1570 ret_code = mtd_check_oob_ops(mtd, from, ops); 1571 if (ret_code) 1572 return ret_code; 1573 1574 ledtrig_mtd_activity(); 1575 1576 /* Check the validity of a potential fallback on mtd->_read */ 1577 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1578 return -EOPNOTSUPP; 1579 1580 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1581 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1582 else 1583 ret_code = mtd_read_oob_std(mtd, from, ops); 1584 1585 mtd_update_ecc_stats(mtd, master, &old_stats); 1586 1587 /* 1588 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1589 * similar to mtd->_read(), returning a non-negative integer 1590 * representing max bitflips. In other cases, mtd->_read_oob() may 1591 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1592 */ 1593 if (unlikely(ret_code < 0)) 1594 return ret_code; 1595 if (mtd->ecc_strength == 0) 1596 return 0; /* device lacks ecc */ 1597 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1598 } 1599 EXPORT_SYMBOL_GPL(mtd_read_oob); 1600 1601 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1602 struct mtd_oob_ops *ops) 1603 { 1604 struct mtd_info *master = mtd_get_master(mtd); 1605 int ret; 1606 1607 ops->retlen = ops->oobretlen = 0; 1608 1609 if (!(mtd->flags & MTD_WRITEABLE)) 1610 return -EROFS; 1611 1612 ret = mtd_check_oob_ops(mtd, to, ops); 1613 if (ret) 1614 return ret; 1615 1616 ledtrig_mtd_activity(); 1617 1618 /* Check the validity of a potential fallback on mtd->_write */ 1619 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1620 return -EOPNOTSUPP; 1621 1622 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1623 return mtd_io_emulated_slc(mtd, to, false, ops); 1624 1625 return mtd_write_oob_std(mtd, to, ops); 1626 } 1627 EXPORT_SYMBOL_GPL(mtd_write_oob); 1628 1629 /** 1630 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1631 * @mtd: MTD device structure 1632 * @section: ECC section. Depending on the layout you may have all the ECC 1633 * bytes stored in a single contiguous section, or one section 1634 * per ECC chunk (and sometime several sections for a single ECC 1635 * ECC chunk) 1636 * @oobecc: OOB region struct filled with the appropriate ECC position 1637 * information 1638 * 1639 * This function returns ECC section information in the OOB area. If you want 1640 * to get all the ECC bytes information, then you should call 1641 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1642 * 1643 * Returns zero on success, a negative error code otherwise. 1644 */ 1645 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1646 struct mtd_oob_region *oobecc) 1647 { 1648 struct mtd_info *master = mtd_get_master(mtd); 1649 1650 memset(oobecc, 0, sizeof(*oobecc)); 1651 1652 if (!master || section < 0) 1653 return -EINVAL; 1654 1655 if (!master->ooblayout || !master->ooblayout->ecc) 1656 return -ENOTSUPP; 1657 1658 return master->ooblayout->ecc(master, section, oobecc); 1659 } 1660 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1661 1662 /** 1663 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1664 * section 1665 * @mtd: MTD device structure 1666 * @section: Free section you are interested in. Depending on the layout 1667 * you may have all the free bytes stored in a single contiguous 1668 * section, or one section per ECC chunk plus an extra section 1669 * for the remaining bytes (or other funky layout). 1670 * @oobfree: OOB region struct filled with the appropriate free position 1671 * information 1672 * 1673 * This function returns free bytes position in the OOB area. If you want 1674 * to get all the free bytes information, then you should call 1675 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1676 * 1677 * Returns zero on success, a negative error code otherwise. 1678 */ 1679 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1680 struct mtd_oob_region *oobfree) 1681 { 1682 struct mtd_info *master = mtd_get_master(mtd); 1683 1684 memset(oobfree, 0, sizeof(*oobfree)); 1685 1686 if (!master || section < 0) 1687 return -EINVAL; 1688 1689 if (!master->ooblayout || !master->ooblayout->free) 1690 return -ENOTSUPP; 1691 1692 return master->ooblayout->free(master, section, oobfree); 1693 } 1694 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1695 1696 /** 1697 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1698 * @mtd: mtd info structure 1699 * @byte: the byte we are searching for 1700 * @sectionp: pointer where the section id will be stored 1701 * @oobregion: used to retrieve the ECC position 1702 * @iter: iterator function. Should be either mtd_ooblayout_free or 1703 * mtd_ooblayout_ecc depending on the region type you're searching for 1704 * 1705 * This function returns the section id and oobregion information of a 1706 * specific byte. For example, say you want to know where the 4th ECC byte is 1707 * stored, you'll use: 1708 * 1709 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1710 * 1711 * Returns zero on success, a negative error code otherwise. 1712 */ 1713 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1714 int *sectionp, struct mtd_oob_region *oobregion, 1715 int (*iter)(struct mtd_info *, 1716 int section, 1717 struct mtd_oob_region *oobregion)) 1718 { 1719 int pos = 0, ret, section = 0; 1720 1721 memset(oobregion, 0, sizeof(*oobregion)); 1722 1723 while (1) { 1724 ret = iter(mtd, section, oobregion); 1725 if (ret) 1726 return ret; 1727 1728 if (pos + oobregion->length > byte) 1729 break; 1730 1731 pos += oobregion->length; 1732 section++; 1733 } 1734 1735 /* 1736 * Adjust region info to make it start at the beginning at the 1737 * 'start' ECC byte. 1738 */ 1739 oobregion->offset += byte - pos; 1740 oobregion->length -= byte - pos; 1741 *sectionp = section; 1742 1743 return 0; 1744 } 1745 1746 /** 1747 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1748 * ECC byte 1749 * @mtd: mtd info structure 1750 * @eccbyte: the byte we are searching for 1751 * @section: pointer where the section id will be stored 1752 * @oobregion: OOB region information 1753 * 1754 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1755 * byte. 1756 * 1757 * Returns zero on success, a negative error code otherwise. 1758 */ 1759 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1760 int *section, 1761 struct mtd_oob_region *oobregion) 1762 { 1763 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1764 mtd_ooblayout_ecc); 1765 } 1766 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1767 1768 /** 1769 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1770 * @mtd: mtd info structure 1771 * @buf: destination buffer to store OOB bytes 1772 * @oobbuf: OOB buffer 1773 * @start: first byte to retrieve 1774 * @nbytes: number of bytes to retrieve 1775 * @iter: section iterator 1776 * 1777 * Extract bytes attached to a specific category (ECC or free) 1778 * from the OOB buffer and copy them into buf. 1779 * 1780 * Returns zero on success, a negative error code otherwise. 1781 */ 1782 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1783 const u8 *oobbuf, int start, int nbytes, 1784 int (*iter)(struct mtd_info *, 1785 int section, 1786 struct mtd_oob_region *oobregion)) 1787 { 1788 struct mtd_oob_region oobregion; 1789 int section, ret; 1790 1791 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1792 &oobregion, iter); 1793 1794 while (!ret) { 1795 int cnt; 1796 1797 cnt = min_t(int, nbytes, oobregion.length); 1798 memcpy(buf, oobbuf + oobregion.offset, cnt); 1799 buf += cnt; 1800 nbytes -= cnt; 1801 1802 if (!nbytes) 1803 break; 1804 1805 ret = iter(mtd, ++section, &oobregion); 1806 } 1807 1808 return ret; 1809 } 1810 1811 /** 1812 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1813 * @mtd: mtd info structure 1814 * @buf: source buffer to get OOB bytes from 1815 * @oobbuf: OOB buffer 1816 * @start: first OOB byte to set 1817 * @nbytes: number of OOB bytes to set 1818 * @iter: section iterator 1819 * 1820 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1821 * is selected by passing the appropriate iterator. 1822 * 1823 * Returns zero on success, a negative error code otherwise. 1824 */ 1825 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1826 u8 *oobbuf, int start, int nbytes, 1827 int (*iter)(struct mtd_info *, 1828 int section, 1829 struct mtd_oob_region *oobregion)) 1830 { 1831 struct mtd_oob_region oobregion; 1832 int section, ret; 1833 1834 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1835 &oobregion, iter); 1836 1837 while (!ret) { 1838 int cnt; 1839 1840 cnt = min_t(int, nbytes, oobregion.length); 1841 memcpy(oobbuf + oobregion.offset, buf, cnt); 1842 buf += cnt; 1843 nbytes -= cnt; 1844 1845 if (!nbytes) 1846 break; 1847 1848 ret = iter(mtd, ++section, &oobregion); 1849 } 1850 1851 return ret; 1852 } 1853 1854 /** 1855 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1856 * @mtd: mtd info structure 1857 * @iter: category iterator 1858 * 1859 * Count the number of bytes in a given category. 1860 * 1861 * Returns a positive value on success, a negative error code otherwise. 1862 */ 1863 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1864 int (*iter)(struct mtd_info *, 1865 int section, 1866 struct mtd_oob_region *oobregion)) 1867 { 1868 struct mtd_oob_region oobregion; 1869 int section = 0, ret, nbytes = 0; 1870 1871 while (1) { 1872 ret = iter(mtd, section++, &oobregion); 1873 if (ret) { 1874 if (ret == -ERANGE) 1875 ret = nbytes; 1876 break; 1877 } 1878 1879 nbytes += oobregion.length; 1880 } 1881 1882 return ret; 1883 } 1884 1885 /** 1886 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1887 * @mtd: mtd info structure 1888 * @eccbuf: destination buffer to store ECC bytes 1889 * @oobbuf: OOB buffer 1890 * @start: first ECC byte to retrieve 1891 * @nbytes: number of ECC bytes to retrieve 1892 * 1893 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1894 * 1895 * Returns zero on success, a negative error code otherwise. 1896 */ 1897 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1898 const u8 *oobbuf, int start, int nbytes) 1899 { 1900 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1901 mtd_ooblayout_ecc); 1902 } 1903 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1904 1905 /** 1906 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1907 * @mtd: mtd info structure 1908 * @eccbuf: source buffer to get ECC bytes from 1909 * @oobbuf: OOB buffer 1910 * @start: first ECC byte to set 1911 * @nbytes: number of ECC bytes to set 1912 * 1913 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1914 * 1915 * Returns zero on success, a negative error code otherwise. 1916 */ 1917 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1918 u8 *oobbuf, int start, int nbytes) 1919 { 1920 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1921 mtd_ooblayout_ecc); 1922 } 1923 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1924 1925 /** 1926 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1927 * @mtd: mtd info structure 1928 * @databuf: destination buffer to store ECC bytes 1929 * @oobbuf: OOB buffer 1930 * @start: first ECC byte to retrieve 1931 * @nbytes: number of ECC bytes to retrieve 1932 * 1933 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1934 * 1935 * Returns zero on success, a negative error code otherwise. 1936 */ 1937 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1938 const u8 *oobbuf, int start, int nbytes) 1939 { 1940 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1941 mtd_ooblayout_free); 1942 } 1943 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1944 1945 /** 1946 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1947 * @mtd: mtd info structure 1948 * @databuf: source buffer to get data bytes from 1949 * @oobbuf: OOB buffer 1950 * @start: first ECC byte to set 1951 * @nbytes: number of ECC bytes to set 1952 * 1953 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 1954 * 1955 * Returns zero on success, a negative error code otherwise. 1956 */ 1957 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1958 u8 *oobbuf, int start, int nbytes) 1959 { 1960 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1961 mtd_ooblayout_free); 1962 } 1963 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1964 1965 /** 1966 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1967 * @mtd: mtd info structure 1968 * 1969 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1970 * 1971 * Returns zero on success, a negative error code otherwise. 1972 */ 1973 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1974 { 1975 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1976 } 1977 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1978 1979 /** 1980 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1981 * @mtd: mtd info structure 1982 * 1983 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1984 * 1985 * Returns zero on success, a negative error code otherwise. 1986 */ 1987 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1988 { 1989 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1990 } 1991 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1992 1993 /* 1994 * Method to access the protection register area, present in some flash 1995 * devices. The user data is one time programmable but the factory data is read 1996 * only. 1997 */ 1998 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1999 struct otp_info *buf) 2000 { 2001 struct mtd_info *master = mtd_get_master(mtd); 2002 2003 if (!master->_get_fact_prot_info) 2004 return -EOPNOTSUPP; 2005 if (!len) 2006 return 0; 2007 return master->_get_fact_prot_info(master, len, retlen, buf); 2008 } 2009 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2010 2011 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2012 size_t *retlen, u_char *buf) 2013 { 2014 struct mtd_info *master = mtd_get_master(mtd); 2015 2016 *retlen = 0; 2017 if (!master->_read_fact_prot_reg) 2018 return -EOPNOTSUPP; 2019 if (!len) 2020 return 0; 2021 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2022 } 2023 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2024 2025 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2026 struct otp_info *buf) 2027 { 2028 struct mtd_info *master = mtd_get_master(mtd); 2029 2030 if (!master->_get_user_prot_info) 2031 return -EOPNOTSUPP; 2032 if (!len) 2033 return 0; 2034 return master->_get_user_prot_info(master, len, retlen, buf); 2035 } 2036 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2037 2038 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2039 size_t *retlen, u_char *buf) 2040 { 2041 struct mtd_info *master = mtd_get_master(mtd); 2042 2043 *retlen = 0; 2044 if (!master->_read_user_prot_reg) 2045 return -EOPNOTSUPP; 2046 if (!len) 2047 return 0; 2048 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2049 } 2050 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2051 2052 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2053 size_t *retlen, const u_char *buf) 2054 { 2055 struct mtd_info *master = mtd_get_master(mtd); 2056 int ret; 2057 2058 *retlen = 0; 2059 if (!master->_write_user_prot_reg) 2060 return -EOPNOTSUPP; 2061 if (!len) 2062 return 0; 2063 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2064 if (ret) 2065 return ret; 2066 2067 /* 2068 * If no data could be written at all, we are out of memory and 2069 * must return -ENOSPC. 2070 */ 2071 return (*retlen) ? 0 : -ENOSPC; 2072 } 2073 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2074 2075 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2076 { 2077 struct mtd_info *master = mtd_get_master(mtd); 2078 2079 if (!master->_lock_user_prot_reg) 2080 return -EOPNOTSUPP; 2081 if (!len) 2082 return 0; 2083 return master->_lock_user_prot_reg(master, from, len); 2084 } 2085 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2086 2087 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2088 { 2089 struct mtd_info *master = mtd_get_master(mtd); 2090 2091 if (!master->_erase_user_prot_reg) 2092 return -EOPNOTSUPP; 2093 if (!len) 2094 return 0; 2095 return master->_erase_user_prot_reg(master, from, len); 2096 } 2097 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2098 2099 /* Chip-supported device locking */ 2100 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2101 { 2102 struct mtd_info *master = mtd_get_master(mtd); 2103 2104 if (!master->_lock) 2105 return -EOPNOTSUPP; 2106 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2107 return -EINVAL; 2108 if (!len) 2109 return 0; 2110 2111 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2112 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2113 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2114 } 2115 2116 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2117 } 2118 EXPORT_SYMBOL_GPL(mtd_lock); 2119 2120 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2121 { 2122 struct mtd_info *master = mtd_get_master(mtd); 2123 2124 if (!master->_unlock) 2125 return -EOPNOTSUPP; 2126 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2127 return -EINVAL; 2128 if (!len) 2129 return 0; 2130 2131 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2132 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2133 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2134 } 2135 2136 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2137 } 2138 EXPORT_SYMBOL_GPL(mtd_unlock); 2139 2140 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2141 { 2142 struct mtd_info *master = mtd_get_master(mtd); 2143 2144 if (!master->_is_locked) 2145 return -EOPNOTSUPP; 2146 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2147 return -EINVAL; 2148 if (!len) 2149 return 0; 2150 2151 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2152 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2153 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2154 } 2155 2156 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2157 } 2158 EXPORT_SYMBOL_GPL(mtd_is_locked); 2159 2160 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2161 { 2162 struct mtd_info *master = mtd_get_master(mtd); 2163 2164 if (ofs < 0 || ofs >= mtd->size) 2165 return -EINVAL; 2166 if (!master->_block_isreserved) 2167 return 0; 2168 2169 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2170 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2171 2172 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2173 } 2174 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2175 2176 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2177 { 2178 struct mtd_info *master = mtd_get_master(mtd); 2179 2180 if (ofs < 0 || ofs >= mtd->size) 2181 return -EINVAL; 2182 if (!master->_block_isbad) 2183 return 0; 2184 2185 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2186 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2187 2188 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2189 } 2190 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2191 2192 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2193 { 2194 struct mtd_info *master = mtd_get_master(mtd); 2195 int ret; 2196 2197 if (!master->_block_markbad) 2198 return -EOPNOTSUPP; 2199 if (ofs < 0 || ofs >= mtd->size) 2200 return -EINVAL; 2201 if (!(mtd->flags & MTD_WRITEABLE)) 2202 return -EROFS; 2203 2204 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2205 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2206 2207 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2208 if (ret) 2209 return ret; 2210 2211 while (mtd->parent) { 2212 mtd->ecc_stats.badblocks++; 2213 mtd = mtd->parent; 2214 } 2215 2216 return 0; 2217 } 2218 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2219 2220 /* 2221 * default_mtd_writev - the default writev method 2222 * @mtd: mtd device description object pointer 2223 * @vecs: the vectors to write 2224 * @count: count of vectors in @vecs 2225 * @to: the MTD device offset to write to 2226 * @retlen: on exit contains the count of bytes written to the MTD device. 2227 * 2228 * This function returns zero in case of success and a negative error code in 2229 * case of failure. 2230 */ 2231 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2232 unsigned long count, loff_t to, size_t *retlen) 2233 { 2234 unsigned long i; 2235 size_t totlen = 0, thislen; 2236 int ret = 0; 2237 2238 for (i = 0; i < count; i++) { 2239 if (!vecs[i].iov_len) 2240 continue; 2241 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2242 vecs[i].iov_base); 2243 totlen += thislen; 2244 if (ret || thislen != vecs[i].iov_len) 2245 break; 2246 to += vecs[i].iov_len; 2247 } 2248 *retlen = totlen; 2249 return ret; 2250 } 2251 2252 /* 2253 * mtd_writev - the vector-based MTD write method 2254 * @mtd: mtd device description object pointer 2255 * @vecs: the vectors to write 2256 * @count: count of vectors in @vecs 2257 * @to: the MTD device offset to write to 2258 * @retlen: on exit contains the count of bytes written to the MTD device. 2259 * 2260 * This function returns zero in case of success and a negative error code in 2261 * case of failure. 2262 */ 2263 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2264 unsigned long count, loff_t to, size_t *retlen) 2265 { 2266 struct mtd_info *master = mtd_get_master(mtd); 2267 2268 *retlen = 0; 2269 if (!(mtd->flags & MTD_WRITEABLE)) 2270 return -EROFS; 2271 2272 if (!master->_writev) 2273 return default_mtd_writev(mtd, vecs, count, to, retlen); 2274 2275 return master->_writev(master, vecs, count, 2276 mtd_get_master_ofs(mtd, to), retlen); 2277 } 2278 EXPORT_SYMBOL_GPL(mtd_writev); 2279 2280 /** 2281 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2282 * @mtd: mtd device description object pointer 2283 * @size: a pointer to the ideal or maximum size of the allocation, points 2284 * to the actual allocation size on success. 2285 * 2286 * This routine attempts to allocate a contiguous kernel buffer up to 2287 * the specified size, backing off the size of the request exponentially 2288 * until the request succeeds or until the allocation size falls below 2289 * the system page size. This attempts to make sure it does not adversely 2290 * impact system performance, so when allocating more than one page, we 2291 * ask the memory allocator to avoid re-trying, swapping, writing back 2292 * or performing I/O. 2293 * 2294 * Note, this function also makes sure that the allocated buffer is aligned to 2295 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2296 * 2297 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2298 * to handle smaller (i.e. degraded) buffer allocations under low- or 2299 * fragmented-memory situations where such reduced allocations, from a 2300 * requested ideal, are allowed. 2301 * 2302 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2303 */ 2304 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2305 { 2306 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2307 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2308 void *kbuf; 2309 2310 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2311 2312 while (*size > min_alloc) { 2313 kbuf = kmalloc(*size, flags); 2314 if (kbuf) 2315 return kbuf; 2316 2317 *size >>= 1; 2318 *size = ALIGN(*size, mtd->writesize); 2319 } 2320 2321 /* 2322 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2323 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2324 */ 2325 return kmalloc(*size, GFP_KERNEL); 2326 } 2327 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2328 2329 #ifdef CONFIG_PROC_FS 2330 2331 /*====================================================================*/ 2332 /* Support for /proc/mtd */ 2333 2334 static int mtd_proc_show(struct seq_file *m, void *v) 2335 { 2336 struct mtd_info *mtd; 2337 2338 seq_puts(m, "dev: size erasesize name\n"); 2339 mutex_lock(&mtd_table_mutex); 2340 mtd_for_each_device(mtd) { 2341 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2342 mtd->index, (unsigned long long)mtd->size, 2343 mtd->erasesize, mtd->name); 2344 } 2345 mutex_unlock(&mtd_table_mutex); 2346 return 0; 2347 } 2348 #endif /* CONFIG_PROC_FS */ 2349 2350 /*====================================================================*/ 2351 /* Init code */ 2352 2353 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2354 { 2355 struct backing_dev_info *bdi; 2356 int ret; 2357 2358 bdi = bdi_alloc(NUMA_NO_NODE); 2359 if (!bdi) 2360 return ERR_PTR(-ENOMEM); 2361 bdi->ra_pages = 0; 2362 bdi->io_pages = 0; 2363 2364 /* 2365 * We put '-0' suffix to the name to get the same name format as we 2366 * used to get. Since this is called only once, we get a unique name. 2367 */ 2368 ret = bdi_register(bdi, "%.28s-0", name); 2369 if (ret) 2370 bdi_put(bdi); 2371 2372 return ret ? ERR_PTR(ret) : bdi; 2373 } 2374 2375 char *mtd_expert_analysis_warning = 2376 "Bad block checks have been entirely disabled.\n" 2377 "This is only reserved for post-mortem forensics and debug purposes.\n" 2378 "Never enable this mode if you do not know what you are doing!\n"; 2379 EXPORT_SYMBOL_GPL(mtd_expert_analysis_warning); 2380 bool mtd_expert_analysis_mode; 2381 EXPORT_SYMBOL_GPL(mtd_expert_analysis_mode); 2382 2383 static struct proc_dir_entry *proc_mtd; 2384 2385 static int __init init_mtd(void) 2386 { 2387 int ret; 2388 2389 ret = class_register(&mtd_class); 2390 if (ret) 2391 goto err_reg; 2392 2393 mtd_bdi = mtd_bdi_init("mtd"); 2394 if (IS_ERR(mtd_bdi)) { 2395 ret = PTR_ERR(mtd_bdi); 2396 goto err_bdi; 2397 } 2398 2399 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2400 2401 ret = init_mtdchar(); 2402 if (ret) 2403 goto out_procfs; 2404 2405 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2406 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2407 &mtd_expert_analysis_mode); 2408 2409 return 0; 2410 2411 out_procfs: 2412 if (proc_mtd) 2413 remove_proc_entry("mtd", NULL); 2414 bdi_put(mtd_bdi); 2415 err_bdi: 2416 class_unregister(&mtd_class); 2417 err_reg: 2418 pr_err("Error registering mtd class or bdi: %d\n", ret); 2419 return ret; 2420 } 2421 2422 static void __exit cleanup_mtd(void) 2423 { 2424 debugfs_remove_recursive(dfs_dir_mtd); 2425 cleanup_mtdchar(); 2426 if (proc_mtd) 2427 remove_proc_entry("mtd", NULL); 2428 class_unregister(&mtd_class); 2429 bdi_unregister(mtd_bdi); 2430 bdi_put(mtd_bdi); 2431 idr_destroy(&mtd_idr); 2432 } 2433 2434 module_init(init_mtd); 2435 module_exit(cleanup_mtd); 2436 2437 MODULE_LICENSE("GPL"); 2438 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2439 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2440