1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/slab.h> 27 #include <linux/reboot.h> 28 #include <linux/leds.h> 29 #include <linux/debugfs.h> 30 #include <linux/nvmem-provider.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/partitions.h> 34 35 #include "mtdcore.h" 36 37 struct backing_dev_info *mtd_bdi; 38 39 #ifdef CONFIG_PM_SLEEP 40 41 static int mtd_cls_suspend(struct device *dev) 42 { 43 struct mtd_info *mtd = dev_get_drvdata(dev); 44 45 return mtd ? mtd_suspend(mtd) : 0; 46 } 47 48 static int mtd_cls_resume(struct device *dev) 49 { 50 struct mtd_info *mtd = dev_get_drvdata(dev); 51 52 if (mtd) 53 mtd_resume(mtd); 54 return 0; 55 } 56 57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 59 #else 60 #define MTD_CLS_PM_OPS NULL 61 #endif 62 63 static struct class mtd_class = { 64 .name = "mtd", 65 .owner = THIS_MODULE, 66 .pm = MTD_CLS_PM_OPS, 67 }; 68 69 static DEFINE_IDR(mtd_idr); 70 71 /* These are exported solely for the purpose of mtd_blkdevs.c. You 72 should not use them for _anything_ else */ 73 DEFINE_MUTEX(mtd_table_mutex); 74 EXPORT_SYMBOL_GPL(mtd_table_mutex); 75 76 struct mtd_info *__mtd_next_device(int i) 77 { 78 return idr_get_next(&mtd_idr, &i); 79 } 80 EXPORT_SYMBOL_GPL(__mtd_next_device); 81 82 static LIST_HEAD(mtd_notifiers); 83 84 85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 86 87 /* REVISIT once MTD uses the driver model better, whoever allocates 88 * the mtd_info will probably want to use the release() hook... 89 */ 90 static void mtd_release(struct device *dev) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 dev_t index = MTD_DEVT(mtd->index); 94 95 /* remove /dev/mtdXro node */ 96 device_destroy(&mtd_class, index + 1); 97 } 98 99 #define MTD_DEVICE_ATTR_RO(name) \ 100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 101 102 #define MTD_DEVICE_ATTR_RW(name) \ 103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 104 105 static ssize_t mtd_type_show(struct device *dev, 106 struct device_attribute *attr, char *buf) 107 { 108 struct mtd_info *mtd = dev_get_drvdata(dev); 109 char *type; 110 111 switch (mtd->type) { 112 case MTD_ABSENT: 113 type = "absent"; 114 break; 115 case MTD_RAM: 116 type = "ram"; 117 break; 118 case MTD_ROM: 119 type = "rom"; 120 break; 121 case MTD_NORFLASH: 122 type = "nor"; 123 break; 124 case MTD_NANDFLASH: 125 type = "nand"; 126 break; 127 case MTD_DATAFLASH: 128 type = "dataflash"; 129 break; 130 case MTD_UBIVOLUME: 131 type = "ubi"; 132 break; 133 case MTD_MLCNANDFLASH: 134 type = "mlc-nand"; 135 break; 136 default: 137 type = "unknown"; 138 } 139 140 return sysfs_emit(buf, "%s\n", type); 141 } 142 MTD_DEVICE_ATTR_RO(type); 143 144 static ssize_t mtd_flags_show(struct device *dev, 145 struct device_attribute *attr, char *buf) 146 { 147 struct mtd_info *mtd = dev_get_drvdata(dev); 148 149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 150 } 151 MTD_DEVICE_ATTR_RO(flags); 152 153 static ssize_t mtd_size_show(struct device *dev, 154 struct device_attribute *attr, char *buf) 155 { 156 struct mtd_info *mtd = dev_get_drvdata(dev); 157 158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 159 } 160 MTD_DEVICE_ATTR_RO(size); 161 162 static ssize_t mtd_erasesize_show(struct device *dev, 163 struct device_attribute *attr, char *buf) 164 { 165 struct mtd_info *mtd = dev_get_drvdata(dev); 166 167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 168 } 169 MTD_DEVICE_ATTR_RO(erasesize); 170 171 static ssize_t mtd_writesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 177 } 178 MTD_DEVICE_ATTR_RO(writesize); 179 180 static ssize_t mtd_subpagesize_show(struct device *dev, 181 struct device_attribute *attr, char *buf) 182 { 183 struct mtd_info *mtd = dev_get_drvdata(dev); 184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 185 186 return sysfs_emit(buf, "%u\n", subpagesize); 187 } 188 MTD_DEVICE_ATTR_RO(subpagesize); 189 190 static ssize_t mtd_oobsize_show(struct device *dev, 191 struct device_attribute *attr, char *buf) 192 { 193 struct mtd_info *mtd = dev_get_drvdata(dev); 194 195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 196 } 197 MTD_DEVICE_ATTR_RO(oobsize); 198 199 static ssize_t mtd_oobavail_show(struct device *dev, 200 struct device_attribute *attr, char *buf) 201 { 202 struct mtd_info *mtd = dev_get_drvdata(dev); 203 204 return sysfs_emit(buf, "%u\n", mtd->oobavail); 205 } 206 MTD_DEVICE_ATTR_RO(oobavail); 207 208 static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 214 } 215 MTD_DEVICE_ATTR_RO(numeraseregions); 216 217 static ssize_t mtd_name_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 struct mtd_info *mtd = dev_get_drvdata(dev); 221 222 return sysfs_emit(buf, "%s\n", mtd->name); 223 } 224 MTD_DEVICE_ATTR_RO(name); 225 226 static ssize_t mtd_ecc_strength_show(struct device *dev, 227 struct device_attribute *attr, char *buf) 228 { 229 struct mtd_info *mtd = dev_get_drvdata(dev); 230 231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 232 } 233 MTD_DEVICE_ATTR_RO(ecc_strength); 234 235 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 236 struct device_attribute *attr, 237 char *buf) 238 { 239 struct mtd_info *mtd = dev_get_drvdata(dev); 240 241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 242 } 243 244 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 245 struct device_attribute *attr, 246 const char *buf, size_t count) 247 { 248 struct mtd_info *mtd = dev_get_drvdata(dev); 249 unsigned int bitflip_threshold; 250 int retval; 251 252 retval = kstrtouint(buf, 0, &bitflip_threshold); 253 if (retval) 254 return retval; 255 256 mtd->bitflip_threshold = bitflip_threshold; 257 return count; 258 } 259 MTD_DEVICE_ATTR_RW(bitflip_threshold); 260 261 static ssize_t mtd_ecc_step_size_show(struct device *dev, 262 struct device_attribute *attr, char *buf) 263 { 264 struct mtd_info *mtd = dev_get_drvdata(dev); 265 266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 267 268 } 269 MTD_DEVICE_ATTR_RO(ecc_step_size); 270 271 static ssize_t mtd_corrected_bits_show(struct device *dev, 272 struct device_attribute *attr, char *buf) 273 { 274 struct mtd_info *mtd = dev_get_drvdata(dev); 275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 276 277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 278 } 279 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 280 281 static ssize_t mtd_ecc_failures_show(struct device *dev, 282 struct device_attribute *attr, char *buf) 283 { 284 struct mtd_info *mtd = dev_get_drvdata(dev); 285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 286 287 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 288 } 289 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 290 291 static ssize_t mtd_bad_blocks_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 298 } 299 MTD_DEVICE_ATTR_RO(bad_blocks); 300 301 static ssize_t mtd_bbt_blocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 308 } 309 MTD_DEVICE_ATTR_RO(bbt_blocks); 310 311 static struct attribute *mtd_attrs[] = { 312 &dev_attr_type.attr, 313 &dev_attr_flags.attr, 314 &dev_attr_size.attr, 315 &dev_attr_erasesize.attr, 316 &dev_attr_writesize.attr, 317 &dev_attr_subpagesize.attr, 318 &dev_attr_oobsize.attr, 319 &dev_attr_oobavail.attr, 320 &dev_attr_numeraseregions.attr, 321 &dev_attr_name.attr, 322 &dev_attr_ecc_strength.attr, 323 &dev_attr_ecc_step_size.attr, 324 &dev_attr_corrected_bits.attr, 325 &dev_attr_ecc_failures.attr, 326 &dev_attr_bad_blocks.attr, 327 &dev_attr_bbt_blocks.attr, 328 &dev_attr_bitflip_threshold.attr, 329 NULL, 330 }; 331 ATTRIBUTE_GROUPS(mtd); 332 333 static const struct device_type mtd_devtype = { 334 .name = "mtd", 335 .groups = mtd_groups, 336 .release = mtd_release, 337 }; 338 339 static int mtd_partid_debug_show(struct seq_file *s, void *p) 340 { 341 struct mtd_info *mtd = s->private; 342 343 seq_printf(s, "%s\n", mtd->dbg.partid); 344 345 return 0; 346 } 347 348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug); 349 350 static int mtd_partname_debug_show(struct seq_file *s, void *p) 351 { 352 struct mtd_info *mtd = s->private; 353 354 seq_printf(s, "%s\n", mtd->dbg.partname); 355 356 return 0; 357 } 358 359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug); 360 361 static struct dentry *dfs_dir_mtd; 362 363 static void mtd_debugfs_populate(struct mtd_info *mtd) 364 { 365 struct mtd_info *master = mtd_get_master(mtd); 366 struct device *dev = &mtd->dev; 367 struct dentry *root; 368 369 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 370 return; 371 372 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 373 mtd->dbg.dfs_dir = root; 374 375 if (master->dbg.partid) 376 debugfs_create_file("partid", 0400, root, master, 377 &mtd_partid_debug_fops); 378 379 if (master->dbg.partname) 380 debugfs_create_file("partname", 0400, root, master, 381 &mtd_partname_debug_fops); 382 } 383 384 #ifndef CONFIG_MMU 385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 386 { 387 switch (mtd->type) { 388 case MTD_RAM: 389 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 390 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 391 case MTD_ROM: 392 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 393 NOMMU_MAP_READ; 394 default: 395 return NOMMU_MAP_COPY; 396 } 397 } 398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 399 #endif 400 401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 402 void *cmd) 403 { 404 struct mtd_info *mtd; 405 406 mtd = container_of(n, struct mtd_info, reboot_notifier); 407 mtd->_reboot(mtd); 408 409 return NOTIFY_DONE; 410 } 411 412 /** 413 * mtd_wunit_to_pairing_info - get pairing information of a wunit 414 * @mtd: pointer to new MTD device info structure 415 * @wunit: write unit we are interested in 416 * @info: returned pairing information 417 * 418 * Retrieve pairing information associated to the wunit. 419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 420 * paired together, and where programming a page may influence the page it is 421 * paired with. 422 * The notion of page is replaced by the term wunit (write-unit) to stay 423 * consistent with the ->writesize field. 424 * 425 * The @wunit argument can be extracted from an absolute offset using 426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 427 * to @wunit. 428 * 429 * From the pairing info the MTD user can find all the wunits paired with 430 * @wunit using the following loop: 431 * 432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 433 * info.pair = i; 434 * mtd_pairing_info_to_wunit(mtd, &info); 435 * ... 436 * } 437 */ 438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 439 struct mtd_pairing_info *info) 440 { 441 struct mtd_info *master = mtd_get_master(mtd); 442 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 443 444 if (wunit < 0 || wunit >= npairs) 445 return -EINVAL; 446 447 if (master->pairing && master->pairing->get_info) 448 return master->pairing->get_info(master, wunit, info); 449 450 info->group = 0; 451 info->pair = wunit; 452 453 return 0; 454 } 455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 456 457 /** 458 * mtd_pairing_info_to_wunit - get wunit from pairing information 459 * @mtd: pointer to new MTD device info structure 460 * @info: pairing information struct 461 * 462 * Returns a positive number representing the wunit associated to the info 463 * struct, or a negative error code. 464 * 465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 467 * doc). 468 * 469 * It can also be used to only program the first page of each pair (i.e. 470 * page attached to group 0), which allows one to use an MLC NAND in 471 * software-emulated SLC mode: 472 * 473 * info.group = 0; 474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 475 * for (info.pair = 0; info.pair < npairs; info.pair++) { 476 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 477 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 478 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 479 * } 480 */ 481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 482 const struct mtd_pairing_info *info) 483 { 484 struct mtd_info *master = mtd_get_master(mtd); 485 int ngroups = mtd_pairing_groups(master); 486 int npairs = mtd_wunit_per_eb(master) / ngroups; 487 488 if (!info || info->pair < 0 || info->pair >= npairs || 489 info->group < 0 || info->group >= ngroups) 490 return -EINVAL; 491 492 if (master->pairing && master->pairing->get_wunit) 493 return mtd->pairing->get_wunit(master, info); 494 495 return info->pair; 496 } 497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 498 499 /** 500 * mtd_pairing_groups - get the number of pairing groups 501 * @mtd: pointer to new MTD device info structure 502 * 503 * Returns the number of pairing groups. 504 * 505 * This number is usually equal to the number of bits exposed by a single 506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 507 * to iterate over all pages of a given pair. 508 */ 509 int mtd_pairing_groups(struct mtd_info *mtd) 510 { 511 struct mtd_info *master = mtd_get_master(mtd); 512 513 if (!master->pairing || !master->pairing->ngroups) 514 return 1; 515 516 return master->pairing->ngroups; 517 } 518 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 519 520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 521 void *val, size_t bytes) 522 { 523 struct mtd_info *mtd = priv; 524 size_t retlen; 525 int err; 526 527 err = mtd_read(mtd, offset, bytes, &retlen, val); 528 if (err && err != -EUCLEAN) 529 return err; 530 531 return retlen == bytes ? 0 : -EIO; 532 } 533 534 static int mtd_nvmem_add(struct mtd_info *mtd) 535 { 536 struct device_node *node = mtd_get_of_node(mtd); 537 struct nvmem_config config = {}; 538 539 config.id = -1; 540 config.dev = &mtd->dev; 541 config.name = dev_name(&mtd->dev); 542 config.owner = THIS_MODULE; 543 config.reg_read = mtd_nvmem_reg_read; 544 config.size = mtd->size; 545 config.word_size = 1; 546 config.stride = 1; 547 config.read_only = true; 548 config.root_only = true; 549 config.ignore_wp = true; 550 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 551 config.priv = mtd; 552 553 mtd->nvmem = nvmem_register(&config); 554 if (IS_ERR(mtd->nvmem)) { 555 /* Just ignore if there is no NVMEM support in the kernel */ 556 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) { 557 mtd->nvmem = NULL; 558 } else { 559 dev_err(&mtd->dev, "Failed to register NVMEM device\n"); 560 return PTR_ERR(mtd->nvmem); 561 } 562 } 563 564 return 0; 565 } 566 567 /** 568 * add_mtd_device - register an MTD device 569 * @mtd: pointer to new MTD device info structure 570 * 571 * Add a device to the list of MTD devices present in the system, and 572 * notify each currently active MTD 'user' of its arrival. Returns 573 * zero on success or non-zero on failure. 574 */ 575 576 int add_mtd_device(struct mtd_info *mtd) 577 { 578 struct mtd_info *master = mtd_get_master(mtd); 579 struct mtd_notifier *not; 580 int i, error; 581 582 /* 583 * May occur, for instance, on buggy drivers which call 584 * mtd_device_parse_register() multiple times on the same master MTD, 585 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 586 */ 587 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 588 return -EEXIST; 589 590 BUG_ON(mtd->writesize == 0); 591 592 /* 593 * MTD drivers should implement ->_{write,read}() or 594 * ->_{write,read}_oob(), but not both. 595 */ 596 if (WARN_ON((mtd->_write && mtd->_write_oob) || 597 (mtd->_read && mtd->_read_oob))) 598 return -EINVAL; 599 600 if (WARN_ON((!mtd->erasesize || !master->_erase) && 601 !(mtd->flags & MTD_NO_ERASE))) 602 return -EINVAL; 603 604 /* 605 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 606 * master is an MLC NAND and has a proper pairing scheme defined. 607 * We also reject masters that implement ->_writev() for now, because 608 * NAND controller drivers don't implement this hook, and adding the 609 * SLC -> MLC address/length conversion to this path is useless if we 610 * don't have a user. 611 */ 612 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 613 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 614 !master->pairing || master->_writev)) 615 return -EINVAL; 616 617 mutex_lock(&mtd_table_mutex); 618 619 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 620 if (i < 0) { 621 error = i; 622 goto fail_locked; 623 } 624 625 mtd->index = i; 626 mtd->usecount = 0; 627 628 /* default value if not set by driver */ 629 if (mtd->bitflip_threshold == 0) 630 mtd->bitflip_threshold = mtd->ecc_strength; 631 632 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 633 int ngroups = mtd_pairing_groups(master); 634 635 mtd->erasesize /= ngroups; 636 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 637 mtd->erasesize; 638 } 639 640 if (is_power_of_2(mtd->erasesize)) 641 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 642 else 643 mtd->erasesize_shift = 0; 644 645 if (is_power_of_2(mtd->writesize)) 646 mtd->writesize_shift = ffs(mtd->writesize) - 1; 647 else 648 mtd->writesize_shift = 0; 649 650 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 651 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 652 653 /* Some chips always power up locked. Unlock them now */ 654 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 655 error = mtd_unlock(mtd, 0, mtd->size); 656 if (error && error != -EOPNOTSUPP) 657 printk(KERN_WARNING 658 "%s: unlock failed, writes may not work\n", 659 mtd->name); 660 /* Ignore unlock failures? */ 661 error = 0; 662 } 663 664 /* Caller should have set dev.parent to match the 665 * physical device, if appropriate. 666 */ 667 mtd->dev.type = &mtd_devtype; 668 mtd->dev.class = &mtd_class; 669 mtd->dev.devt = MTD_DEVT(i); 670 dev_set_name(&mtd->dev, "mtd%d", i); 671 dev_set_drvdata(&mtd->dev, mtd); 672 of_node_get(mtd_get_of_node(mtd)); 673 error = device_register(&mtd->dev); 674 if (error) 675 goto fail_added; 676 677 /* Add the nvmem provider */ 678 error = mtd_nvmem_add(mtd); 679 if (error) 680 goto fail_nvmem_add; 681 682 mtd_debugfs_populate(mtd); 683 684 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 685 "mtd%dro", i); 686 687 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 688 /* No need to get a refcount on the module containing 689 the notifier, since we hold the mtd_table_mutex */ 690 list_for_each_entry(not, &mtd_notifiers, list) 691 not->add(mtd); 692 693 mutex_unlock(&mtd_table_mutex); 694 /* We _know_ we aren't being removed, because 695 our caller is still holding us here. So none 696 of this try_ nonsense, and no bitching about it 697 either. :) */ 698 __module_get(THIS_MODULE); 699 return 0; 700 701 fail_nvmem_add: 702 device_unregister(&mtd->dev); 703 fail_added: 704 of_node_put(mtd_get_of_node(mtd)); 705 idr_remove(&mtd_idr, i); 706 fail_locked: 707 mutex_unlock(&mtd_table_mutex); 708 return error; 709 } 710 711 /** 712 * del_mtd_device - unregister an MTD device 713 * @mtd: pointer to MTD device info structure 714 * 715 * Remove a device from the list of MTD devices present in the system, 716 * and notify each currently active MTD 'user' of its departure. 717 * Returns zero on success or 1 on failure, which currently will happen 718 * if the requested device does not appear to be present in the list. 719 */ 720 721 int del_mtd_device(struct mtd_info *mtd) 722 { 723 int ret; 724 struct mtd_notifier *not; 725 726 mutex_lock(&mtd_table_mutex); 727 728 if (idr_find(&mtd_idr, mtd->index) != mtd) { 729 ret = -ENODEV; 730 goto out_error; 731 } 732 733 /* No need to get a refcount on the module containing 734 the notifier, since we hold the mtd_table_mutex */ 735 list_for_each_entry(not, &mtd_notifiers, list) 736 not->remove(mtd); 737 738 if (mtd->usecount) { 739 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 740 mtd->index, mtd->name, mtd->usecount); 741 ret = -EBUSY; 742 } else { 743 debugfs_remove_recursive(mtd->dbg.dfs_dir); 744 745 /* Try to remove the NVMEM provider */ 746 nvmem_unregister(mtd->nvmem); 747 748 device_unregister(&mtd->dev); 749 750 /* Clear dev so mtd can be safely re-registered later if desired */ 751 memset(&mtd->dev, 0, sizeof(mtd->dev)); 752 753 idr_remove(&mtd_idr, mtd->index); 754 of_node_put(mtd_get_of_node(mtd)); 755 756 module_put(THIS_MODULE); 757 ret = 0; 758 } 759 760 out_error: 761 mutex_unlock(&mtd_table_mutex); 762 return ret; 763 } 764 765 /* 766 * Set a few defaults based on the parent devices, if not provided by the 767 * driver 768 */ 769 static void mtd_set_dev_defaults(struct mtd_info *mtd) 770 { 771 if (mtd->dev.parent) { 772 if (!mtd->owner && mtd->dev.parent->driver) 773 mtd->owner = mtd->dev.parent->driver->owner; 774 if (!mtd->name) 775 mtd->name = dev_name(mtd->dev.parent); 776 } else { 777 pr_debug("mtd device won't show a device symlink in sysfs\n"); 778 } 779 780 INIT_LIST_HEAD(&mtd->partitions); 781 mutex_init(&mtd->master.partitions_lock); 782 mutex_init(&mtd->master.chrdev_lock); 783 } 784 785 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 786 { 787 struct otp_info *info; 788 ssize_t size = 0; 789 unsigned int i; 790 size_t retlen; 791 int ret; 792 793 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 794 if (!info) 795 return -ENOMEM; 796 797 if (is_user) 798 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 799 else 800 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 801 if (ret) 802 goto err; 803 804 for (i = 0; i < retlen / sizeof(*info); i++) 805 size += info[i].length; 806 807 kfree(info); 808 return size; 809 810 err: 811 kfree(info); 812 813 /* ENODATA means there is no OTP region. */ 814 return ret == -ENODATA ? 0 : ret; 815 } 816 817 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 818 const char *compatible, 819 int size, 820 nvmem_reg_read_t reg_read) 821 { 822 struct nvmem_device *nvmem = NULL; 823 struct nvmem_config config = {}; 824 struct device_node *np; 825 826 /* DT binding is optional */ 827 np = of_get_compatible_child(mtd->dev.of_node, compatible); 828 829 /* OTP nvmem will be registered on the physical device */ 830 config.dev = mtd->dev.parent; 831 config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible); 832 config.id = NVMEM_DEVID_NONE; 833 config.owner = THIS_MODULE; 834 config.type = NVMEM_TYPE_OTP; 835 config.root_only = true; 836 config.ignore_wp = true; 837 config.reg_read = reg_read; 838 config.size = size; 839 config.of_node = np; 840 config.priv = mtd; 841 842 nvmem = nvmem_register(&config); 843 /* Just ignore if there is no NVMEM support in the kernel */ 844 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 845 nvmem = NULL; 846 847 of_node_put(np); 848 kfree(config.name); 849 850 return nvmem; 851 } 852 853 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 854 void *val, size_t bytes) 855 { 856 struct mtd_info *mtd = priv; 857 size_t retlen; 858 int ret; 859 860 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 861 if (ret) 862 return ret; 863 864 return retlen == bytes ? 0 : -EIO; 865 } 866 867 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 868 void *val, size_t bytes) 869 { 870 struct mtd_info *mtd = priv; 871 size_t retlen; 872 int ret; 873 874 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 875 if (ret) 876 return ret; 877 878 return retlen == bytes ? 0 : -EIO; 879 } 880 881 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 882 { 883 struct nvmem_device *nvmem; 884 ssize_t size; 885 int err; 886 887 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 888 size = mtd_otp_size(mtd, true); 889 if (size < 0) 890 return size; 891 892 if (size > 0) { 893 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 894 mtd_nvmem_user_otp_reg_read); 895 if (IS_ERR(nvmem)) { 896 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 897 return PTR_ERR(nvmem); 898 } 899 mtd->otp_user_nvmem = nvmem; 900 } 901 } 902 903 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 904 size = mtd_otp_size(mtd, false); 905 if (size < 0) { 906 err = size; 907 goto err; 908 } 909 910 if (size > 0) { 911 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 912 mtd_nvmem_fact_otp_reg_read); 913 if (IS_ERR(nvmem)) { 914 dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n"); 915 err = PTR_ERR(nvmem); 916 goto err; 917 } 918 mtd->otp_factory_nvmem = nvmem; 919 } 920 } 921 922 return 0; 923 924 err: 925 nvmem_unregister(mtd->otp_user_nvmem); 926 return err; 927 } 928 929 /** 930 * mtd_device_parse_register - parse partitions and register an MTD device. 931 * 932 * @mtd: the MTD device to register 933 * @types: the list of MTD partition probes to try, see 934 * 'parse_mtd_partitions()' for more information 935 * @parser_data: MTD partition parser-specific data 936 * @parts: fallback partition information to register, if parsing fails; 937 * only valid if %nr_parts > %0 938 * @nr_parts: the number of partitions in parts, if zero then the full 939 * MTD device is registered if no partition info is found 940 * 941 * This function aggregates MTD partitions parsing (done by 942 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 943 * basically follows the most common pattern found in many MTD drivers: 944 * 945 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 946 * registered first. 947 * * Then It tries to probe partitions on MTD device @mtd using parsers 948 * specified in @types (if @types is %NULL, then the default list of parsers 949 * is used, see 'parse_mtd_partitions()' for more information). If none are 950 * found this functions tries to fallback to information specified in 951 * @parts/@nr_parts. 952 * * If no partitions were found this function just registers the MTD device 953 * @mtd and exits. 954 * 955 * Returns zero in case of success and a negative error code in case of failure. 956 */ 957 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 958 struct mtd_part_parser_data *parser_data, 959 const struct mtd_partition *parts, 960 int nr_parts) 961 { 962 int ret; 963 964 mtd_set_dev_defaults(mtd); 965 966 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 967 ret = add_mtd_device(mtd); 968 if (ret) 969 return ret; 970 } 971 972 /* Prefer parsed partitions over driver-provided fallback */ 973 ret = parse_mtd_partitions(mtd, types, parser_data); 974 if (ret == -EPROBE_DEFER) 975 goto out; 976 977 if (ret > 0) 978 ret = 0; 979 else if (nr_parts) 980 ret = add_mtd_partitions(mtd, parts, nr_parts); 981 else if (!device_is_registered(&mtd->dev)) 982 ret = add_mtd_device(mtd); 983 else 984 ret = 0; 985 986 if (ret) 987 goto out; 988 989 /* 990 * FIXME: some drivers unfortunately call this function more than once. 991 * So we have to check if we've already assigned the reboot notifier. 992 * 993 * Generally, we can make multiple calls work for most cases, but it 994 * does cause problems with parse_mtd_partitions() above (e.g., 995 * cmdlineparts will register partitions more than once). 996 */ 997 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 998 "MTD already registered\n"); 999 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1000 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1001 register_reboot_notifier(&mtd->reboot_notifier); 1002 } 1003 1004 ret = mtd_otp_nvmem_add(mtd); 1005 1006 out: 1007 if (ret && device_is_registered(&mtd->dev)) 1008 del_mtd_device(mtd); 1009 1010 return ret; 1011 } 1012 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1013 1014 /** 1015 * mtd_device_unregister - unregister an existing MTD device. 1016 * 1017 * @master: the MTD device to unregister. This will unregister both the master 1018 * and any partitions if registered. 1019 */ 1020 int mtd_device_unregister(struct mtd_info *master) 1021 { 1022 int err; 1023 1024 if (master->_reboot) { 1025 unregister_reboot_notifier(&master->reboot_notifier); 1026 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1027 } 1028 1029 nvmem_unregister(master->otp_user_nvmem); 1030 nvmem_unregister(master->otp_factory_nvmem); 1031 1032 err = del_mtd_partitions(master); 1033 if (err) 1034 return err; 1035 1036 if (!device_is_registered(&master->dev)) 1037 return 0; 1038 1039 return del_mtd_device(master); 1040 } 1041 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1042 1043 /** 1044 * register_mtd_user - register a 'user' of MTD devices. 1045 * @new: pointer to notifier info structure 1046 * 1047 * Registers a pair of callbacks function to be called upon addition 1048 * or removal of MTD devices. Causes the 'add' callback to be immediately 1049 * invoked for each MTD device currently present in the system. 1050 */ 1051 void register_mtd_user (struct mtd_notifier *new) 1052 { 1053 struct mtd_info *mtd; 1054 1055 mutex_lock(&mtd_table_mutex); 1056 1057 list_add(&new->list, &mtd_notifiers); 1058 1059 __module_get(THIS_MODULE); 1060 1061 mtd_for_each_device(mtd) 1062 new->add(mtd); 1063 1064 mutex_unlock(&mtd_table_mutex); 1065 } 1066 EXPORT_SYMBOL_GPL(register_mtd_user); 1067 1068 /** 1069 * unregister_mtd_user - unregister a 'user' of MTD devices. 1070 * @old: pointer to notifier info structure 1071 * 1072 * Removes a callback function pair from the list of 'users' to be 1073 * notified upon addition or removal of MTD devices. Causes the 1074 * 'remove' callback to be immediately invoked for each MTD device 1075 * currently present in the system. 1076 */ 1077 int unregister_mtd_user (struct mtd_notifier *old) 1078 { 1079 struct mtd_info *mtd; 1080 1081 mutex_lock(&mtd_table_mutex); 1082 1083 module_put(THIS_MODULE); 1084 1085 mtd_for_each_device(mtd) 1086 old->remove(mtd); 1087 1088 list_del(&old->list); 1089 mutex_unlock(&mtd_table_mutex); 1090 return 0; 1091 } 1092 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1093 1094 /** 1095 * get_mtd_device - obtain a validated handle for an MTD device 1096 * @mtd: last known address of the required MTD device 1097 * @num: internal device number of the required MTD device 1098 * 1099 * Given a number and NULL address, return the num'th entry in the device 1100 * table, if any. Given an address and num == -1, search the device table 1101 * for a device with that address and return if it's still present. Given 1102 * both, return the num'th driver only if its address matches. Return 1103 * error code if not. 1104 */ 1105 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1106 { 1107 struct mtd_info *ret = NULL, *other; 1108 int err = -ENODEV; 1109 1110 mutex_lock(&mtd_table_mutex); 1111 1112 if (num == -1) { 1113 mtd_for_each_device(other) { 1114 if (other == mtd) { 1115 ret = mtd; 1116 break; 1117 } 1118 } 1119 } else if (num >= 0) { 1120 ret = idr_find(&mtd_idr, num); 1121 if (mtd && mtd != ret) 1122 ret = NULL; 1123 } 1124 1125 if (!ret) { 1126 ret = ERR_PTR(err); 1127 goto out; 1128 } 1129 1130 err = __get_mtd_device(ret); 1131 if (err) 1132 ret = ERR_PTR(err); 1133 out: 1134 mutex_unlock(&mtd_table_mutex); 1135 return ret; 1136 } 1137 EXPORT_SYMBOL_GPL(get_mtd_device); 1138 1139 1140 int __get_mtd_device(struct mtd_info *mtd) 1141 { 1142 struct mtd_info *master = mtd_get_master(mtd); 1143 int err; 1144 1145 if (!try_module_get(master->owner)) 1146 return -ENODEV; 1147 1148 if (master->_get_device) { 1149 err = master->_get_device(mtd); 1150 1151 if (err) { 1152 module_put(master->owner); 1153 return err; 1154 } 1155 } 1156 1157 master->usecount++; 1158 1159 while (mtd->parent) { 1160 mtd->usecount++; 1161 mtd = mtd->parent; 1162 } 1163 1164 return 0; 1165 } 1166 EXPORT_SYMBOL_GPL(__get_mtd_device); 1167 1168 /** 1169 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1170 * device name 1171 * @name: MTD device name to open 1172 * 1173 * This function returns MTD device description structure in case of 1174 * success and an error code in case of failure. 1175 */ 1176 struct mtd_info *get_mtd_device_nm(const char *name) 1177 { 1178 int err = -ENODEV; 1179 struct mtd_info *mtd = NULL, *other; 1180 1181 mutex_lock(&mtd_table_mutex); 1182 1183 mtd_for_each_device(other) { 1184 if (!strcmp(name, other->name)) { 1185 mtd = other; 1186 break; 1187 } 1188 } 1189 1190 if (!mtd) 1191 goto out_unlock; 1192 1193 err = __get_mtd_device(mtd); 1194 if (err) 1195 goto out_unlock; 1196 1197 mutex_unlock(&mtd_table_mutex); 1198 return mtd; 1199 1200 out_unlock: 1201 mutex_unlock(&mtd_table_mutex); 1202 return ERR_PTR(err); 1203 } 1204 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1205 1206 void put_mtd_device(struct mtd_info *mtd) 1207 { 1208 mutex_lock(&mtd_table_mutex); 1209 __put_mtd_device(mtd); 1210 mutex_unlock(&mtd_table_mutex); 1211 1212 } 1213 EXPORT_SYMBOL_GPL(put_mtd_device); 1214 1215 void __put_mtd_device(struct mtd_info *mtd) 1216 { 1217 struct mtd_info *master = mtd_get_master(mtd); 1218 1219 while (mtd->parent) { 1220 --mtd->usecount; 1221 BUG_ON(mtd->usecount < 0); 1222 mtd = mtd->parent; 1223 } 1224 1225 master->usecount--; 1226 1227 if (master->_put_device) 1228 master->_put_device(master); 1229 1230 module_put(master->owner); 1231 } 1232 EXPORT_SYMBOL_GPL(__put_mtd_device); 1233 1234 /* 1235 * Erase is an synchronous operation. Device drivers are epected to return a 1236 * negative error code if the operation failed and update instr->fail_addr 1237 * to point the portion that was not properly erased. 1238 */ 1239 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1240 { 1241 struct mtd_info *master = mtd_get_master(mtd); 1242 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1243 struct erase_info adjinstr; 1244 int ret; 1245 1246 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1247 adjinstr = *instr; 1248 1249 if (!mtd->erasesize || !master->_erase) 1250 return -ENOTSUPP; 1251 1252 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1253 return -EINVAL; 1254 if (!(mtd->flags & MTD_WRITEABLE)) 1255 return -EROFS; 1256 1257 if (!instr->len) 1258 return 0; 1259 1260 ledtrig_mtd_activity(); 1261 1262 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1263 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1264 master->erasesize; 1265 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1266 master->erasesize) - 1267 adjinstr.addr; 1268 } 1269 1270 adjinstr.addr += mst_ofs; 1271 1272 ret = master->_erase(master, &adjinstr); 1273 1274 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1275 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1276 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1277 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1278 master); 1279 instr->fail_addr *= mtd->erasesize; 1280 } 1281 } 1282 1283 return ret; 1284 } 1285 EXPORT_SYMBOL_GPL(mtd_erase); 1286 1287 /* 1288 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1289 */ 1290 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1291 void **virt, resource_size_t *phys) 1292 { 1293 struct mtd_info *master = mtd_get_master(mtd); 1294 1295 *retlen = 0; 1296 *virt = NULL; 1297 if (phys) 1298 *phys = 0; 1299 if (!master->_point) 1300 return -EOPNOTSUPP; 1301 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1302 return -EINVAL; 1303 if (!len) 1304 return 0; 1305 1306 from = mtd_get_master_ofs(mtd, from); 1307 return master->_point(master, from, len, retlen, virt, phys); 1308 } 1309 EXPORT_SYMBOL_GPL(mtd_point); 1310 1311 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1312 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1313 { 1314 struct mtd_info *master = mtd_get_master(mtd); 1315 1316 if (!master->_unpoint) 1317 return -EOPNOTSUPP; 1318 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1319 return -EINVAL; 1320 if (!len) 1321 return 0; 1322 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1323 } 1324 EXPORT_SYMBOL_GPL(mtd_unpoint); 1325 1326 /* 1327 * Allow NOMMU mmap() to directly map the device (if not NULL) 1328 * - return the address to which the offset maps 1329 * - return -ENOSYS to indicate refusal to do the mapping 1330 */ 1331 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1332 unsigned long offset, unsigned long flags) 1333 { 1334 size_t retlen; 1335 void *virt; 1336 int ret; 1337 1338 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1339 if (ret) 1340 return ret; 1341 if (retlen != len) { 1342 mtd_unpoint(mtd, offset, retlen); 1343 return -ENOSYS; 1344 } 1345 return (unsigned long)virt; 1346 } 1347 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1348 1349 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1350 const struct mtd_ecc_stats *old_stats) 1351 { 1352 struct mtd_ecc_stats diff; 1353 1354 if (master == mtd) 1355 return; 1356 1357 diff = master->ecc_stats; 1358 diff.failed -= old_stats->failed; 1359 diff.corrected -= old_stats->corrected; 1360 1361 while (mtd->parent) { 1362 mtd->ecc_stats.failed += diff.failed; 1363 mtd->ecc_stats.corrected += diff.corrected; 1364 mtd = mtd->parent; 1365 } 1366 } 1367 1368 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1369 u_char *buf) 1370 { 1371 struct mtd_oob_ops ops = { 1372 .len = len, 1373 .datbuf = buf, 1374 }; 1375 int ret; 1376 1377 ret = mtd_read_oob(mtd, from, &ops); 1378 *retlen = ops.retlen; 1379 1380 return ret; 1381 } 1382 EXPORT_SYMBOL_GPL(mtd_read); 1383 1384 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1385 const u_char *buf) 1386 { 1387 struct mtd_oob_ops ops = { 1388 .len = len, 1389 .datbuf = (u8 *)buf, 1390 }; 1391 int ret; 1392 1393 ret = mtd_write_oob(mtd, to, &ops); 1394 *retlen = ops.retlen; 1395 1396 return ret; 1397 } 1398 EXPORT_SYMBOL_GPL(mtd_write); 1399 1400 /* 1401 * In blackbox flight recorder like scenarios we want to make successful writes 1402 * in interrupt context. panic_write() is only intended to be called when its 1403 * known the kernel is about to panic and we need the write to succeed. Since 1404 * the kernel is not going to be running for much longer, this function can 1405 * break locks and delay to ensure the write succeeds (but not sleep). 1406 */ 1407 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1408 const u_char *buf) 1409 { 1410 struct mtd_info *master = mtd_get_master(mtd); 1411 1412 *retlen = 0; 1413 if (!master->_panic_write) 1414 return -EOPNOTSUPP; 1415 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1416 return -EINVAL; 1417 if (!(mtd->flags & MTD_WRITEABLE)) 1418 return -EROFS; 1419 if (!len) 1420 return 0; 1421 if (!master->oops_panic_write) 1422 master->oops_panic_write = true; 1423 1424 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1425 retlen, buf); 1426 } 1427 EXPORT_SYMBOL_GPL(mtd_panic_write); 1428 1429 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1430 struct mtd_oob_ops *ops) 1431 { 1432 /* 1433 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1434 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1435 * this case. 1436 */ 1437 if (!ops->datbuf) 1438 ops->len = 0; 1439 1440 if (!ops->oobbuf) 1441 ops->ooblen = 0; 1442 1443 if (offs < 0 || offs + ops->len > mtd->size) 1444 return -EINVAL; 1445 1446 if (ops->ooblen) { 1447 size_t maxooblen; 1448 1449 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1450 return -EINVAL; 1451 1452 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1453 mtd_div_by_ws(offs, mtd)) * 1454 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1455 if (ops->ooblen > maxooblen) 1456 return -EINVAL; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1463 struct mtd_oob_ops *ops) 1464 { 1465 struct mtd_info *master = mtd_get_master(mtd); 1466 int ret; 1467 1468 from = mtd_get_master_ofs(mtd, from); 1469 if (master->_read_oob) 1470 ret = master->_read_oob(master, from, ops); 1471 else 1472 ret = master->_read(master, from, ops->len, &ops->retlen, 1473 ops->datbuf); 1474 1475 return ret; 1476 } 1477 1478 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1479 struct mtd_oob_ops *ops) 1480 { 1481 struct mtd_info *master = mtd_get_master(mtd); 1482 int ret; 1483 1484 to = mtd_get_master_ofs(mtd, to); 1485 if (master->_write_oob) 1486 ret = master->_write_oob(master, to, ops); 1487 else 1488 ret = master->_write(master, to, ops->len, &ops->retlen, 1489 ops->datbuf); 1490 1491 return ret; 1492 } 1493 1494 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1495 struct mtd_oob_ops *ops) 1496 { 1497 struct mtd_info *master = mtd_get_master(mtd); 1498 int ngroups = mtd_pairing_groups(master); 1499 int npairs = mtd_wunit_per_eb(master) / ngroups; 1500 struct mtd_oob_ops adjops = *ops; 1501 unsigned int wunit, oobavail; 1502 struct mtd_pairing_info info; 1503 int max_bitflips = 0; 1504 u32 ebofs, pageofs; 1505 loff_t base, pos; 1506 1507 ebofs = mtd_mod_by_eb(start, mtd); 1508 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1509 info.group = 0; 1510 info.pair = mtd_div_by_ws(ebofs, mtd); 1511 pageofs = mtd_mod_by_ws(ebofs, mtd); 1512 oobavail = mtd_oobavail(mtd, ops); 1513 1514 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1515 int ret; 1516 1517 if (info.pair >= npairs) { 1518 info.pair = 0; 1519 base += master->erasesize; 1520 } 1521 1522 wunit = mtd_pairing_info_to_wunit(master, &info); 1523 pos = mtd_wunit_to_offset(mtd, base, wunit); 1524 1525 adjops.len = ops->len - ops->retlen; 1526 if (adjops.len > mtd->writesize - pageofs) 1527 adjops.len = mtd->writesize - pageofs; 1528 1529 adjops.ooblen = ops->ooblen - ops->oobretlen; 1530 if (adjops.ooblen > oobavail - adjops.ooboffs) 1531 adjops.ooblen = oobavail - adjops.ooboffs; 1532 1533 if (read) { 1534 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1535 if (ret > 0) 1536 max_bitflips = max(max_bitflips, ret); 1537 } else { 1538 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1539 } 1540 1541 if (ret < 0) 1542 return ret; 1543 1544 max_bitflips = max(max_bitflips, ret); 1545 ops->retlen += adjops.retlen; 1546 ops->oobretlen += adjops.oobretlen; 1547 adjops.datbuf += adjops.retlen; 1548 adjops.oobbuf += adjops.oobretlen; 1549 adjops.ooboffs = 0; 1550 pageofs = 0; 1551 info.pair++; 1552 } 1553 1554 return max_bitflips; 1555 } 1556 1557 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1558 { 1559 struct mtd_info *master = mtd_get_master(mtd); 1560 struct mtd_ecc_stats old_stats = master->ecc_stats; 1561 int ret_code; 1562 1563 ops->retlen = ops->oobretlen = 0; 1564 1565 ret_code = mtd_check_oob_ops(mtd, from, ops); 1566 if (ret_code) 1567 return ret_code; 1568 1569 ledtrig_mtd_activity(); 1570 1571 /* Check the validity of a potential fallback on mtd->_read */ 1572 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1573 return -EOPNOTSUPP; 1574 1575 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1576 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1577 else 1578 ret_code = mtd_read_oob_std(mtd, from, ops); 1579 1580 mtd_update_ecc_stats(mtd, master, &old_stats); 1581 1582 /* 1583 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1584 * similar to mtd->_read(), returning a non-negative integer 1585 * representing max bitflips. In other cases, mtd->_read_oob() may 1586 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1587 */ 1588 if (unlikely(ret_code < 0)) 1589 return ret_code; 1590 if (mtd->ecc_strength == 0) 1591 return 0; /* device lacks ecc */ 1592 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1593 } 1594 EXPORT_SYMBOL_GPL(mtd_read_oob); 1595 1596 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1597 struct mtd_oob_ops *ops) 1598 { 1599 struct mtd_info *master = mtd_get_master(mtd); 1600 int ret; 1601 1602 ops->retlen = ops->oobretlen = 0; 1603 1604 if (!(mtd->flags & MTD_WRITEABLE)) 1605 return -EROFS; 1606 1607 ret = mtd_check_oob_ops(mtd, to, ops); 1608 if (ret) 1609 return ret; 1610 1611 ledtrig_mtd_activity(); 1612 1613 /* Check the validity of a potential fallback on mtd->_write */ 1614 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1615 return -EOPNOTSUPP; 1616 1617 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1618 return mtd_io_emulated_slc(mtd, to, false, ops); 1619 1620 return mtd_write_oob_std(mtd, to, ops); 1621 } 1622 EXPORT_SYMBOL_GPL(mtd_write_oob); 1623 1624 /** 1625 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1626 * @mtd: MTD device structure 1627 * @section: ECC section. Depending on the layout you may have all the ECC 1628 * bytes stored in a single contiguous section, or one section 1629 * per ECC chunk (and sometime several sections for a single ECC 1630 * ECC chunk) 1631 * @oobecc: OOB region struct filled with the appropriate ECC position 1632 * information 1633 * 1634 * This function returns ECC section information in the OOB area. If you want 1635 * to get all the ECC bytes information, then you should call 1636 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1637 * 1638 * Returns zero on success, a negative error code otherwise. 1639 */ 1640 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1641 struct mtd_oob_region *oobecc) 1642 { 1643 struct mtd_info *master = mtd_get_master(mtd); 1644 1645 memset(oobecc, 0, sizeof(*oobecc)); 1646 1647 if (!master || section < 0) 1648 return -EINVAL; 1649 1650 if (!master->ooblayout || !master->ooblayout->ecc) 1651 return -ENOTSUPP; 1652 1653 return master->ooblayout->ecc(master, section, oobecc); 1654 } 1655 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1656 1657 /** 1658 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1659 * section 1660 * @mtd: MTD device structure 1661 * @section: Free section you are interested in. Depending on the layout 1662 * you may have all the free bytes stored in a single contiguous 1663 * section, or one section per ECC chunk plus an extra section 1664 * for the remaining bytes (or other funky layout). 1665 * @oobfree: OOB region struct filled with the appropriate free position 1666 * information 1667 * 1668 * This function returns free bytes position in the OOB area. If you want 1669 * to get all the free bytes information, then you should call 1670 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1671 * 1672 * Returns zero on success, a negative error code otherwise. 1673 */ 1674 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1675 struct mtd_oob_region *oobfree) 1676 { 1677 struct mtd_info *master = mtd_get_master(mtd); 1678 1679 memset(oobfree, 0, sizeof(*oobfree)); 1680 1681 if (!master || section < 0) 1682 return -EINVAL; 1683 1684 if (!master->ooblayout || !master->ooblayout->free) 1685 return -ENOTSUPP; 1686 1687 return master->ooblayout->free(master, section, oobfree); 1688 } 1689 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1690 1691 /** 1692 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1693 * @mtd: mtd info structure 1694 * @byte: the byte we are searching for 1695 * @sectionp: pointer where the section id will be stored 1696 * @oobregion: used to retrieve the ECC position 1697 * @iter: iterator function. Should be either mtd_ooblayout_free or 1698 * mtd_ooblayout_ecc depending on the region type you're searching for 1699 * 1700 * This function returns the section id and oobregion information of a 1701 * specific byte. For example, say you want to know where the 4th ECC byte is 1702 * stored, you'll use: 1703 * 1704 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1705 * 1706 * Returns zero on success, a negative error code otherwise. 1707 */ 1708 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1709 int *sectionp, struct mtd_oob_region *oobregion, 1710 int (*iter)(struct mtd_info *, 1711 int section, 1712 struct mtd_oob_region *oobregion)) 1713 { 1714 int pos = 0, ret, section = 0; 1715 1716 memset(oobregion, 0, sizeof(*oobregion)); 1717 1718 while (1) { 1719 ret = iter(mtd, section, oobregion); 1720 if (ret) 1721 return ret; 1722 1723 if (pos + oobregion->length > byte) 1724 break; 1725 1726 pos += oobregion->length; 1727 section++; 1728 } 1729 1730 /* 1731 * Adjust region info to make it start at the beginning at the 1732 * 'start' ECC byte. 1733 */ 1734 oobregion->offset += byte - pos; 1735 oobregion->length -= byte - pos; 1736 *sectionp = section; 1737 1738 return 0; 1739 } 1740 1741 /** 1742 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1743 * ECC byte 1744 * @mtd: mtd info structure 1745 * @eccbyte: the byte we are searching for 1746 * @section: pointer where the section id will be stored 1747 * @oobregion: OOB region information 1748 * 1749 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1750 * byte. 1751 * 1752 * Returns zero on success, a negative error code otherwise. 1753 */ 1754 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1755 int *section, 1756 struct mtd_oob_region *oobregion) 1757 { 1758 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1759 mtd_ooblayout_ecc); 1760 } 1761 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1762 1763 /** 1764 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1765 * @mtd: mtd info structure 1766 * @buf: destination buffer to store OOB bytes 1767 * @oobbuf: OOB buffer 1768 * @start: first byte to retrieve 1769 * @nbytes: number of bytes to retrieve 1770 * @iter: section iterator 1771 * 1772 * Extract bytes attached to a specific category (ECC or free) 1773 * from the OOB buffer and copy them into buf. 1774 * 1775 * Returns zero on success, a negative error code otherwise. 1776 */ 1777 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1778 const u8 *oobbuf, int start, int nbytes, 1779 int (*iter)(struct mtd_info *, 1780 int section, 1781 struct mtd_oob_region *oobregion)) 1782 { 1783 struct mtd_oob_region oobregion; 1784 int section, ret; 1785 1786 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1787 &oobregion, iter); 1788 1789 while (!ret) { 1790 int cnt; 1791 1792 cnt = min_t(int, nbytes, oobregion.length); 1793 memcpy(buf, oobbuf + oobregion.offset, cnt); 1794 buf += cnt; 1795 nbytes -= cnt; 1796 1797 if (!nbytes) 1798 break; 1799 1800 ret = iter(mtd, ++section, &oobregion); 1801 } 1802 1803 return ret; 1804 } 1805 1806 /** 1807 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1808 * @mtd: mtd info structure 1809 * @buf: source buffer to get OOB bytes from 1810 * @oobbuf: OOB buffer 1811 * @start: first OOB byte to set 1812 * @nbytes: number of OOB bytes to set 1813 * @iter: section iterator 1814 * 1815 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1816 * is selected by passing the appropriate iterator. 1817 * 1818 * Returns zero on success, a negative error code otherwise. 1819 */ 1820 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1821 u8 *oobbuf, int start, int nbytes, 1822 int (*iter)(struct mtd_info *, 1823 int section, 1824 struct mtd_oob_region *oobregion)) 1825 { 1826 struct mtd_oob_region oobregion; 1827 int section, ret; 1828 1829 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1830 &oobregion, iter); 1831 1832 while (!ret) { 1833 int cnt; 1834 1835 cnt = min_t(int, nbytes, oobregion.length); 1836 memcpy(oobbuf + oobregion.offset, buf, cnt); 1837 buf += cnt; 1838 nbytes -= cnt; 1839 1840 if (!nbytes) 1841 break; 1842 1843 ret = iter(mtd, ++section, &oobregion); 1844 } 1845 1846 return ret; 1847 } 1848 1849 /** 1850 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1851 * @mtd: mtd info structure 1852 * @iter: category iterator 1853 * 1854 * Count the number of bytes in a given category. 1855 * 1856 * Returns a positive value on success, a negative error code otherwise. 1857 */ 1858 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1859 int (*iter)(struct mtd_info *, 1860 int section, 1861 struct mtd_oob_region *oobregion)) 1862 { 1863 struct mtd_oob_region oobregion; 1864 int section = 0, ret, nbytes = 0; 1865 1866 while (1) { 1867 ret = iter(mtd, section++, &oobregion); 1868 if (ret) { 1869 if (ret == -ERANGE) 1870 ret = nbytes; 1871 break; 1872 } 1873 1874 nbytes += oobregion.length; 1875 } 1876 1877 return ret; 1878 } 1879 1880 /** 1881 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 1882 * @mtd: mtd info structure 1883 * @eccbuf: destination buffer to store ECC bytes 1884 * @oobbuf: OOB buffer 1885 * @start: first ECC byte to retrieve 1886 * @nbytes: number of ECC bytes to retrieve 1887 * 1888 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 1889 * 1890 * Returns zero on success, a negative error code otherwise. 1891 */ 1892 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 1893 const u8 *oobbuf, int start, int nbytes) 1894 { 1895 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1896 mtd_ooblayout_ecc); 1897 } 1898 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 1899 1900 /** 1901 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 1902 * @mtd: mtd info structure 1903 * @eccbuf: source buffer to get ECC bytes from 1904 * @oobbuf: OOB buffer 1905 * @start: first ECC byte to set 1906 * @nbytes: number of ECC bytes to set 1907 * 1908 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 1909 * 1910 * Returns zero on success, a negative error code otherwise. 1911 */ 1912 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 1913 u8 *oobbuf, int start, int nbytes) 1914 { 1915 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 1916 mtd_ooblayout_ecc); 1917 } 1918 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 1919 1920 /** 1921 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 1922 * @mtd: mtd info structure 1923 * @databuf: destination buffer to store ECC bytes 1924 * @oobbuf: OOB buffer 1925 * @start: first ECC byte to retrieve 1926 * @nbytes: number of ECC bytes to retrieve 1927 * 1928 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 1929 * 1930 * Returns zero on success, a negative error code otherwise. 1931 */ 1932 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 1933 const u8 *oobbuf, int start, int nbytes) 1934 { 1935 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 1936 mtd_ooblayout_free); 1937 } 1938 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 1939 1940 /** 1941 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 1942 * @mtd: mtd info structure 1943 * @databuf: source buffer to get data bytes from 1944 * @oobbuf: OOB buffer 1945 * @start: first ECC byte to set 1946 * @nbytes: number of ECC bytes to set 1947 * 1948 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 1949 * 1950 * Returns zero on success, a negative error code otherwise. 1951 */ 1952 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 1953 u8 *oobbuf, int start, int nbytes) 1954 { 1955 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 1956 mtd_ooblayout_free); 1957 } 1958 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 1959 1960 /** 1961 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 1962 * @mtd: mtd info structure 1963 * 1964 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 1965 * 1966 * Returns zero on success, a negative error code otherwise. 1967 */ 1968 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 1969 { 1970 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 1971 } 1972 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 1973 1974 /** 1975 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 1976 * @mtd: mtd info structure 1977 * 1978 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 1979 * 1980 * Returns zero on success, a negative error code otherwise. 1981 */ 1982 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 1983 { 1984 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 1985 } 1986 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 1987 1988 /* 1989 * Method to access the protection register area, present in some flash 1990 * devices. The user data is one time programmable but the factory data is read 1991 * only. 1992 */ 1993 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 1994 struct otp_info *buf) 1995 { 1996 struct mtd_info *master = mtd_get_master(mtd); 1997 1998 if (!master->_get_fact_prot_info) 1999 return -EOPNOTSUPP; 2000 if (!len) 2001 return 0; 2002 return master->_get_fact_prot_info(master, len, retlen, buf); 2003 } 2004 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2005 2006 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2007 size_t *retlen, u_char *buf) 2008 { 2009 struct mtd_info *master = mtd_get_master(mtd); 2010 2011 *retlen = 0; 2012 if (!master->_read_fact_prot_reg) 2013 return -EOPNOTSUPP; 2014 if (!len) 2015 return 0; 2016 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2017 } 2018 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2019 2020 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2021 struct otp_info *buf) 2022 { 2023 struct mtd_info *master = mtd_get_master(mtd); 2024 2025 if (!master->_get_user_prot_info) 2026 return -EOPNOTSUPP; 2027 if (!len) 2028 return 0; 2029 return master->_get_user_prot_info(master, len, retlen, buf); 2030 } 2031 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2032 2033 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2034 size_t *retlen, u_char *buf) 2035 { 2036 struct mtd_info *master = mtd_get_master(mtd); 2037 2038 *retlen = 0; 2039 if (!master->_read_user_prot_reg) 2040 return -EOPNOTSUPP; 2041 if (!len) 2042 return 0; 2043 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2044 } 2045 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2046 2047 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2048 size_t *retlen, const u_char *buf) 2049 { 2050 struct mtd_info *master = mtd_get_master(mtd); 2051 int ret; 2052 2053 *retlen = 0; 2054 if (!master->_write_user_prot_reg) 2055 return -EOPNOTSUPP; 2056 if (!len) 2057 return 0; 2058 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2059 if (ret) 2060 return ret; 2061 2062 /* 2063 * If no data could be written at all, we are out of memory and 2064 * must return -ENOSPC. 2065 */ 2066 return (*retlen) ? 0 : -ENOSPC; 2067 } 2068 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2069 2070 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2071 { 2072 struct mtd_info *master = mtd_get_master(mtd); 2073 2074 if (!master->_lock_user_prot_reg) 2075 return -EOPNOTSUPP; 2076 if (!len) 2077 return 0; 2078 return master->_lock_user_prot_reg(master, from, len); 2079 } 2080 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2081 2082 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2083 { 2084 struct mtd_info *master = mtd_get_master(mtd); 2085 2086 if (!master->_erase_user_prot_reg) 2087 return -EOPNOTSUPP; 2088 if (!len) 2089 return 0; 2090 return master->_erase_user_prot_reg(master, from, len); 2091 } 2092 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2093 2094 /* Chip-supported device locking */ 2095 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2096 { 2097 struct mtd_info *master = mtd_get_master(mtd); 2098 2099 if (!master->_lock) 2100 return -EOPNOTSUPP; 2101 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2102 return -EINVAL; 2103 if (!len) 2104 return 0; 2105 2106 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2107 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2108 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2109 } 2110 2111 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2112 } 2113 EXPORT_SYMBOL_GPL(mtd_lock); 2114 2115 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2116 { 2117 struct mtd_info *master = mtd_get_master(mtd); 2118 2119 if (!master->_unlock) 2120 return -EOPNOTSUPP; 2121 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2122 return -EINVAL; 2123 if (!len) 2124 return 0; 2125 2126 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2127 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2128 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2129 } 2130 2131 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2132 } 2133 EXPORT_SYMBOL_GPL(mtd_unlock); 2134 2135 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2136 { 2137 struct mtd_info *master = mtd_get_master(mtd); 2138 2139 if (!master->_is_locked) 2140 return -EOPNOTSUPP; 2141 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2142 return -EINVAL; 2143 if (!len) 2144 return 0; 2145 2146 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2147 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2148 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2149 } 2150 2151 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2152 } 2153 EXPORT_SYMBOL_GPL(mtd_is_locked); 2154 2155 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2156 { 2157 struct mtd_info *master = mtd_get_master(mtd); 2158 2159 if (ofs < 0 || ofs >= mtd->size) 2160 return -EINVAL; 2161 if (!master->_block_isreserved) 2162 return 0; 2163 2164 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2165 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2166 2167 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2168 } 2169 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2170 2171 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2172 { 2173 struct mtd_info *master = mtd_get_master(mtd); 2174 2175 if (ofs < 0 || ofs >= mtd->size) 2176 return -EINVAL; 2177 if (!master->_block_isbad) 2178 return 0; 2179 2180 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2181 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2182 2183 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2184 } 2185 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2186 2187 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2188 { 2189 struct mtd_info *master = mtd_get_master(mtd); 2190 int ret; 2191 2192 if (!master->_block_markbad) 2193 return -EOPNOTSUPP; 2194 if (ofs < 0 || ofs >= mtd->size) 2195 return -EINVAL; 2196 if (!(mtd->flags & MTD_WRITEABLE)) 2197 return -EROFS; 2198 2199 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2200 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2201 2202 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2203 if (ret) 2204 return ret; 2205 2206 while (mtd->parent) { 2207 mtd->ecc_stats.badblocks++; 2208 mtd = mtd->parent; 2209 } 2210 2211 return 0; 2212 } 2213 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2214 2215 /* 2216 * default_mtd_writev - the default writev method 2217 * @mtd: mtd device description object pointer 2218 * @vecs: the vectors to write 2219 * @count: count of vectors in @vecs 2220 * @to: the MTD device offset to write to 2221 * @retlen: on exit contains the count of bytes written to the MTD device. 2222 * 2223 * This function returns zero in case of success and a negative error code in 2224 * case of failure. 2225 */ 2226 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2227 unsigned long count, loff_t to, size_t *retlen) 2228 { 2229 unsigned long i; 2230 size_t totlen = 0, thislen; 2231 int ret = 0; 2232 2233 for (i = 0; i < count; i++) { 2234 if (!vecs[i].iov_len) 2235 continue; 2236 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2237 vecs[i].iov_base); 2238 totlen += thislen; 2239 if (ret || thislen != vecs[i].iov_len) 2240 break; 2241 to += vecs[i].iov_len; 2242 } 2243 *retlen = totlen; 2244 return ret; 2245 } 2246 2247 /* 2248 * mtd_writev - the vector-based MTD write method 2249 * @mtd: mtd device description object pointer 2250 * @vecs: the vectors to write 2251 * @count: count of vectors in @vecs 2252 * @to: the MTD device offset to write to 2253 * @retlen: on exit contains the count of bytes written to the MTD device. 2254 * 2255 * This function returns zero in case of success and a negative error code in 2256 * case of failure. 2257 */ 2258 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2259 unsigned long count, loff_t to, size_t *retlen) 2260 { 2261 struct mtd_info *master = mtd_get_master(mtd); 2262 2263 *retlen = 0; 2264 if (!(mtd->flags & MTD_WRITEABLE)) 2265 return -EROFS; 2266 2267 if (!master->_writev) 2268 return default_mtd_writev(mtd, vecs, count, to, retlen); 2269 2270 return master->_writev(master, vecs, count, 2271 mtd_get_master_ofs(mtd, to), retlen); 2272 } 2273 EXPORT_SYMBOL_GPL(mtd_writev); 2274 2275 /** 2276 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2277 * @mtd: mtd device description object pointer 2278 * @size: a pointer to the ideal or maximum size of the allocation, points 2279 * to the actual allocation size on success. 2280 * 2281 * This routine attempts to allocate a contiguous kernel buffer up to 2282 * the specified size, backing off the size of the request exponentially 2283 * until the request succeeds or until the allocation size falls below 2284 * the system page size. This attempts to make sure it does not adversely 2285 * impact system performance, so when allocating more than one page, we 2286 * ask the memory allocator to avoid re-trying, swapping, writing back 2287 * or performing I/O. 2288 * 2289 * Note, this function also makes sure that the allocated buffer is aligned to 2290 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2291 * 2292 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2293 * to handle smaller (i.e. degraded) buffer allocations under low- or 2294 * fragmented-memory situations where such reduced allocations, from a 2295 * requested ideal, are allowed. 2296 * 2297 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2298 */ 2299 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2300 { 2301 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2302 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2303 void *kbuf; 2304 2305 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2306 2307 while (*size > min_alloc) { 2308 kbuf = kmalloc(*size, flags); 2309 if (kbuf) 2310 return kbuf; 2311 2312 *size >>= 1; 2313 *size = ALIGN(*size, mtd->writesize); 2314 } 2315 2316 /* 2317 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2318 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2319 */ 2320 return kmalloc(*size, GFP_KERNEL); 2321 } 2322 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2323 2324 #ifdef CONFIG_PROC_FS 2325 2326 /*====================================================================*/ 2327 /* Support for /proc/mtd */ 2328 2329 static int mtd_proc_show(struct seq_file *m, void *v) 2330 { 2331 struct mtd_info *mtd; 2332 2333 seq_puts(m, "dev: size erasesize name\n"); 2334 mutex_lock(&mtd_table_mutex); 2335 mtd_for_each_device(mtd) { 2336 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2337 mtd->index, (unsigned long long)mtd->size, 2338 mtd->erasesize, mtd->name); 2339 } 2340 mutex_unlock(&mtd_table_mutex); 2341 return 0; 2342 } 2343 #endif /* CONFIG_PROC_FS */ 2344 2345 /*====================================================================*/ 2346 /* Init code */ 2347 2348 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2349 { 2350 struct backing_dev_info *bdi; 2351 int ret; 2352 2353 bdi = bdi_alloc(NUMA_NO_NODE); 2354 if (!bdi) 2355 return ERR_PTR(-ENOMEM); 2356 bdi->ra_pages = 0; 2357 bdi->io_pages = 0; 2358 2359 /* 2360 * We put '-0' suffix to the name to get the same name format as we 2361 * used to get. Since this is called only once, we get a unique name. 2362 */ 2363 ret = bdi_register(bdi, "%.28s-0", name); 2364 if (ret) 2365 bdi_put(bdi); 2366 2367 return ret ? ERR_PTR(ret) : bdi; 2368 } 2369 2370 char *mtd_expert_analysis_warning = 2371 "Bad block checks have been entirely disabled.\n" 2372 "This is only reserved for post-mortem forensics and debug purposes.\n" 2373 "Never enable this mode if you do not know what you are doing!\n"; 2374 EXPORT_SYMBOL_GPL(mtd_expert_analysis_warning); 2375 bool mtd_expert_analysis_mode; 2376 EXPORT_SYMBOL_GPL(mtd_expert_analysis_mode); 2377 2378 static struct proc_dir_entry *proc_mtd; 2379 2380 static int __init init_mtd(void) 2381 { 2382 int ret; 2383 2384 ret = class_register(&mtd_class); 2385 if (ret) 2386 goto err_reg; 2387 2388 mtd_bdi = mtd_bdi_init("mtd"); 2389 if (IS_ERR(mtd_bdi)) { 2390 ret = PTR_ERR(mtd_bdi); 2391 goto err_bdi; 2392 } 2393 2394 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2395 2396 ret = init_mtdchar(); 2397 if (ret) 2398 goto out_procfs; 2399 2400 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2401 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2402 &mtd_expert_analysis_mode); 2403 2404 return 0; 2405 2406 out_procfs: 2407 if (proc_mtd) 2408 remove_proc_entry("mtd", NULL); 2409 bdi_put(mtd_bdi); 2410 err_bdi: 2411 class_unregister(&mtd_class); 2412 err_reg: 2413 pr_err("Error registering mtd class or bdi: %d\n", ret); 2414 return ret; 2415 } 2416 2417 static void __exit cleanup_mtd(void) 2418 { 2419 debugfs_remove_recursive(dfs_dir_mtd); 2420 cleanup_mtdchar(); 2421 if (proc_mtd) 2422 remove_proc_entry("mtd", NULL); 2423 class_unregister(&mtd_class); 2424 bdi_unregister(mtd_bdi); 2425 bdi_put(mtd_bdi); 2426 idr_destroy(&mtd_idr); 2427 } 2428 2429 module_init(init_mtd); 2430 module_exit(cleanup_mtd); 2431 2432 MODULE_LICENSE("GPL"); 2433 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2434 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2435