xref: /linux/drivers/mtd/mtdcore.c (revision 3d0fe49454652117522f60bfbefb978ba0e5300b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 struct backing_dev_info *mtd_bdi;
40 
41 #ifdef CONFIG_PM_SLEEP
42 
43 static int mtd_cls_suspend(struct device *dev)
44 {
45 	struct mtd_info *mtd = dev_get_drvdata(dev);
46 
47 	return mtd ? mtd_suspend(mtd) : 0;
48 }
49 
50 static int mtd_cls_resume(struct device *dev)
51 {
52 	struct mtd_info *mtd = dev_get_drvdata(dev);
53 
54 	if (mtd)
55 		mtd_resume(mtd);
56 	return 0;
57 }
58 
59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61 #else
62 #define MTD_CLS_PM_OPS NULL
63 #endif
64 
65 static struct class mtd_class = {
66 	.name = "mtd",
67 	.pm = MTD_CLS_PM_OPS,
68 };
69 
70 static DEFINE_IDR(mtd_idr);
71 
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73    should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 
77 struct mtd_info *__mtd_next_device(int i)
78 {
79 	return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 
83 static LIST_HEAD(mtd_notifiers);
84 
85 
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89  * the mtd_info will probably want to use the release() hook...
90  */
91 static void mtd_release(struct device *dev)
92 {
93 	struct mtd_info *mtd = dev_get_drvdata(dev);
94 	dev_t index = MTD_DEVT(mtd->index);
95 
96 	idr_remove(&mtd_idr, mtd->index);
97 	of_node_put(mtd_get_of_node(mtd));
98 
99 	if (mtd_is_partition(mtd))
100 		release_mtd_partition(mtd);
101 
102 	/* remove /dev/mtdXro node */
103 	device_destroy(&mtd_class, index + 1);
104 }
105 
106 static void mtd_device_release(struct kref *kref)
107 {
108 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
109 	bool is_partition = mtd_is_partition(mtd);
110 
111 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
112 
113 	/* Try to remove the NVMEM provider */
114 	nvmem_unregister(mtd->nvmem);
115 
116 	device_unregister(&mtd->dev);
117 
118 	/*
119 	 *  Clear dev so mtd can be safely re-registered later if desired.
120 	 *  Should not be done for partition,
121 	 *  as it was already destroyed in device_unregister().
122 	 */
123 	if (!is_partition)
124 		memset(&mtd->dev, 0, sizeof(mtd->dev));
125 
126 	module_put(THIS_MODULE);
127 }
128 
129 #define MTD_DEVICE_ATTR_RO(name) \
130 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
131 
132 #define MTD_DEVICE_ATTR_RW(name) \
133 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
134 
135 static ssize_t mtd_type_show(struct device *dev,
136 		struct device_attribute *attr, char *buf)
137 {
138 	struct mtd_info *mtd = dev_get_drvdata(dev);
139 	char *type;
140 
141 	switch (mtd->type) {
142 	case MTD_ABSENT:
143 		type = "absent";
144 		break;
145 	case MTD_RAM:
146 		type = "ram";
147 		break;
148 	case MTD_ROM:
149 		type = "rom";
150 		break;
151 	case MTD_NORFLASH:
152 		type = "nor";
153 		break;
154 	case MTD_NANDFLASH:
155 		type = "nand";
156 		break;
157 	case MTD_DATAFLASH:
158 		type = "dataflash";
159 		break;
160 	case MTD_UBIVOLUME:
161 		type = "ubi";
162 		break;
163 	case MTD_MLCNANDFLASH:
164 		type = "mlc-nand";
165 		break;
166 	default:
167 		type = "unknown";
168 	}
169 
170 	return sysfs_emit(buf, "%s\n", type);
171 }
172 MTD_DEVICE_ATTR_RO(type);
173 
174 static ssize_t mtd_flags_show(struct device *dev,
175 		struct device_attribute *attr, char *buf)
176 {
177 	struct mtd_info *mtd = dev_get_drvdata(dev);
178 
179 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
180 }
181 MTD_DEVICE_ATTR_RO(flags);
182 
183 static ssize_t mtd_size_show(struct device *dev,
184 		struct device_attribute *attr, char *buf)
185 {
186 	struct mtd_info *mtd = dev_get_drvdata(dev);
187 
188 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
189 }
190 MTD_DEVICE_ATTR_RO(size);
191 
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 MTD_DEVICE_ATTR_RO(erasesize);
200 
201 static ssize_t mtd_writesize_show(struct device *dev,
202 		struct device_attribute *attr, char *buf)
203 {
204 	struct mtd_info *mtd = dev_get_drvdata(dev);
205 
206 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 MTD_DEVICE_ATTR_RO(writesize);
209 
210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 		struct device_attribute *attr, char *buf)
212 {
213 	struct mtd_info *mtd = dev_get_drvdata(dev);
214 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215 
216 	return sysfs_emit(buf, "%u\n", subpagesize);
217 }
218 MTD_DEVICE_ATTR_RO(subpagesize);
219 
220 static ssize_t mtd_oobsize_show(struct device *dev,
221 		struct device_attribute *attr, char *buf)
222 {
223 	struct mtd_info *mtd = dev_get_drvdata(dev);
224 
225 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 MTD_DEVICE_ATTR_RO(oobsize);
228 
229 static ssize_t mtd_oobavail_show(struct device *dev,
230 				 struct device_attribute *attr, char *buf)
231 {
232 	struct mtd_info *mtd = dev_get_drvdata(dev);
233 
234 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
235 }
236 MTD_DEVICE_ATTR_RO(oobavail);
237 
238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 		struct device_attribute *attr, char *buf)
240 {
241 	struct mtd_info *mtd = dev_get_drvdata(dev);
242 
243 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
244 }
245 MTD_DEVICE_ATTR_RO(numeraseregions);
246 
247 static ssize_t mtd_name_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct mtd_info *mtd = dev_get_drvdata(dev);
251 
252 	return sysfs_emit(buf, "%s\n", mtd->name);
253 }
254 MTD_DEVICE_ATTR_RO(name);
255 
256 static ssize_t mtd_ecc_strength_show(struct device *dev,
257 				     struct device_attribute *attr, char *buf)
258 {
259 	struct mtd_info *mtd = dev_get_drvdata(dev);
260 
261 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
262 }
263 MTD_DEVICE_ATTR_RO(ecc_strength);
264 
265 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
266 					  struct device_attribute *attr,
267 					  char *buf)
268 {
269 	struct mtd_info *mtd = dev_get_drvdata(dev);
270 
271 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
272 }
273 
274 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
275 					   struct device_attribute *attr,
276 					   const char *buf, size_t count)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 	unsigned int bitflip_threshold;
280 	int retval;
281 
282 	retval = kstrtouint(buf, 0, &bitflip_threshold);
283 	if (retval)
284 		return retval;
285 
286 	mtd->bitflip_threshold = bitflip_threshold;
287 	return count;
288 }
289 MTD_DEVICE_ATTR_RW(bitflip_threshold);
290 
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 
296 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
297 
298 }
299 MTD_DEVICE_ATTR_RO(ecc_step_size);
300 
301 static ssize_t mtd_corrected_bits_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
308 }
309 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
310 
311 static ssize_t mtd_ecc_failures_show(struct device *dev,
312 		struct device_attribute *attr, char *buf)
313 {
314 	struct mtd_info *mtd = dev_get_drvdata(dev);
315 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316 
317 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
318 }
319 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
320 
321 static ssize_t mtd_bad_blocks_show(struct device *dev,
322 		struct device_attribute *attr, char *buf)
323 {
324 	struct mtd_info *mtd = dev_get_drvdata(dev);
325 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326 
327 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
328 }
329 MTD_DEVICE_ATTR_RO(bad_blocks);
330 
331 static ssize_t mtd_bbt_blocks_show(struct device *dev,
332 		struct device_attribute *attr, char *buf)
333 {
334 	struct mtd_info *mtd = dev_get_drvdata(dev);
335 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
336 
337 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
338 }
339 MTD_DEVICE_ATTR_RO(bbt_blocks);
340 
341 static struct attribute *mtd_attrs[] = {
342 	&dev_attr_type.attr,
343 	&dev_attr_flags.attr,
344 	&dev_attr_size.attr,
345 	&dev_attr_erasesize.attr,
346 	&dev_attr_writesize.attr,
347 	&dev_attr_subpagesize.attr,
348 	&dev_attr_oobsize.attr,
349 	&dev_attr_oobavail.attr,
350 	&dev_attr_numeraseregions.attr,
351 	&dev_attr_name.attr,
352 	&dev_attr_ecc_strength.attr,
353 	&dev_attr_ecc_step_size.attr,
354 	&dev_attr_corrected_bits.attr,
355 	&dev_attr_ecc_failures.attr,
356 	&dev_attr_bad_blocks.attr,
357 	&dev_attr_bbt_blocks.attr,
358 	&dev_attr_bitflip_threshold.attr,
359 	NULL,
360 };
361 ATTRIBUTE_GROUPS(mtd);
362 
363 static const struct device_type mtd_devtype = {
364 	.name		= "mtd",
365 	.groups		= mtd_groups,
366 	.release	= mtd_release,
367 };
368 
369 static bool mtd_expert_analysis_mode;
370 
371 #ifdef CONFIG_DEBUG_FS
372 bool mtd_check_expert_analysis_mode(void)
373 {
374 	const char *mtd_expert_analysis_warning =
375 		"Bad block checks have been entirely disabled.\n"
376 		"This is only reserved for post-mortem forensics and debug purposes.\n"
377 		"Never enable this mode if you do not know what you are doing!\n";
378 
379 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
380 }
381 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
382 #endif
383 
384 static struct dentry *dfs_dir_mtd;
385 
386 static void mtd_debugfs_populate(struct mtd_info *mtd)
387 {
388 	struct device *dev = &mtd->dev;
389 
390 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
391 		return;
392 
393 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
394 }
395 
396 #ifndef CONFIG_MMU
397 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
398 {
399 	switch (mtd->type) {
400 	case MTD_RAM:
401 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
402 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
403 	case MTD_ROM:
404 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
405 			NOMMU_MAP_READ;
406 	default:
407 		return NOMMU_MAP_COPY;
408 	}
409 }
410 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
411 #endif
412 
413 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
414 			       void *cmd)
415 {
416 	struct mtd_info *mtd;
417 
418 	mtd = container_of(n, struct mtd_info, reboot_notifier);
419 	mtd->_reboot(mtd);
420 
421 	return NOTIFY_DONE;
422 }
423 
424 /**
425  * mtd_wunit_to_pairing_info - get pairing information of a wunit
426  * @mtd: pointer to new MTD device info structure
427  * @wunit: write unit we are interested in
428  * @info: returned pairing information
429  *
430  * Retrieve pairing information associated to the wunit.
431  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
432  * paired together, and where programming a page may influence the page it is
433  * paired with.
434  * The notion of page is replaced by the term wunit (write-unit) to stay
435  * consistent with the ->writesize field.
436  *
437  * The @wunit argument can be extracted from an absolute offset using
438  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
439  * to @wunit.
440  *
441  * From the pairing info the MTD user can find all the wunits paired with
442  * @wunit using the following loop:
443  *
444  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
445  *	info.pair = i;
446  *	mtd_pairing_info_to_wunit(mtd, &info);
447  *	...
448  * }
449  */
450 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
451 			      struct mtd_pairing_info *info)
452 {
453 	struct mtd_info *master = mtd_get_master(mtd);
454 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
455 
456 	if (wunit < 0 || wunit >= npairs)
457 		return -EINVAL;
458 
459 	if (master->pairing && master->pairing->get_info)
460 		return master->pairing->get_info(master, wunit, info);
461 
462 	info->group = 0;
463 	info->pair = wunit;
464 
465 	return 0;
466 }
467 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
468 
469 /**
470  * mtd_pairing_info_to_wunit - get wunit from pairing information
471  * @mtd: pointer to new MTD device info structure
472  * @info: pairing information struct
473  *
474  * Returns a positive number representing the wunit associated to the info
475  * struct, or a negative error code.
476  *
477  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
478  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
479  * doc).
480  *
481  * It can also be used to only program the first page of each pair (i.e.
482  * page attached to group 0), which allows one to use an MLC NAND in
483  * software-emulated SLC mode:
484  *
485  * info.group = 0;
486  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
487  * for (info.pair = 0; info.pair < npairs; info.pair++) {
488  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
489  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
490  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
491  * }
492  */
493 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
494 			      const struct mtd_pairing_info *info)
495 {
496 	struct mtd_info *master = mtd_get_master(mtd);
497 	int ngroups = mtd_pairing_groups(master);
498 	int npairs = mtd_wunit_per_eb(master) / ngroups;
499 
500 	if (!info || info->pair < 0 || info->pair >= npairs ||
501 	    info->group < 0 || info->group >= ngroups)
502 		return -EINVAL;
503 
504 	if (master->pairing && master->pairing->get_wunit)
505 		return mtd->pairing->get_wunit(master, info);
506 
507 	return info->pair;
508 }
509 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
510 
511 /**
512  * mtd_pairing_groups - get the number of pairing groups
513  * @mtd: pointer to new MTD device info structure
514  *
515  * Returns the number of pairing groups.
516  *
517  * This number is usually equal to the number of bits exposed by a single
518  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
519  * to iterate over all pages of a given pair.
520  */
521 int mtd_pairing_groups(struct mtd_info *mtd)
522 {
523 	struct mtd_info *master = mtd_get_master(mtd);
524 
525 	if (!master->pairing || !master->pairing->ngroups)
526 		return 1;
527 
528 	return master->pairing->ngroups;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
531 
532 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
533 			      void *val, size_t bytes)
534 {
535 	struct mtd_info *mtd = priv;
536 	size_t retlen;
537 	int err;
538 
539 	err = mtd_read(mtd, offset, bytes, &retlen, val);
540 	if (err && err != -EUCLEAN)
541 		return err;
542 
543 	return retlen == bytes ? 0 : -EIO;
544 }
545 
546 static int mtd_nvmem_add(struct mtd_info *mtd)
547 {
548 	struct device_node *node = mtd_get_of_node(mtd);
549 	struct nvmem_config config = {};
550 
551 	config.id = NVMEM_DEVID_NONE;
552 	config.dev = &mtd->dev;
553 	config.name = dev_name(&mtd->dev);
554 	config.owner = THIS_MODULE;
555 	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
556 	config.reg_read = mtd_nvmem_reg_read;
557 	config.size = mtd->size;
558 	config.word_size = 1;
559 	config.stride = 1;
560 	config.read_only = true;
561 	config.root_only = true;
562 	config.ignore_wp = true;
563 	config.priv = mtd;
564 
565 	mtd->nvmem = nvmem_register(&config);
566 	if (IS_ERR(mtd->nvmem)) {
567 		/* Just ignore if there is no NVMEM support in the kernel */
568 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
569 			mtd->nvmem = NULL;
570 		else
571 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
572 					     "Failed to register NVMEM device\n");
573 	}
574 
575 	return 0;
576 }
577 
578 static void mtd_check_of_node(struct mtd_info *mtd)
579 {
580 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
581 	const char *pname, *prefix = "partition-";
582 	int plen, mtd_name_len, offset, prefix_len;
583 
584 	/* Check if MTD already has a device node */
585 	if (mtd_get_of_node(mtd))
586 		return;
587 
588 	if (!mtd_is_partition(mtd))
589 		return;
590 
591 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
592 	if (!parent_dn)
593 		return;
594 
595 	if (mtd_is_partition(mtd->parent))
596 		partitions = of_node_get(parent_dn);
597 	else
598 		partitions = of_get_child_by_name(parent_dn, "partitions");
599 	if (!partitions)
600 		goto exit_parent;
601 
602 	prefix_len = strlen(prefix);
603 	mtd_name_len = strlen(mtd->name);
604 
605 	/* Search if a partition is defined with the same name */
606 	for_each_child_of_node(partitions, mtd_dn) {
607 		/* Skip partition with no/wrong prefix */
608 		if (!of_node_name_prefix(mtd_dn, prefix))
609 			continue;
610 
611 		/* Label have priority. Check that first */
612 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
613 			offset = 0;
614 		} else {
615 			pname = mtd_dn->name;
616 			offset = prefix_len;
617 		}
618 
619 		plen = strlen(pname) - offset;
620 		if (plen == mtd_name_len &&
621 		    !strncmp(mtd->name, pname + offset, plen)) {
622 			mtd_set_of_node(mtd, mtd_dn);
623 			break;
624 		}
625 	}
626 
627 	of_node_put(partitions);
628 exit_parent:
629 	of_node_put(parent_dn);
630 }
631 
632 /**
633  *	add_mtd_device - register an MTD device
634  *	@mtd: pointer to new MTD device info structure
635  *
636  *	Add a device to the list of MTD devices present in the system, and
637  *	notify each currently active MTD 'user' of its arrival. Returns
638  *	zero on success or non-zero on failure.
639  */
640 
641 int add_mtd_device(struct mtd_info *mtd)
642 {
643 	struct device_node *np = mtd_get_of_node(mtd);
644 	struct mtd_info *master = mtd_get_master(mtd);
645 	struct mtd_notifier *not;
646 	int i, error, ofidx;
647 
648 	/*
649 	 * May occur, for instance, on buggy drivers which call
650 	 * mtd_device_parse_register() multiple times on the same master MTD,
651 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
652 	 */
653 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
654 		return -EEXIST;
655 
656 	BUG_ON(mtd->writesize == 0);
657 
658 	/*
659 	 * MTD drivers should implement ->_{write,read}() or
660 	 * ->_{write,read}_oob(), but not both.
661 	 */
662 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
663 		    (mtd->_read && mtd->_read_oob)))
664 		return -EINVAL;
665 
666 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
667 		    !(mtd->flags & MTD_NO_ERASE)))
668 		return -EINVAL;
669 
670 	/*
671 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
672 	 * master is an MLC NAND and has a proper pairing scheme defined.
673 	 * We also reject masters that implement ->_writev() for now, because
674 	 * NAND controller drivers don't implement this hook, and adding the
675 	 * SLC -> MLC address/length conversion to this path is useless if we
676 	 * don't have a user.
677 	 */
678 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
679 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
680 	     !master->pairing || master->_writev))
681 		return -EINVAL;
682 
683 	mutex_lock(&mtd_table_mutex);
684 
685 	ofidx = -1;
686 	if (np)
687 		ofidx = of_alias_get_id(np, "mtd");
688 	if (ofidx >= 0)
689 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
690 	else
691 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
692 	if (i < 0) {
693 		error = i;
694 		goto fail_locked;
695 	}
696 
697 	mtd->index = i;
698 	kref_init(&mtd->refcnt);
699 
700 	/* default value if not set by driver */
701 	if (mtd->bitflip_threshold == 0)
702 		mtd->bitflip_threshold = mtd->ecc_strength;
703 
704 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
705 		int ngroups = mtd_pairing_groups(master);
706 
707 		mtd->erasesize /= ngroups;
708 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
709 			    mtd->erasesize;
710 	}
711 
712 	if (is_power_of_2(mtd->erasesize))
713 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
714 	else
715 		mtd->erasesize_shift = 0;
716 
717 	if (is_power_of_2(mtd->writesize))
718 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
719 	else
720 		mtd->writesize_shift = 0;
721 
722 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
723 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
724 
725 	/* Some chips always power up locked. Unlock them now */
726 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
727 		error = mtd_unlock(mtd, 0, mtd->size);
728 		if (error && error != -EOPNOTSUPP)
729 			printk(KERN_WARNING
730 			       "%s: unlock failed, writes may not work\n",
731 			       mtd->name);
732 		/* Ignore unlock failures? */
733 		error = 0;
734 	}
735 
736 	/* Caller should have set dev.parent to match the
737 	 * physical device, if appropriate.
738 	 */
739 	mtd->dev.type = &mtd_devtype;
740 	mtd->dev.class = &mtd_class;
741 	mtd->dev.devt = MTD_DEVT(i);
742 	dev_set_name(&mtd->dev, "mtd%d", i);
743 	dev_set_drvdata(&mtd->dev, mtd);
744 	mtd_check_of_node(mtd);
745 	of_node_get(mtd_get_of_node(mtd));
746 	error = device_register(&mtd->dev);
747 	if (error) {
748 		put_device(&mtd->dev);
749 		goto fail_added;
750 	}
751 
752 	/* Add the nvmem provider */
753 	error = mtd_nvmem_add(mtd);
754 	if (error)
755 		goto fail_nvmem_add;
756 
757 	mtd_debugfs_populate(mtd);
758 
759 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
760 		      "mtd%dro", i);
761 
762 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
763 	/* No need to get a refcount on the module containing
764 	   the notifier, since we hold the mtd_table_mutex */
765 	list_for_each_entry(not, &mtd_notifiers, list)
766 		not->add(mtd);
767 
768 	mutex_unlock(&mtd_table_mutex);
769 
770 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
771 		if (IS_BUILTIN(CONFIG_MTD)) {
772 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
773 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
774 		} else {
775 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
776 				mtd->index, mtd->name);
777 		}
778 	}
779 
780 	/* We _know_ we aren't being removed, because
781 	   our caller is still holding us here. So none
782 	   of this try_ nonsense, and no bitching about it
783 	   either. :) */
784 	__module_get(THIS_MODULE);
785 	return 0;
786 
787 fail_nvmem_add:
788 	device_unregister(&mtd->dev);
789 fail_added:
790 	of_node_put(mtd_get_of_node(mtd));
791 	idr_remove(&mtd_idr, i);
792 fail_locked:
793 	mutex_unlock(&mtd_table_mutex);
794 	return error;
795 }
796 
797 /**
798  *	del_mtd_device - unregister an MTD device
799  *	@mtd: pointer to MTD device info structure
800  *
801  *	Remove a device from the list of MTD devices present in the system,
802  *	and notify each currently active MTD 'user' of its departure.
803  *	Returns zero on success or 1 on failure, which currently will happen
804  *	if the requested device does not appear to be present in the list.
805  */
806 
807 int del_mtd_device(struct mtd_info *mtd)
808 {
809 	int ret;
810 	struct mtd_notifier *not;
811 
812 	mutex_lock(&mtd_table_mutex);
813 
814 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
815 		ret = -ENODEV;
816 		goto out_error;
817 	}
818 
819 	/* No need to get a refcount on the module containing
820 		the notifier, since we hold the mtd_table_mutex */
821 	list_for_each_entry(not, &mtd_notifiers, list)
822 		not->remove(mtd);
823 
824 	kref_put(&mtd->refcnt, mtd_device_release);
825 	ret = 0;
826 
827 out_error:
828 	mutex_unlock(&mtd_table_mutex);
829 	return ret;
830 }
831 
832 /*
833  * Set a few defaults based on the parent devices, if not provided by the
834  * driver
835  */
836 static void mtd_set_dev_defaults(struct mtd_info *mtd)
837 {
838 	if (mtd->dev.parent) {
839 		if (!mtd->owner && mtd->dev.parent->driver)
840 			mtd->owner = mtd->dev.parent->driver->owner;
841 		if (!mtd->name)
842 			mtd->name = dev_name(mtd->dev.parent);
843 	} else {
844 		pr_debug("mtd device won't show a device symlink in sysfs\n");
845 	}
846 
847 	INIT_LIST_HEAD(&mtd->partitions);
848 	mutex_init(&mtd->master.partitions_lock);
849 	mutex_init(&mtd->master.chrdev_lock);
850 }
851 
852 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
853 {
854 	struct otp_info *info;
855 	ssize_t size = 0;
856 	unsigned int i;
857 	size_t retlen;
858 	int ret;
859 
860 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
861 	if (!info)
862 		return -ENOMEM;
863 
864 	if (is_user)
865 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
866 	else
867 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
868 	if (ret)
869 		goto err;
870 
871 	for (i = 0; i < retlen / sizeof(*info); i++)
872 		size += info[i].length;
873 
874 	kfree(info);
875 	return size;
876 
877 err:
878 	kfree(info);
879 
880 	/* ENODATA means there is no OTP region. */
881 	return ret == -ENODATA ? 0 : ret;
882 }
883 
884 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
885 						   const char *compatible,
886 						   int size,
887 						   nvmem_reg_read_t reg_read)
888 {
889 	struct nvmem_device *nvmem = NULL;
890 	struct nvmem_config config = {};
891 	struct device_node *np;
892 
893 	/* DT binding is optional */
894 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
895 
896 	/* OTP nvmem will be registered on the physical device */
897 	config.dev = mtd->dev.parent;
898 	config.name = compatible;
899 	config.id = NVMEM_DEVID_AUTO;
900 	config.owner = THIS_MODULE;
901 	config.add_legacy_fixed_of_cells = true;
902 	config.type = NVMEM_TYPE_OTP;
903 	config.root_only = true;
904 	config.ignore_wp = true;
905 	config.reg_read = reg_read;
906 	config.size = size;
907 	config.of_node = np;
908 	config.priv = mtd;
909 
910 	nvmem = nvmem_register(&config);
911 	/* Just ignore if there is no NVMEM support in the kernel */
912 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
913 		nvmem = NULL;
914 
915 	of_node_put(np);
916 
917 	return nvmem;
918 }
919 
920 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
921 				       void *val, size_t bytes)
922 {
923 	struct mtd_info *mtd = priv;
924 	size_t retlen;
925 	int ret;
926 
927 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
928 	if (ret)
929 		return ret;
930 
931 	return retlen == bytes ? 0 : -EIO;
932 }
933 
934 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
935 				       void *val, size_t bytes)
936 {
937 	struct mtd_info *mtd = priv;
938 	size_t retlen;
939 	int ret;
940 
941 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
942 	if (ret)
943 		return ret;
944 
945 	return retlen == bytes ? 0 : -EIO;
946 }
947 
948 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
949 {
950 	struct device *dev = mtd->dev.parent;
951 	struct nvmem_device *nvmem;
952 	ssize_t size;
953 	int err;
954 
955 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
956 		size = mtd_otp_size(mtd, true);
957 		if (size < 0)
958 			return size;
959 
960 		if (size > 0) {
961 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
962 						       mtd_nvmem_user_otp_reg_read);
963 			if (IS_ERR(nvmem)) {
964 				err = PTR_ERR(nvmem);
965 				goto err;
966 			}
967 			mtd->otp_user_nvmem = nvmem;
968 		}
969 	}
970 
971 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
972 		size = mtd_otp_size(mtd, false);
973 		if (size < 0) {
974 			err = size;
975 			goto err;
976 		}
977 
978 		if (size > 0) {
979 			/*
980 			 * The factory OTP contains thing such as a unique serial
981 			 * number and is small, so let's read it out and put it
982 			 * into the entropy pool.
983 			 */
984 			void *otp;
985 
986 			otp = kmalloc(size, GFP_KERNEL);
987 			if (!otp) {
988 				err = -ENOMEM;
989 				goto err;
990 			}
991 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
992 			if (err < 0) {
993 				kfree(otp);
994 				goto err;
995 			}
996 			add_device_randomness(otp, err);
997 			kfree(otp);
998 
999 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1000 						       mtd_nvmem_fact_otp_reg_read);
1001 			if (IS_ERR(nvmem)) {
1002 				err = PTR_ERR(nvmem);
1003 				goto err;
1004 			}
1005 			mtd->otp_factory_nvmem = nvmem;
1006 		}
1007 	}
1008 
1009 	return 0;
1010 
1011 err:
1012 	nvmem_unregister(mtd->otp_user_nvmem);
1013 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1014 }
1015 
1016 /**
1017  * mtd_device_parse_register - parse partitions and register an MTD device.
1018  *
1019  * @mtd: the MTD device to register
1020  * @types: the list of MTD partition probes to try, see
1021  *         'parse_mtd_partitions()' for more information
1022  * @parser_data: MTD partition parser-specific data
1023  * @parts: fallback partition information to register, if parsing fails;
1024  *         only valid if %nr_parts > %0
1025  * @nr_parts: the number of partitions in parts, if zero then the full
1026  *            MTD device is registered if no partition info is found
1027  *
1028  * This function aggregates MTD partitions parsing (done by
1029  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1030  * basically follows the most common pattern found in many MTD drivers:
1031  *
1032  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1033  *   registered first.
1034  * * Then It tries to probe partitions on MTD device @mtd using parsers
1035  *   specified in @types (if @types is %NULL, then the default list of parsers
1036  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1037  *   found this functions tries to fallback to information specified in
1038  *   @parts/@nr_parts.
1039  * * If no partitions were found this function just registers the MTD device
1040  *   @mtd and exits.
1041  *
1042  * Returns zero in case of success and a negative error code in case of failure.
1043  */
1044 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1045 			      struct mtd_part_parser_data *parser_data,
1046 			      const struct mtd_partition *parts,
1047 			      int nr_parts)
1048 {
1049 	int ret;
1050 
1051 	mtd_set_dev_defaults(mtd);
1052 
1053 	ret = mtd_otp_nvmem_add(mtd);
1054 	if (ret)
1055 		goto out;
1056 
1057 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1058 		ret = add_mtd_device(mtd);
1059 		if (ret)
1060 			goto out;
1061 	}
1062 
1063 	/* Prefer parsed partitions over driver-provided fallback */
1064 	ret = parse_mtd_partitions(mtd, types, parser_data);
1065 	if (ret == -EPROBE_DEFER)
1066 		goto out;
1067 
1068 	if (ret > 0)
1069 		ret = 0;
1070 	else if (nr_parts)
1071 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1072 	else if (!device_is_registered(&mtd->dev))
1073 		ret = add_mtd_device(mtd);
1074 	else
1075 		ret = 0;
1076 
1077 	if (ret)
1078 		goto out;
1079 
1080 	/*
1081 	 * FIXME: some drivers unfortunately call this function more than once.
1082 	 * So we have to check if we've already assigned the reboot notifier.
1083 	 *
1084 	 * Generally, we can make multiple calls work for most cases, but it
1085 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1086 	 * cmdlineparts will register partitions more than once).
1087 	 */
1088 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1089 		  "MTD already registered\n");
1090 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1091 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1092 		register_reboot_notifier(&mtd->reboot_notifier);
1093 	}
1094 
1095 out:
1096 	if (ret) {
1097 		nvmem_unregister(mtd->otp_user_nvmem);
1098 		nvmem_unregister(mtd->otp_factory_nvmem);
1099 	}
1100 
1101 	if (ret && device_is_registered(&mtd->dev))
1102 		del_mtd_device(mtd);
1103 
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1107 
1108 /**
1109  * mtd_device_unregister - unregister an existing MTD device.
1110  *
1111  * @master: the MTD device to unregister.  This will unregister both the master
1112  *          and any partitions if registered.
1113  */
1114 int mtd_device_unregister(struct mtd_info *master)
1115 {
1116 	int err;
1117 
1118 	if (master->_reboot) {
1119 		unregister_reboot_notifier(&master->reboot_notifier);
1120 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1121 	}
1122 
1123 	nvmem_unregister(master->otp_user_nvmem);
1124 	nvmem_unregister(master->otp_factory_nvmem);
1125 
1126 	err = del_mtd_partitions(master);
1127 	if (err)
1128 		return err;
1129 
1130 	if (!device_is_registered(&master->dev))
1131 		return 0;
1132 
1133 	return del_mtd_device(master);
1134 }
1135 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1136 
1137 /**
1138  *	register_mtd_user - register a 'user' of MTD devices.
1139  *	@new: pointer to notifier info structure
1140  *
1141  *	Registers a pair of callbacks function to be called upon addition
1142  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1143  *	invoked for each MTD device currently present in the system.
1144  */
1145 void register_mtd_user (struct mtd_notifier *new)
1146 {
1147 	struct mtd_info *mtd;
1148 
1149 	mutex_lock(&mtd_table_mutex);
1150 
1151 	list_add(&new->list, &mtd_notifiers);
1152 
1153 	__module_get(THIS_MODULE);
1154 
1155 	mtd_for_each_device(mtd)
1156 		new->add(mtd);
1157 
1158 	mutex_unlock(&mtd_table_mutex);
1159 }
1160 EXPORT_SYMBOL_GPL(register_mtd_user);
1161 
1162 /**
1163  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1164  *	@old: pointer to notifier info structure
1165  *
1166  *	Removes a callback function pair from the list of 'users' to be
1167  *	notified upon addition or removal of MTD devices. Causes the
1168  *	'remove' callback to be immediately invoked for each MTD device
1169  *	currently present in the system.
1170  */
1171 int unregister_mtd_user (struct mtd_notifier *old)
1172 {
1173 	struct mtd_info *mtd;
1174 
1175 	mutex_lock(&mtd_table_mutex);
1176 
1177 	module_put(THIS_MODULE);
1178 
1179 	mtd_for_each_device(mtd)
1180 		old->remove(mtd);
1181 
1182 	list_del(&old->list);
1183 	mutex_unlock(&mtd_table_mutex);
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1187 
1188 /**
1189  *	get_mtd_device - obtain a validated handle for an MTD device
1190  *	@mtd: last known address of the required MTD device
1191  *	@num: internal device number of the required MTD device
1192  *
1193  *	Given a number and NULL address, return the num'th entry in the device
1194  *	table, if any.	Given an address and num == -1, search the device table
1195  *	for a device with that address and return if it's still present. Given
1196  *	both, return the num'th driver only if its address matches. Return
1197  *	error code if not.
1198  */
1199 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1200 {
1201 	struct mtd_info *ret = NULL, *other;
1202 	int err = -ENODEV;
1203 
1204 	mutex_lock(&mtd_table_mutex);
1205 
1206 	if (num == -1) {
1207 		mtd_for_each_device(other) {
1208 			if (other == mtd) {
1209 				ret = mtd;
1210 				break;
1211 			}
1212 		}
1213 	} else if (num >= 0) {
1214 		ret = idr_find(&mtd_idr, num);
1215 		if (mtd && mtd != ret)
1216 			ret = NULL;
1217 	}
1218 
1219 	if (!ret) {
1220 		ret = ERR_PTR(err);
1221 		goto out;
1222 	}
1223 
1224 	err = __get_mtd_device(ret);
1225 	if (err)
1226 		ret = ERR_PTR(err);
1227 out:
1228 	mutex_unlock(&mtd_table_mutex);
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL_GPL(get_mtd_device);
1232 
1233 
1234 int __get_mtd_device(struct mtd_info *mtd)
1235 {
1236 	struct mtd_info *master = mtd_get_master(mtd);
1237 	int err;
1238 
1239 	if (master->_get_device) {
1240 		err = master->_get_device(mtd);
1241 		if (err)
1242 			return err;
1243 	}
1244 
1245 	if (!try_module_get(master->owner)) {
1246 		if (master->_put_device)
1247 			master->_put_device(master);
1248 		return -ENODEV;
1249 	}
1250 
1251 	while (mtd) {
1252 		if (mtd != master)
1253 			kref_get(&mtd->refcnt);
1254 		mtd = mtd->parent;
1255 	}
1256 
1257 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1258 		kref_get(&master->refcnt);
1259 
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL_GPL(__get_mtd_device);
1263 
1264 /**
1265  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1266  *
1267  * @np: device tree node
1268  */
1269 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1270 {
1271 	struct mtd_info *mtd = NULL;
1272 	struct mtd_info *tmp;
1273 	int err;
1274 
1275 	mutex_lock(&mtd_table_mutex);
1276 
1277 	err = -EPROBE_DEFER;
1278 	mtd_for_each_device(tmp) {
1279 		if (mtd_get_of_node(tmp) == np) {
1280 			mtd = tmp;
1281 			err = __get_mtd_device(mtd);
1282 			break;
1283 		}
1284 	}
1285 
1286 	mutex_unlock(&mtd_table_mutex);
1287 
1288 	return err ? ERR_PTR(err) : mtd;
1289 }
1290 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1291 
1292 /**
1293  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1294  *	device name
1295  *	@name: MTD device name to open
1296  *
1297  * 	This function returns MTD device description structure in case of
1298  * 	success and an error code in case of failure.
1299  */
1300 struct mtd_info *get_mtd_device_nm(const char *name)
1301 {
1302 	int err = -ENODEV;
1303 	struct mtd_info *mtd = NULL, *other;
1304 
1305 	mutex_lock(&mtd_table_mutex);
1306 
1307 	mtd_for_each_device(other) {
1308 		if (!strcmp(name, other->name)) {
1309 			mtd = other;
1310 			break;
1311 		}
1312 	}
1313 
1314 	if (!mtd)
1315 		goto out_unlock;
1316 
1317 	err = __get_mtd_device(mtd);
1318 	if (err)
1319 		goto out_unlock;
1320 
1321 	mutex_unlock(&mtd_table_mutex);
1322 	return mtd;
1323 
1324 out_unlock:
1325 	mutex_unlock(&mtd_table_mutex);
1326 	return ERR_PTR(err);
1327 }
1328 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1329 
1330 void put_mtd_device(struct mtd_info *mtd)
1331 {
1332 	mutex_lock(&mtd_table_mutex);
1333 	__put_mtd_device(mtd);
1334 	mutex_unlock(&mtd_table_mutex);
1335 
1336 }
1337 EXPORT_SYMBOL_GPL(put_mtd_device);
1338 
1339 void __put_mtd_device(struct mtd_info *mtd)
1340 {
1341 	struct mtd_info *master = mtd_get_master(mtd);
1342 
1343 	while (mtd) {
1344 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1345 		struct mtd_info *parent = mtd->parent;
1346 
1347 		if (mtd != master)
1348 			kref_put(&mtd->refcnt, mtd_device_release);
1349 		mtd = parent;
1350 	}
1351 
1352 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1353 		kref_put(&master->refcnt, mtd_device_release);
1354 
1355 	module_put(master->owner);
1356 
1357 	/* must be the last as master can be freed in the _put_device */
1358 	if (master->_put_device)
1359 		master->_put_device(master);
1360 }
1361 EXPORT_SYMBOL_GPL(__put_mtd_device);
1362 
1363 /*
1364  * Erase is an synchronous operation. Device drivers are epected to return a
1365  * negative error code if the operation failed and update instr->fail_addr
1366  * to point the portion that was not properly erased.
1367  */
1368 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1369 {
1370 	struct mtd_info *master = mtd_get_master(mtd);
1371 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1372 	struct erase_info adjinstr;
1373 	int ret;
1374 
1375 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1376 	adjinstr = *instr;
1377 
1378 	if (!mtd->erasesize || !master->_erase)
1379 		return -ENOTSUPP;
1380 
1381 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1382 		return -EINVAL;
1383 	if (!(mtd->flags & MTD_WRITEABLE))
1384 		return -EROFS;
1385 
1386 	if (!instr->len)
1387 		return 0;
1388 
1389 	ledtrig_mtd_activity();
1390 
1391 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1392 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1393 				master->erasesize;
1394 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1395 				master->erasesize) -
1396 			       adjinstr.addr;
1397 	}
1398 
1399 	adjinstr.addr += mst_ofs;
1400 
1401 	ret = master->_erase(master, &adjinstr);
1402 
1403 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1404 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1405 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1406 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1407 							 master);
1408 			instr->fail_addr *= mtd->erasesize;
1409 		}
1410 	}
1411 
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL_GPL(mtd_erase);
1415 
1416 /*
1417  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1418  */
1419 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1420 	      void **virt, resource_size_t *phys)
1421 {
1422 	struct mtd_info *master = mtd_get_master(mtd);
1423 
1424 	*retlen = 0;
1425 	*virt = NULL;
1426 	if (phys)
1427 		*phys = 0;
1428 	if (!master->_point)
1429 		return -EOPNOTSUPP;
1430 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1431 		return -EINVAL;
1432 	if (!len)
1433 		return 0;
1434 
1435 	from = mtd_get_master_ofs(mtd, from);
1436 	return master->_point(master, from, len, retlen, virt, phys);
1437 }
1438 EXPORT_SYMBOL_GPL(mtd_point);
1439 
1440 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1441 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1442 {
1443 	struct mtd_info *master = mtd_get_master(mtd);
1444 
1445 	if (!master->_unpoint)
1446 		return -EOPNOTSUPP;
1447 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1448 		return -EINVAL;
1449 	if (!len)
1450 		return 0;
1451 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1452 }
1453 EXPORT_SYMBOL_GPL(mtd_unpoint);
1454 
1455 /*
1456  * Allow NOMMU mmap() to directly map the device (if not NULL)
1457  * - return the address to which the offset maps
1458  * - return -ENOSYS to indicate refusal to do the mapping
1459  */
1460 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1461 				    unsigned long offset, unsigned long flags)
1462 {
1463 	size_t retlen;
1464 	void *virt;
1465 	int ret;
1466 
1467 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1468 	if (ret)
1469 		return ret;
1470 	if (retlen != len) {
1471 		mtd_unpoint(mtd, offset, retlen);
1472 		return -ENOSYS;
1473 	}
1474 	return (unsigned long)virt;
1475 }
1476 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1477 
1478 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1479 				 const struct mtd_ecc_stats *old_stats)
1480 {
1481 	struct mtd_ecc_stats diff;
1482 
1483 	if (master == mtd)
1484 		return;
1485 
1486 	diff = master->ecc_stats;
1487 	diff.failed -= old_stats->failed;
1488 	diff.corrected -= old_stats->corrected;
1489 
1490 	while (mtd->parent) {
1491 		mtd->ecc_stats.failed += diff.failed;
1492 		mtd->ecc_stats.corrected += diff.corrected;
1493 		mtd = mtd->parent;
1494 	}
1495 }
1496 
1497 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1498 	     u_char *buf)
1499 {
1500 	struct mtd_oob_ops ops = {
1501 		.len = len,
1502 		.datbuf = buf,
1503 	};
1504 	int ret;
1505 
1506 	ret = mtd_read_oob(mtd, from, &ops);
1507 	*retlen = ops.retlen;
1508 
1509 	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1510 
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(mtd_read);
1514 
1515 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1516 	      const u_char *buf)
1517 {
1518 	struct mtd_oob_ops ops = {
1519 		.len = len,
1520 		.datbuf = (u8 *)buf,
1521 	};
1522 	int ret;
1523 
1524 	ret = mtd_write_oob(mtd, to, &ops);
1525 	*retlen = ops.retlen;
1526 
1527 	return ret;
1528 }
1529 EXPORT_SYMBOL_GPL(mtd_write);
1530 
1531 /*
1532  * In blackbox flight recorder like scenarios we want to make successful writes
1533  * in interrupt context. panic_write() is only intended to be called when its
1534  * known the kernel is about to panic and we need the write to succeed. Since
1535  * the kernel is not going to be running for much longer, this function can
1536  * break locks and delay to ensure the write succeeds (but not sleep).
1537  */
1538 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1539 		    const u_char *buf)
1540 {
1541 	struct mtd_info *master = mtd_get_master(mtd);
1542 
1543 	*retlen = 0;
1544 	if (!master->_panic_write)
1545 		return -EOPNOTSUPP;
1546 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1547 		return -EINVAL;
1548 	if (!(mtd->flags & MTD_WRITEABLE))
1549 		return -EROFS;
1550 	if (!len)
1551 		return 0;
1552 	if (!master->oops_panic_write)
1553 		master->oops_panic_write = true;
1554 
1555 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1556 				    retlen, buf);
1557 }
1558 EXPORT_SYMBOL_GPL(mtd_panic_write);
1559 
1560 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1561 			     struct mtd_oob_ops *ops)
1562 {
1563 	/*
1564 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1565 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1566 	 *  this case.
1567 	 */
1568 	if (!ops->datbuf)
1569 		ops->len = 0;
1570 
1571 	if (!ops->oobbuf)
1572 		ops->ooblen = 0;
1573 
1574 	if (offs < 0 || offs + ops->len > mtd->size)
1575 		return -EINVAL;
1576 
1577 	if (ops->ooblen) {
1578 		size_t maxooblen;
1579 
1580 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1581 			return -EINVAL;
1582 
1583 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1584 				      mtd_div_by_ws(offs, mtd)) *
1585 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1586 		if (ops->ooblen > maxooblen)
1587 			return -EINVAL;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1594 			    struct mtd_oob_ops *ops)
1595 {
1596 	struct mtd_info *master = mtd_get_master(mtd);
1597 	int ret;
1598 
1599 	from = mtd_get_master_ofs(mtd, from);
1600 	if (master->_read_oob)
1601 		ret = master->_read_oob(master, from, ops);
1602 	else
1603 		ret = master->_read(master, from, ops->len, &ops->retlen,
1604 				    ops->datbuf);
1605 
1606 	return ret;
1607 }
1608 
1609 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1610 			     struct mtd_oob_ops *ops)
1611 {
1612 	struct mtd_info *master = mtd_get_master(mtd);
1613 	int ret;
1614 
1615 	to = mtd_get_master_ofs(mtd, to);
1616 	if (master->_write_oob)
1617 		ret = master->_write_oob(master, to, ops);
1618 	else
1619 		ret = master->_write(master, to, ops->len, &ops->retlen,
1620 				     ops->datbuf);
1621 
1622 	return ret;
1623 }
1624 
1625 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1626 			       struct mtd_oob_ops *ops)
1627 {
1628 	struct mtd_info *master = mtd_get_master(mtd);
1629 	int ngroups = mtd_pairing_groups(master);
1630 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1631 	struct mtd_oob_ops adjops = *ops;
1632 	unsigned int wunit, oobavail;
1633 	struct mtd_pairing_info info;
1634 	int max_bitflips = 0;
1635 	u32 ebofs, pageofs;
1636 	loff_t base, pos;
1637 
1638 	ebofs = mtd_mod_by_eb(start, mtd);
1639 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1640 	info.group = 0;
1641 	info.pair = mtd_div_by_ws(ebofs, mtd);
1642 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1643 	oobavail = mtd_oobavail(mtd, ops);
1644 
1645 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1646 		int ret;
1647 
1648 		if (info.pair >= npairs) {
1649 			info.pair = 0;
1650 			base += master->erasesize;
1651 		}
1652 
1653 		wunit = mtd_pairing_info_to_wunit(master, &info);
1654 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1655 
1656 		adjops.len = ops->len - ops->retlen;
1657 		if (adjops.len > mtd->writesize - pageofs)
1658 			adjops.len = mtd->writesize - pageofs;
1659 
1660 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1661 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1662 			adjops.ooblen = oobavail - adjops.ooboffs;
1663 
1664 		if (read) {
1665 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1666 			if (ret > 0)
1667 				max_bitflips = max(max_bitflips, ret);
1668 		} else {
1669 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1670 		}
1671 
1672 		if (ret < 0)
1673 			return ret;
1674 
1675 		max_bitflips = max(max_bitflips, ret);
1676 		ops->retlen += adjops.retlen;
1677 		ops->oobretlen += adjops.oobretlen;
1678 		adjops.datbuf += adjops.retlen;
1679 		adjops.oobbuf += adjops.oobretlen;
1680 		adjops.ooboffs = 0;
1681 		pageofs = 0;
1682 		info.pair++;
1683 	}
1684 
1685 	return max_bitflips;
1686 }
1687 
1688 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1689 {
1690 	struct mtd_info *master = mtd_get_master(mtd);
1691 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1692 	int ret_code;
1693 
1694 	ops->retlen = ops->oobretlen = 0;
1695 
1696 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1697 	if (ret_code)
1698 		return ret_code;
1699 
1700 	ledtrig_mtd_activity();
1701 
1702 	/* Check the validity of a potential fallback on mtd->_read */
1703 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1704 		return -EOPNOTSUPP;
1705 
1706 	if (ops->stats)
1707 		memset(ops->stats, 0, sizeof(*ops->stats));
1708 
1709 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1710 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1711 	else
1712 		ret_code = mtd_read_oob_std(mtd, from, ops);
1713 
1714 	mtd_update_ecc_stats(mtd, master, &old_stats);
1715 
1716 	/*
1717 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1718 	 * similar to mtd->_read(), returning a non-negative integer
1719 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1720 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1721 	 */
1722 	if (unlikely(ret_code < 0))
1723 		return ret_code;
1724 	if (mtd->ecc_strength == 0)
1725 		return 0;	/* device lacks ecc */
1726 	if (ops->stats)
1727 		ops->stats->max_bitflips = ret_code;
1728 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1729 }
1730 EXPORT_SYMBOL_GPL(mtd_read_oob);
1731 
1732 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1733 				struct mtd_oob_ops *ops)
1734 {
1735 	struct mtd_info *master = mtd_get_master(mtd);
1736 	int ret;
1737 
1738 	ops->retlen = ops->oobretlen = 0;
1739 
1740 	if (!(mtd->flags & MTD_WRITEABLE))
1741 		return -EROFS;
1742 
1743 	ret = mtd_check_oob_ops(mtd, to, ops);
1744 	if (ret)
1745 		return ret;
1746 
1747 	ledtrig_mtd_activity();
1748 
1749 	/* Check the validity of a potential fallback on mtd->_write */
1750 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1751 		return -EOPNOTSUPP;
1752 
1753 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1754 		return mtd_io_emulated_slc(mtd, to, false, ops);
1755 
1756 	return mtd_write_oob_std(mtd, to, ops);
1757 }
1758 EXPORT_SYMBOL_GPL(mtd_write_oob);
1759 
1760 /**
1761  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1762  * @mtd: MTD device structure
1763  * @section: ECC section. Depending on the layout you may have all the ECC
1764  *	     bytes stored in a single contiguous section, or one section
1765  *	     per ECC chunk (and sometime several sections for a single ECC
1766  *	     ECC chunk)
1767  * @oobecc: OOB region struct filled with the appropriate ECC position
1768  *	    information
1769  *
1770  * This function returns ECC section information in the OOB area. If you want
1771  * to get all the ECC bytes information, then you should call
1772  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1773  *
1774  * Returns zero on success, a negative error code otherwise.
1775  */
1776 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1777 		      struct mtd_oob_region *oobecc)
1778 {
1779 	struct mtd_info *master = mtd_get_master(mtd);
1780 
1781 	memset(oobecc, 0, sizeof(*oobecc));
1782 
1783 	if (!master || section < 0)
1784 		return -EINVAL;
1785 
1786 	if (!master->ooblayout || !master->ooblayout->ecc)
1787 		return -ENOTSUPP;
1788 
1789 	return master->ooblayout->ecc(master, section, oobecc);
1790 }
1791 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1792 
1793 /**
1794  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1795  *			section
1796  * @mtd: MTD device structure
1797  * @section: Free section you are interested in. Depending on the layout
1798  *	     you may have all the free bytes stored in a single contiguous
1799  *	     section, or one section per ECC chunk plus an extra section
1800  *	     for the remaining bytes (or other funky layout).
1801  * @oobfree: OOB region struct filled with the appropriate free position
1802  *	     information
1803  *
1804  * This function returns free bytes position in the OOB area. If you want
1805  * to get all the free bytes information, then you should call
1806  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1807  *
1808  * Returns zero on success, a negative error code otherwise.
1809  */
1810 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1811 		       struct mtd_oob_region *oobfree)
1812 {
1813 	struct mtd_info *master = mtd_get_master(mtd);
1814 
1815 	memset(oobfree, 0, sizeof(*oobfree));
1816 
1817 	if (!master || section < 0)
1818 		return -EINVAL;
1819 
1820 	if (!master->ooblayout || !master->ooblayout->free)
1821 		return -ENOTSUPP;
1822 
1823 	return master->ooblayout->free(master, section, oobfree);
1824 }
1825 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1826 
1827 /**
1828  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1829  * @mtd: mtd info structure
1830  * @byte: the byte we are searching for
1831  * @sectionp: pointer where the section id will be stored
1832  * @oobregion: used to retrieve the ECC position
1833  * @iter: iterator function. Should be either mtd_ooblayout_free or
1834  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1835  *
1836  * This function returns the section id and oobregion information of a
1837  * specific byte. For example, say you want to know where the 4th ECC byte is
1838  * stored, you'll use:
1839  *
1840  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1841  *
1842  * Returns zero on success, a negative error code otherwise.
1843  */
1844 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1845 				int *sectionp, struct mtd_oob_region *oobregion,
1846 				int (*iter)(struct mtd_info *,
1847 					    int section,
1848 					    struct mtd_oob_region *oobregion))
1849 {
1850 	int pos = 0, ret, section = 0;
1851 
1852 	memset(oobregion, 0, sizeof(*oobregion));
1853 
1854 	while (1) {
1855 		ret = iter(mtd, section, oobregion);
1856 		if (ret)
1857 			return ret;
1858 
1859 		if (pos + oobregion->length > byte)
1860 			break;
1861 
1862 		pos += oobregion->length;
1863 		section++;
1864 	}
1865 
1866 	/*
1867 	 * Adjust region info to make it start at the beginning at the
1868 	 * 'start' ECC byte.
1869 	 */
1870 	oobregion->offset += byte - pos;
1871 	oobregion->length -= byte - pos;
1872 	*sectionp = section;
1873 
1874 	return 0;
1875 }
1876 
1877 /**
1878  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1879  *				  ECC byte
1880  * @mtd: mtd info structure
1881  * @eccbyte: the byte we are searching for
1882  * @section: pointer where the section id will be stored
1883  * @oobregion: OOB region information
1884  *
1885  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1886  * byte.
1887  *
1888  * Returns zero on success, a negative error code otherwise.
1889  */
1890 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1891 				 int *section,
1892 				 struct mtd_oob_region *oobregion)
1893 {
1894 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1895 					 mtd_ooblayout_ecc);
1896 }
1897 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1898 
1899 /**
1900  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1901  * @mtd: mtd info structure
1902  * @buf: destination buffer to store OOB bytes
1903  * @oobbuf: OOB buffer
1904  * @start: first byte to retrieve
1905  * @nbytes: number of bytes to retrieve
1906  * @iter: section iterator
1907  *
1908  * Extract bytes attached to a specific category (ECC or free)
1909  * from the OOB buffer and copy them into buf.
1910  *
1911  * Returns zero on success, a negative error code otherwise.
1912  */
1913 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1914 				const u8 *oobbuf, int start, int nbytes,
1915 				int (*iter)(struct mtd_info *,
1916 					    int section,
1917 					    struct mtd_oob_region *oobregion))
1918 {
1919 	struct mtd_oob_region oobregion;
1920 	int section, ret;
1921 
1922 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1923 					&oobregion, iter);
1924 
1925 	while (!ret) {
1926 		int cnt;
1927 
1928 		cnt = min_t(int, nbytes, oobregion.length);
1929 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1930 		buf += cnt;
1931 		nbytes -= cnt;
1932 
1933 		if (!nbytes)
1934 			break;
1935 
1936 		ret = iter(mtd, ++section, &oobregion);
1937 	}
1938 
1939 	return ret;
1940 }
1941 
1942 /**
1943  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1944  * @mtd: mtd info structure
1945  * @buf: source buffer to get OOB bytes from
1946  * @oobbuf: OOB buffer
1947  * @start: first OOB byte to set
1948  * @nbytes: number of OOB bytes to set
1949  * @iter: section iterator
1950  *
1951  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1952  * is selected by passing the appropriate iterator.
1953  *
1954  * Returns zero on success, a negative error code otherwise.
1955  */
1956 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1957 				u8 *oobbuf, int start, int nbytes,
1958 				int (*iter)(struct mtd_info *,
1959 					    int section,
1960 					    struct mtd_oob_region *oobregion))
1961 {
1962 	struct mtd_oob_region oobregion;
1963 	int section, ret;
1964 
1965 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1966 					&oobregion, iter);
1967 
1968 	while (!ret) {
1969 		int cnt;
1970 
1971 		cnt = min_t(int, nbytes, oobregion.length);
1972 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1973 		buf += cnt;
1974 		nbytes -= cnt;
1975 
1976 		if (!nbytes)
1977 			break;
1978 
1979 		ret = iter(mtd, ++section, &oobregion);
1980 	}
1981 
1982 	return ret;
1983 }
1984 
1985 /**
1986  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1987  * @mtd: mtd info structure
1988  * @iter: category iterator
1989  *
1990  * Count the number of bytes in a given category.
1991  *
1992  * Returns a positive value on success, a negative error code otherwise.
1993  */
1994 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1995 				int (*iter)(struct mtd_info *,
1996 					    int section,
1997 					    struct mtd_oob_region *oobregion))
1998 {
1999 	struct mtd_oob_region oobregion;
2000 	int section = 0, ret, nbytes = 0;
2001 
2002 	while (1) {
2003 		ret = iter(mtd, section++, &oobregion);
2004 		if (ret) {
2005 			if (ret == -ERANGE)
2006 				ret = nbytes;
2007 			break;
2008 		}
2009 
2010 		nbytes += oobregion.length;
2011 	}
2012 
2013 	return ret;
2014 }
2015 
2016 /**
2017  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2018  * @mtd: mtd info structure
2019  * @eccbuf: destination buffer to store ECC bytes
2020  * @oobbuf: OOB buffer
2021  * @start: first ECC byte to retrieve
2022  * @nbytes: number of ECC bytes to retrieve
2023  *
2024  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2025  *
2026  * Returns zero on success, a negative error code otherwise.
2027  */
2028 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2029 			       const u8 *oobbuf, int start, int nbytes)
2030 {
2031 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2032 				       mtd_ooblayout_ecc);
2033 }
2034 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2035 
2036 /**
2037  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2038  * @mtd: mtd info structure
2039  * @eccbuf: source buffer to get ECC bytes from
2040  * @oobbuf: OOB buffer
2041  * @start: first ECC byte to set
2042  * @nbytes: number of ECC bytes to set
2043  *
2044  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2045  *
2046  * Returns zero on success, a negative error code otherwise.
2047  */
2048 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2049 			       u8 *oobbuf, int start, int nbytes)
2050 {
2051 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2052 				       mtd_ooblayout_ecc);
2053 }
2054 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2055 
2056 /**
2057  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2058  * @mtd: mtd info structure
2059  * @databuf: destination buffer to store ECC bytes
2060  * @oobbuf: OOB buffer
2061  * @start: first ECC byte to retrieve
2062  * @nbytes: number of ECC bytes to retrieve
2063  *
2064  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2065  *
2066  * Returns zero on success, a negative error code otherwise.
2067  */
2068 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2069 				const u8 *oobbuf, int start, int nbytes)
2070 {
2071 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2072 				       mtd_ooblayout_free);
2073 }
2074 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2075 
2076 /**
2077  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2078  * @mtd: mtd info structure
2079  * @databuf: source buffer to get data bytes from
2080  * @oobbuf: OOB buffer
2081  * @start: first ECC byte to set
2082  * @nbytes: number of ECC bytes to set
2083  *
2084  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2085  *
2086  * Returns zero on success, a negative error code otherwise.
2087  */
2088 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2089 				u8 *oobbuf, int start, int nbytes)
2090 {
2091 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2092 				       mtd_ooblayout_free);
2093 }
2094 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2095 
2096 /**
2097  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2098  * @mtd: mtd info structure
2099  *
2100  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2101  *
2102  * Returns zero on success, a negative error code otherwise.
2103  */
2104 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2105 {
2106 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2107 }
2108 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2109 
2110 /**
2111  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2112  * @mtd: mtd info structure
2113  *
2114  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2115  *
2116  * Returns zero on success, a negative error code otherwise.
2117  */
2118 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2119 {
2120 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2121 }
2122 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2123 
2124 /*
2125  * Method to access the protection register area, present in some flash
2126  * devices. The user data is one time programmable but the factory data is read
2127  * only.
2128  */
2129 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2130 			   struct otp_info *buf)
2131 {
2132 	struct mtd_info *master = mtd_get_master(mtd);
2133 
2134 	if (!master->_get_fact_prot_info)
2135 		return -EOPNOTSUPP;
2136 	if (!len)
2137 		return 0;
2138 	return master->_get_fact_prot_info(master, len, retlen, buf);
2139 }
2140 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2141 
2142 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2143 			   size_t *retlen, u_char *buf)
2144 {
2145 	struct mtd_info *master = mtd_get_master(mtd);
2146 
2147 	*retlen = 0;
2148 	if (!master->_read_fact_prot_reg)
2149 		return -EOPNOTSUPP;
2150 	if (!len)
2151 		return 0;
2152 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2153 }
2154 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2155 
2156 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2157 			   struct otp_info *buf)
2158 {
2159 	struct mtd_info *master = mtd_get_master(mtd);
2160 
2161 	if (!master->_get_user_prot_info)
2162 		return -EOPNOTSUPP;
2163 	if (!len)
2164 		return 0;
2165 	return master->_get_user_prot_info(master, len, retlen, buf);
2166 }
2167 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2168 
2169 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2170 			   size_t *retlen, u_char *buf)
2171 {
2172 	struct mtd_info *master = mtd_get_master(mtd);
2173 
2174 	*retlen = 0;
2175 	if (!master->_read_user_prot_reg)
2176 		return -EOPNOTSUPP;
2177 	if (!len)
2178 		return 0;
2179 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2180 }
2181 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2182 
2183 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2184 			    size_t *retlen, const u_char *buf)
2185 {
2186 	struct mtd_info *master = mtd_get_master(mtd);
2187 	int ret;
2188 
2189 	*retlen = 0;
2190 	if (!master->_write_user_prot_reg)
2191 		return -EOPNOTSUPP;
2192 	if (!len)
2193 		return 0;
2194 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2195 	if (ret)
2196 		return ret;
2197 
2198 	/*
2199 	 * If no data could be written at all, we are out of memory and
2200 	 * must return -ENOSPC.
2201 	 */
2202 	return (*retlen) ? 0 : -ENOSPC;
2203 }
2204 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2205 
2206 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2207 {
2208 	struct mtd_info *master = mtd_get_master(mtd);
2209 
2210 	if (!master->_lock_user_prot_reg)
2211 		return -EOPNOTSUPP;
2212 	if (!len)
2213 		return 0;
2214 	return master->_lock_user_prot_reg(master, from, len);
2215 }
2216 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2217 
2218 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2219 {
2220 	struct mtd_info *master = mtd_get_master(mtd);
2221 
2222 	if (!master->_erase_user_prot_reg)
2223 		return -EOPNOTSUPP;
2224 	if (!len)
2225 		return 0;
2226 	return master->_erase_user_prot_reg(master, from, len);
2227 }
2228 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2229 
2230 /* Chip-supported device locking */
2231 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2232 {
2233 	struct mtd_info *master = mtd_get_master(mtd);
2234 
2235 	if (!master->_lock)
2236 		return -EOPNOTSUPP;
2237 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2238 		return -EINVAL;
2239 	if (!len)
2240 		return 0;
2241 
2242 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2243 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2244 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2245 	}
2246 
2247 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2248 }
2249 EXPORT_SYMBOL_GPL(mtd_lock);
2250 
2251 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2252 {
2253 	struct mtd_info *master = mtd_get_master(mtd);
2254 
2255 	if (!master->_unlock)
2256 		return -EOPNOTSUPP;
2257 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2258 		return -EINVAL;
2259 	if (!len)
2260 		return 0;
2261 
2262 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2263 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2264 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2265 	}
2266 
2267 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2268 }
2269 EXPORT_SYMBOL_GPL(mtd_unlock);
2270 
2271 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2272 {
2273 	struct mtd_info *master = mtd_get_master(mtd);
2274 
2275 	if (!master->_is_locked)
2276 		return -EOPNOTSUPP;
2277 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2278 		return -EINVAL;
2279 	if (!len)
2280 		return 0;
2281 
2282 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2283 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2284 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2285 	}
2286 
2287 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2288 }
2289 EXPORT_SYMBOL_GPL(mtd_is_locked);
2290 
2291 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2292 {
2293 	struct mtd_info *master = mtd_get_master(mtd);
2294 
2295 	if (ofs < 0 || ofs >= mtd->size)
2296 		return -EINVAL;
2297 	if (!master->_block_isreserved)
2298 		return 0;
2299 
2300 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2301 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2302 
2303 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2304 }
2305 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2306 
2307 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2308 {
2309 	struct mtd_info *master = mtd_get_master(mtd);
2310 
2311 	if (ofs < 0 || ofs >= mtd->size)
2312 		return -EINVAL;
2313 	if (!master->_block_isbad)
2314 		return 0;
2315 
2316 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2317 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2318 
2319 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2320 }
2321 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2322 
2323 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2324 {
2325 	struct mtd_info *master = mtd_get_master(mtd);
2326 	int ret;
2327 
2328 	if (!master->_block_markbad)
2329 		return -EOPNOTSUPP;
2330 	if (ofs < 0 || ofs >= mtd->size)
2331 		return -EINVAL;
2332 	if (!(mtd->flags & MTD_WRITEABLE))
2333 		return -EROFS;
2334 
2335 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2336 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2337 
2338 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2339 	if (ret)
2340 		return ret;
2341 
2342 	while (mtd->parent) {
2343 		mtd->ecc_stats.badblocks++;
2344 		mtd = mtd->parent;
2345 	}
2346 
2347 	return 0;
2348 }
2349 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2350 
2351 /*
2352  * default_mtd_writev - the default writev method
2353  * @mtd: mtd device description object pointer
2354  * @vecs: the vectors to write
2355  * @count: count of vectors in @vecs
2356  * @to: the MTD device offset to write to
2357  * @retlen: on exit contains the count of bytes written to the MTD device.
2358  *
2359  * This function returns zero in case of success and a negative error code in
2360  * case of failure.
2361  */
2362 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2363 			      unsigned long count, loff_t to, size_t *retlen)
2364 {
2365 	unsigned long i;
2366 	size_t totlen = 0, thislen;
2367 	int ret = 0;
2368 
2369 	for (i = 0; i < count; i++) {
2370 		if (!vecs[i].iov_len)
2371 			continue;
2372 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2373 				vecs[i].iov_base);
2374 		totlen += thislen;
2375 		if (ret || thislen != vecs[i].iov_len)
2376 			break;
2377 		to += vecs[i].iov_len;
2378 	}
2379 	*retlen = totlen;
2380 	return ret;
2381 }
2382 
2383 /*
2384  * mtd_writev - the vector-based MTD write method
2385  * @mtd: mtd device description object pointer
2386  * @vecs: the vectors to write
2387  * @count: count of vectors in @vecs
2388  * @to: the MTD device offset to write to
2389  * @retlen: on exit contains the count of bytes written to the MTD device.
2390  *
2391  * This function returns zero in case of success and a negative error code in
2392  * case of failure.
2393  */
2394 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2395 	       unsigned long count, loff_t to, size_t *retlen)
2396 {
2397 	struct mtd_info *master = mtd_get_master(mtd);
2398 
2399 	*retlen = 0;
2400 	if (!(mtd->flags & MTD_WRITEABLE))
2401 		return -EROFS;
2402 
2403 	if (!master->_writev)
2404 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2405 
2406 	return master->_writev(master, vecs, count,
2407 			       mtd_get_master_ofs(mtd, to), retlen);
2408 }
2409 EXPORT_SYMBOL_GPL(mtd_writev);
2410 
2411 /**
2412  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2413  * @mtd: mtd device description object pointer
2414  * @size: a pointer to the ideal or maximum size of the allocation, points
2415  *        to the actual allocation size on success.
2416  *
2417  * This routine attempts to allocate a contiguous kernel buffer up to
2418  * the specified size, backing off the size of the request exponentially
2419  * until the request succeeds or until the allocation size falls below
2420  * the system page size. This attempts to make sure it does not adversely
2421  * impact system performance, so when allocating more than one page, we
2422  * ask the memory allocator to avoid re-trying, swapping, writing back
2423  * or performing I/O.
2424  *
2425  * Note, this function also makes sure that the allocated buffer is aligned to
2426  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2427  *
2428  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2429  * to handle smaller (i.e. degraded) buffer allocations under low- or
2430  * fragmented-memory situations where such reduced allocations, from a
2431  * requested ideal, are allowed.
2432  *
2433  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2434  */
2435 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2436 {
2437 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2438 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2439 	void *kbuf;
2440 
2441 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2442 
2443 	while (*size > min_alloc) {
2444 		kbuf = kmalloc(*size, flags);
2445 		if (kbuf)
2446 			return kbuf;
2447 
2448 		*size >>= 1;
2449 		*size = ALIGN(*size, mtd->writesize);
2450 	}
2451 
2452 	/*
2453 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2454 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2455 	 */
2456 	return kmalloc(*size, GFP_KERNEL);
2457 }
2458 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2459 
2460 #ifdef CONFIG_PROC_FS
2461 
2462 /*====================================================================*/
2463 /* Support for /proc/mtd */
2464 
2465 static int mtd_proc_show(struct seq_file *m, void *v)
2466 {
2467 	struct mtd_info *mtd;
2468 
2469 	seq_puts(m, "dev:    size   erasesize  name\n");
2470 	mutex_lock(&mtd_table_mutex);
2471 	mtd_for_each_device(mtd) {
2472 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2473 			   mtd->index, (unsigned long long)mtd->size,
2474 			   mtd->erasesize, mtd->name);
2475 	}
2476 	mutex_unlock(&mtd_table_mutex);
2477 	return 0;
2478 }
2479 #endif /* CONFIG_PROC_FS */
2480 
2481 /*====================================================================*/
2482 /* Init code */
2483 
2484 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2485 {
2486 	struct backing_dev_info *bdi;
2487 	int ret;
2488 
2489 	bdi = bdi_alloc(NUMA_NO_NODE);
2490 	if (!bdi)
2491 		return ERR_PTR(-ENOMEM);
2492 	bdi->ra_pages = 0;
2493 	bdi->io_pages = 0;
2494 
2495 	/*
2496 	 * We put '-0' suffix to the name to get the same name format as we
2497 	 * used to get. Since this is called only once, we get a unique name.
2498 	 */
2499 	ret = bdi_register(bdi, "%.28s-0", name);
2500 	if (ret)
2501 		bdi_put(bdi);
2502 
2503 	return ret ? ERR_PTR(ret) : bdi;
2504 }
2505 
2506 static struct proc_dir_entry *proc_mtd;
2507 
2508 static int __init init_mtd(void)
2509 {
2510 	int ret;
2511 
2512 	ret = class_register(&mtd_class);
2513 	if (ret)
2514 		goto err_reg;
2515 
2516 	mtd_bdi = mtd_bdi_init("mtd");
2517 	if (IS_ERR(mtd_bdi)) {
2518 		ret = PTR_ERR(mtd_bdi);
2519 		goto err_bdi;
2520 	}
2521 
2522 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2523 
2524 	ret = init_mtdchar();
2525 	if (ret)
2526 		goto out_procfs;
2527 
2528 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2529 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2530 			    &mtd_expert_analysis_mode);
2531 
2532 	return 0;
2533 
2534 out_procfs:
2535 	if (proc_mtd)
2536 		remove_proc_entry("mtd", NULL);
2537 	bdi_unregister(mtd_bdi);
2538 	bdi_put(mtd_bdi);
2539 err_bdi:
2540 	class_unregister(&mtd_class);
2541 err_reg:
2542 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2543 	return ret;
2544 }
2545 
2546 static void __exit cleanup_mtd(void)
2547 {
2548 	debugfs_remove_recursive(dfs_dir_mtd);
2549 	cleanup_mtdchar();
2550 	if (proc_mtd)
2551 		remove_proc_entry("mtd", NULL);
2552 	class_unregister(&mtd_class);
2553 	bdi_unregister(mtd_bdi);
2554 	bdi_put(mtd_bdi);
2555 	idr_destroy(&mtd_idr);
2556 }
2557 
2558 module_init(init_mtd);
2559 module_exit(cleanup_mtd);
2560 
2561 MODULE_LICENSE("GPL");
2562 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2563 MODULE_DESCRIPTION("Core MTD registration and access routines");
2564