1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 #include <linux/leds.h> 30 #include <linux/debugfs.h> 31 #include <linux/nvmem-provider.h> 32 #include <linux/root_dev.h> 33 34 #include <linux/mtd/mtd.h> 35 #include <linux/mtd/partitions.h> 36 37 #include "mtdcore.h" 38 39 struct backing_dev_info *mtd_bdi; 40 41 #ifdef CONFIG_PM_SLEEP 42 43 static int mtd_cls_suspend(struct device *dev) 44 { 45 struct mtd_info *mtd = dev_get_drvdata(dev); 46 47 return mtd ? mtd_suspend(mtd) : 0; 48 } 49 50 static int mtd_cls_resume(struct device *dev) 51 { 52 struct mtd_info *mtd = dev_get_drvdata(dev); 53 54 if (mtd) 55 mtd_resume(mtd); 56 return 0; 57 } 58 59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 61 #else 62 #define MTD_CLS_PM_OPS NULL 63 #endif 64 65 static struct class mtd_class = { 66 .name = "mtd", 67 .pm = MTD_CLS_PM_OPS, 68 }; 69 70 static DEFINE_IDR(mtd_idr); 71 72 /* These are exported solely for the purpose of mtd_blkdevs.c. You 73 should not use them for _anything_ else */ 74 DEFINE_MUTEX(mtd_table_mutex); 75 EXPORT_SYMBOL_GPL(mtd_table_mutex); 76 77 struct mtd_info *__mtd_next_device(int i) 78 { 79 return idr_get_next(&mtd_idr, &i); 80 } 81 EXPORT_SYMBOL_GPL(__mtd_next_device); 82 83 static LIST_HEAD(mtd_notifiers); 84 85 86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 87 88 /* REVISIT once MTD uses the driver model better, whoever allocates 89 * the mtd_info will probably want to use the release() hook... 90 */ 91 static void mtd_release(struct device *dev) 92 { 93 struct mtd_info *mtd = dev_get_drvdata(dev); 94 dev_t index = MTD_DEVT(mtd->index); 95 96 idr_remove(&mtd_idr, mtd->index); 97 of_node_put(mtd_get_of_node(mtd)); 98 99 if (mtd_is_partition(mtd)) 100 release_mtd_partition(mtd); 101 102 /* remove /dev/mtdXro node */ 103 device_destroy(&mtd_class, index + 1); 104 } 105 106 static void mtd_device_release(struct kref *kref) 107 { 108 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt); 109 bool is_partition = mtd_is_partition(mtd); 110 111 debugfs_remove_recursive(mtd->dbg.dfs_dir); 112 113 /* Try to remove the NVMEM provider */ 114 nvmem_unregister(mtd->nvmem); 115 116 device_unregister(&mtd->dev); 117 118 /* 119 * Clear dev so mtd can be safely re-registered later if desired. 120 * Should not be done for partition, 121 * as it was already destroyed in device_unregister(). 122 */ 123 if (!is_partition) 124 memset(&mtd->dev, 0, sizeof(mtd->dev)); 125 126 module_put(THIS_MODULE); 127 } 128 129 #define MTD_DEVICE_ATTR_RO(name) \ 130 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 131 132 #define MTD_DEVICE_ATTR_RW(name) \ 133 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 134 135 static ssize_t mtd_type_show(struct device *dev, 136 struct device_attribute *attr, char *buf) 137 { 138 struct mtd_info *mtd = dev_get_drvdata(dev); 139 char *type; 140 141 switch (mtd->type) { 142 case MTD_ABSENT: 143 type = "absent"; 144 break; 145 case MTD_RAM: 146 type = "ram"; 147 break; 148 case MTD_ROM: 149 type = "rom"; 150 break; 151 case MTD_NORFLASH: 152 type = "nor"; 153 break; 154 case MTD_NANDFLASH: 155 type = "nand"; 156 break; 157 case MTD_DATAFLASH: 158 type = "dataflash"; 159 break; 160 case MTD_UBIVOLUME: 161 type = "ubi"; 162 break; 163 case MTD_MLCNANDFLASH: 164 type = "mlc-nand"; 165 break; 166 default: 167 type = "unknown"; 168 } 169 170 return sysfs_emit(buf, "%s\n", type); 171 } 172 MTD_DEVICE_ATTR_RO(type); 173 174 static ssize_t mtd_flags_show(struct device *dev, 175 struct device_attribute *attr, char *buf) 176 { 177 struct mtd_info *mtd = dev_get_drvdata(dev); 178 179 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 180 } 181 MTD_DEVICE_ATTR_RO(flags); 182 183 static ssize_t mtd_size_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct mtd_info *mtd = dev_get_drvdata(dev); 187 188 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 189 } 190 MTD_DEVICE_ATTR_RO(size); 191 192 static ssize_t mtd_erasesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 197 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 198 } 199 MTD_DEVICE_ATTR_RO(erasesize); 200 201 static ssize_t mtd_writesize_show(struct device *dev, 202 struct device_attribute *attr, char *buf) 203 { 204 struct mtd_info *mtd = dev_get_drvdata(dev); 205 206 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 207 } 208 MTD_DEVICE_ATTR_RO(writesize); 209 210 static ssize_t mtd_subpagesize_show(struct device *dev, 211 struct device_attribute *attr, char *buf) 212 { 213 struct mtd_info *mtd = dev_get_drvdata(dev); 214 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 215 216 return sysfs_emit(buf, "%u\n", subpagesize); 217 } 218 MTD_DEVICE_ATTR_RO(subpagesize); 219 220 static ssize_t mtd_oobsize_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct mtd_info *mtd = dev_get_drvdata(dev); 224 225 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 226 } 227 MTD_DEVICE_ATTR_RO(oobsize); 228 229 static ssize_t mtd_oobavail_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct mtd_info *mtd = dev_get_drvdata(dev); 233 234 return sysfs_emit(buf, "%u\n", mtd->oobavail); 235 } 236 MTD_DEVICE_ATTR_RO(oobavail); 237 238 static ssize_t mtd_numeraseregions_show(struct device *dev, 239 struct device_attribute *attr, char *buf) 240 { 241 struct mtd_info *mtd = dev_get_drvdata(dev); 242 243 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 244 } 245 MTD_DEVICE_ATTR_RO(numeraseregions); 246 247 static ssize_t mtd_name_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct mtd_info *mtd = dev_get_drvdata(dev); 251 252 return sysfs_emit(buf, "%s\n", mtd->name); 253 } 254 MTD_DEVICE_ATTR_RO(name); 255 256 static ssize_t mtd_ecc_strength_show(struct device *dev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct mtd_info *mtd = dev_get_drvdata(dev); 260 261 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 262 } 263 MTD_DEVICE_ATTR_RO(ecc_strength); 264 265 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 266 struct device_attribute *attr, 267 char *buf) 268 { 269 struct mtd_info *mtd = dev_get_drvdata(dev); 270 271 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 272 } 273 274 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 275 struct device_attribute *attr, 276 const char *buf, size_t count) 277 { 278 struct mtd_info *mtd = dev_get_drvdata(dev); 279 unsigned int bitflip_threshold; 280 int retval; 281 282 retval = kstrtouint(buf, 0, &bitflip_threshold); 283 if (retval) 284 return retval; 285 286 mtd->bitflip_threshold = bitflip_threshold; 287 return count; 288 } 289 MTD_DEVICE_ATTR_RW(bitflip_threshold); 290 291 static ssize_t mtd_ecc_step_size_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 296 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 297 298 } 299 MTD_DEVICE_ATTR_RO(ecc_step_size); 300 301 static ssize_t mtd_corrected_bits_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 308 } 309 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 310 311 static ssize_t mtd_ecc_failures_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct mtd_info *mtd = dev_get_drvdata(dev); 315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 316 317 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 318 } 319 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 320 321 static ssize_t mtd_bad_blocks_show(struct device *dev, 322 struct device_attribute *attr, char *buf) 323 { 324 struct mtd_info *mtd = dev_get_drvdata(dev); 325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 326 327 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 328 } 329 MTD_DEVICE_ATTR_RO(bad_blocks); 330 331 static ssize_t mtd_bbt_blocks_show(struct device *dev, 332 struct device_attribute *attr, char *buf) 333 { 334 struct mtd_info *mtd = dev_get_drvdata(dev); 335 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 336 337 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 338 } 339 MTD_DEVICE_ATTR_RO(bbt_blocks); 340 341 static struct attribute *mtd_attrs[] = { 342 &dev_attr_type.attr, 343 &dev_attr_flags.attr, 344 &dev_attr_size.attr, 345 &dev_attr_erasesize.attr, 346 &dev_attr_writesize.attr, 347 &dev_attr_subpagesize.attr, 348 &dev_attr_oobsize.attr, 349 &dev_attr_oobavail.attr, 350 &dev_attr_numeraseregions.attr, 351 &dev_attr_name.attr, 352 &dev_attr_ecc_strength.attr, 353 &dev_attr_ecc_step_size.attr, 354 &dev_attr_corrected_bits.attr, 355 &dev_attr_ecc_failures.attr, 356 &dev_attr_bad_blocks.attr, 357 &dev_attr_bbt_blocks.attr, 358 &dev_attr_bitflip_threshold.attr, 359 NULL, 360 }; 361 ATTRIBUTE_GROUPS(mtd); 362 363 static const struct device_type mtd_devtype = { 364 .name = "mtd", 365 .groups = mtd_groups, 366 .release = mtd_release, 367 }; 368 369 static bool mtd_expert_analysis_mode; 370 371 #ifdef CONFIG_DEBUG_FS 372 bool mtd_check_expert_analysis_mode(void) 373 { 374 const char *mtd_expert_analysis_warning = 375 "Bad block checks have been entirely disabled.\n" 376 "This is only reserved for post-mortem forensics and debug purposes.\n" 377 "Never enable this mode if you do not know what you are doing!\n"; 378 379 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 380 } 381 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 382 #endif 383 384 static struct dentry *dfs_dir_mtd; 385 386 static void mtd_debugfs_populate(struct mtd_info *mtd) 387 { 388 struct device *dev = &mtd->dev; 389 390 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 391 return; 392 393 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 394 } 395 396 #ifndef CONFIG_MMU 397 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 398 { 399 switch (mtd->type) { 400 case MTD_RAM: 401 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 402 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 403 case MTD_ROM: 404 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 405 NOMMU_MAP_READ; 406 default: 407 return NOMMU_MAP_COPY; 408 } 409 } 410 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 411 #endif 412 413 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 414 void *cmd) 415 { 416 struct mtd_info *mtd; 417 418 mtd = container_of(n, struct mtd_info, reboot_notifier); 419 mtd->_reboot(mtd); 420 421 return NOTIFY_DONE; 422 } 423 424 /** 425 * mtd_wunit_to_pairing_info - get pairing information of a wunit 426 * @mtd: pointer to new MTD device info structure 427 * @wunit: write unit we are interested in 428 * @info: returned pairing information 429 * 430 * Retrieve pairing information associated to the wunit. 431 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 432 * paired together, and where programming a page may influence the page it is 433 * paired with. 434 * The notion of page is replaced by the term wunit (write-unit) to stay 435 * consistent with the ->writesize field. 436 * 437 * The @wunit argument can be extracted from an absolute offset using 438 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 439 * to @wunit. 440 * 441 * From the pairing info the MTD user can find all the wunits paired with 442 * @wunit using the following loop: 443 * 444 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 445 * info.pair = i; 446 * mtd_pairing_info_to_wunit(mtd, &info); 447 * ... 448 * } 449 */ 450 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 451 struct mtd_pairing_info *info) 452 { 453 struct mtd_info *master = mtd_get_master(mtd); 454 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 455 456 if (wunit < 0 || wunit >= npairs) 457 return -EINVAL; 458 459 if (master->pairing && master->pairing->get_info) 460 return master->pairing->get_info(master, wunit, info); 461 462 info->group = 0; 463 info->pair = wunit; 464 465 return 0; 466 } 467 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 468 469 /** 470 * mtd_pairing_info_to_wunit - get wunit from pairing information 471 * @mtd: pointer to new MTD device info structure 472 * @info: pairing information struct 473 * 474 * Returns a positive number representing the wunit associated to the info 475 * struct, or a negative error code. 476 * 477 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 478 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 479 * doc). 480 * 481 * It can also be used to only program the first page of each pair (i.e. 482 * page attached to group 0), which allows one to use an MLC NAND in 483 * software-emulated SLC mode: 484 * 485 * info.group = 0; 486 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 487 * for (info.pair = 0; info.pair < npairs; info.pair++) { 488 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 489 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 490 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 491 * } 492 */ 493 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 494 const struct mtd_pairing_info *info) 495 { 496 struct mtd_info *master = mtd_get_master(mtd); 497 int ngroups = mtd_pairing_groups(master); 498 int npairs = mtd_wunit_per_eb(master) / ngroups; 499 500 if (!info || info->pair < 0 || info->pair >= npairs || 501 info->group < 0 || info->group >= ngroups) 502 return -EINVAL; 503 504 if (master->pairing && master->pairing->get_wunit) 505 return mtd->pairing->get_wunit(master, info); 506 507 return info->pair; 508 } 509 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 510 511 /** 512 * mtd_pairing_groups - get the number of pairing groups 513 * @mtd: pointer to new MTD device info structure 514 * 515 * Returns the number of pairing groups. 516 * 517 * This number is usually equal to the number of bits exposed by a single 518 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 519 * to iterate over all pages of a given pair. 520 */ 521 int mtd_pairing_groups(struct mtd_info *mtd) 522 { 523 struct mtd_info *master = mtd_get_master(mtd); 524 525 if (!master->pairing || !master->pairing->ngroups) 526 return 1; 527 528 return master->pairing->ngroups; 529 } 530 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 531 532 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 533 void *val, size_t bytes) 534 { 535 struct mtd_info *mtd = priv; 536 size_t retlen; 537 int err; 538 539 err = mtd_read(mtd, offset, bytes, &retlen, val); 540 if (err && err != -EUCLEAN) 541 return err; 542 543 return retlen == bytes ? 0 : -EIO; 544 } 545 546 static int mtd_nvmem_add(struct mtd_info *mtd) 547 { 548 struct device_node *node = mtd_get_of_node(mtd); 549 struct nvmem_config config = {}; 550 551 config.id = NVMEM_DEVID_NONE; 552 config.dev = &mtd->dev; 553 config.name = dev_name(&mtd->dev); 554 config.owner = THIS_MODULE; 555 config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells"); 556 config.reg_read = mtd_nvmem_reg_read; 557 config.size = mtd->size; 558 config.word_size = 1; 559 config.stride = 1; 560 config.read_only = true; 561 config.root_only = true; 562 config.ignore_wp = true; 563 config.priv = mtd; 564 565 mtd->nvmem = nvmem_register(&config); 566 if (IS_ERR(mtd->nvmem)) { 567 /* Just ignore if there is no NVMEM support in the kernel */ 568 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 569 mtd->nvmem = NULL; 570 else 571 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 572 "Failed to register NVMEM device\n"); 573 } 574 575 return 0; 576 } 577 578 static void mtd_check_of_node(struct mtd_info *mtd) 579 { 580 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 581 const char *pname, *prefix = "partition-"; 582 int plen, mtd_name_len, offset, prefix_len; 583 584 /* Check if MTD already has a device node */ 585 if (mtd_get_of_node(mtd)) 586 return; 587 588 if (!mtd_is_partition(mtd)) 589 return; 590 591 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 592 if (!parent_dn) 593 return; 594 595 if (mtd_is_partition(mtd->parent)) 596 partitions = of_node_get(parent_dn); 597 else 598 partitions = of_get_child_by_name(parent_dn, "partitions"); 599 if (!partitions) 600 goto exit_parent; 601 602 prefix_len = strlen(prefix); 603 mtd_name_len = strlen(mtd->name); 604 605 /* Search if a partition is defined with the same name */ 606 for_each_child_of_node(partitions, mtd_dn) { 607 /* Skip partition with no/wrong prefix */ 608 if (!of_node_name_prefix(mtd_dn, prefix)) 609 continue; 610 611 /* Label have priority. Check that first */ 612 if (!of_property_read_string(mtd_dn, "label", &pname)) { 613 offset = 0; 614 } else { 615 pname = mtd_dn->name; 616 offset = prefix_len; 617 } 618 619 plen = strlen(pname) - offset; 620 if (plen == mtd_name_len && 621 !strncmp(mtd->name, pname + offset, plen)) { 622 mtd_set_of_node(mtd, mtd_dn); 623 break; 624 } 625 } 626 627 of_node_put(partitions); 628 exit_parent: 629 of_node_put(parent_dn); 630 } 631 632 /** 633 * add_mtd_device - register an MTD device 634 * @mtd: pointer to new MTD device info structure 635 * 636 * Add a device to the list of MTD devices present in the system, and 637 * notify each currently active MTD 'user' of its arrival. Returns 638 * zero on success or non-zero on failure. 639 */ 640 641 int add_mtd_device(struct mtd_info *mtd) 642 { 643 struct device_node *np = mtd_get_of_node(mtd); 644 struct mtd_info *master = mtd_get_master(mtd); 645 struct mtd_notifier *not; 646 int i, error, ofidx; 647 648 /* 649 * May occur, for instance, on buggy drivers which call 650 * mtd_device_parse_register() multiple times on the same master MTD, 651 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 652 */ 653 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 654 return -EEXIST; 655 656 BUG_ON(mtd->writesize == 0); 657 658 /* 659 * MTD drivers should implement ->_{write,read}() or 660 * ->_{write,read}_oob(), but not both. 661 */ 662 if (WARN_ON((mtd->_write && mtd->_write_oob) || 663 (mtd->_read && mtd->_read_oob))) 664 return -EINVAL; 665 666 if (WARN_ON((!mtd->erasesize || !master->_erase) && 667 !(mtd->flags & MTD_NO_ERASE))) 668 return -EINVAL; 669 670 /* 671 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 672 * master is an MLC NAND and has a proper pairing scheme defined. 673 * We also reject masters that implement ->_writev() for now, because 674 * NAND controller drivers don't implement this hook, and adding the 675 * SLC -> MLC address/length conversion to this path is useless if we 676 * don't have a user. 677 */ 678 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 679 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 680 !master->pairing || master->_writev)) 681 return -EINVAL; 682 683 mutex_lock(&mtd_table_mutex); 684 685 ofidx = -1; 686 if (np) 687 ofidx = of_alias_get_id(np, "mtd"); 688 if (ofidx >= 0) 689 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 690 else 691 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 692 if (i < 0) { 693 error = i; 694 goto fail_locked; 695 } 696 697 mtd->index = i; 698 kref_init(&mtd->refcnt); 699 700 /* default value if not set by driver */ 701 if (mtd->bitflip_threshold == 0) 702 mtd->bitflip_threshold = mtd->ecc_strength; 703 704 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 705 int ngroups = mtd_pairing_groups(master); 706 707 mtd->erasesize /= ngroups; 708 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 709 mtd->erasesize; 710 } 711 712 if (is_power_of_2(mtd->erasesize)) 713 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 714 else 715 mtd->erasesize_shift = 0; 716 717 if (is_power_of_2(mtd->writesize)) 718 mtd->writesize_shift = ffs(mtd->writesize) - 1; 719 else 720 mtd->writesize_shift = 0; 721 722 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 723 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 724 725 /* Some chips always power up locked. Unlock them now */ 726 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 727 error = mtd_unlock(mtd, 0, mtd->size); 728 if (error && error != -EOPNOTSUPP) 729 printk(KERN_WARNING 730 "%s: unlock failed, writes may not work\n", 731 mtd->name); 732 /* Ignore unlock failures? */ 733 error = 0; 734 } 735 736 /* Caller should have set dev.parent to match the 737 * physical device, if appropriate. 738 */ 739 mtd->dev.type = &mtd_devtype; 740 mtd->dev.class = &mtd_class; 741 mtd->dev.devt = MTD_DEVT(i); 742 dev_set_name(&mtd->dev, "mtd%d", i); 743 dev_set_drvdata(&mtd->dev, mtd); 744 mtd_check_of_node(mtd); 745 of_node_get(mtd_get_of_node(mtd)); 746 error = device_register(&mtd->dev); 747 if (error) { 748 put_device(&mtd->dev); 749 goto fail_added; 750 } 751 752 /* Add the nvmem provider */ 753 error = mtd_nvmem_add(mtd); 754 if (error) 755 goto fail_nvmem_add; 756 757 mtd_debugfs_populate(mtd); 758 759 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 760 "mtd%dro", i); 761 762 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 763 /* No need to get a refcount on the module containing 764 the notifier, since we hold the mtd_table_mutex */ 765 list_for_each_entry(not, &mtd_notifiers, list) 766 not->add(mtd); 767 768 mutex_unlock(&mtd_table_mutex); 769 770 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 771 if (IS_BUILTIN(CONFIG_MTD)) { 772 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 773 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 774 } else { 775 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 776 mtd->index, mtd->name); 777 } 778 } 779 780 /* We _know_ we aren't being removed, because 781 our caller is still holding us here. So none 782 of this try_ nonsense, and no bitching about it 783 either. :) */ 784 __module_get(THIS_MODULE); 785 return 0; 786 787 fail_nvmem_add: 788 device_unregister(&mtd->dev); 789 fail_added: 790 of_node_put(mtd_get_of_node(mtd)); 791 idr_remove(&mtd_idr, i); 792 fail_locked: 793 mutex_unlock(&mtd_table_mutex); 794 return error; 795 } 796 797 /** 798 * del_mtd_device - unregister an MTD device 799 * @mtd: pointer to MTD device info structure 800 * 801 * Remove a device from the list of MTD devices present in the system, 802 * and notify each currently active MTD 'user' of its departure. 803 * Returns zero on success or 1 on failure, which currently will happen 804 * if the requested device does not appear to be present in the list. 805 */ 806 807 int del_mtd_device(struct mtd_info *mtd) 808 { 809 int ret; 810 struct mtd_notifier *not; 811 812 mutex_lock(&mtd_table_mutex); 813 814 if (idr_find(&mtd_idr, mtd->index) != mtd) { 815 ret = -ENODEV; 816 goto out_error; 817 } 818 819 /* No need to get a refcount on the module containing 820 the notifier, since we hold the mtd_table_mutex */ 821 list_for_each_entry(not, &mtd_notifiers, list) 822 not->remove(mtd); 823 824 kref_put(&mtd->refcnt, mtd_device_release); 825 ret = 0; 826 827 out_error: 828 mutex_unlock(&mtd_table_mutex); 829 return ret; 830 } 831 832 /* 833 * Set a few defaults based on the parent devices, if not provided by the 834 * driver 835 */ 836 static void mtd_set_dev_defaults(struct mtd_info *mtd) 837 { 838 if (mtd->dev.parent) { 839 if (!mtd->owner && mtd->dev.parent->driver) 840 mtd->owner = mtd->dev.parent->driver->owner; 841 if (!mtd->name) 842 mtd->name = dev_name(mtd->dev.parent); 843 } else { 844 pr_debug("mtd device won't show a device symlink in sysfs\n"); 845 } 846 847 INIT_LIST_HEAD(&mtd->partitions); 848 mutex_init(&mtd->master.partitions_lock); 849 mutex_init(&mtd->master.chrdev_lock); 850 } 851 852 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 853 { 854 struct otp_info *info; 855 ssize_t size = 0; 856 unsigned int i; 857 size_t retlen; 858 int ret; 859 860 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 861 if (!info) 862 return -ENOMEM; 863 864 if (is_user) 865 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 866 else 867 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 868 if (ret) 869 goto err; 870 871 for (i = 0; i < retlen / sizeof(*info); i++) 872 size += info[i].length; 873 874 kfree(info); 875 return size; 876 877 err: 878 kfree(info); 879 880 /* ENODATA means there is no OTP region. */ 881 return ret == -ENODATA ? 0 : ret; 882 } 883 884 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 885 const char *compatible, 886 int size, 887 nvmem_reg_read_t reg_read) 888 { 889 struct nvmem_device *nvmem = NULL; 890 struct nvmem_config config = {}; 891 struct device_node *np; 892 893 /* DT binding is optional */ 894 np = of_get_compatible_child(mtd->dev.of_node, compatible); 895 896 /* OTP nvmem will be registered on the physical device */ 897 config.dev = mtd->dev.parent; 898 config.name = compatible; 899 config.id = NVMEM_DEVID_AUTO; 900 config.owner = THIS_MODULE; 901 config.add_legacy_fixed_of_cells = true; 902 config.type = NVMEM_TYPE_OTP; 903 config.root_only = true; 904 config.ignore_wp = true; 905 config.reg_read = reg_read; 906 config.size = size; 907 config.of_node = np; 908 config.priv = mtd; 909 910 nvmem = nvmem_register(&config); 911 /* Just ignore if there is no NVMEM support in the kernel */ 912 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 913 nvmem = NULL; 914 915 of_node_put(np); 916 917 return nvmem; 918 } 919 920 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 921 void *val, size_t bytes) 922 { 923 struct mtd_info *mtd = priv; 924 size_t retlen; 925 int ret; 926 927 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 928 if (ret) 929 return ret; 930 931 return retlen == bytes ? 0 : -EIO; 932 } 933 934 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 935 void *val, size_t bytes) 936 { 937 struct mtd_info *mtd = priv; 938 size_t retlen; 939 int ret; 940 941 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 942 if (ret) 943 return ret; 944 945 return retlen == bytes ? 0 : -EIO; 946 } 947 948 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 949 { 950 struct device *dev = mtd->dev.parent; 951 struct nvmem_device *nvmem; 952 ssize_t size; 953 int err; 954 955 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 956 size = mtd_otp_size(mtd, true); 957 if (size < 0) 958 return size; 959 960 if (size > 0) { 961 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 962 mtd_nvmem_user_otp_reg_read); 963 if (IS_ERR(nvmem)) { 964 err = PTR_ERR(nvmem); 965 goto err; 966 } 967 mtd->otp_user_nvmem = nvmem; 968 } 969 } 970 971 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 972 size = mtd_otp_size(mtd, false); 973 if (size < 0) { 974 err = size; 975 goto err; 976 } 977 978 if (size > 0) { 979 /* 980 * The factory OTP contains thing such as a unique serial 981 * number and is small, so let's read it out and put it 982 * into the entropy pool. 983 */ 984 void *otp; 985 986 otp = kmalloc(size, GFP_KERNEL); 987 if (!otp) { 988 err = -ENOMEM; 989 goto err; 990 } 991 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); 992 if (err < 0) { 993 kfree(otp); 994 goto err; 995 } 996 add_device_randomness(otp, err); 997 kfree(otp); 998 999 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 1000 mtd_nvmem_fact_otp_reg_read); 1001 if (IS_ERR(nvmem)) { 1002 err = PTR_ERR(nvmem); 1003 goto err; 1004 } 1005 mtd->otp_factory_nvmem = nvmem; 1006 } 1007 } 1008 1009 return 0; 1010 1011 err: 1012 nvmem_unregister(mtd->otp_user_nvmem); 1013 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 1014 } 1015 1016 /** 1017 * mtd_device_parse_register - parse partitions and register an MTD device. 1018 * 1019 * @mtd: the MTD device to register 1020 * @types: the list of MTD partition probes to try, see 1021 * 'parse_mtd_partitions()' for more information 1022 * @parser_data: MTD partition parser-specific data 1023 * @parts: fallback partition information to register, if parsing fails; 1024 * only valid if %nr_parts > %0 1025 * @nr_parts: the number of partitions in parts, if zero then the full 1026 * MTD device is registered if no partition info is found 1027 * 1028 * This function aggregates MTD partitions parsing (done by 1029 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1030 * basically follows the most common pattern found in many MTD drivers: 1031 * 1032 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1033 * registered first. 1034 * * Then It tries to probe partitions on MTD device @mtd using parsers 1035 * specified in @types (if @types is %NULL, then the default list of parsers 1036 * is used, see 'parse_mtd_partitions()' for more information). If none are 1037 * found this functions tries to fallback to information specified in 1038 * @parts/@nr_parts. 1039 * * If no partitions were found this function just registers the MTD device 1040 * @mtd and exits. 1041 * 1042 * Returns zero in case of success and a negative error code in case of failure. 1043 */ 1044 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1045 struct mtd_part_parser_data *parser_data, 1046 const struct mtd_partition *parts, 1047 int nr_parts) 1048 { 1049 int ret; 1050 1051 mtd_set_dev_defaults(mtd); 1052 1053 ret = mtd_otp_nvmem_add(mtd); 1054 if (ret) 1055 goto out; 1056 1057 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1058 ret = add_mtd_device(mtd); 1059 if (ret) 1060 goto out; 1061 } 1062 1063 /* Prefer parsed partitions over driver-provided fallback */ 1064 ret = parse_mtd_partitions(mtd, types, parser_data); 1065 if (ret == -EPROBE_DEFER) 1066 goto out; 1067 1068 if (ret > 0) 1069 ret = 0; 1070 else if (nr_parts) 1071 ret = add_mtd_partitions(mtd, parts, nr_parts); 1072 else if (!device_is_registered(&mtd->dev)) 1073 ret = add_mtd_device(mtd); 1074 else 1075 ret = 0; 1076 1077 if (ret) 1078 goto out; 1079 1080 /* 1081 * FIXME: some drivers unfortunately call this function more than once. 1082 * So we have to check if we've already assigned the reboot notifier. 1083 * 1084 * Generally, we can make multiple calls work for most cases, but it 1085 * does cause problems with parse_mtd_partitions() above (e.g., 1086 * cmdlineparts will register partitions more than once). 1087 */ 1088 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1089 "MTD already registered\n"); 1090 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1091 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1092 register_reboot_notifier(&mtd->reboot_notifier); 1093 } 1094 1095 out: 1096 if (ret) { 1097 nvmem_unregister(mtd->otp_user_nvmem); 1098 nvmem_unregister(mtd->otp_factory_nvmem); 1099 } 1100 1101 if (ret && device_is_registered(&mtd->dev)) 1102 del_mtd_device(mtd); 1103 1104 return ret; 1105 } 1106 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1107 1108 /** 1109 * mtd_device_unregister - unregister an existing MTD device. 1110 * 1111 * @master: the MTD device to unregister. This will unregister both the master 1112 * and any partitions if registered. 1113 */ 1114 int mtd_device_unregister(struct mtd_info *master) 1115 { 1116 int err; 1117 1118 if (master->_reboot) { 1119 unregister_reboot_notifier(&master->reboot_notifier); 1120 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1121 } 1122 1123 nvmem_unregister(master->otp_user_nvmem); 1124 nvmem_unregister(master->otp_factory_nvmem); 1125 1126 err = del_mtd_partitions(master); 1127 if (err) 1128 return err; 1129 1130 if (!device_is_registered(&master->dev)) 1131 return 0; 1132 1133 return del_mtd_device(master); 1134 } 1135 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1136 1137 /** 1138 * register_mtd_user - register a 'user' of MTD devices. 1139 * @new: pointer to notifier info structure 1140 * 1141 * Registers a pair of callbacks function to be called upon addition 1142 * or removal of MTD devices. Causes the 'add' callback to be immediately 1143 * invoked for each MTD device currently present in the system. 1144 */ 1145 void register_mtd_user (struct mtd_notifier *new) 1146 { 1147 struct mtd_info *mtd; 1148 1149 mutex_lock(&mtd_table_mutex); 1150 1151 list_add(&new->list, &mtd_notifiers); 1152 1153 __module_get(THIS_MODULE); 1154 1155 mtd_for_each_device(mtd) 1156 new->add(mtd); 1157 1158 mutex_unlock(&mtd_table_mutex); 1159 } 1160 EXPORT_SYMBOL_GPL(register_mtd_user); 1161 1162 /** 1163 * unregister_mtd_user - unregister a 'user' of MTD devices. 1164 * @old: pointer to notifier info structure 1165 * 1166 * Removes a callback function pair from the list of 'users' to be 1167 * notified upon addition or removal of MTD devices. Causes the 1168 * 'remove' callback to be immediately invoked for each MTD device 1169 * currently present in the system. 1170 */ 1171 int unregister_mtd_user (struct mtd_notifier *old) 1172 { 1173 struct mtd_info *mtd; 1174 1175 mutex_lock(&mtd_table_mutex); 1176 1177 module_put(THIS_MODULE); 1178 1179 mtd_for_each_device(mtd) 1180 old->remove(mtd); 1181 1182 list_del(&old->list); 1183 mutex_unlock(&mtd_table_mutex); 1184 return 0; 1185 } 1186 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1187 1188 /** 1189 * get_mtd_device - obtain a validated handle for an MTD device 1190 * @mtd: last known address of the required MTD device 1191 * @num: internal device number of the required MTD device 1192 * 1193 * Given a number and NULL address, return the num'th entry in the device 1194 * table, if any. Given an address and num == -1, search the device table 1195 * for a device with that address and return if it's still present. Given 1196 * both, return the num'th driver only if its address matches. Return 1197 * error code if not. 1198 */ 1199 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1200 { 1201 struct mtd_info *ret = NULL, *other; 1202 int err = -ENODEV; 1203 1204 mutex_lock(&mtd_table_mutex); 1205 1206 if (num == -1) { 1207 mtd_for_each_device(other) { 1208 if (other == mtd) { 1209 ret = mtd; 1210 break; 1211 } 1212 } 1213 } else if (num >= 0) { 1214 ret = idr_find(&mtd_idr, num); 1215 if (mtd && mtd != ret) 1216 ret = NULL; 1217 } 1218 1219 if (!ret) { 1220 ret = ERR_PTR(err); 1221 goto out; 1222 } 1223 1224 err = __get_mtd_device(ret); 1225 if (err) 1226 ret = ERR_PTR(err); 1227 out: 1228 mutex_unlock(&mtd_table_mutex); 1229 return ret; 1230 } 1231 EXPORT_SYMBOL_GPL(get_mtd_device); 1232 1233 1234 int __get_mtd_device(struct mtd_info *mtd) 1235 { 1236 struct mtd_info *master = mtd_get_master(mtd); 1237 int err; 1238 1239 if (master->_get_device) { 1240 err = master->_get_device(mtd); 1241 if (err) 1242 return err; 1243 } 1244 1245 if (!try_module_get(master->owner)) { 1246 if (master->_put_device) 1247 master->_put_device(master); 1248 return -ENODEV; 1249 } 1250 1251 while (mtd) { 1252 if (mtd != master) 1253 kref_get(&mtd->refcnt); 1254 mtd = mtd->parent; 1255 } 1256 1257 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1258 kref_get(&master->refcnt); 1259 1260 return 0; 1261 } 1262 EXPORT_SYMBOL_GPL(__get_mtd_device); 1263 1264 /** 1265 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1266 * 1267 * @np: device tree node 1268 */ 1269 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1270 { 1271 struct mtd_info *mtd = NULL; 1272 struct mtd_info *tmp; 1273 int err; 1274 1275 mutex_lock(&mtd_table_mutex); 1276 1277 err = -EPROBE_DEFER; 1278 mtd_for_each_device(tmp) { 1279 if (mtd_get_of_node(tmp) == np) { 1280 mtd = tmp; 1281 err = __get_mtd_device(mtd); 1282 break; 1283 } 1284 } 1285 1286 mutex_unlock(&mtd_table_mutex); 1287 1288 return err ? ERR_PTR(err) : mtd; 1289 } 1290 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1291 1292 /** 1293 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1294 * device name 1295 * @name: MTD device name to open 1296 * 1297 * This function returns MTD device description structure in case of 1298 * success and an error code in case of failure. 1299 */ 1300 struct mtd_info *get_mtd_device_nm(const char *name) 1301 { 1302 int err = -ENODEV; 1303 struct mtd_info *mtd = NULL, *other; 1304 1305 mutex_lock(&mtd_table_mutex); 1306 1307 mtd_for_each_device(other) { 1308 if (!strcmp(name, other->name)) { 1309 mtd = other; 1310 break; 1311 } 1312 } 1313 1314 if (!mtd) 1315 goto out_unlock; 1316 1317 err = __get_mtd_device(mtd); 1318 if (err) 1319 goto out_unlock; 1320 1321 mutex_unlock(&mtd_table_mutex); 1322 return mtd; 1323 1324 out_unlock: 1325 mutex_unlock(&mtd_table_mutex); 1326 return ERR_PTR(err); 1327 } 1328 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1329 1330 void put_mtd_device(struct mtd_info *mtd) 1331 { 1332 mutex_lock(&mtd_table_mutex); 1333 __put_mtd_device(mtd); 1334 mutex_unlock(&mtd_table_mutex); 1335 1336 } 1337 EXPORT_SYMBOL_GPL(put_mtd_device); 1338 1339 void __put_mtd_device(struct mtd_info *mtd) 1340 { 1341 struct mtd_info *master = mtd_get_master(mtd); 1342 1343 while (mtd) { 1344 /* kref_put() can relese mtd, so keep a reference mtd->parent */ 1345 struct mtd_info *parent = mtd->parent; 1346 1347 if (mtd != master) 1348 kref_put(&mtd->refcnt, mtd_device_release); 1349 mtd = parent; 1350 } 1351 1352 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1353 kref_put(&master->refcnt, mtd_device_release); 1354 1355 module_put(master->owner); 1356 1357 /* must be the last as master can be freed in the _put_device */ 1358 if (master->_put_device) 1359 master->_put_device(master); 1360 } 1361 EXPORT_SYMBOL_GPL(__put_mtd_device); 1362 1363 /* 1364 * Erase is an synchronous operation. Device drivers are epected to return a 1365 * negative error code if the operation failed and update instr->fail_addr 1366 * to point the portion that was not properly erased. 1367 */ 1368 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1369 { 1370 struct mtd_info *master = mtd_get_master(mtd); 1371 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1372 struct erase_info adjinstr; 1373 int ret; 1374 1375 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1376 adjinstr = *instr; 1377 1378 if (!mtd->erasesize || !master->_erase) 1379 return -ENOTSUPP; 1380 1381 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1382 return -EINVAL; 1383 if (!(mtd->flags & MTD_WRITEABLE)) 1384 return -EROFS; 1385 1386 if (!instr->len) 1387 return 0; 1388 1389 ledtrig_mtd_activity(); 1390 1391 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1392 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1393 master->erasesize; 1394 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1395 master->erasesize) - 1396 adjinstr.addr; 1397 } 1398 1399 adjinstr.addr += mst_ofs; 1400 1401 ret = master->_erase(master, &adjinstr); 1402 1403 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1404 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1405 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1406 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1407 master); 1408 instr->fail_addr *= mtd->erasesize; 1409 } 1410 } 1411 1412 return ret; 1413 } 1414 EXPORT_SYMBOL_GPL(mtd_erase); 1415 1416 /* 1417 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1418 */ 1419 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1420 void **virt, resource_size_t *phys) 1421 { 1422 struct mtd_info *master = mtd_get_master(mtd); 1423 1424 *retlen = 0; 1425 *virt = NULL; 1426 if (phys) 1427 *phys = 0; 1428 if (!master->_point) 1429 return -EOPNOTSUPP; 1430 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1431 return -EINVAL; 1432 if (!len) 1433 return 0; 1434 1435 from = mtd_get_master_ofs(mtd, from); 1436 return master->_point(master, from, len, retlen, virt, phys); 1437 } 1438 EXPORT_SYMBOL_GPL(mtd_point); 1439 1440 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1441 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1442 { 1443 struct mtd_info *master = mtd_get_master(mtd); 1444 1445 if (!master->_unpoint) 1446 return -EOPNOTSUPP; 1447 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1448 return -EINVAL; 1449 if (!len) 1450 return 0; 1451 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1452 } 1453 EXPORT_SYMBOL_GPL(mtd_unpoint); 1454 1455 /* 1456 * Allow NOMMU mmap() to directly map the device (if not NULL) 1457 * - return the address to which the offset maps 1458 * - return -ENOSYS to indicate refusal to do the mapping 1459 */ 1460 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1461 unsigned long offset, unsigned long flags) 1462 { 1463 size_t retlen; 1464 void *virt; 1465 int ret; 1466 1467 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1468 if (ret) 1469 return ret; 1470 if (retlen != len) { 1471 mtd_unpoint(mtd, offset, retlen); 1472 return -ENOSYS; 1473 } 1474 return (unsigned long)virt; 1475 } 1476 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1477 1478 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1479 const struct mtd_ecc_stats *old_stats) 1480 { 1481 struct mtd_ecc_stats diff; 1482 1483 if (master == mtd) 1484 return; 1485 1486 diff = master->ecc_stats; 1487 diff.failed -= old_stats->failed; 1488 diff.corrected -= old_stats->corrected; 1489 1490 while (mtd->parent) { 1491 mtd->ecc_stats.failed += diff.failed; 1492 mtd->ecc_stats.corrected += diff.corrected; 1493 mtd = mtd->parent; 1494 } 1495 } 1496 1497 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1498 u_char *buf) 1499 { 1500 struct mtd_oob_ops ops = { 1501 .len = len, 1502 .datbuf = buf, 1503 }; 1504 int ret; 1505 1506 ret = mtd_read_oob(mtd, from, &ops); 1507 *retlen = ops.retlen; 1508 1509 return ret; 1510 } 1511 EXPORT_SYMBOL_GPL(mtd_read); 1512 1513 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1514 const u_char *buf) 1515 { 1516 struct mtd_oob_ops ops = { 1517 .len = len, 1518 .datbuf = (u8 *)buf, 1519 }; 1520 int ret; 1521 1522 ret = mtd_write_oob(mtd, to, &ops); 1523 *retlen = ops.retlen; 1524 1525 return ret; 1526 } 1527 EXPORT_SYMBOL_GPL(mtd_write); 1528 1529 /* 1530 * In blackbox flight recorder like scenarios we want to make successful writes 1531 * in interrupt context. panic_write() is only intended to be called when its 1532 * known the kernel is about to panic and we need the write to succeed. Since 1533 * the kernel is not going to be running for much longer, this function can 1534 * break locks and delay to ensure the write succeeds (but not sleep). 1535 */ 1536 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1537 const u_char *buf) 1538 { 1539 struct mtd_info *master = mtd_get_master(mtd); 1540 1541 *retlen = 0; 1542 if (!master->_panic_write) 1543 return -EOPNOTSUPP; 1544 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1545 return -EINVAL; 1546 if (!(mtd->flags & MTD_WRITEABLE)) 1547 return -EROFS; 1548 if (!len) 1549 return 0; 1550 if (!master->oops_panic_write) 1551 master->oops_panic_write = true; 1552 1553 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1554 retlen, buf); 1555 } 1556 EXPORT_SYMBOL_GPL(mtd_panic_write); 1557 1558 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1559 struct mtd_oob_ops *ops) 1560 { 1561 /* 1562 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1563 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1564 * this case. 1565 */ 1566 if (!ops->datbuf) 1567 ops->len = 0; 1568 1569 if (!ops->oobbuf) 1570 ops->ooblen = 0; 1571 1572 if (offs < 0 || offs + ops->len > mtd->size) 1573 return -EINVAL; 1574 1575 if (ops->ooblen) { 1576 size_t maxooblen; 1577 1578 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1579 return -EINVAL; 1580 1581 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1582 mtd_div_by_ws(offs, mtd)) * 1583 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1584 if (ops->ooblen > maxooblen) 1585 return -EINVAL; 1586 } 1587 1588 return 0; 1589 } 1590 1591 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1592 struct mtd_oob_ops *ops) 1593 { 1594 struct mtd_info *master = mtd_get_master(mtd); 1595 int ret; 1596 1597 from = mtd_get_master_ofs(mtd, from); 1598 if (master->_read_oob) 1599 ret = master->_read_oob(master, from, ops); 1600 else 1601 ret = master->_read(master, from, ops->len, &ops->retlen, 1602 ops->datbuf); 1603 1604 return ret; 1605 } 1606 1607 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1608 struct mtd_oob_ops *ops) 1609 { 1610 struct mtd_info *master = mtd_get_master(mtd); 1611 int ret; 1612 1613 to = mtd_get_master_ofs(mtd, to); 1614 if (master->_write_oob) 1615 ret = master->_write_oob(master, to, ops); 1616 else 1617 ret = master->_write(master, to, ops->len, &ops->retlen, 1618 ops->datbuf); 1619 1620 return ret; 1621 } 1622 1623 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1624 struct mtd_oob_ops *ops) 1625 { 1626 struct mtd_info *master = mtd_get_master(mtd); 1627 int ngroups = mtd_pairing_groups(master); 1628 int npairs = mtd_wunit_per_eb(master) / ngroups; 1629 struct mtd_oob_ops adjops = *ops; 1630 unsigned int wunit, oobavail; 1631 struct mtd_pairing_info info; 1632 int max_bitflips = 0; 1633 u32 ebofs, pageofs; 1634 loff_t base, pos; 1635 1636 ebofs = mtd_mod_by_eb(start, mtd); 1637 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1638 info.group = 0; 1639 info.pair = mtd_div_by_ws(ebofs, mtd); 1640 pageofs = mtd_mod_by_ws(ebofs, mtd); 1641 oobavail = mtd_oobavail(mtd, ops); 1642 1643 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1644 int ret; 1645 1646 if (info.pair >= npairs) { 1647 info.pair = 0; 1648 base += master->erasesize; 1649 } 1650 1651 wunit = mtd_pairing_info_to_wunit(master, &info); 1652 pos = mtd_wunit_to_offset(mtd, base, wunit); 1653 1654 adjops.len = ops->len - ops->retlen; 1655 if (adjops.len > mtd->writesize - pageofs) 1656 adjops.len = mtd->writesize - pageofs; 1657 1658 adjops.ooblen = ops->ooblen - ops->oobretlen; 1659 if (adjops.ooblen > oobavail - adjops.ooboffs) 1660 adjops.ooblen = oobavail - adjops.ooboffs; 1661 1662 if (read) { 1663 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1664 if (ret > 0) 1665 max_bitflips = max(max_bitflips, ret); 1666 } else { 1667 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1668 } 1669 1670 if (ret < 0) 1671 return ret; 1672 1673 max_bitflips = max(max_bitflips, ret); 1674 ops->retlen += adjops.retlen; 1675 ops->oobretlen += adjops.oobretlen; 1676 adjops.datbuf += adjops.retlen; 1677 adjops.oobbuf += adjops.oobretlen; 1678 adjops.ooboffs = 0; 1679 pageofs = 0; 1680 info.pair++; 1681 } 1682 1683 return max_bitflips; 1684 } 1685 1686 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1687 { 1688 struct mtd_info *master = mtd_get_master(mtd); 1689 struct mtd_ecc_stats old_stats = master->ecc_stats; 1690 int ret_code; 1691 1692 ops->retlen = ops->oobretlen = 0; 1693 1694 ret_code = mtd_check_oob_ops(mtd, from, ops); 1695 if (ret_code) 1696 return ret_code; 1697 1698 ledtrig_mtd_activity(); 1699 1700 /* Check the validity of a potential fallback on mtd->_read */ 1701 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1702 return -EOPNOTSUPP; 1703 1704 if (ops->stats) 1705 memset(ops->stats, 0, sizeof(*ops->stats)); 1706 1707 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1708 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1709 else 1710 ret_code = mtd_read_oob_std(mtd, from, ops); 1711 1712 mtd_update_ecc_stats(mtd, master, &old_stats); 1713 1714 /* 1715 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1716 * similar to mtd->_read(), returning a non-negative integer 1717 * representing max bitflips. In other cases, mtd->_read_oob() may 1718 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1719 */ 1720 if (unlikely(ret_code < 0)) 1721 return ret_code; 1722 if (mtd->ecc_strength == 0) 1723 return 0; /* device lacks ecc */ 1724 if (ops->stats) 1725 ops->stats->max_bitflips = ret_code; 1726 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1727 } 1728 EXPORT_SYMBOL_GPL(mtd_read_oob); 1729 1730 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1731 struct mtd_oob_ops *ops) 1732 { 1733 struct mtd_info *master = mtd_get_master(mtd); 1734 int ret; 1735 1736 ops->retlen = ops->oobretlen = 0; 1737 1738 if (!(mtd->flags & MTD_WRITEABLE)) 1739 return -EROFS; 1740 1741 ret = mtd_check_oob_ops(mtd, to, ops); 1742 if (ret) 1743 return ret; 1744 1745 ledtrig_mtd_activity(); 1746 1747 /* Check the validity of a potential fallback on mtd->_write */ 1748 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1749 return -EOPNOTSUPP; 1750 1751 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1752 return mtd_io_emulated_slc(mtd, to, false, ops); 1753 1754 return mtd_write_oob_std(mtd, to, ops); 1755 } 1756 EXPORT_SYMBOL_GPL(mtd_write_oob); 1757 1758 /** 1759 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1760 * @mtd: MTD device structure 1761 * @section: ECC section. Depending on the layout you may have all the ECC 1762 * bytes stored in a single contiguous section, or one section 1763 * per ECC chunk (and sometime several sections for a single ECC 1764 * ECC chunk) 1765 * @oobecc: OOB region struct filled with the appropriate ECC position 1766 * information 1767 * 1768 * This function returns ECC section information in the OOB area. If you want 1769 * to get all the ECC bytes information, then you should call 1770 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1771 * 1772 * Returns zero on success, a negative error code otherwise. 1773 */ 1774 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1775 struct mtd_oob_region *oobecc) 1776 { 1777 struct mtd_info *master = mtd_get_master(mtd); 1778 1779 memset(oobecc, 0, sizeof(*oobecc)); 1780 1781 if (!master || section < 0) 1782 return -EINVAL; 1783 1784 if (!master->ooblayout || !master->ooblayout->ecc) 1785 return -ENOTSUPP; 1786 1787 return master->ooblayout->ecc(master, section, oobecc); 1788 } 1789 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1790 1791 /** 1792 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1793 * section 1794 * @mtd: MTD device structure 1795 * @section: Free section you are interested in. Depending on the layout 1796 * you may have all the free bytes stored in a single contiguous 1797 * section, or one section per ECC chunk plus an extra section 1798 * for the remaining bytes (or other funky layout). 1799 * @oobfree: OOB region struct filled with the appropriate free position 1800 * information 1801 * 1802 * This function returns free bytes position in the OOB area. If you want 1803 * to get all the free bytes information, then you should call 1804 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1805 * 1806 * Returns zero on success, a negative error code otherwise. 1807 */ 1808 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1809 struct mtd_oob_region *oobfree) 1810 { 1811 struct mtd_info *master = mtd_get_master(mtd); 1812 1813 memset(oobfree, 0, sizeof(*oobfree)); 1814 1815 if (!master || section < 0) 1816 return -EINVAL; 1817 1818 if (!master->ooblayout || !master->ooblayout->free) 1819 return -ENOTSUPP; 1820 1821 return master->ooblayout->free(master, section, oobfree); 1822 } 1823 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1824 1825 /** 1826 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1827 * @mtd: mtd info structure 1828 * @byte: the byte we are searching for 1829 * @sectionp: pointer where the section id will be stored 1830 * @oobregion: used to retrieve the ECC position 1831 * @iter: iterator function. Should be either mtd_ooblayout_free or 1832 * mtd_ooblayout_ecc depending on the region type you're searching for 1833 * 1834 * This function returns the section id and oobregion information of a 1835 * specific byte. For example, say you want to know where the 4th ECC byte is 1836 * stored, you'll use: 1837 * 1838 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1839 * 1840 * Returns zero on success, a negative error code otherwise. 1841 */ 1842 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1843 int *sectionp, struct mtd_oob_region *oobregion, 1844 int (*iter)(struct mtd_info *, 1845 int section, 1846 struct mtd_oob_region *oobregion)) 1847 { 1848 int pos = 0, ret, section = 0; 1849 1850 memset(oobregion, 0, sizeof(*oobregion)); 1851 1852 while (1) { 1853 ret = iter(mtd, section, oobregion); 1854 if (ret) 1855 return ret; 1856 1857 if (pos + oobregion->length > byte) 1858 break; 1859 1860 pos += oobregion->length; 1861 section++; 1862 } 1863 1864 /* 1865 * Adjust region info to make it start at the beginning at the 1866 * 'start' ECC byte. 1867 */ 1868 oobregion->offset += byte - pos; 1869 oobregion->length -= byte - pos; 1870 *sectionp = section; 1871 1872 return 0; 1873 } 1874 1875 /** 1876 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1877 * ECC byte 1878 * @mtd: mtd info structure 1879 * @eccbyte: the byte we are searching for 1880 * @section: pointer where the section id will be stored 1881 * @oobregion: OOB region information 1882 * 1883 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1884 * byte. 1885 * 1886 * Returns zero on success, a negative error code otherwise. 1887 */ 1888 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1889 int *section, 1890 struct mtd_oob_region *oobregion) 1891 { 1892 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1893 mtd_ooblayout_ecc); 1894 } 1895 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1896 1897 /** 1898 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1899 * @mtd: mtd info structure 1900 * @buf: destination buffer to store OOB bytes 1901 * @oobbuf: OOB buffer 1902 * @start: first byte to retrieve 1903 * @nbytes: number of bytes to retrieve 1904 * @iter: section iterator 1905 * 1906 * Extract bytes attached to a specific category (ECC or free) 1907 * from the OOB buffer and copy them into buf. 1908 * 1909 * Returns zero on success, a negative error code otherwise. 1910 */ 1911 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1912 const u8 *oobbuf, int start, int nbytes, 1913 int (*iter)(struct mtd_info *, 1914 int section, 1915 struct mtd_oob_region *oobregion)) 1916 { 1917 struct mtd_oob_region oobregion; 1918 int section, ret; 1919 1920 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1921 &oobregion, iter); 1922 1923 while (!ret) { 1924 int cnt; 1925 1926 cnt = min_t(int, nbytes, oobregion.length); 1927 memcpy(buf, oobbuf + oobregion.offset, cnt); 1928 buf += cnt; 1929 nbytes -= cnt; 1930 1931 if (!nbytes) 1932 break; 1933 1934 ret = iter(mtd, ++section, &oobregion); 1935 } 1936 1937 return ret; 1938 } 1939 1940 /** 1941 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1942 * @mtd: mtd info structure 1943 * @buf: source buffer to get OOB bytes from 1944 * @oobbuf: OOB buffer 1945 * @start: first OOB byte to set 1946 * @nbytes: number of OOB bytes to set 1947 * @iter: section iterator 1948 * 1949 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1950 * is selected by passing the appropriate iterator. 1951 * 1952 * Returns zero on success, a negative error code otherwise. 1953 */ 1954 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1955 u8 *oobbuf, int start, int nbytes, 1956 int (*iter)(struct mtd_info *, 1957 int section, 1958 struct mtd_oob_region *oobregion)) 1959 { 1960 struct mtd_oob_region oobregion; 1961 int section, ret; 1962 1963 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1964 &oobregion, iter); 1965 1966 while (!ret) { 1967 int cnt; 1968 1969 cnt = min_t(int, nbytes, oobregion.length); 1970 memcpy(oobbuf + oobregion.offset, buf, cnt); 1971 buf += cnt; 1972 nbytes -= cnt; 1973 1974 if (!nbytes) 1975 break; 1976 1977 ret = iter(mtd, ++section, &oobregion); 1978 } 1979 1980 return ret; 1981 } 1982 1983 /** 1984 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1985 * @mtd: mtd info structure 1986 * @iter: category iterator 1987 * 1988 * Count the number of bytes in a given category. 1989 * 1990 * Returns a positive value on success, a negative error code otherwise. 1991 */ 1992 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1993 int (*iter)(struct mtd_info *, 1994 int section, 1995 struct mtd_oob_region *oobregion)) 1996 { 1997 struct mtd_oob_region oobregion; 1998 int section = 0, ret, nbytes = 0; 1999 2000 while (1) { 2001 ret = iter(mtd, section++, &oobregion); 2002 if (ret) { 2003 if (ret == -ERANGE) 2004 ret = nbytes; 2005 break; 2006 } 2007 2008 nbytes += oobregion.length; 2009 } 2010 2011 return ret; 2012 } 2013 2014 /** 2015 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 2016 * @mtd: mtd info structure 2017 * @eccbuf: destination buffer to store ECC bytes 2018 * @oobbuf: OOB buffer 2019 * @start: first ECC byte to retrieve 2020 * @nbytes: number of ECC bytes to retrieve 2021 * 2022 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 2023 * 2024 * Returns zero on success, a negative error code otherwise. 2025 */ 2026 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 2027 const u8 *oobbuf, int start, int nbytes) 2028 { 2029 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2030 mtd_ooblayout_ecc); 2031 } 2032 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 2033 2034 /** 2035 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 2036 * @mtd: mtd info structure 2037 * @eccbuf: source buffer to get ECC bytes from 2038 * @oobbuf: OOB buffer 2039 * @start: first ECC byte to set 2040 * @nbytes: number of ECC bytes to set 2041 * 2042 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2043 * 2044 * Returns zero on success, a negative error code otherwise. 2045 */ 2046 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2047 u8 *oobbuf, int start, int nbytes) 2048 { 2049 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2050 mtd_ooblayout_ecc); 2051 } 2052 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2053 2054 /** 2055 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2056 * @mtd: mtd info structure 2057 * @databuf: destination buffer to store ECC bytes 2058 * @oobbuf: OOB buffer 2059 * @start: first ECC byte to retrieve 2060 * @nbytes: number of ECC bytes to retrieve 2061 * 2062 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2063 * 2064 * Returns zero on success, a negative error code otherwise. 2065 */ 2066 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2067 const u8 *oobbuf, int start, int nbytes) 2068 { 2069 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2070 mtd_ooblayout_free); 2071 } 2072 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2073 2074 /** 2075 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2076 * @mtd: mtd info structure 2077 * @databuf: source buffer to get data bytes from 2078 * @oobbuf: OOB buffer 2079 * @start: first ECC byte to set 2080 * @nbytes: number of ECC bytes to set 2081 * 2082 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2083 * 2084 * Returns zero on success, a negative error code otherwise. 2085 */ 2086 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2087 u8 *oobbuf, int start, int nbytes) 2088 { 2089 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2090 mtd_ooblayout_free); 2091 } 2092 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2093 2094 /** 2095 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2096 * @mtd: mtd info structure 2097 * 2098 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2099 * 2100 * Returns zero on success, a negative error code otherwise. 2101 */ 2102 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2103 { 2104 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2105 } 2106 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2107 2108 /** 2109 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2110 * @mtd: mtd info structure 2111 * 2112 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2113 * 2114 * Returns zero on success, a negative error code otherwise. 2115 */ 2116 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2117 { 2118 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2119 } 2120 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2121 2122 /* 2123 * Method to access the protection register area, present in some flash 2124 * devices. The user data is one time programmable but the factory data is read 2125 * only. 2126 */ 2127 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2128 struct otp_info *buf) 2129 { 2130 struct mtd_info *master = mtd_get_master(mtd); 2131 2132 if (!master->_get_fact_prot_info) 2133 return -EOPNOTSUPP; 2134 if (!len) 2135 return 0; 2136 return master->_get_fact_prot_info(master, len, retlen, buf); 2137 } 2138 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2139 2140 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2141 size_t *retlen, u_char *buf) 2142 { 2143 struct mtd_info *master = mtd_get_master(mtd); 2144 2145 *retlen = 0; 2146 if (!master->_read_fact_prot_reg) 2147 return -EOPNOTSUPP; 2148 if (!len) 2149 return 0; 2150 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2151 } 2152 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2153 2154 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2155 struct otp_info *buf) 2156 { 2157 struct mtd_info *master = mtd_get_master(mtd); 2158 2159 if (!master->_get_user_prot_info) 2160 return -EOPNOTSUPP; 2161 if (!len) 2162 return 0; 2163 return master->_get_user_prot_info(master, len, retlen, buf); 2164 } 2165 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2166 2167 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2168 size_t *retlen, u_char *buf) 2169 { 2170 struct mtd_info *master = mtd_get_master(mtd); 2171 2172 *retlen = 0; 2173 if (!master->_read_user_prot_reg) 2174 return -EOPNOTSUPP; 2175 if (!len) 2176 return 0; 2177 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2178 } 2179 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2180 2181 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2182 size_t *retlen, const u_char *buf) 2183 { 2184 struct mtd_info *master = mtd_get_master(mtd); 2185 int ret; 2186 2187 *retlen = 0; 2188 if (!master->_write_user_prot_reg) 2189 return -EOPNOTSUPP; 2190 if (!len) 2191 return 0; 2192 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2193 if (ret) 2194 return ret; 2195 2196 /* 2197 * If no data could be written at all, we are out of memory and 2198 * must return -ENOSPC. 2199 */ 2200 return (*retlen) ? 0 : -ENOSPC; 2201 } 2202 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2203 2204 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2205 { 2206 struct mtd_info *master = mtd_get_master(mtd); 2207 2208 if (!master->_lock_user_prot_reg) 2209 return -EOPNOTSUPP; 2210 if (!len) 2211 return 0; 2212 return master->_lock_user_prot_reg(master, from, len); 2213 } 2214 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2215 2216 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2217 { 2218 struct mtd_info *master = mtd_get_master(mtd); 2219 2220 if (!master->_erase_user_prot_reg) 2221 return -EOPNOTSUPP; 2222 if (!len) 2223 return 0; 2224 return master->_erase_user_prot_reg(master, from, len); 2225 } 2226 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2227 2228 /* Chip-supported device locking */ 2229 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2230 { 2231 struct mtd_info *master = mtd_get_master(mtd); 2232 2233 if (!master->_lock) 2234 return -EOPNOTSUPP; 2235 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2236 return -EINVAL; 2237 if (!len) 2238 return 0; 2239 2240 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2241 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2242 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2243 } 2244 2245 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2246 } 2247 EXPORT_SYMBOL_GPL(mtd_lock); 2248 2249 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2250 { 2251 struct mtd_info *master = mtd_get_master(mtd); 2252 2253 if (!master->_unlock) 2254 return -EOPNOTSUPP; 2255 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2256 return -EINVAL; 2257 if (!len) 2258 return 0; 2259 2260 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2261 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2262 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2263 } 2264 2265 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2266 } 2267 EXPORT_SYMBOL_GPL(mtd_unlock); 2268 2269 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2270 { 2271 struct mtd_info *master = mtd_get_master(mtd); 2272 2273 if (!master->_is_locked) 2274 return -EOPNOTSUPP; 2275 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2276 return -EINVAL; 2277 if (!len) 2278 return 0; 2279 2280 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2281 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2282 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2283 } 2284 2285 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2286 } 2287 EXPORT_SYMBOL_GPL(mtd_is_locked); 2288 2289 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2290 { 2291 struct mtd_info *master = mtd_get_master(mtd); 2292 2293 if (ofs < 0 || ofs >= mtd->size) 2294 return -EINVAL; 2295 if (!master->_block_isreserved) 2296 return 0; 2297 2298 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2299 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2300 2301 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2302 } 2303 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2304 2305 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2306 { 2307 struct mtd_info *master = mtd_get_master(mtd); 2308 2309 if (ofs < 0 || ofs >= mtd->size) 2310 return -EINVAL; 2311 if (!master->_block_isbad) 2312 return 0; 2313 2314 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2315 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2316 2317 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2318 } 2319 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2320 2321 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2322 { 2323 struct mtd_info *master = mtd_get_master(mtd); 2324 int ret; 2325 2326 if (!master->_block_markbad) 2327 return -EOPNOTSUPP; 2328 if (ofs < 0 || ofs >= mtd->size) 2329 return -EINVAL; 2330 if (!(mtd->flags & MTD_WRITEABLE)) 2331 return -EROFS; 2332 2333 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2334 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2335 2336 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2337 if (ret) 2338 return ret; 2339 2340 while (mtd->parent) { 2341 mtd->ecc_stats.badblocks++; 2342 mtd = mtd->parent; 2343 } 2344 2345 return 0; 2346 } 2347 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2348 2349 /* 2350 * default_mtd_writev - the default writev method 2351 * @mtd: mtd device description object pointer 2352 * @vecs: the vectors to write 2353 * @count: count of vectors in @vecs 2354 * @to: the MTD device offset to write to 2355 * @retlen: on exit contains the count of bytes written to the MTD device. 2356 * 2357 * This function returns zero in case of success and a negative error code in 2358 * case of failure. 2359 */ 2360 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2361 unsigned long count, loff_t to, size_t *retlen) 2362 { 2363 unsigned long i; 2364 size_t totlen = 0, thislen; 2365 int ret = 0; 2366 2367 for (i = 0; i < count; i++) { 2368 if (!vecs[i].iov_len) 2369 continue; 2370 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2371 vecs[i].iov_base); 2372 totlen += thislen; 2373 if (ret || thislen != vecs[i].iov_len) 2374 break; 2375 to += vecs[i].iov_len; 2376 } 2377 *retlen = totlen; 2378 return ret; 2379 } 2380 2381 /* 2382 * mtd_writev - the vector-based MTD write method 2383 * @mtd: mtd device description object pointer 2384 * @vecs: the vectors to write 2385 * @count: count of vectors in @vecs 2386 * @to: the MTD device offset to write to 2387 * @retlen: on exit contains the count of bytes written to the MTD device. 2388 * 2389 * This function returns zero in case of success and a negative error code in 2390 * case of failure. 2391 */ 2392 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2393 unsigned long count, loff_t to, size_t *retlen) 2394 { 2395 struct mtd_info *master = mtd_get_master(mtd); 2396 2397 *retlen = 0; 2398 if (!(mtd->flags & MTD_WRITEABLE)) 2399 return -EROFS; 2400 2401 if (!master->_writev) 2402 return default_mtd_writev(mtd, vecs, count, to, retlen); 2403 2404 return master->_writev(master, vecs, count, 2405 mtd_get_master_ofs(mtd, to), retlen); 2406 } 2407 EXPORT_SYMBOL_GPL(mtd_writev); 2408 2409 /** 2410 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2411 * @mtd: mtd device description object pointer 2412 * @size: a pointer to the ideal or maximum size of the allocation, points 2413 * to the actual allocation size on success. 2414 * 2415 * This routine attempts to allocate a contiguous kernel buffer up to 2416 * the specified size, backing off the size of the request exponentially 2417 * until the request succeeds or until the allocation size falls below 2418 * the system page size. This attempts to make sure it does not adversely 2419 * impact system performance, so when allocating more than one page, we 2420 * ask the memory allocator to avoid re-trying, swapping, writing back 2421 * or performing I/O. 2422 * 2423 * Note, this function also makes sure that the allocated buffer is aligned to 2424 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2425 * 2426 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2427 * to handle smaller (i.e. degraded) buffer allocations under low- or 2428 * fragmented-memory situations where such reduced allocations, from a 2429 * requested ideal, are allowed. 2430 * 2431 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2432 */ 2433 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2434 { 2435 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2436 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2437 void *kbuf; 2438 2439 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2440 2441 while (*size > min_alloc) { 2442 kbuf = kmalloc(*size, flags); 2443 if (kbuf) 2444 return kbuf; 2445 2446 *size >>= 1; 2447 *size = ALIGN(*size, mtd->writesize); 2448 } 2449 2450 /* 2451 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2452 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2453 */ 2454 return kmalloc(*size, GFP_KERNEL); 2455 } 2456 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2457 2458 #ifdef CONFIG_PROC_FS 2459 2460 /*====================================================================*/ 2461 /* Support for /proc/mtd */ 2462 2463 static int mtd_proc_show(struct seq_file *m, void *v) 2464 { 2465 struct mtd_info *mtd; 2466 2467 seq_puts(m, "dev: size erasesize name\n"); 2468 mutex_lock(&mtd_table_mutex); 2469 mtd_for_each_device(mtd) { 2470 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2471 mtd->index, (unsigned long long)mtd->size, 2472 mtd->erasesize, mtd->name); 2473 } 2474 mutex_unlock(&mtd_table_mutex); 2475 return 0; 2476 } 2477 #endif /* CONFIG_PROC_FS */ 2478 2479 /*====================================================================*/ 2480 /* Init code */ 2481 2482 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2483 { 2484 struct backing_dev_info *bdi; 2485 int ret; 2486 2487 bdi = bdi_alloc(NUMA_NO_NODE); 2488 if (!bdi) 2489 return ERR_PTR(-ENOMEM); 2490 bdi->ra_pages = 0; 2491 bdi->io_pages = 0; 2492 2493 /* 2494 * We put '-0' suffix to the name to get the same name format as we 2495 * used to get. Since this is called only once, we get a unique name. 2496 */ 2497 ret = bdi_register(bdi, "%.28s-0", name); 2498 if (ret) 2499 bdi_put(bdi); 2500 2501 return ret ? ERR_PTR(ret) : bdi; 2502 } 2503 2504 static struct proc_dir_entry *proc_mtd; 2505 2506 static int __init init_mtd(void) 2507 { 2508 int ret; 2509 2510 ret = class_register(&mtd_class); 2511 if (ret) 2512 goto err_reg; 2513 2514 mtd_bdi = mtd_bdi_init("mtd"); 2515 if (IS_ERR(mtd_bdi)) { 2516 ret = PTR_ERR(mtd_bdi); 2517 goto err_bdi; 2518 } 2519 2520 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2521 2522 ret = init_mtdchar(); 2523 if (ret) 2524 goto out_procfs; 2525 2526 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2527 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2528 &mtd_expert_analysis_mode); 2529 2530 return 0; 2531 2532 out_procfs: 2533 if (proc_mtd) 2534 remove_proc_entry("mtd", NULL); 2535 bdi_unregister(mtd_bdi); 2536 bdi_put(mtd_bdi); 2537 err_bdi: 2538 class_unregister(&mtd_class); 2539 err_reg: 2540 pr_err("Error registering mtd class or bdi: %d\n", ret); 2541 return ret; 2542 } 2543 2544 static void __exit cleanup_mtd(void) 2545 { 2546 debugfs_remove_recursive(dfs_dir_mtd); 2547 cleanup_mtdchar(); 2548 if (proc_mtd) 2549 remove_proc_entry("mtd", NULL); 2550 class_unregister(&mtd_class); 2551 bdi_unregister(mtd_bdi); 2552 bdi_put(mtd_bdi); 2553 idr_destroy(&mtd_idr); 2554 } 2555 2556 module_init(init_mtd); 2557 module_exit(cleanup_mtd); 2558 2559 MODULE_LICENSE("GPL"); 2560 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2561 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2562