1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 #include <linux/leds.h> 30 #include <linux/debugfs.h> 31 #include <linux/nvmem-provider.h> 32 #include <linux/root_dev.h> 33 #include <linux/error-injection.h> 34 35 #include <linux/mtd/mtd.h> 36 #include <linux/mtd/partitions.h> 37 38 #include "mtdcore.h" 39 40 struct backing_dev_info *mtd_bdi; 41 42 #ifdef CONFIG_PM_SLEEP 43 44 static int mtd_cls_suspend(struct device *dev) 45 { 46 struct mtd_info *mtd = dev_get_drvdata(dev); 47 48 return mtd ? mtd_suspend(mtd) : 0; 49 } 50 51 static int mtd_cls_resume(struct device *dev) 52 { 53 struct mtd_info *mtd = dev_get_drvdata(dev); 54 55 if (mtd) 56 mtd_resume(mtd); 57 return 0; 58 } 59 60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 62 #else 63 #define MTD_CLS_PM_OPS NULL 64 #endif 65 66 static struct class mtd_class = { 67 .name = "mtd", 68 .pm = MTD_CLS_PM_OPS, 69 }; 70 71 static DEFINE_IDR(mtd_idr); 72 73 /* These are exported solely for the purpose of mtd_blkdevs.c. You 74 should not use them for _anything_ else */ 75 DEFINE_MUTEX(mtd_table_mutex); 76 EXPORT_SYMBOL_GPL(mtd_table_mutex); 77 78 struct mtd_info *__mtd_next_device(int i) 79 { 80 return idr_get_next(&mtd_idr, &i); 81 } 82 EXPORT_SYMBOL_GPL(__mtd_next_device); 83 84 static LIST_HEAD(mtd_notifiers); 85 86 87 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 88 89 /* REVISIT once MTD uses the driver model better, whoever allocates 90 * the mtd_info will probably want to use the release() hook... 91 */ 92 static void mtd_release(struct device *dev) 93 { 94 struct mtd_info *mtd = dev_get_drvdata(dev); 95 dev_t index = MTD_DEVT(mtd->index); 96 97 idr_remove(&mtd_idr, mtd->index); 98 of_node_put(mtd_get_of_node(mtd)); 99 100 if (mtd_is_partition(mtd)) 101 release_mtd_partition(mtd); 102 103 /* remove /dev/mtdXro node */ 104 device_destroy(&mtd_class, index + 1); 105 } 106 107 static void mtd_device_release(struct kref *kref) 108 { 109 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt); 110 bool is_partition = mtd_is_partition(mtd); 111 112 debugfs_remove_recursive(mtd->dbg.dfs_dir); 113 114 /* Try to remove the NVMEM provider */ 115 nvmem_unregister(mtd->nvmem); 116 117 device_unregister(&mtd->dev); 118 119 /* 120 * Clear dev so mtd can be safely re-registered later if desired. 121 * Should not be done for partition, 122 * as it was already destroyed in device_unregister(). 123 */ 124 if (!is_partition) 125 memset(&mtd->dev, 0, sizeof(mtd->dev)); 126 127 module_put(THIS_MODULE); 128 } 129 130 #define MTD_DEVICE_ATTR_RO(name) \ 131 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 132 133 #define MTD_DEVICE_ATTR_RW(name) \ 134 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 135 136 static ssize_t mtd_type_show(struct device *dev, 137 struct device_attribute *attr, char *buf) 138 { 139 struct mtd_info *mtd = dev_get_drvdata(dev); 140 char *type; 141 142 switch (mtd->type) { 143 case MTD_ABSENT: 144 type = "absent"; 145 break; 146 case MTD_RAM: 147 type = "ram"; 148 break; 149 case MTD_ROM: 150 type = "rom"; 151 break; 152 case MTD_NORFLASH: 153 type = "nor"; 154 break; 155 case MTD_NANDFLASH: 156 type = "nand"; 157 break; 158 case MTD_DATAFLASH: 159 type = "dataflash"; 160 break; 161 case MTD_UBIVOLUME: 162 type = "ubi"; 163 break; 164 case MTD_MLCNANDFLASH: 165 type = "mlc-nand"; 166 break; 167 default: 168 type = "unknown"; 169 } 170 171 return sysfs_emit(buf, "%s\n", type); 172 } 173 MTD_DEVICE_ATTR_RO(type); 174 175 static ssize_t mtd_flags_show(struct device *dev, 176 struct device_attribute *attr, char *buf) 177 { 178 struct mtd_info *mtd = dev_get_drvdata(dev); 179 180 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 181 } 182 MTD_DEVICE_ATTR_RO(flags); 183 184 static ssize_t mtd_size_show(struct device *dev, 185 struct device_attribute *attr, char *buf) 186 { 187 struct mtd_info *mtd = dev_get_drvdata(dev); 188 189 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 190 } 191 MTD_DEVICE_ATTR_RO(size); 192 193 static ssize_t mtd_erasesize_show(struct device *dev, 194 struct device_attribute *attr, char *buf) 195 { 196 struct mtd_info *mtd = dev_get_drvdata(dev); 197 198 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 199 } 200 MTD_DEVICE_ATTR_RO(erasesize); 201 202 static ssize_t mtd_writesize_show(struct device *dev, 203 struct device_attribute *attr, char *buf) 204 { 205 struct mtd_info *mtd = dev_get_drvdata(dev); 206 207 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 208 } 209 MTD_DEVICE_ATTR_RO(writesize); 210 211 static ssize_t mtd_subpagesize_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 struct mtd_info *mtd = dev_get_drvdata(dev); 215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 216 217 return sysfs_emit(buf, "%u\n", subpagesize); 218 } 219 MTD_DEVICE_ATTR_RO(subpagesize); 220 221 static ssize_t mtd_oobsize_show(struct device *dev, 222 struct device_attribute *attr, char *buf) 223 { 224 struct mtd_info *mtd = dev_get_drvdata(dev); 225 226 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 227 } 228 MTD_DEVICE_ATTR_RO(oobsize); 229 230 static ssize_t mtd_oobavail_show(struct device *dev, 231 struct device_attribute *attr, char *buf) 232 { 233 struct mtd_info *mtd = dev_get_drvdata(dev); 234 235 return sysfs_emit(buf, "%u\n", mtd->oobavail); 236 } 237 MTD_DEVICE_ATTR_RO(oobavail); 238 239 static ssize_t mtd_numeraseregions_show(struct device *dev, 240 struct device_attribute *attr, char *buf) 241 { 242 struct mtd_info *mtd = dev_get_drvdata(dev); 243 244 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 245 } 246 MTD_DEVICE_ATTR_RO(numeraseregions); 247 248 static ssize_t mtd_name_show(struct device *dev, 249 struct device_attribute *attr, char *buf) 250 { 251 struct mtd_info *mtd = dev_get_drvdata(dev); 252 253 return sysfs_emit(buf, "%s\n", mtd->name); 254 } 255 MTD_DEVICE_ATTR_RO(name); 256 257 static ssize_t mtd_ecc_strength_show(struct device *dev, 258 struct device_attribute *attr, char *buf) 259 { 260 struct mtd_info *mtd = dev_get_drvdata(dev); 261 262 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 263 } 264 MTD_DEVICE_ATTR_RO(ecc_strength); 265 266 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 267 struct device_attribute *attr, 268 char *buf) 269 { 270 struct mtd_info *mtd = dev_get_drvdata(dev); 271 272 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 273 } 274 275 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 276 struct device_attribute *attr, 277 const char *buf, size_t count) 278 { 279 struct mtd_info *mtd = dev_get_drvdata(dev); 280 unsigned int bitflip_threshold; 281 int retval; 282 283 retval = kstrtouint(buf, 0, &bitflip_threshold); 284 if (retval) 285 return retval; 286 287 mtd->bitflip_threshold = bitflip_threshold; 288 return count; 289 } 290 MTD_DEVICE_ATTR_RW(bitflip_threshold); 291 292 static ssize_t mtd_ecc_step_size_show(struct device *dev, 293 struct device_attribute *attr, char *buf) 294 { 295 struct mtd_info *mtd = dev_get_drvdata(dev); 296 297 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 298 299 } 300 MTD_DEVICE_ATTR_RO(ecc_step_size); 301 302 static ssize_t mtd_corrected_bits_show(struct device *dev, 303 struct device_attribute *attr, char *buf) 304 { 305 struct mtd_info *mtd = dev_get_drvdata(dev); 306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 307 308 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 309 } 310 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 311 312 static ssize_t mtd_ecc_failures_show(struct device *dev, 313 struct device_attribute *attr, char *buf) 314 { 315 struct mtd_info *mtd = dev_get_drvdata(dev); 316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 317 318 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 319 } 320 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 321 322 static ssize_t mtd_bad_blocks_show(struct device *dev, 323 struct device_attribute *attr, char *buf) 324 { 325 struct mtd_info *mtd = dev_get_drvdata(dev); 326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 327 328 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 329 } 330 MTD_DEVICE_ATTR_RO(bad_blocks); 331 332 static ssize_t mtd_bbt_blocks_show(struct device *dev, 333 struct device_attribute *attr, char *buf) 334 { 335 struct mtd_info *mtd = dev_get_drvdata(dev); 336 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 337 338 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 339 } 340 MTD_DEVICE_ATTR_RO(bbt_blocks); 341 342 static struct attribute *mtd_attrs[] = { 343 &dev_attr_type.attr, 344 &dev_attr_flags.attr, 345 &dev_attr_size.attr, 346 &dev_attr_erasesize.attr, 347 &dev_attr_writesize.attr, 348 &dev_attr_subpagesize.attr, 349 &dev_attr_oobsize.attr, 350 &dev_attr_oobavail.attr, 351 &dev_attr_numeraseregions.attr, 352 &dev_attr_name.attr, 353 &dev_attr_ecc_strength.attr, 354 &dev_attr_ecc_step_size.attr, 355 &dev_attr_corrected_bits.attr, 356 &dev_attr_ecc_failures.attr, 357 &dev_attr_bad_blocks.attr, 358 &dev_attr_bbt_blocks.attr, 359 &dev_attr_bitflip_threshold.attr, 360 NULL, 361 }; 362 ATTRIBUTE_GROUPS(mtd); 363 364 static const struct device_type mtd_devtype = { 365 .name = "mtd", 366 .groups = mtd_groups, 367 .release = mtd_release, 368 }; 369 370 static bool mtd_expert_analysis_mode; 371 372 #ifdef CONFIG_DEBUG_FS 373 bool mtd_check_expert_analysis_mode(void) 374 { 375 const char *mtd_expert_analysis_warning = 376 "Bad block checks have been entirely disabled.\n" 377 "This is only reserved for post-mortem forensics and debug purposes.\n" 378 "Never enable this mode if you do not know what you are doing!\n"; 379 380 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 381 } 382 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 383 #endif 384 385 static struct dentry *dfs_dir_mtd; 386 387 static void mtd_debugfs_populate(struct mtd_info *mtd) 388 { 389 struct device *dev = &mtd->dev; 390 391 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 392 return; 393 394 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 395 } 396 397 #ifndef CONFIG_MMU 398 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 399 { 400 switch (mtd->type) { 401 case MTD_RAM: 402 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 403 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 404 case MTD_ROM: 405 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 406 NOMMU_MAP_READ; 407 default: 408 return NOMMU_MAP_COPY; 409 } 410 } 411 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 412 #endif 413 414 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 415 void *cmd) 416 { 417 struct mtd_info *mtd; 418 419 mtd = container_of(n, struct mtd_info, reboot_notifier); 420 mtd->_reboot(mtd); 421 422 return NOTIFY_DONE; 423 } 424 425 /** 426 * mtd_wunit_to_pairing_info - get pairing information of a wunit 427 * @mtd: pointer to new MTD device info structure 428 * @wunit: write unit we are interested in 429 * @info: returned pairing information 430 * 431 * Retrieve pairing information associated to the wunit. 432 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 433 * paired together, and where programming a page may influence the page it is 434 * paired with. 435 * The notion of page is replaced by the term wunit (write-unit) to stay 436 * consistent with the ->writesize field. 437 * 438 * The @wunit argument can be extracted from an absolute offset using 439 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 440 * to @wunit. 441 * 442 * From the pairing info the MTD user can find all the wunits paired with 443 * @wunit using the following loop: 444 * 445 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 446 * info.pair = i; 447 * mtd_pairing_info_to_wunit(mtd, &info); 448 * ... 449 * } 450 */ 451 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 452 struct mtd_pairing_info *info) 453 { 454 struct mtd_info *master = mtd_get_master(mtd); 455 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 456 457 if (wunit < 0 || wunit >= npairs) 458 return -EINVAL; 459 460 if (master->pairing && master->pairing->get_info) 461 return master->pairing->get_info(master, wunit, info); 462 463 info->group = 0; 464 info->pair = wunit; 465 466 return 0; 467 } 468 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 469 470 /** 471 * mtd_pairing_info_to_wunit - get wunit from pairing information 472 * @mtd: pointer to new MTD device info structure 473 * @info: pairing information struct 474 * 475 * Returns a positive number representing the wunit associated to the info 476 * struct, or a negative error code. 477 * 478 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 479 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 480 * doc). 481 * 482 * It can also be used to only program the first page of each pair (i.e. 483 * page attached to group 0), which allows one to use an MLC NAND in 484 * software-emulated SLC mode: 485 * 486 * info.group = 0; 487 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 488 * for (info.pair = 0; info.pair < npairs; info.pair++) { 489 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 490 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 491 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 492 * } 493 */ 494 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 495 const struct mtd_pairing_info *info) 496 { 497 struct mtd_info *master = mtd_get_master(mtd); 498 int ngroups = mtd_pairing_groups(master); 499 int npairs = mtd_wunit_per_eb(master) / ngroups; 500 501 if (!info || info->pair < 0 || info->pair >= npairs || 502 info->group < 0 || info->group >= ngroups) 503 return -EINVAL; 504 505 if (master->pairing && master->pairing->get_wunit) 506 return mtd->pairing->get_wunit(master, info); 507 508 return info->pair; 509 } 510 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 511 512 /** 513 * mtd_pairing_groups - get the number of pairing groups 514 * @mtd: pointer to new MTD device info structure 515 * 516 * Returns the number of pairing groups. 517 * 518 * This number is usually equal to the number of bits exposed by a single 519 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 520 * to iterate over all pages of a given pair. 521 */ 522 int mtd_pairing_groups(struct mtd_info *mtd) 523 { 524 struct mtd_info *master = mtd_get_master(mtd); 525 526 if (!master->pairing || !master->pairing->ngroups) 527 return 1; 528 529 return master->pairing->ngroups; 530 } 531 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 532 533 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 534 void *val, size_t bytes) 535 { 536 struct mtd_info *mtd = priv; 537 size_t retlen; 538 int err; 539 540 err = mtd_read(mtd, offset, bytes, &retlen, val); 541 if (err && err != -EUCLEAN) 542 return err; 543 544 return retlen == bytes ? 0 : -EIO; 545 } 546 547 static int mtd_nvmem_add(struct mtd_info *mtd) 548 { 549 struct device_node *node = mtd_get_of_node(mtd); 550 struct nvmem_config config = {}; 551 552 config.id = NVMEM_DEVID_NONE; 553 config.dev = &mtd->dev; 554 config.name = dev_name(&mtd->dev); 555 config.owner = THIS_MODULE; 556 config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells"); 557 config.reg_read = mtd_nvmem_reg_read; 558 config.size = mtd->size; 559 config.word_size = 1; 560 config.stride = 1; 561 config.read_only = true; 562 config.root_only = true; 563 config.ignore_wp = true; 564 config.priv = mtd; 565 566 mtd->nvmem = nvmem_register(&config); 567 if (IS_ERR(mtd->nvmem)) { 568 /* Just ignore if there is no NVMEM support in the kernel */ 569 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 570 mtd->nvmem = NULL; 571 else 572 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 573 "Failed to register NVMEM device\n"); 574 } 575 576 return 0; 577 } 578 579 static void mtd_check_of_node(struct mtd_info *mtd) 580 { 581 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 582 const char *pname, *prefix = "partition-"; 583 int plen, mtd_name_len, offset, prefix_len; 584 585 /* Check if MTD already has a device node */ 586 if (mtd_get_of_node(mtd)) 587 return; 588 589 if (!mtd_is_partition(mtd)) 590 return; 591 592 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 593 if (!parent_dn) 594 return; 595 596 if (mtd_is_partition(mtd->parent)) 597 partitions = of_node_get(parent_dn); 598 else 599 partitions = of_get_child_by_name(parent_dn, "partitions"); 600 if (!partitions) 601 goto exit_parent; 602 603 prefix_len = strlen(prefix); 604 mtd_name_len = strlen(mtd->name); 605 606 /* Search if a partition is defined with the same name */ 607 for_each_child_of_node(partitions, mtd_dn) { 608 /* Skip partition with no/wrong prefix */ 609 if (!of_node_name_prefix(mtd_dn, prefix)) 610 continue; 611 612 /* Label have priority. Check that first */ 613 if (!of_property_read_string(mtd_dn, "label", &pname)) { 614 offset = 0; 615 } else { 616 pname = mtd_dn->name; 617 offset = prefix_len; 618 } 619 620 plen = strlen(pname) - offset; 621 if (plen == mtd_name_len && 622 !strncmp(mtd->name, pname + offset, plen)) { 623 mtd_set_of_node(mtd, mtd_dn); 624 break; 625 } 626 } 627 628 of_node_put(partitions); 629 exit_parent: 630 of_node_put(parent_dn); 631 } 632 633 /** 634 * add_mtd_device - register an MTD device 635 * @mtd: pointer to new MTD device info structure 636 * 637 * Add a device to the list of MTD devices present in the system, and 638 * notify each currently active MTD 'user' of its arrival. Returns 639 * zero on success or non-zero on failure. 640 */ 641 642 int add_mtd_device(struct mtd_info *mtd) 643 { 644 struct device_node *np = mtd_get_of_node(mtd); 645 struct mtd_info *master = mtd_get_master(mtd); 646 struct mtd_notifier *not; 647 int i, error, ofidx; 648 649 /* 650 * May occur, for instance, on buggy drivers which call 651 * mtd_device_parse_register() multiple times on the same master MTD, 652 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 653 */ 654 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 655 return -EEXIST; 656 657 BUG_ON(mtd->writesize == 0); 658 659 /* 660 * MTD drivers should implement ->_{write,read}() or 661 * ->_{write,read}_oob(), but not both. 662 */ 663 if (WARN_ON((mtd->_write && mtd->_write_oob) || 664 (mtd->_read && mtd->_read_oob))) 665 return -EINVAL; 666 667 if (WARN_ON((!mtd->erasesize || !master->_erase) && 668 !(mtd->flags & MTD_NO_ERASE))) 669 return -EINVAL; 670 671 /* 672 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 673 * master is an MLC NAND and has a proper pairing scheme defined. 674 * We also reject masters that implement ->_writev() for now, because 675 * NAND controller drivers don't implement this hook, and adding the 676 * SLC -> MLC address/length conversion to this path is useless if we 677 * don't have a user. 678 */ 679 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 680 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 681 !master->pairing || master->_writev)) 682 return -EINVAL; 683 684 mutex_lock(&mtd_table_mutex); 685 686 ofidx = -1; 687 if (np) 688 ofidx = of_alias_get_id(np, "mtd"); 689 if (ofidx >= 0) 690 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 691 else 692 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 693 if (i < 0) { 694 error = i; 695 goto fail_locked; 696 } 697 698 mtd->index = i; 699 kref_init(&mtd->refcnt); 700 701 /* default value if not set by driver */ 702 if (mtd->bitflip_threshold == 0) 703 mtd->bitflip_threshold = mtd->ecc_strength; 704 705 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 706 int ngroups = mtd_pairing_groups(master); 707 708 mtd->erasesize /= ngroups; 709 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 710 mtd->erasesize; 711 } 712 713 if (is_power_of_2(mtd->erasesize)) 714 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 715 else 716 mtd->erasesize_shift = 0; 717 718 if (is_power_of_2(mtd->writesize)) 719 mtd->writesize_shift = ffs(mtd->writesize) - 1; 720 else 721 mtd->writesize_shift = 0; 722 723 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 724 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 725 726 /* Some chips always power up locked. Unlock them now */ 727 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 728 error = mtd_unlock(mtd, 0, mtd->size); 729 if (error && error != -EOPNOTSUPP) 730 printk(KERN_WARNING 731 "%s: unlock failed, writes may not work\n", 732 mtd->name); 733 /* Ignore unlock failures? */ 734 error = 0; 735 } 736 737 /* Caller should have set dev.parent to match the 738 * physical device, if appropriate. 739 */ 740 mtd->dev.type = &mtd_devtype; 741 mtd->dev.class = &mtd_class; 742 mtd->dev.devt = MTD_DEVT(i); 743 dev_set_name(&mtd->dev, "mtd%d", i); 744 dev_set_drvdata(&mtd->dev, mtd); 745 mtd_check_of_node(mtd); 746 of_node_get(mtd_get_of_node(mtd)); 747 error = device_register(&mtd->dev); 748 if (error) { 749 put_device(&mtd->dev); 750 goto fail_added; 751 } 752 753 /* Add the nvmem provider */ 754 error = mtd_nvmem_add(mtd); 755 if (error) 756 goto fail_nvmem_add; 757 758 mtd_debugfs_populate(mtd); 759 760 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 761 "mtd%dro", i); 762 763 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 764 /* No need to get a refcount on the module containing 765 the notifier, since we hold the mtd_table_mutex */ 766 list_for_each_entry(not, &mtd_notifiers, list) 767 not->add(mtd); 768 769 mutex_unlock(&mtd_table_mutex); 770 771 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 772 if (IS_BUILTIN(CONFIG_MTD)) { 773 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 774 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 775 } else { 776 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 777 mtd->index, mtd->name); 778 } 779 } 780 781 /* We _know_ we aren't being removed, because 782 our caller is still holding us here. So none 783 of this try_ nonsense, and no bitching about it 784 either. :) */ 785 __module_get(THIS_MODULE); 786 return 0; 787 788 fail_nvmem_add: 789 device_unregister(&mtd->dev); 790 fail_added: 791 of_node_put(mtd_get_of_node(mtd)); 792 idr_remove(&mtd_idr, i); 793 fail_locked: 794 mutex_unlock(&mtd_table_mutex); 795 return error; 796 } 797 798 /** 799 * del_mtd_device - unregister an MTD device 800 * @mtd: pointer to MTD device info structure 801 * 802 * Remove a device from the list of MTD devices present in the system, 803 * and notify each currently active MTD 'user' of its departure. 804 * Returns zero on success or 1 on failure, which currently will happen 805 * if the requested device does not appear to be present in the list. 806 */ 807 808 int del_mtd_device(struct mtd_info *mtd) 809 { 810 int ret; 811 struct mtd_notifier *not; 812 813 mutex_lock(&mtd_table_mutex); 814 815 if (idr_find(&mtd_idr, mtd->index) != mtd) { 816 ret = -ENODEV; 817 goto out_error; 818 } 819 820 /* No need to get a refcount on the module containing 821 the notifier, since we hold the mtd_table_mutex */ 822 list_for_each_entry(not, &mtd_notifiers, list) 823 not->remove(mtd); 824 825 kref_put(&mtd->refcnt, mtd_device_release); 826 ret = 0; 827 828 out_error: 829 mutex_unlock(&mtd_table_mutex); 830 return ret; 831 } 832 833 /* 834 * Set a few defaults based on the parent devices, if not provided by the 835 * driver 836 */ 837 static void mtd_set_dev_defaults(struct mtd_info *mtd) 838 { 839 if (mtd->dev.parent) { 840 if (!mtd->owner && mtd->dev.parent->driver) 841 mtd->owner = mtd->dev.parent->driver->owner; 842 if (!mtd->name) 843 mtd->name = dev_name(mtd->dev.parent); 844 } else { 845 pr_debug("mtd device won't show a device symlink in sysfs\n"); 846 } 847 848 INIT_LIST_HEAD(&mtd->partitions); 849 mutex_init(&mtd->master.partitions_lock); 850 mutex_init(&mtd->master.chrdev_lock); 851 } 852 853 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 854 { 855 struct otp_info *info; 856 ssize_t size = 0; 857 unsigned int i; 858 size_t retlen; 859 int ret; 860 861 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 862 if (!info) 863 return -ENOMEM; 864 865 if (is_user) 866 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 867 else 868 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 869 if (ret) 870 goto err; 871 872 for (i = 0; i < retlen / sizeof(*info); i++) 873 size += info[i].length; 874 875 kfree(info); 876 return size; 877 878 err: 879 kfree(info); 880 881 /* ENODATA means there is no OTP region. */ 882 return ret == -ENODATA ? 0 : ret; 883 } 884 885 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 886 const char *compatible, 887 int size, 888 nvmem_reg_read_t reg_read) 889 { 890 struct nvmem_device *nvmem = NULL; 891 struct nvmem_config config = {}; 892 struct device_node *np; 893 894 /* DT binding is optional */ 895 np = of_get_compatible_child(mtd->dev.of_node, compatible); 896 897 /* OTP nvmem will be registered on the physical device */ 898 config.dev = mtd->dev.parent; 899 config.name = compatible; 900 config.id = NVMEM_DEVID_AUTO; 901 config.owner = THIS_MODULE; 902 config.add_legacy_fixed_of_cells = true; 903 config.type = NVMEM_TYPE_OTP; 904 config.root_only = true; 905 config.ignore_wp = true; 906 config.reg_read = reg_read; 907 config.size = size; 908 config.of_node = np; 909 config.priv = mtd; 910 911 nvmem = nvmem_register(&config); 912 /* Just ignore if there is no NVMEM support in the kernel */ 913 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 914 nvmem = NULL; 915 916 of_node_put(np); 917 918 return nvmem; 919 } 920 921 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 922 void *val, size_t bytes) 923 { 924 struct mtd_info *mtd = priv; 925 size_t retlen; 926 int ret; 927 928 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 929 if (ret) 930 return ret; 931 932 return retlen == bytes ? 0 : -EIO; 933 } 934 935 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 936 void *val, size_t bytes) 937 { 938 struct mtd_info *mtd = priv; 939 size_t retlen; 940 int ret; 941 942 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 943 if (ret) 944 return ret; 945 946 return retlen == bytes ? 0 : -EIO; 947 } 948 949 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 950 { 951 struct device *dev = mtd->dev.parent; 952 struct nvmem_device *nvmem; 953 ssize_t size; 954 int err; 955 956 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 957 size = mtd_otp_size(mtd, true); 958 if (size < 0) 959 return size; 960 961 if (size > 0) { 962 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 963 mtd_nvmem_user_otp_reg_read); 964 if (IS_ERR(nvmem)) { 965 err = PTR_ERR(nvmem); 966 goto err; 967 } 968 mtd->otp_user_nvmem = nvmem; 969 } 970 } 971 972 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 973 size = mtd_otp_size(mtd, false); 974 if (size < 0) { 975 err = size; 976 goto err; 977 } 978 979 if (size > 0) { 980 /* 981 * The factory OTP contains thing such as a unique serial 982 * number and is small, so let's read it out and put it 983 * into the entropy pool. 984 */ 985 void *otp; 986 987 otp = kmalloc(size, GFP_KERNEL); 988 if (!otp) { 989 err = -ENOMEM; 990 goto err; 991 } 992 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); 993 if (err < 0) { 994 kfree(otp); 995 goto err; 996 } 997 add_device_randomness(otp, err); 998 kfree(otp); 999 1000 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 1001 mtd_nvmem_fact_otp_reg_read); 1002 if (IS_ERR(nvmem)) { 1003 err = PTR_ERR(nvmem); 1004 goto err; 1005 } 1006 mtd->otp_factory_nvmem = nvmem; 1007 } 1008 } 1009 1010 return 0; 1011 1012 err: 1013 nvmem_unregister(mtd->otp_user_nvmem); 1014 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 1015 } 1016 1017 /** 1018 * mtd_device_parse_register - parse partitions and register an MTD device. 1019 * 1020 * @mtd: the MTD device to register 1021 * @types: the list of MTD partition probes to try, see 1022 * 'parse_mtd_partitions()' for more information 1023 * @parser_data: MTD partition parser-specific data 1024 * @parts: fallback partition information to register, if parsing fails; 1025 * only valid if %nr_parts > %0 1026 * @nr_parts: the number of partitions in parts, if zero then the full 1027 * MTD device is registered if no partition info is found 1028 * 1029 * This function aggregates MTD partitions parsing (done by 1030 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1031 * basically follows the most common pattern found in many MTD drivers: 1032 * 1033 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1034 * registered first. 1035 * * Then It tries to probe partitions on MTD device @mtd using parsers 1036 * specified in @types (if @types is %NULL, then the default list of parsers 1037 * is used, see 'parse_mtd_partitions()' for more information). If none are 1038 * found this functions tries to fallback to information specified in 1039 * @parts/@nr_parts. 1040 * * If no partitions were found this function just registers the MTD device 1041 * @mtd and exits. 1042 * 1043 * Returns zero in case of success and a negative error code in case of failure. 1044 */ 1045 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1046 struct mtd_part_parser_data *parser_data, 1047 const struct mtd_partition *parts, 1048 int nr_parts) 1049 { 1050 int ret; 1051 1052 mtd_set_dev_defaults(mtd); 1053 1054 ret = mtd_otp_nvmem_add(mtd); 1055 if (ret) 1056 goto out; 1057 1058 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1059 ret = add_mtd_device(mtd); 1060 if (ret) 1061 goto out; 1062 } 1063 1064 /* Prefer parsed partitions over driver-provided fallback */ 1065 ret = parse_mtd_partitions(mtd, types, parser_data); 1066 if (ret == -EPROBE_DEFER) 1067 goto out; 1068 1069 if (ret > 0) 1070 ret = 0; 1071 else if (nr_parts) 1072 ret = add_mtd_partitions(mtd, parts, nr_parts); 1073 else if (!device_is_registered(&mtd->dev)) 1074 ret = add_mtd_device(mtd); 1075 else 1076 ret = 0; 1077 1078 if (ret) 1079 goto out; 1080 1081 /* 1082 * FIXME: some drivers unfortunately call this function more than once. 1083 * So we have to check if we've already assigned the reboot notifier. 1084 * 1085 * Generally, we can make multiple calls work for most cases, but it 1086 * does cause problems with parse_mtd_partitions() above (e.g., 1087 * cmdlineparts will register partitions more than once). 1088 */ 1089 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1090 "MTD already registered\n"); 1091 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1092 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1093 register_reboot_notifier(&mtd->reboot_notifier); 1094 } 1095 1096 out: 1097 if (ret) { 1098 nvmem_unregister(mtd->otp_user_nvmem); 1099 nvmem_unregister(mtd->otp_factory_nvmem); 1100 } 1101 1102 if (ret && device_is_registered(&mtd->dev)) 1103 del_mtd_device(mtd); 1104 1105 return ret; 1106 } 1107 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1108 1109 /** 1110 * mtd_device_unregister - unregister an existing MTD device. 1111 * 1112 * @master: the MTD device to unregister. This will unregister both the master 1113 * and any partitions if registered. 1114 */ 1115 int mtd_device_unregister(struct mtd_info *master) 1116 { 1117 int err; 1118 1119 if (master->_reboot) { 1120 unregister_reboot_notifier(&master->reboot_notifier); 1121 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1122 } 1123 1124 nvmem_unregister(master->otp_user_nvmem); 1125 nvmem_unregister(master->otp_factory_nvmem); 1126 1127 err = del_mtd_partitions(master); 1128 if (err) 1129 return err; 1130 1131 if (!device_is_registered(&master->dev)) 1132 return 0; 1133 1134 return del_mtd_device(master); 1135 } 1136 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1137 1138 /** 1139 * register_mtd_user - register a 'user' of MTD devices. 1140 * @new: pointer to notifier info structure 1141 * 1142 * Registers a pair of callbacks function to be called upon addition 1143 * or removal of MTD devices. Causes the 'add' callback to be immediately 1144 * invoked for each MTD device currently present in the system. 1145 */ 1146 void register_mtd_user (struct mtd_notifier *new) 1147 { 1148 struct mtd_info *mtd; 1149 1150 mutex_lock(&mtd_table_mutex); 1151 1152 list_add(&new->list, &mtd_notifiers); 1153 1154 __module_get(THIS_MODULE); 1155 1156 mtd_for_each_device(mtd) 1157 new->add(mtd); 1158 1159 mutex_unlock(&mtd_table_mutex); 1160 } 1161 EXPORT_SYMBOL_GPL(register_mtd_user); 1162 1163 /** 1164 * unregister_mtd_user - unregister a 'user' of MTD devices. 1165 * @old: pointer to notifier info structure 1166 * 1167 * Removes a callback function pair from the list of 'users' to be 1168 * notified upon addition or removal of MTD devices. Causes the 1169 * 'remove' callback to be immediately invoked for each MTD device 1170 * currently present in the system. 1171 */ 1172 int unregister_mtd_user (struct mtd_notifier *old) 1173 { 1174 struct mtd_info *mtd; 1175 1176 mutex_lock(&mtd_table_mutex); 1177 1178 module_put(THIS_MODULE); 1179 1180 mtd_for_each_device(mtd) 1181 old->remove(mtd); 1182 1183 list_del(&old->list); 1184 mutex_unlock(&mtd_table_mutex); 1185 return 0; 1186 } 1187 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1188 1189 /** 1190 * get_mtd_device - obtain a validated handle for an MTD device 1191 * @mtd: last known address of the required MTD device 1192 * @num: internal device number of the required MTD device 1193 * 1194 * Given a number and NULL address, return the num'th entry in the device 1195 * table, if any. Given an address and num == -1, search the device table 1196 * for a device with that address and return if it's still present. Given 1197 * both, return the num'th driver only if its address matches. Return 1198 * error code if not. 1199 */ 1200 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1201 { 1202 struct mtd_info *ret = NULL, *other; 1203 int err = -ENODEV; 1204 1205 mutex_lock(&mtd_table_mutex); 1206 1207 if (num == -1) { 1208 mtd_for_each_device(other) { 1209 if (other == mtd) { 1210 ret = mtd; 1211 break; 1212 } 1213 } 1214 } else if (num >= 0) { 1215 ret = idr_find(&mtd_idr, num); 1216 if (mtd && mtd != ret) 1217 ret = NULL; 1218 } 1219 1220 if (!ret) { 1221 ret = ERR_PTR(err); 1222 goto out; 1223 } 1224 1225 err = __get_mtd_device(ret); 1226 if (err) 1227 ret = ERR_PTR(err); 1228 out: 1229 mutex_unlock(&mtd_table_mutex); 1230 return ret; 1231 } 1232 EXPORT_SYMBOL_GPL(get_mtd_device); 1233 1234 1235 int __get_mtd_device(struct mtd_info *mtd) 1236 { 1237 struct mtd_info *master = mtd_get_master(mtd); 1238 int err; 1239 1240 if (master->_get_device) { 1241 err = master->_get_device(mtd); 1242 if (err) 1243 return err; 1244 } 1245 1246 if (!try_module_get(master->owner)) { 1247 if (master->_put_device) 1248 master->_put_device(master); 1249 return -ENODEV; 1250 } 1251 1252 while (mtd) { 1253 if (mtd != master) 1254 kref_get(&mtd->refcnt); 1255 mtd = mtd->parent; 1256 } 1257 1258 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1259 kref_get(&master->refcnt); 1260 1261 return 0; 1262 } 1263 EXPORT_SYMBOL_GPL(__get_mtd_device); 1264 1265 /** 1266 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1267 * 1268 * @np: device tree node 1269 */ 1270 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1271 { 1272 struct mtd_info *mtd = NULL; 1273 struct mtd_info *tmp; 1274 int err; 1275 1276 mutex_lock(&mtd_table_mutex); 1277 1278 err = -EPROBE_DEFER; 1279 mtd_for_each_device(tmp) { 1280 if (mtd_get_of_node(tmp) == np) { 1281 mtd = tmp; 1282 err = __get_mtd_device(mtd); 1283 break; 1284 } 1285 } 1286 1287 mutex_unlock(&mtd_table_mutex); 1288 1289 return err ? ERR_PTR(err) : mtd; 1290 } 1291 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1292 1293 /** 1294 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1295 * device name 1296 * @name: MTD device name to open 1297 * 1298 * This function returns MTD device description structure in case of 1299 * success and an error code in case of failure. 1300 */ 1301 struct mtd_info *get_mtd_device_nm(const char *name) 1302 { 1303 int err = -ENODEV; 1304 struct mtd_info *mtd = NULL, *other; 1305 1306 mutex_lock(&mtd_table_mutex); 1307 1308 mtd_for_each_device(other) { 1309 if (!strcmp(name, other->name)) { 1310 mtd = other; 1311 break; 1312 } 1313 } 1314 1315 if (!mtd) 1316 goto out_unlock; 1317 1318 err = __get_mtd_device(mtd); 1319 if (err) 1320 goto out_unlock; 1321 1322 mutex_unlock(&mtd_table_mutex); 1323 return mtd; 1324 1325 out_unlock: 1326 mutex_unlock(&mtd_table_mutex); 1327 return ERR_PTR(err); 1328 } 1329 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1330 1331 void put_mtd_device(struct mtd_info *mtd) 1332 { 1333 mutex_lock(&mtd_table_mutex); 1334 __put_mtd_device(mtd); 1335 mutex_unlock(&mtd_table_mutex); 1336 1337 } 1338 EXPORT_SYMBOL_GPL(put_mtd_device); 1339 1340 void __put_mtd_device(struct mtd_info *mtd) 1341 { 1342 struct mtd_info *master = mtd_get_master(mtd); 1343 1344 while (mtd) { 1345 /* kref_put() can relese mtd, so keep a reference mtd->parent */ 1346 struct mtd_info *parent = mtd->parent; 1347 1348 if (mtd != master) 1349 kref_put(&mtd->refcnt, mtd_device_release); 1350 mtd = parent; 1351 } 1352 1353 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1354 kref_put(&master->refcnt, mtd_device_release); 1355 1356 module_put(master->owner); 1357 1358 /* must be the last as master can be freed in the _put_device */ 1359 if (master->_put_device) 1360 master->_put_device(master); 1361 } 1362 EXPORT_SYMBOL_GPL(__put_mtd_device); 1363 1364 /* 1365 * Erase is an synchronous operation. Device drivers are epected to return a 1366 * negative error code if the operation failed and update instr->fail_addr 1367 * to point the portion that was not properly erased. 1368 */ 1369 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1370 { 1371 struct mtd_info *master = mtd_get_master(mtd); 1372 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1373 struct erase_info adjinstr; 1374 int ret; 1375 1376 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1377 adjinstr = *instr; 1378 1379 if (!mtd->erasesize || !master->_erase) 1380 return -ENOTSUPP; 1381 1382 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1383 return -EINVAL; 1384 if (!(mtd->flags & MTD_WRITEABLE)) 1385 return -EROFS; 1386 1387 if (!instr->len) 1388 return 0; 1389 1390 ledtrig_mtd_activity(); 1391 1392 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1393 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1394 master->erasesize; 1395 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1396 master->erasesize) - 1397 adjinstr.addr; 1398 } 1399 1400 adjinstr.addr += mst_ofs; 1401 1402 ret = master->_erase(master, &adjinstr); 1403 1404 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1405 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1406 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1407 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1408 master); 1409 instr->fail_addr *= mtd->erasesize; 1410 } 1411 } 1412 1413 return ret; 1414 } 1415 EXPORT_SYMBOL_GPL(mtd_erase); 1416 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO); 1417 1418 /* 1419 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1420 */ 1421 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1422 void **virt, resource_size_t *phys) 1423 { 1424 struct mtd_info *master = mtd_get_master(mtd); 1425 1426 *retlen = 0; 1427 *virt = NULL; 1428 if (phys) 1429 *phys = 0; 1430 if (!master->_point) 1431 return -EOPNOTSUPP; 1432 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1433 return -EINVAL; 1434 if (!len) 1435 return 0; 1436 1437 from = mtd_get_master_ofs(mtd, from); 1438 return master->_point(master, from, len, retlen, virt, phys); 1439 } 1440 EXPORT_SYMBOL_GPL(mtd_point); 1441 1442 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1443 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1444 { 1445 struct mtd_info *master = mtd_get_master(mtd); 1446 1447 if (!master->_unpoint) 1448 return -EOPNOTSUPP; 1449 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1450 return -EINVAL; 1451 if (!len) 1452 return 0; 1453 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1454 } 1455 EXPORT_SYMBOL_GPL(mtd_unpoint); 1456 1457 /* 1458 * Allow NOMMU mmap() to directly map the device (if not NULL) 1459 * - return the address to which the offset maps 1460 * - return -ENOSYS to indicate refusal to do the mapping 1461 */ 1462 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1463 unsigned long offset, unsigned long flags) 1464 { 1465 size_t retlen; 1466 void *virt; 1467 int ret; 1468 1469 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1470 if (ret) 1471 return ret; 1472 if (retlen != len) { 1473 mtd_unpoint(mtd, offset, retlen); 1474 return -ENOSYS; 1475 } 1476 return (unsigned long)virt; 1477 } 1478 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1479 1480 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1481 const struct mtd_ecc_stats *old_stats) 1482 { 1483 struct mtd_ecc_stats diff; 1484 1485 if (master == mtd) 1486 return; 1487 1488 diff = master->ecc_stats; 1489 diff.failed -= old_stats->failed; 1490 diff.corrected -= old_stats->corrected; 1491 1492 while (mtd->parent) { 1493 mtd->ecc_stats.failed += diff.failed; 1494 mtd->ecc_stats.corrected += diff.corrected; 1495 mtd = mtd->parent; 1496 } 1497 } 1498 1499 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1500 u_char *buf) 1501 { 1502 struct mtd_oob_ops ops = { 1503 .len = len, 1504 .datbuf = buf, 1505 }; 1506 int ret; 1507 1508 ret = mtd_read_oob(mtd, from, &ops); 1509 *retlen = ops.retlen; 1510 1511 WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret)); 1512 1513 return ret; 1514 } 1515 EXPORT_SYMBOL_GPL(mtd_read); 1516 ALLOW_ERROR_INJECTION(mtd_read, ERRNO); 1517 1518 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1519 const u_char *buf) 1520 { 1521 struct mtd_oob_ops ops = { 1522 .len = len, 1523 .datbuf = (u8 *)buf, 1524 }; 1525 int ret; 1526 1527 ret = mtd_write_oob(mtd, to, &ops); 1528 *retlen = ops.retlen; 1529 1530 return ret; 1531 } 1532 EXPORT_SYMBOL_GPL(mtd_write); 1533 ALLOW_ERROR_INJECTION(mtd_write, ERRNO); 1534 1535 /* 1536 * In blackbox flight recorder like scenarios we want to make successful writes 1537 * in interrupt context. panic_write() is only intended to be called when its 1538 * known the kernel is about to panic and we need the write to succeed. Since 1539 * the kernel is not going to be running for much longer, this function can 1540 * break locks and delay to ensure the write succeeds (but not sleep). 1541 */ 1542 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1543 const u_char *buf) 1544 { 1545 struct mtd_info *master = mtd_get_master(mtd); 1546 1547 *retlen = 0; 1548 if (!master->_panic_write) 1549 return -EOPNOTSUPP; 1550 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1551 return -EINVAL; 1552 if (!(mtd->flags & MTD_WRITEABLE)) 1553 return -EROFS; 1554 if (!len) 1555 return 0; 1556 if (!master->oops_panic_write) 1557 master->oops_panic_write = true; 1558 1559 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1560 retlen, buf); 1561 } 1562 EXPORT_SYMBOL_GPL(mtd_panic_write); 1563 1564 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1565 struct mtd_oob_ops *ops) 1566 { 1567 /* 1568 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1569 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1570 * this case. 1571 */ 1572 if (!ops->datbuf) 1573 ops->len = 0; 1574 1575 if (!ops->oobbuf) 1576 ops->ooblen = 0; 1577 1578 if (offs < 0 || offs + ops->len > mtd->size) 1579 return -EINVAL; 1580 1581 if (ops->ooblen) { 1582 size_t maxooblen; 1583 1584 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1585 return -EINVAL; 1586 1587 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1588 mtd_div_by_ws(offs, mtd)) * 1589 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1590 if (ops->ooblen > maxooblen) 1591 return -EINVAL; 1592 } 1593 1594 return 0; 1595 } 1596 1597 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1598 struct mtd_oob_ops *ops) 1599 { 1600 struct mtd_info *master = mtd_get_master(mtd); 1601 int ret; 1602 1603 from = mtd_get_master_ofs(mtd, from); 1604 if (master->_read_oob) 1605 ret = master->_read_oob(master, from, ops); 1606 else 1607 ret = master->_read(master, from, ops->len, &ops->retlen, 1608 ops->datbuf); 1609 1610 return ret; 1611 } 1612 1613 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1614 struct mtd_oob_ops *ops) 1615 { 1616 struct mtd_info *master = mtd_get_master(mtd); 1617 int ret; 1618 1619 to = mtd_get_master_ofs(mtd, to); 1620 if (master->_write_oob) 1621 ret = master->_write_oob(master, to, ops); 1622 else 1623 ret = master->_write(master, to, ops->len, &ops->retlen, 1624 ops->datbuf); 1625 1626 return ret; 1627 } 1628 1629 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1630 struct mtd_oob_ops *ops) 1631 { 1632 struct mtd_info *master = mtd_get_master(mtd); 1633 int ngroups = mtd_pairing_groups(master); 1634 int npairs = mtd_wunit_per_eb(master) / ngroups; 1635 struct mtd_oob_ops adjops = *ops; 1636 unsigned int wunit, oobavail; 1637 struct mtd_pairing_info info; 1638 int max_bitflips = 0; 1639 u32 ebofs, pageofs; 1640 loff_t base, pos; 1641 1642 ebofs = mtd_mod_by_eb(start, mtd); 1643 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1644 info.group = 0; 1645 info.pair = mtd_div_by_ws(ebofs, mtd); 1646 pageofs = mtd_mod_by_ws(ebofs, mtd); 1647 oobavail = mtd_oobavail(mtd, ops); 1648 1649 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1650 int ret; 1651 1652 if (info.pair >= npairs) { 1653 info.pair = 0; 1654 base += master->erasesize; 1655 } 1656 1657 wunit = mtd_pairing_info_to_wunit(master, &info); 1658 pos = mtd_wunit_to_offset(mtd, base, wunit); 1659 1660 adjops.len = ops->len - ops->retlen; 1661 if (adjops.len > mtd->writesize - pageofs) 1662 adjops.len = mtd->writesize - pageofs; 1663 1664 adjops.ooblen = ops->ooblen - ops->oobretlen; 1665 if (adjops.ooblen > oobavail - adjops.ooboffs) 1666 adjops.ooblen = oobavail - adjops.ooboffs; 1667 1668 if (read) { 1669 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1670 if (ret > 0) 1671 max_bitflips = max(max_bitflips, ret); 1672 } else { 1673 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1674 } 1675 1676 if (ret < 0) 1677 return ret; 1678 1679 max_bitflips = max(max_bitflips, ret); 1680 ops->retlen += adjops.retlen; 1681 ops->oobretlen += adjops.oobretlen; 1682 adjops.datbuf += adjops.retlen; 1683 adjops.oobbuf += adjops.oobretlen; 1684 adjops.ooboffs = 0; 1685 pageofs = 0; 1686 info.pair++; 1687 } 1688 1689 return max_bitflips; 1690 } 1691 1692 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1693 { 1694 struct mtd_info *master = mtd_get_master(mtd); 1695 struct mtd_ecc_stats old_stats = master->ecc_stats; 1696 int ret_code; 1697 1698 ops->retlen = ops->oobretlen = 0; 1699 1700 ret_code = mtd_check_oob_ops(mtd, from, ops); 1701 if (ret_code) 1702 return ret_code; 1703 1704 ledtrig_mtd_activity(); 1705 1706 /* Check the validity of a potential fallback on mtd->_read */ 1707 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1708 return -EOPNOTSUPP; 1709 1710 if (ops->stats) 1711 memset(ops->stats, 0, sizeof(*ops->stats)); 1712 1713 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1714 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1715 else 1716 ret_code = mtd_read_oob_std(mtd, from, ops); 1717 1718 mtd_update_ecc_stats(mtd, master, &old_stats); 1719 1720 /* 1721 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1722 * similar to mtd->_read(), returning a non-negative integer 1723 * representing max bitflips. In other cases, mtd->_read_oob() may 1724 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1725 */ 1726 if (unlikely(ret_code < 0)) 1727 return ret_code; 1728 if (mtd->ecc_strength == 0) 1729 return 0; /* device lacks ecc */ 1730 if (ops->stats) 1731 ops->stats->max_bitflips = ret_code; 1732 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1733 } 1734 EXPORT_SYMBOL_GPL(mtd_read_oob); 1735 1736 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1737 struct mtd_oob_ops *ops) 1738 { 1739 struct mtd_info *master = mtd_get_master(mtd); 1740 int ret; 1741 1742 ops->retlen = ops->oobretlen = 0; 1743 1744 if (!(mtd->flags & MTD_WRITEABLE)) 1745 return -EROFS; 1746 1747 ret = mtd_check_oob_ops(mtd, to, ops); 1748 if (ret) 1749 return ret; 1750 1751 ledtrig_mtd_activity(); 1752 1753 /* Check the validity of a potential fallback on mtd->_write */ 1754 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1755 return -EOPNOTSUPP; 1756 1757 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1758 return mtd_io_emulated_slc(mtd, to, false, ops); 1759 1760 return mtd_write_oob_std(mtd, to, ops); 1761 } 1762 EXPORT_SYMBOL_GPL(mtd_write_oob); 1763 1764 /** 1765 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1766 * @mtd: MTD device structure 1767 * @section: ECC section. Depending on the layout you may have all the ECC 1768 * bytes stored in a single contiguous section, or one section 1769 * per ECC chunk (and sometime several sections for a single ECC 1770 * ECC chunk) 1771 * @oobecc: OOB region struct filled with the appropriate ECC position 1772 * information 1773 * 1774 * This function returns ECC section information in the OOB area. If you want 1775 * to get all the ECC bytes information, then you should call 1776 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1777 * 1778 * Returns zero on success, a negative error code otherwise. 1779 */ 1780 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1781 struct mtd_oob_region *oobecc) 1782 { 1783 struct mtd_info *master = mtd_get_master(mtd); 1784 1785 memset(oobecc, 0, sizeof(*oobecc)); 1786 1787 if (!master || section < 0) 1788 return -EINVAL; 1789 1790 if (!master->ooblayout || !master->ooblayout->ecc) 1791 return -ENOTSUPP; 1792 1793 return master->ooblayout->ecc(master, section, oobecc); 1794 } 1795 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1796 1797 /** 1798 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1799 * section 1800 * @mtd: MTD device structure 1801 * @section: Free section you are interested in. Depending on the layout 1802 * you may have all the free bytes stored in a single contiguous 1803 * section, or one section per ECC chunk plus an extra section 1804 * for the remaining bytes (or other funky layout). 1805 * @oobfree: OOB region struct filled with the appropriate free position 1806 * information 1807 * 1808 * This function returns free bytes position in the OOB area. If you want 1809 * to get all the free bytes information, then you should call 1810 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1811 * 1812 * Returns zero on success, a negative error code otherwise. 1813 */ 1814 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1815 struct mtd_oob_region *oobfree) 1816 { 1817 struct mtd_info *master = mtd_get_master(mtd); 1818 1819 memset(oobfree, 0, sizeof(*oobfree)); 1820 1821 if (!master || section < 0) 1822 return -EINVAL; 1823 1824 if (!master->ooblayout || !master->ooblayout->free) 1825 return -ENOTSUPP; 1826 1827 return master->ooblayout->free(master, section, oobfree); 1828 } 1829 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1830 1831 /** 1832 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1833 * @mtd: mtd info structure 1834 * @byte: the byte we are searching for 1835 * @sectionp: pointer where the section id will be stored 1836 * @oobregion: used to retrieve the ECC position 1837 * @iter: iterator function. Should be either mtd_ooblayout_free or 1838 * mtd_ooblayout_ecc depending on the region type you're searching for 1839 * 1840 * This function returns the section id and oobregion information of a 1841 * specific byte. For example, say you want to know where the 4th ECC byte is 1842 * stored, you'll use: 1843 * 1844 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1845 * 1846 * Returns zero on success, a negative error code otherwise. 1847 */ 1848 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1849 int *sectionp, struct mtd_oob_region *oobregion, 1850 int (*iter)(struct mtd_info *, 1851 int section, 1852 struct mtd_oob_region *oobregion)) 1853 { 1854 int pos = 0, ret, section = 0; 1855 1856 memset(oobregion, 0, sizeof(*oobregion)); 1857 1858 while (1) { 1859 ret = iter(mtd, section, oobregion); 1860 if (ret) 1861 return ret; 1862 1863 if (pos + oobregion->length > byte) 1864 break; 1865 1866 pos += oobregion->length; 1867 section++; 1868 } 1869 1870 /* 1871 * Adjust region info to make it start at the beginning at the 1872 * 'start' ECC byte. 1873 */ 1874 oobregion->offset += byte - pos; 1875 oobregion->length -= byte - pos; 1876 *sectionp = section; 1877 1878 return 0; 1879 } 1880 1881 /** 1882 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1883 * ECC byte 1884 * @mtd: mtd info structure 1885 * @eccbyte: the byte we are searching for 1886 * @section: pointer where the section id will be stored 1887 * @oobregion: OOB region information 1888 * 1889 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1890 * byte. 1891 * 1892 * Returns zero on success, a negative error code otherwise. 1893 */ 1894 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1895 int *section, 1896 struct mtd_oob_region *oobregion) 1897 { 1898 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1899 mtd_ooblayout_ecc); 1900 } 1901 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1902 1903 /** 1904 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1905 * @mtd: mtd info structure 1906 * @buf: destination buffer to store OOB bytes 1907 * @oobbuf: OOB buffer 1908 * @start: first byte to retrieve 1909 * @nbytes: number of bytes to retrieve 1910 * @iter: section iterator 1911 * 1912 * Extract bytes attached to a specific category (ECC or free) 1913 * from the OOB buffer and copy them into buf. 1914 * 1915 * Returns zero on success, a negative error code otherwise. 1916 */ 1917 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1918 const u8 *oobbuf, int start, int nbytes, 1919 int (*iter)(struct mtd_info *, 1920 int section, 1921 struct mtd_oob_region *oobregion)) 1922 { 1923 struct mtd_oob_region oobregion; 1924 int section, ret; 1925 1926 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1927 &oobregion, iter); 1928 1929 while (!ret) { 1930 int cnt; 1931 1932 cnt = min_t(int, nbytes, oobregion.length); 1933 memcpy(buf, oobbuf + oobregion.offset, cnt); 1934 buf += cnt; 1935 nbytes -= cnt; 1936 1937 if (!nbytes) 1938 break; 1939 1940 ret = iter(mtd, ++section, &oobregion); 1941 } 1942 1943 return ret; 1944 } 1945 1946 /** 1947 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1948 * @mtd: mtd info structure 1949 * @buf: source buffer to get OOB bytes from 1950 * @oobbuf: OOB buffer 1951 * @start: first OOB byte to set 1952 * @nbytes: number of OOB bytes to set 1953 * @iter: section iterator 1954 * 1955 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1956 * is selected by passing the appropriate iterator. 1957 * 1958 * Returns zero on success, a negative error code otherwise. 1959 */ 1960 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1961 u8 *oobbuf, int start, int nbytes, 1962 int (*iter)(struct mtd_info *, 1963 int section, 1964 struct mtd_oob_region *oobregion)) 1965 { 1966 struct mtd_oob_region oobregion; 1967 int section, ret; 1968 1969 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1970 &oobregion, iter); 1971 1972 while (!ret) { 1973 int cnt; 1974 1975 cnt = min_t(int, nbytes, oobregion.length); 1976 memcpy(oobbuf + oobregion.offset, buf, cnt); 1977 buf += cnt; 1978 nbytes -= cnt; 1979 1980 if (!nbytes) 1981 break; 1982 1983 ret = iter(mtd, ++section, &oobregion); 1984 } 1985 1986 return ret; 1987 } 1988 1989 /** 1990 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1991 * @mtd: mtd info structure 1992 * @iter: category iterator 1993 * 1994 * Count the number of bytes in a given category. 1995 * 1996 * Returns a positive value on success, a negative error code otherwise. 1997 */ 1998 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1999 int (*iter)(struct mtd_info *, 2000 int section, 2001 struct mtd_oob_region *oobregion)) 2002 { 2003 struct mtd_oob_region oobregion; 2004 int section = 0, ret, nbytes = 0; 2005 2006 while (1) { 2007 ret = iter(mtd, section++, &oobregion); 2008 if (ret) { 2009 if (ret == -ERANGE) 2010 ret = nbytes; 2011 break; 2012 } 2013 2014 nbytes += oobregion.length; 2015 } 2016 2017 return ret; 2018 } 2019 2020 /** 2021 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 2022 * @mtd: mtd info structure 2023 * @eccbuf: destination buffer to store ECC bytes 2024 * @oobbuf: OOB buffer 2025 * @start: first ECC byte to retrieve 2026 * @nbytes: number of ECC bytes to retrieve 2027 * 2028 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 2029 * 2030 * Returns zero on success, a negative error code otherwise. 2031 */ 2032 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 2033 const u8 *oobbuf, int start, int nbytes) 2034 { 2035 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2036 mtd_ooblayout_ecc); 2037 } 2038 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 2039 2040 /** 2041 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 2042 * @mtd: mtd info structure 2043 * @eccbuf: source buffer to get ECC bytes from 2044 * @oobbuf: OOB buffer 2045 * @start: first ECC byte to set 2046 * @nbytes: number of ECC bytes to set 2047 * 2048 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2049 * 2050 * Returns zero on success, a negative error code otherwise. 2051 */ 2052 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2053 u8 *oobbuf, int start, int nbytes) 2054 { 2055 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2056 mtd_ooblayout_ecc); 2057 } 2058 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2059 2060 /** 2061 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2062 * @mtd: mtd info structure 2063 * @databuf: destination buffer to store ECC bytes 2064 * @oobbuf: OOB buffer 2065 * @start: first ECC byte to retrieve 2066 * @nbytes: number of ECC bytes to retrieve 2067 * 2068 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2069 * 2070 * Returns zero on success, a negative error code otherwise. 2071 */ 2072 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2073 const u8 *oobbuf, int start, int nbytes) 2074 { 2075 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2076 mtd_ooblayout_free); 2077 } 2078 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2079 2080 /** 2081 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2082 * @mtd: mtd info structure 2083 * @databuf: source buffer to get data bytes from 2084 * @oobbuf: OOB buffer 2085 * @start: first ECC byte to set 2086 * @nbytes: number of ECC bytes to set 2087 * 2088 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2089 * 2090 * Returns zero on success, a negative error code otherwise. 2091 */ 2092 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2093 u8 *oobbuf, int start, int nbytes) 2094 { 2095 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2096 mtd_ooblayout_free); 2097 } 2098 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2099 2100 /** 2101 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2102 * @mtd: mtd info structure 2103 * 2104 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2105 * 2106 * Returns zero on success, a negative error code otherwise. 2107 */ 2108 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2109 { 2110 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2111 } 2112 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2113 2114 /** 2115 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2116 * @mtd: mtd info structure 2117 * 2118 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2119 * 2120 * Returns zero on success, a negative error code otherwise. 2121 */ 2122 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2123 { 2124 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2125 } 2126 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2127 2128 /* 2129 * Method to access the protection register area, present in some flash 2130 * devices. The user data is one time programmable but the factory data is read 2131 * only. 2132 */ 2133 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2134 struct otp_info *buf) 2135 { 2136 struct mtd_info *master = mtd_get_master(mtd); 2137 2138 if (!master->_get_fact_prot_info) 2139 return -EOPNOTSUPP; 2140 if (!len) 2141 return 0; 2142 return master->_get_fact_prot_info(master, len, retlen, buf); 2143 } 2144 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2145 2146 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2147 size_t *retlen, u_char *buf) 2148 { 2149 struct mtd_info *master = mtd_get_master(mtd); 2150 2151 *retlen = 0; 2152 if (!master->_read_fact_prot_reg) 2153 return -EOPNOTSUPP; 2154 if (!len) 2155 return 0; 2156 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2157 } 2158 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2159 2160 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2161 struct otp_info *buf) 2162 { 2163 struct mtd_info *master = mtd_get_master(mtd); 2164 2165 if (!master->_get_user_prot_info) 2166 return -EOPNOTSUPP; 2167 if (!len) 2168 return 0; 2169 return master->_get_user_prot_info(master, len, retlen, buf); 2170 } 2171 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2172 2173 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2174 size_t *retlen, u_char *buf) 2175 { 2176 struct mtd_info *master = mtd_get_master(mtd); 2177 2178 *retlen = 0; 2179 if (!master->_read_user_prot_reg) 2180 return -EOPNOTSUPP; 2181 if (!len) 2182 return 0; 2183 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2184 } 2185 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2186 2187 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2188 size_t *retlen, const u_char *buf) 2189 { 2190 struct mtd_info *master = mtd_get_master(mtd); 2191 int ret; 2192 2193 *retlen = 0; 2194 if (!master->_write_user_prot_reg) 2195 return -EOPNOTSUPP; 2196 if (!len) 2197 return 0; 2198 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2199 if (ret) 2200 return ret; 2201 2202 /* 2203 * If no data could be written at all, we are out of memory and 2204 * must return -ENOSPC. 2205 */ 2206 return (*retlen) ? 0 : -ENOSPC; 2207 } 2208 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2209 2210 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2211 { 2212 struct mtd_info *master = mtd_get_master(mtd); 2213 2214 if (!master->_lock_user_prot_reg) 2215 return -EOPNOTSUPP; 2216 if (!len) 2217 return 0; 2218 return master->_lock_user_prot_reg(master, from, len); 2219 } 2220 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2221 2222 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2223 { 2224 struct mtd_info *master = mtd_get_master(mtd); 2225 2226 if (!master->_erase_user_prot_reg) 2227 return -EOPNOTSUPP; 2228 if (!len) 2229 return 0; 2230 return master->_erase_user_prot_reg(master, from, len); 2231 } 2232 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2233 2234 /* Chip-supported device locking */ 2235 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2236 { 2237 struct mtd_info *master = mtd_get_master(mtd); 2238 2239 if (!master->_lock) 2240 return -EOPNOTSUPP; 2241 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2242 return -EINVAL; 2243 if (!len) 2244 return 0; 2245 2246 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2247 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2248 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2249 } 2250 2251 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2252 } 2253 EXPORT_SYMBOL_GPL(mtd_lock); 2254 2255 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2256 { 2257 struct mtd_info *master = mtd_get_master(mtd); 2258 2259 if (!master->_unlock) 2260 return -EOPNOTSUPP; 2261 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2262 return -EINVAL; 2263 if (!len) 2264 return 0; 2265 2266 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2267 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2268 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2269 } 2270 2271 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2272 } 2273 EXPORT_SYMBOL_GPL(mtd_unlock); 2274 2275 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2276 { 2277 struct mtd_info *master = mtd_get_master(mtd); 2278 2279 if (!master->_is_locked) 2280 return -EOPNOTSUPP; 2281 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2282 return -EINVAL; 2283 if (!len) 2284 return 0; 2285 2286 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2287 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2288 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2289 } 2290 2291 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2292 } 2293 EXPORT_SYMBOL_GPL(mtd_is_locked); 2294 2295 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2296 { 2297 struct mtd_info *master = mtd_get_master(mtd); 2298 2299 if (ofs < 0 || ofs >= mtd->size) 2300 return -EINVAL; 2301 if (!master->_block_isreserved) 2302 return 0; 2303 2304 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2305 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2306 2307 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2308 } 2309 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2310 2311 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2312 { 2313 struct mtd_info *master = mtd_get_master(mtd); 2314 2315 if (ofs < 0 || ofs >= mtd->size) 2316 return -EINVAL; 2317 if (!master->_block_isbad) 2318 return 0; 2319 2320 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2321 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2322 2323 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2324 } 2325 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2326 2327 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2328 { 2329 struct mtd_info *master = mtd_get_master(mtd); 2330 int ret; 2331 2332 if (!master->_block_markbad) 2333 return -EOPNOTSUPP; 2334 if (ofs < 0 || ofs >= mtd->size) 2335 return -EINVAL; 2336 if (!(mtd->flags & MTD_WRITEABLE)) 2337 return -EROFS; 2338 2339 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2340 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2341 2342 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2343 if (ret) 2344 return ret; 2345 2346 while (mtd->parent) { 2347 mtd->ecc_stats.badblocks++; 2348 mtd = mtd->parent; 2349 } 2350 2351 return 0; 2352 } 2353 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2354 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO); 2355 2356 /* 2357 * default_mtd_writev - the default writev method 2358 * @mtd: mtd device description object pointer 2359 * @vecs: the vectors to write 2360 * @count: count of vectors in @vecs 2361 * @to: the MTD device offset to write to 2362 * @retlen: on exit contains the count of bytes written to the MTD device. 2363 * 2364 * This function returns zero in case of success and a negative error code in 2365 * case of failure. 2366 */ 2367 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2368 unsigned long count, loff_t to, size_t *retlen) 2369 { 2370 unsigned long i; 2371 size_t totlen = 0, thislen; 2372 int ret = 0; 2373 2374 for (i = 0; i < count; i++) { 2375 if (!vecs[i].iov_len) 2376 continue; 2377 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2378 vecs[i].iov_base); 2379 totlen += thislen; 2380 if (ret || thislen != vecs[i].iov_len) 2381 break; 2382 to += vecs[i].iov_len; 2383 } 2384 *retlen = totlen; 2385 return ret; 2386 } 2387 2388 /* 2389 * mtd_writev - the vector-based MTD write method 2390 * @mtd: mtd device description object pointer 2391 * @vecs: the vectors to write 2392 * @count: count of vectors in @vecs 2393 * @to: the MTD device offset to write to 2394 * @retlen: on exit contains the count of bytes written to the MTD device. 2395 * 2396 * This function returns zero in case of success and a negative error code in 2397 * case of failure. 2398 */ 2399 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2400 unsigned long count, loff_t to, size_t *retlen) 2401 { 2402 struct mtd_info *master = mtd_get_master(mtd); 2403 2404 *retlen = 0; 2405 if (!(mtd->flags & MTD_WRITEABLE)) 2406 return -EROFS; 2407 2408 if (!master->_writev) 2409 return default_mtd_writev(mtd, vecs, count, to, retlen); 2410 2411 return master->_writev(master, vecs, count, 2412 mtd_get_master_ofs(mtd, to), retlen); 2413 } 2414 EXPORT_SYMBOL_GPL(mtd_writev); 2415 2416 /** 2417 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2418 * @mtd: mtd device description object pointer 2419 * @size: a pointer to the ideal or maximum size of the allocation, points 2420 * to the actual allocation size on success. 2421 * 2422 * This routine attempts to allocate a contiguous kernel buffer up to 2423 * the specified size, backing off the size of the request exponentially 2424 * until the request succeeds or until the allocation size falls below 2425 * the system page size. This attempts to make sure it does not adversely 2426 * impact system performance, so when allocating more than one page, we 2427 * ask the memory allocator to avoid re-trying, swapping, writing back 2428 * or performing I/O. 2429 * 2430 * Note, this function also makes sure that the allocated buffer is aligned to 2431 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2432 * 2433 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2434 * to handle smaller (i.e. degraded) buffer allocations under low- or 2435 * fragmented-memory situations where such reduced allocations, from a 2436 * requested ideal, are allowed. 2437 * 2438 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2439 */ 2440 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2441 { 2442 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2443 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2444 void *kbuf; 2445 2446 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2447 2448 while (*size > min_alloc) { 2449 kbuf = kmalloc(*size, flags); 2450 if (kbuf) 2451 return kbuf; 2452 2453 *size >>= 1; 2454 *size = ALIGN(*size, mtd->writesize); 2455 } 2456 2457 /* 2458 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2459 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2460 */ 2461 return kmalloc(*size, GFP_KERNEL); 2462 } 2463 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2464 2465 #ifdef CONFIG_PROC_FS 2466 2467 /*====================================================================*/ 2468 /* Support for /proc/mtd */ 2469 2470 static int mtd_proc_show(struct seq_file *m, void *v) 2471 { 2472 struct mtd_info *mtd; 2473 2474 seq_puts(m, "dev: size erasesize name\n"); 2475 mutex_lock(&mtd_table_mutex); 2476 mtd_for_each_device(mtd) { 2477 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2478 mtd->index, (unsigned long long)mtd->size, 2479 mtd->erasesize, mtd->name); 2480 } 2481 mutex_unlock(&mtd_table_mutex); 2482 return 0; 2483 } 2484 #endif /* CONFIG_PROC_FS */ 2485 2486 /*====================================================================*/ 2487 /* Init code */ 2488 2489 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2490 { 2491 struct backing_dev_info *bdi; 2492 int ret; 2493 2494 bdi = bdi_alloc(NUMA_NO_NODE); 2495 if (!bdi) 2496 return ERR_PTR(-ENOMEM); 2497 bdi->ra_pages = 0; 2498 bdi->io_pages = 0; 2499 2500 /* 2501 * We put '-0' suffix to the name to get the same name format as we 2502 * used to get. Since this is called only once, we get a unique name. 2503 */ 2504 ret = bdi_register(bdi, "%.28s-0", name); 2505 if (ret) 2506 bdi_put(bdi); 2507 2508 return ret ? ERR_PTR(ret) : bdi; 2509 } 2510 2511 static struct proc_dir_entry *proc_mtd; 2512 2513 static int __init init_mtd(void) 2514 { 2515 int ret; 2516 2517 ret = class_register(&mtd_class); 2518 if (ret) 2519 goto err_reg; 2520 2521 mtd_bdi = mtd_bdi_init("mtd"); 2522 if (IS_ERR(mtd_bdi)) { 2523 ret = PTR_ERR(mtd_bdi); 2524 goto err_bdi; 2525 } 2526 2527 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2528 2529 ret = init_mtdchar(); 2530 if (ret) 2531 goto out_procfs; 2532 2533 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2534 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2535 &mtd_expert_analysis_mode); 2536 2537 return 0; 2538 2539 out_procfs: 2540 if (proc_mtd) 2541 remove_proc_entry("mtd", NULL); 2542 bdi_unregister(mtd_bdi); 2543 bdi_put(mtd_bdi); 2544 err_bdi: 2545 class_unregister(&mtd_class); 2546 err_reg: 2547 pr_err("Error registering mtd class or bdi: %d\n", ret); 2548 return ret; 2549 } 2550 2551 static void __exit cleanup_mtd(void) 2552 { 2553 debugfs_remove_recursive(dfs_dir_mtd); 2554 cleanup_mtdchar(); 2555 if (proc_mtd) 2556 remove_proc_entry("mtd", NULL); 2557 class_unregister(&mtd_class); 2558 bdi_unregister(mtd_bdi); 2559 bdi_put(mtd_bdi); 2560 idr_destroy(&mtd_idr); 2561 } 2562 2563 module_init(init_mtd); 2564 module_exit(cleanup_mtd); 2565 2566 MODULE_LICENSE("GPL"); 2567 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2568 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2569