1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/proc_fs.h> 36 #include <linux/idr.h> 37 #include <linux/backing-dev.h> 38 #include <linux/gfp.h> 39 #include <linux/slab.h> 40 #include <linux/reboot.h> 41 #include <linux/kconfig.h> 42 43 #include <linux/mtd/mtd.h> 44 #include <linux/mtd/partitions.h> 45 46 #include "mtdcore.h" 47 48 static struct backing_dev_info mtd_bdi = { 49 }; 50 51 #ifdef CONFIG_PM_SLEEP 52 53 static int mtd_cls_suspend(struct device *dev) 54 { 55 struct mtd_info *mtd = dev_get_drvdata(dev); 56 57 return mtd ? mtd_suspend(mtd) : 0; 58 } 59 60 static int mtd_cls_resume(struct device *dev) 61 { 62 struct mtd_info *mtd = dev_get_drvdata(dev); 63 64 if (mtd) 65 mtd_resume(mtd); 66 return 0; 67 } 68 69 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 70 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 71 #else 72 #define MTD_CLS_PM_OPS NULL 73 #endif 74 75 static struct class mtd_class = { 76 .name = "mtd", 77 .owner = THIS_MODULE, 78 .pm = MTD_CLS_PM_OPS, 79 }; 80 81 static DEFINE_IDR(mtd_idr); 82 83 /* These are exported solely for the purpose of mtd_blkdevs.c. You 84 should not use them for _anything_ else */ 85 DEFINE_MUTEX(mtd_table_mutex); 86 EXPORT_SYMBOL_GPL(mtd_table_mutex); 87 88 struct mtd_info *__mtd_next_device(int i) 89 { 90 return idr_get_next(&mtd_idr, &i); 91 } 92 EXPORT_SYMBOL_GPL(__mtd_next_device); 93 94 static LIST_HEAD(mtd_notifiers); 95 96 97 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 98 99 /* REVISIT once MTD uses the driver model better, whoever allocates 100 * the mtd_info will probably want to use the release() hook... 101 */ 102 static void mtd_release(struct device *dev) 103 { 104 struct mtd_info *mtd = dev_get_drvdata(dev); 105 dev_t index = MTD_DEVT(mtd->index); 106 107 /* remove /dev/mtdXro node */ 108 device_destroy(&mtd_class, index + 1); 109 } 110 111 static ssize_t mtd_type_show(struct device *dev, 112 struct device_attribute *attr, char *buf) 113 { 114 struct mtd_info *mtd = dev_get_drvdata(dev); 115 char *type; 116 117 switch (mtd->type) { 118 case MTD_ABSENT: 119 type = "absent"; 120 break; 121 case MTD_RAM: 122 type = "ram"; 123 break; 124 case MTD_ROM: 125 type = "rom"; 126 break; 127 case MTD_NORFLASH: 128 type = "nor"; 129 break; 130 case MTD_NANDFLASH: 131 type = "nand"; 132 break; 133 case MTD_DATAFLASH: 134 type = "dataflash"; 135 break; 136 case MTD_UBIVOLUME: 137 type = "ubi"; 138 break; 139 case MTD_MLCNANDFLASH: 140 type = "mlc-nand"; 141 break; 142 default: 143 type = "unknown"; 144 } 145 146 return snprintf(buf, PAGE_SIZE, "%s\n", type); 147 } 148 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 149 150 static ssize_t mtd_flags_show(struct device *dev, 151 struct device_attribute *attr, char *buf) 152 { 153 struct mtd_info *mtd = dev_get_drvdata(dev); 154 155 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 156 157 } 158 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 159 160 static ssize_t mtd_size_show(struct device *dev, 161 struct device_attribute *attr, char *buf) 162 { 163 struct mtd_info *mtd = dev_get_drvdata(dev); 164 165 return snprintf(buf, PAGE_SIZE, "%llu\n", 166 (unsigned long long)mtd->size); 167 168 } 169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 170 171 static ssize_t mtd_erasesize_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 struct mtd_info *mtd = dev_get_drvdata(dev); 175 176 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 177 178 } 179 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 180 181 static ssize_t mtd_writesize_show(struct device *dev, 182 struct device_attribute *attr, char *buf) 183 { 184 struct mtd_info *mtd = dev_get_drvdata(dev); 185 186 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 187 188 } 189 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 190 191 static ssize_t mtd_subpagesize_show(struct device *dev, 192 struct device_attribute *attr, char *buf) 193 { 194 struct mtd_info *mtd = dev_get_drvdata(dev); 195 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 196 197 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 198 199 } 200 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 201 202 static ssize_t mtd_oobsize_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct mtd_info *mtd = dev_get_drvdata(dev); 206 207 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 208 209 } 210 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 211 212 static ssize_t mtd_numeraseregions_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 struct mtd_info *mtd = dev_get_drvdata(dev); 216 217 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 218 219 } 220 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 221 NULL); 222 223 static ssize_t mtd_name_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 struct mtd_info *mtd = dev_get_drvdata(dev); 227 228 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 229 230 } 231 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 232 233 static ssize_t mtd_ecc_strength_show(struct device *dev, 234 struct device_attribute *attr, char *buf) 235 { 236 struct mtd_info *mtd = dev_get_drvdata(dev); 237 238 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 239 } 240 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 241 242 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 243 struct device_attribute *attr, 244 char *buf) 245 { 246 struct mtd_info *mtd = dev_get_drvdata(dev); 247 248 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 249 } 250 251 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 252 struct device_attribute *attr, 253 const char *buf, size_t count) 254 { 255 struct mtd_info *mtd = dev_get_drvdata(dev); 256 unsigned int bitflip_threshold; 257 int retval; 258 259 retval = kstrtouint(buf, 0, &bitflip_threshold); 260 if (retval) 261 return retval; 262 263 mtd->bitflip_threshold = bitflip_threshold; 264 return count; 265 } 266 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 267 mtd_bitflip_threshold_show, 268 mtd_bitflip_threshold_store); 269 270 static ssize_t mtd_ecc_step_size_show(struct device *dev, 271 struct device_attribute *attr, char *buf) 272 { 273 struct mtd_info *mtd = dev_get_drvdata(dev); 274 275 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 276 277 } 278 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 279 280 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 281 struct device_attribute *attr, char *buf) 282 { 283 struct mtd_info *mtd = dev_get_drvdata(dev); 284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 285 286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 287 } 288 static DEVICE_ATTR(corrected_bits, S_IRUGO, 289 mtd_ecc_stats_corrected_show, NULL); 290 291 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 296 297 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 298 } 299 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 300 301 static ssize_t mtd_badblocks_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 308 } 309 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 310 311 static ssize_t mtd_bbtblocks_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct mtd_info *mtd = dev_get_drvdata(dev); 315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 316 317 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 318 } 319 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 320 321 static struct attribute *mtd_attrs[] = { 322 &dev_attr_type.attr, 323 &dev_attr_flags.attr, 324 &dev_attr_size.attr, 325 &dev_attr_erasesize.attr, 326 &dev_attr_writesize.attr, 327 &dev_attr_subpagesize.attr, 328 &dev_attr_oobsize.attr, 329 &dev_attr_numeraseregions.attr, 330 &dev_attr_name.attr, 331 &dev_attr_ecc_strength.attr, 332 &dev_attr_ecc_step_size.attr, 333 &dev_attr_corrected_bits.attr, 334 &dev_attr_ecc_failures.attr, 335 &dev_attr_bad_blocks.attr, 336 &dev_attr_bbt_blocks.attr, 337 &dev_attr_bitflip_threshold.attr, 338 NULL, 339 }; 340 ATTRIBUTE_GROUPS(mtd); 341 342 static struct device_type mtd_devtype = { 343 .name = "mtd", 344 .groups = mtd_groups, 345 .release = mtd_release, 346 }; 347 348 #ifndef CONFIG_MMU 349 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 350 { 351 switch (mtd->type) { 352 case MTD_RAM: 353 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 354 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 355 case MTD_ROM: 356 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 357 NOMMU_MAP_READ; 358 default: 359 return NOMMU_MAP_COPY; 360 } 361 } 362 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 363 #endif 364 365 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 366 void *cmd) 367 { 368 struct mtd_info *mtd; 369 370 mtd = container_of(n, struct mtd_info, reboot_notifier); 371 mtd->_reboot(mtd); 372 373 return NOTIFY_DONE; 374 } 375 376 /** 377 * add_mtd_device - register an MTD device 378 * @mtd: pointer to new MTD device info structure 379 * 380 * Add a device to the list of MTD devices present in the system, and 381 * notify each currently active MTD 'user' of its arrival. Returns 382 * zero on success or non-zero on failure. 383 */ 384 385 int add_mtd_device(struct mtd_info *mtd) 386 { 387 struct mtd_notifier *not; 388 int i, error; 389 390 mtd->backing_dev_info = &mtd_bdi; 391 392 BUG_ON(mtd->writesize == 0); 393 mutex_lock(&mtd_table_mutex); 394 395 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 396 if (i < 0) { 397 error = i; 398 goto fail_locked; 399 } 400 401 mtd->index = i; 402 mtd->usecount = 0; 403 404 /* default value if not set by driver */ 405 if (mtd->bitflip_threshold == 0) 406 mtd->bitflip_threshold = mtd->ecc_strength; 407 408 if (is_power_of_2(mtd->erasesize)) 409 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 410 else 411 mtd->erasesize_shift = 0; 412 413 if (is_power_of_2(mtd->writesize)) 414 mtd->writesize_shift = ffs(mtd->writesize) - 1; 415 else 416 mtd->writesize_shift = 0; 417 418 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 419 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 420 421 if (mtd->dev.parent) { 422 if (!mtd->owner && mtd->dev.parent->driver) 423 mtd->owner = mtd->dev.parent->driver->owner; 424 if (!mtd->name) 425 mtd->name = dev_name(mtd->dev.parent); 426 } else { 427 pr_debug("mtd device won't show a device symlink in sysfs\n"); 428 } 429 430 /* Some chips always power up locked. Unlock them now */ 431 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 432 error = mtd_unlock(mtd, 0, mtd->size); 433 if (error && error != -EOPNOTSUPP) 434 printk(KERN_WARNING 435 "%s: unlock failed, writes may not work\n", 436 mtd->name); 437 /* Ignore unlock failures? */ 438 error = 0; 439 } 440 441 /* Caller should have set dev.parent to match the 442 * physical device, if appropriate. 443 */ 444 mtd->dev.type = &mtd_devtype; 445 mtd->dev.class = &mtd_class; 446 mtd->dev.devt = MTD_DEVT(i); 447 dev_set_name(&mtd->dev, "mtd%d", i); 448 dev_set_drvdata(&mtd->dev, mtd); 449 error = device_register(&mtd->dev); 450 if (error) 451 goto fail_added; 452 453 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 454 "mtd%dro", i); 455 456 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 457 /* No need to get a refcount on the module containing 458 the notifier, since we hold the mtd_table_mutex */ 459 list_for_each_entry(not, &mtd_notifiers, list) 460 not->add(mtd); 461 462 mutex_unlock(&mtd_table_mutex); 463 /* We _know_ we aren't being removed, because 464 our caller is still holding us here. So none 465 of this try_ nonsense, and no bitching about it 466 either. :) */ 467 __module_get(THIS_MODULE); 468 return 0; 469 470 fail_added: 471 idr_remove(&mtd_idr, i); 472 fail_locked: 473 mutex_unlock(&mtd_table_mutex); 474 return error; 475 } 476 477 /** 478 * del_mtd_device - unregister an MTD device 479 * @mtd: pointer to MTD device info structure 480 * 481 * Remove a device from the list of MTD devices present in the system, 482 * and notify each currently active MTD 'user' of its departure. 483 * Returns zero on success or 1 on failure, which currently will happen 484 * if the requested device does not appear to be present in the list. 485 */ 486 487 int del_mtd_device(struct mtd_info *mtd) 488 { 489 int ret; 490 struct mtd_notifier *not; 491 492 mutex_lock(&mtd_table_mutex); 493 494 if (idr_find(&mtd_idr, mtd->index) != mtd) { 495 ret = -ENODEV; 496 goto out_error; 497 } 498 499 /* No need to get a refcount on the module containing 500 the notifier, since we hold the mtd_table_mutex */ 501 list_for_each_entry(not, &mtd_notifiers, list) 502 not->remove(mtd); 503 504 if (mtd->usecount) { 505 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 506 mtd->index, mtd->name, mtd->usecount); 507 ret = -EBUSY; 508 } else { 509 device_unregister(&mtd->dev); 510 511 idr_remove(&mtd_idr, mtd->index); 512 513 module_put(THIS_MODULE); 514 ret = 0; 515 } 516 517 out_error: 518 mutex_unlock(&mtd_table_mutex); 519 return ret; 520 } 521 522 static int mtd_add_device_partitions(struct mtd_info *mtd, 523 struct mtd_partition *real_parts, 524 int nbparts) 525 { 526 int ret; 527 528 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 529 ret = add_mtd_device(mtd); 530 if (ret) 531 return ret; 532 } 533 534 if (nbparts > 0) { 535 ret = add_mtd_partitions(mtd, real_parts, nbparts); 536 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 537 del_mtd_device(mtd); 538 return ret; 539 } 540 541 return 0; 542 } 543 544 545 /** 546 * mtd_device_parse_register - parse partitions and register an MTD device. 547 * 548 * @mtd: the MTD device to register 549 * @types: the list of MTD partition probes to try, see 550 * 'parse_mtd_partitions()' for more information 551 * @parser_data: MTD partition parser-specific data 552 * @parts: fallback partition information to register, if parsing fails; 553 * only valid if %nr_parts > %0 554 * @nr_parts: the number of partitions in parts, if zero then the full 555 * MTD device is registered if no partition info is found 556 * 557 * This function aggregates MTD partitions parsing (done by 558 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 559 * basically follows the most common pattern found in many MTD drivers: 560 * 561 * * It first tries to probe partitions on MTD device @mtd using parsers 562 * specified in @types (if @types is %NULL, then the default list of parsers 563 * is used, see 'parse_mtd_partitions()' for more information). If none are 564 * found this functions tries to fallback to information specified in 565 * @parts/@nr_parts. 566 * * If any partitioning info was found, this function registers the found 567 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 568 * as a whole is registered first. 569 * * If no partitions were found this function just registers the MTD device 570 * @mtd and exits. 571 * 572 * Returns zero in case of success and a negative error code in case of failure. 573 */ 574 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 575 struct mtd_part_parser_data *parser_data, 576 const struct mtd_partition *parts, 577 int nr_parts) 578 { 579 int ret; 580 struct mtd_partition *real_parts = NULL; 581 582 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 583 if (ret <= 0 && nr_parts && parts) { 584 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 585 GFP_KERNEL); 586 if (!real_parts) 587 ret = -ENOMEM; 588 else 589 ret = nr_parts; 590 } 591 592 if (ret >= 0) 593 ret = mtd_add_device_partitions(mtd, real_parts, ret); 594 595 /* 596 * FIXME: some drivers unfortunately call this function more than once. 597 * So we have to check if we've already assigned the reboot notifier. 598 * 599 * Generally, we can make multiple calls work for most cases, but it 600 * does cause problems with parse_mtd_partitions() above (e.g., 601 * cmdlineparts will register partitions more than once). 602 */ 603 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 604 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 605 register_reboot_notifier(&mtd->reboot_notifier); 606 } 607 608 kfree(real_parts); 609 return ret; 610 } 611 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 612 613 /** 614 * mtd_device_unregister - unregister an existing MTD device. 615 * 616 * @master: the MTD device to unregister. This will unregister both the master 617 * and any partitions if registered. 618 */ 619 int mtd_device_unregister(struct mtd_info *master) 620 { 621 int err; 622 623 if (master->_reboot) 624 unregister_reboot_notifier(&master->reboot_notifier); 625 626 err = del_mtd_partitions(master); 627 if (err) 628 return err; 629 630 if (!device_is_registered(&master->dev)) 631 return 0; 632 633 return del_mtd_device(master); 634 } 635 EXPORT_SYMBOL_GPL(mtd_device_unregister); 636 637 /** 638 * register_mtd_user - register a 'user' of MTD devices. 639 * @new: pointer to notifier info structure 640 * 641 * Registers a pair of callbacks function to be called upon addition 642 * or removal of MTD devices. Causes the 'add' callback to be immediately 643 * invoked for each MTD device currently present in the system. 644 */ 645 void register_mtd_user (struct mtd_notifier *new) 646 { 647 struct mtd_info *mtd; 648 649 mutex_lock(&mtd_table_mutex); 650 651 list_add(&new->list, &mtd_notifiers); 652 653 __module_get(THIS_MODULE); 654 655 mtd_for_each_device(mtd) 656 new->add(mtd); 657 658 mutex_unlock(&mtd_table_mutex); 659 } 660 EXPORT_SYMBOL_GPL(register_mtd_user); 661 662 /** 663 * unregister_mtd_user - unregister a 'user' of MTD devices. 664 * @old: pointer to notifier info structure 665 * 666 * Removes a callback function pair from the list of 'users' to be 667 * notified upon addition or removal of MTD devices. Causes the 668 * 'remove' callback to be immediately invoked for each MTD device 669 * currently present in the system. 670 */ 671 int unregister_mtd_user (struct mtd_notifier *old) 672 { 673 struct mtd_info *mtd; 674 675 mutex_lock(&mtd_table_mutex); 676 677 module_put(THIS_MODULE); 678 679 mtd_for_each_device(mtd) 680 old->remove(mtd); 681 682 list_del(&old->list); 683 mutex_unlock(&mtd_table_mutex); 684 return 0; 685 } 686 EXPORT_SYMBOL_GPL(unregister_mtd_user); 687 688 /** 689 * get_mtd_device - obtain a validated handle for an MTD device 690 * @mtd: last known address of the required MTD device 691 * @num: internal device number of the required MTD device 692 * 693 * Given a number and NULL address, return the num'th entry in the device 694 * table, if any. Given an address and num == -1, search the device table 695 * for a device with that address and return if it's still present. Given 696 * both, return the num'th driver only if its address matches. Return 697 * error code if not. 698 */ 699 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 700 { 701 struct mtd_info *ret = NULL, *other; 702 int err = -ENODEV; 703 704 mutex_lock(&mtd_table_mutex); 705 706 if (num == -1) { 707 mtd_for_each_device(other) { 708 if (other == mtd) { 709 ret = mtd; 710 break; 711 } 712 } 713 } else if (num >= 0) { 714 ret = idr_find(&mtd_idr, num); 715 if (mtd && mtd != ret) 716 ret = NULL; 717 } 718 719 if (!ret) { 720 ret = ERR_PTR(err); 721 goto out; 722 } 723 724 err = __get_mtd_device(ret); 725 if (err) 726 ret = ERR_PTR(err); 727 out: 728 mutex_unlock(&mtd_table_mutex); 729 return ret; 730 } 731 EXPORT_SYMBOL_GPL(get_mtd_device); 732 733 734 int __get_mtd_device(struct mtd_info *mtd) 735 { 736 int err; 737 738 if (!try_module_get(mtd->owner)) 739 return -ENODEV; 740 741 if (mtd->_get_device) { 742 err = mtd->_get_device(mtd); 743 744 if (err) { 745 module_put(mtd->owner); 746 return err; 747 } 748 } 749 mtd->usecount++; 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(__get_mtd_device); 753 754 /** 755 * get_mtd_device_nm - obtain a validated handle for an MTD device by 756 * device name 757 * @name: MTD device name to open 758 * 759 * This function returns MTD device description structure in case of 760 * success and an error code in case of failure. 761 */ 762 struct mtd_info *get_mtd_device_nm(const char *name) 763 { 764 int err = -ENODEV; 765 struct mtd_info *mtd = NULL, *other; 766 767 mutex_lock(&mtd_table_mutex); 768 769 mtd_for_each_device(other) { 770 if (!strcmp(name, other->name)) { 771 mtd = other; 772 break; 773 } 774 } 775 776 if (!mtd) 777 goto out_unlock; 778 779 err = __get_mtd_device(mtd); 780 if (err) 781 goto out_unlock; 782 783 mutex_unlock(&mtd_table_mutex); 784 return mtd; 785 786 out_unlock: 787 mutex_unlock(&mtd_table_mutex); 788 return ERR_PTR(err); 789 } 790 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 791 792 void put_mtd_device(struct mtd_info *mtd) 793 { 794 mutex_lock(&mtd_table_mutex); 795 __put_mtd_device(mtd); 796 mutex_unlock(&mtd_table_mutex); 797 798 } 799 EXPORT_SYMBOL_GPL(put_mtd_device); 800 801 void __put_mtd_device(struct mtd_info *mtd) 802 { 803 --mtd->usecount; 804 BUG_ON(mtd->usecount < 0); 805 806 if (mtd->_put_device) 807 mtd->_put_device(mtd); 808 809 module_put(mtd->owner); 810 } 811 EXPORT_SYMBOL_GPL(__put_mtd_device); 812 813 /* 814 * Erase is an asynchronous operation. Device drivers are supposed 815 * to call instr->callback() whenever the operation completes, even 816 * if it completes with a failure. 817 * Callers are supposed to pass a callback function and wait for it 818 * to be called before writing to the block. 819 */ 820 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 821 { 822 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 823 return -EINVAL; 824 if (!(mtd->flags & MTD_WRITEABLE)) 825 return -EROFS; 826 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 827 if (!instr->len) { 828 instr->state = MTD_ERASE_DONE; 829 mtd_erase_callback(instr); 830 return 0; 831 } 832 return mtd->_erase(mtd, instr); 833 } 834 EXPORT_SYMBOL_GPL(mtd_erase); 835 836 /* 837 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 838 */ 839 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 840 void **virt, resource_size_t *phys) 841 { 842 *retlen = 0; 843 *virt = NULL; 844 if (phys) 845 *phys = 0; 846 if (!mtd->_point) 847 return -EOPNOTSUPP; 848 if (from < 0 || from >= mtd->size || len > mtd->size - from) 849 return -EINVAL; 850 if (!len) 851 return 0; 852 return mtd->_point(mtd, from, len, retlen, virt, phys); 853 } 854 EXPORT_SYMBOL_GPL(mtd_point); 855 856 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 857 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 858 { 859 if (!mtd->_point) 860 return -EOPNOTSUPP; 861 if (from < 0 || from >= mtd->size || len > mtd->size - from) 862 return -EINVAL; 863 if (!len) 864 return 0; 865 return mtd->_unpoint(mtd, from, len); 866 } 867 EXPORT_SYMBOL_GPL(mtd_unpoint); 868 869 /* 870 * Allow NOMMU mmap() to directly map the device (if not NULL) 871 * - return the address to which the offset maps 872 * - return -ENOSYS to indicate refusal to do the mapping 873 */ 874 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 875 unsigned long offset, unsigned long flags) 876 { 877 if (!mtd->_get_unmapped_area) 878 return -EOPNOTSUPP; 879 if (offset >= mtd->size || len > mtd->size - offset) 880 return -EINVAL; 881 return mtd->_get_unmapped_area(mtd, len, offset, flags); 882 } 883 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 884 885 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 886 u_char *buf) 887 { 888 int ret_code; 889 *retlen = 0; 890 if (from < 0 || from >= mtd->size || len > mtd->size - from) 891 return -EINVAL; 892 if (!len) 893 return 0; 894 895 /* 896 * In the absence of an error, drivers return a non-negative integer 897 * representing the maximum number of bitflips that were corrected on 898 * any one ecc region (if applicable; zero otherwise). 899 */ 900 ret_code = mtd->_read(mtd, from, len, retlen, buf); 901 if (unlikely(ret_code < 0)) 902 return ret_code; 903 if (mtd->ecc_strength == 0) 904 return 0; /* device lacks ecc */ 905 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 906 } 907 EXPORT_SYMBOL_GPL(mtd_read); 908 909 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 910 const u_char *buf) 911 { 912 *retlen = 0; 913 if (to < 0 || to >= mtd->size || len > mtd->size - to) 914 return -EINVAL; 915 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 916 return -EROFS; 917 if (!len) 918 return 0; 919 return mtd->_write(mtd, to, len, retlen, buf); 920 } 921 EXPORT_SYMBOL_GPL(mtd_write); 922 923 /* 924 * In blackbox flight recorder like scenarios we want to make successful writes 925 * in interrupt context. panic_write() is only intended to be called when its 926 * known the kernel is about to panic and we need the write to succeed. Since 927 * the kernel is not going to be running for much longer, this function can 928 * break locks and delay to ensure the write succeeds (but not sleep). 929 */ 930 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 931 const u_char *buf) 932 { 933 *retlen = 0; 934 if (!mtd->_panic_write) 935 return -EOPNOTSUPP; 936 if (to < 0 || to >= mtd->size || len > mtd->size - to) 937 return -EINVAL; 938 if (!(mtd->flags & MTD_WRITEABLE)) 939 return -EROFS; 940 if (!len) 941 return 0; 942 return mtd->_panic_write(mtd, to, len, retlen, buf); 943 } 944 EXPORT_SYMBOL_GPL(mtd_panic_write); 945 946 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 947 { 948 int ret_code; 949 ops->retlen = ops->oobretlen = 0; 950 if (!mtd->_read_oob) 951 return -EOPNOTSUPP; 952 /* 953 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 954 * similar to mtd->_read(), returning a non-negative integer 955 * representing max bitflips. In other cases, mtd->_read_oob() may 956 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 957 */ 958 ret_code = mtd->_read_oob(mtd, from, ops); 959 if (unlikely(ret_code < 0)) 960 return ret_code; 961 if (mtd->ecc_strength == 0) 962 return 0; /* device lacks ecc */ 963 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 964 } 965 EXPORT_SYMBOL_GPL(mtd_read_oob); 966 967 /* 968 * Method to access the protection register area, present in some flash 969 * devices. The user data is one time programmable but the factory data is read 970 * only. 971 */ 972 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 973 struct otp_info *buf) 974 { 975 if (!mtd->_get_fact_prot_info) 976 return -EOPNOTSUPP; 977 if (!len) 978 return 0; 979 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 980 } 981 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 982 983 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 984 size_t *retlen, u_char *buf) 985 { 986 *retlen = 0; 987 if (!mtd->_read_fact_prot_reg) 988 return -EOPNOTSUPP; 989 if (!len) 990 return 0; 991 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 992 } 993 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 994 995 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 996 struct otp_info *buf) 997 { 998 if (!mtd->_get_user_prot_info) 999 return -EOPNOTSUPP; 1000 if (!len) 1001 return 0; 1002 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 1003 } 1004 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 1005 1006 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 1007 size_t *retlen, u_char *buf) 1008 { 1009 *retlen = 0; 1010 if (!mtd->_read_user_prot_reg) 1011 return -EOPNOTSUPP; 1012 if (!len) 1013 return 0; 1014 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 1015 } 1016 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1017 1018 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1019 size_t *retlen, u_char *buf) 1020 { 1021 int ret; 1022 1023 *retlen = 0; 1024 if (!mtd->_write_user_prot_reg) 1025 return -EOPNOTSUPP; 1026 if (!len) 1027 return 0; 1028 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1029 if (ret) 1030 return ret; 1031 1032 /* 1033 * If no data could be written at all, we are out of memory and 1034 * must return -ENOSPC. 1035 */ 1036 return (*retlen) ? 0 : -ENOSPC; 1037 } 1038 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1039 1040 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1041 { 1042 if (!mtd->_lock_user_prot_reg) 1043 return -EOPNOTSUPP; 1044 if (!len) 1045 return 0; 1046 return mtd->_lock_user_prot_reg(mtd, from, len); 1047 } 1048 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1049 1050 /* Chip-supported device locking */ 1051 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1052 { 1053 if (!mtd->_lock) 1054 return -EOPNOTSUPP; 1055 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1056 return -EINVAL; 1057 if (!len) 1058 return 0; 1059 return mtd->_lock(mtd, ofs, len); 1060 } 1061 EXPORT_SYMBOL_GPL(mtd_lock); 1062 1063 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1064 { 1065 if (!mtd->_unlock) 1066 return -EOPNOTSUPP; 1067 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1068 return -EINVAL; 1069 if (!len) 1070 return 0; 1071 return mtd->_unlock(mtd, ofs, len); 1072 } 1073 EXPORT_SYMBOL_GPL(mtd_unlock); 1074 1075 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1076 { 1077 if (!mtd->_is_locked) 1078 return -EOPNOTSUPP; 1079 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1080 return -EINVAL; 1081 if (!len) 1082 return 0; 1083 return mtd->_is_locked(mtd, ofs, len); 1084 } 1085 EXPORT_SYMBOL_GPL(mtd_is_locked); 1086 1087 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1088 { 1089 if (ofs < 0 || ofs >= mtd->size) 1090 return -EINVAL; 1091 if (!mtd->_block_isreserved) 1092 return 0; 1093 return mtd->_block_isreserved(mtd, ofs); 1094 } 1095 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1096 1097 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1098 { 1099 if (ofs < 0 || ofs >= mtd->size) 1100 return -EINVAL; 1101 if (!mtd->_block_isbad) 1102 return 0; 1103 return mtd->_block_isbad(mtd, ofs); 1104 } 1105 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1106 1107 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1108 { 1109 if (!mtd->_block_markbad) 1110 return -EOPNOTSUPP; 1111 if (ofs < 0 || ofs >= mtd->size) 1112 return -EINVAL; 1113 if (!(mtd->flags & MTD_WRITEABLE)) 1114 return -EROFS; 1115 return mtd->_block_markbad(mtd, ofs); 1116 } 1117 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1118 1119 /* 1120 * default_mtd_writev - the default writev method 1121 * @mtd: mtd device description object pointer 1122 * @vecs: the vectors to write 1123 * @count: count of vectors in @vecs 1124 * @to: the MTD device offset to write to 1125 * @retlen: on exit contains the count of bytes written to the MTD device. 1126 * 1127 * This function returns zero in case of success and a negative error code in 1128 * case of failure. 1129 */ 1130 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1131 unsigned long count, loff_t to, size_t *retlen) 1132 { 1133 unsigned long i; 1134 size_t totlen = 0, thislen; 1135 int ret = 0; 1136 1137 for (i = 0; i < count; i++) { 1138 if (!vecs[i].iov_len) 1139 continue; 1140 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1141 vecs[i].iov_base); 1142 totlen += thislen; 1143 if (ret || thislen != vecs[i].iov_len) 1144 break; 1145 to += vecs[i].iov_len; 1146 } 1147 *retlen = totlen; 1148 return ret; 1149 } 1150 1151 /* 1152 * mtd_writev - the vector-based MTD write method 1153 * @mtd: mtd device description object pointer 1154 * @vecs: the vectors to write 1155 * @count: count of vectors in @vecs 1156 * @to: the MTD device offset to write to 1157 * @retlen: on exit contains the count of bytes written to the MTD device. 1158 * 1159 * This function returns zero in case of success and a negative error code in 1160 * case of failure. 1161 */ 1162 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1163 unsigned long count, loff_t to, size_t *retlen) 1164 { 1165 *retlen = 0; 1166 if (!(mtd->flags & MTD_WRITEABLE)) 1167 return -EROFS; 1168 if (!mtd->_writev) 1169 return default_mtd_writev(mtd, vecs, count, to, retlen); 1170 return mtd->_writev(mtd, vecs, count, to, retlen); 1171 } 1172 EXPORT_SYMBOL_GPL(mtd_writev); 1173 1174 /** 1175 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1176 * @mtd: mtd device description object pointer 1177 * @size: a pointer to the ideal or maximum size of the allocation, points 1178 * to the actual allocation size on success. 1179 * 1180 * This routine attempts to allocate a contiguous kernel buffer up to 1181 * the specified size, backing off the size of the request exponentially 1182 * until the request succeeds or until the allocation size falls below 1183 * the system page size. This attempts to make sure it does not adversely 1184 * impact system performance, so when allocating more than one page, we 1185 * ask the memory allocator to avoid re-trying, swapping, writing back 1186 * or performing I/O. 1187 * 1188 * Note, this function also makes sure that the allocated buffer is aligned to 1189 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1190 * 1191 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1192 * to handle smaller (i.e. degraded) buffer allocations under low- or 1193 * fragmented-memory situations where such reduced allocations, from a 1194 * requested ideal, are allowed. 1195 * 1196 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1197 */ 1198 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1199 { 1200 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1201 __GFP_NORETRY | __GFP_NO_KSWAPD; 1202 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1203 void *kbuf; 1204 1205 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1206 1207 while (*size > min_alloc) { 1208 kbuf = kmalloc(*size, flags); 1209 if (kbuf) 1210 return kbuf; 1211 1212 *size >>= 1; 1213 *size = ALIGN(*size, mtd->writesize); 1214 } 1215 1216 /* 1217 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1218 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1219 */ 1220 return kmalloc(*size, GFP_KERNEL); 1221 } 1222 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1223 1224 #ifdef CONFIG_PROC_FS 1225 1226 /*====================================================================*/ 1227 /* Support for /proc/mtd */ 1228 1229 static int mtd_proc_show(struct seq_file *m, void *v) 1230 { 1231 struct mtd_info *mtd; 1232 1233 seq_puts(m, "dev: size erasesize name\n"); 1234 mutex_lock(&mtd_table_mutex); 1235 mtd_for_each_device(mtd) { 1236 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1237 mtd->index, (unsigned long long)mtd->size, 1238 mtd->erasesize, mtd->name); 1239 } 1240 mutex_unlock(&mtd_table_mutex); 1241 return 0; 1242 } 1243 1244 static int mtd_proc_open(struct inode *inode, struct file *file) 1245 { 1246 return single_open(file, mtd_proc_show, NULL); 1247 } 1248 1249 static const struct file_operations mtd_proc_ops = { 1250 .open = mtd_proc_open, 1251 .read = seq_read, 1252 .llseek = seq_lseek, 1253 .release = single_release, 1254 }; 1255 #endif /* CONFIG_PROC_FS */ 1256 1257 /*====================================================================*/ 1258 /* Init code */ 1259 1260 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1261 { 1262 int ret; 1263 1264 ret = bdi_init(bdi); 1265 if (!ret) 1266 ret = bdi_register(bdi, NULL, "%s", name); 1267 1268 if (ret) 1269 bdi_destroy(bdi); 1270 1271 return ret; 1272 } 1273 1274 static struct proc_dir_entry *proc_mtd; 1275 1276 static int __init init_mtd(void) 1277 { 1278 int ret; 1279 1280 ret = class_register(&mtd_class); 1281 if (ret) 1282 goto err_reg; 1283 1284 ret = mtd_bdi_init(&mtd_bdi, "mtd"); 1285 if (ret) 1286 goto err_bdi; 1287 1288 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1289 1290 ret = init_mtdchar(); 1291 if (ret) 1292 goto out_procfs; 1293 1294 return 0; 1295 1296 out_procfs: 1297 if (proc_mtd) 1298 remove_proc_entry("mtd", NULL); 1299 err_bdi: 1300 class_unregister(&mtd_class); 1301 err_reg: 1302 pr_err("Error registering mtd class or bdi: %d\n", ret); 1303 return ret; 1304 } 1305 1306 static void __exit cleanup_mtd(void) 1307 { 1308 cleanup_mtdchar(); 1309 if (proc_mtd) 1310 remove_proc_entry("mtd", NULL); 1311 class_unregister(&mtd_class); 1312 bdi_destroy(&mtd_bdi); 1313 idr_destroy(&mtd_idr); 1314 } 1315 1316 module_init(init_mtd); 1317 module_exit(cleanup_mtd); 1318 1319 MODULE_LICENSE("GPL"); 1320 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1321 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1322