1 /* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24 #include <linux/module.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/timer.h> 30 #include <linux/major.h> 31 #include <linux/fs.h> 32 #include <linux/err.h> 33 #include <linux/ioctl.h> 34 #include <linux/init.h> 35 #include <linux/proc_fs.h> 36 #include <linux/idr.h> 37 #include <linux/backing-dev.h> 38 #include <linux/gfp.h> 39 #include <linux/slab.h> 40 #include <linux/reboot.h> 41 42 #include <linux/mtd/mtd.h> 43 #include <linux/mtd/partitions.h> 44 45 #include "mtdcore.h" 46 47 static struct backing_dev_info mtd_bdi = { 48 }; 49 50 static int mtd_cls_suspend(struct device *dev, pm_message_t state); 51 static int mtd_cls_resume(struct device *dev); 52 53 static struct class mtd_class = { 54 .name = "mtd", 55 .owner = THIS_MODULE, 56 .suspend = mtd_cls_suspend, 57 .resume = mtd_cls_resume, 58 }; 59 60 static DEFINE_IDR(mtd_idr); 61 62 /* These are exported solely for the purpose of mtd_blkdevs.c. You 63 should not use them for _anything_ else */ 64 DEFINE_MUTEX(mtd_table_mutex); 65 EXPORT_SYMBOL_GPL(mtd_table_mutex); 66 67 struct mtd_info *__mtd_next_device(int i) 68 { 69 return idr_get_next(&mtd_idr, &i); 70 } 71 EXPORT_SYMBOL_GPL(__mtd_next_device); 72 73 static LIST_HEAD(mtd_notifiers); 74 75 76 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 77 78 /* REVISIT once MTD uses the driver model better, whoever allocates 79 * the mtd_info will probably want to use the release() hook... 80 */ 81 static void mtd_release(struct device *dev) 82 { 83 struct mtd_info *mtd = dev_get_drvdata(dev); 84 dev_t index = MTD_DEVT(mtd->index); 85 86 /* remove /dev/mtdXro node */ 87 device_destroy(&mtd_class, index + 1); 88 } 89 90 static int mtd_cls_suspend(struct device *dev, pm_message_t state) 91 { 92 struct mtd_info *mtd = dev_get_drvdata(dev); 93 94 return mtd ? mtd_suspend(mtd) : 0; 95 } 96 97 static int mtd_cls_resume(struct device *dev) 98 { 99 struct mtd_info *mtd = dev_get_drvdata(dev); 100 101 if (mtd) 102 mtd_resume(mtd); 103 return 0; 104 } 105 106 static ssize_t mtd_type_show(struct device *dev, 107 struct device_attribute *attr, char *buf) 108 { 109 struct mtd_info *mtd = dev_get_drvdata(dev); 110 char *type; 111 112 switch (mtd->type) { 113 case MTD_ABSENT: 114 type = "absent"; 115 break; 116 case MTD_RAM: 117 type = "ram"; 118 break; 119 case MTD_ROM: 120 type = "rom"; 121 break; 122 case MTD_NORFLASH: 123 type = "nor"; 124 break; 125 case MTD_NANDFLASH: 126 type = "nand"; 127 break; 128 case MTD_DATAFLASH: 129 type = "dataflash"; 130 break; 131 case MTD_UBIVOLUME: 132 type = "ubi"; 133 break; 134 case MTD_MLCNANDFLASH: 135 type = "mlc-nand"; 136 break; 137 default: 138 type = "unknown"; 139 } 140 141 return snprintf(buf, PAGE_SIZE, "%s\n", type); 142 } 143 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 144 145 static ssize_t mtd_flags_show(struct device *dev, 146 struct device_attribute *attr, char *buf) 147 { 148 struct mtd_info *mtd = dev_get_drvdata(dev); 149 150 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 151 152 } 153 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 154 155 static ssize_t mtd_size_show(struct device *dev, 156 struct device_attribute *attr, char *buf) 157 { 158 struct mtd_info *mtd = dev_get_drvdata(dev); 159 160 return snprintf(buf, PAGE_SIZE, "%llu\n", 161 (unsigned long long)mtd->size); 162 163 } 164 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 165 166 static ssize_t mtd_erasesize_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168 { 169 struct mtd_info *mtd = dev_get_drvdata(dev); 170 171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 172 173 } 174 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 175 176 static ssize_t mtd_writesize_show(struct device *dev, 177 struct device_attribute *attr, char *buf) 178 { 179 struct mtd_info *mtd = dev_get_drvdata(dev); 180 181 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 182 183 } 184 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 185 186 static ssize_t mtd_subpagesize_show(struct device *dev, 187 struct device_attribute *attr, char *buf) 188 { 189 struct mtd_info *mtd = dev_get_drvdata(dev); 190 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 191 192 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 193 194 } 195 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 196 197 static ssize_t mtd_oobsize_show(struct device *dev, 198 struct device_attribute *attr, char *buf) 199 { 200 struct mtd_info *mtd = dev_get_drvdata(dev); 201 202 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 203 204 } 205 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 206 207 static ssize_t mtd_numeraseregions_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 struct mtd_info *mtd = dev_get_drvdata(dev); 211 212 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 213 214 } 215 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 216 NULL); 217 218 static ssize_t mtd_name_show(struct device *dev, 219 struct device_attribute *attr, char *buf) 220 { 221 struct mtd_info *mtd = dev_get_drvdata(dev); 222 223 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 224 225 } 226 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 227 228 static ssize_t mtd_ecc_strength_show(struct device *dev, 229 struct device_attribute *attr, char *buf) 230 { 231 struct mtd_info *mtd = dev_get_drvdata(dev); 232 233 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 234 } 235 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 236 237 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 238 struct device_attribute *attr, 239 char *buf) 240 { 241 struct mtd_info *mtd = dev_get_drvdata(dev); 242 243 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 244 } 245 246 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 247 struct device_attribute *attr, 248 const char *buf, size_t count) 249 { 250 struct mtd_info *mtd = dev_get_drvdata(dev); 251 unsigned int bitflip_threshold; 252 int retval; 253 254 retval = kstrtouint(buf, 0, &bitflip_threshold); 255 if (retval) 256 return retval; 257 258 mtd->bitflip_threshold = bitflip_threshold; 259 return count; 260 } 261 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 262 mtd_bitflip_threshold_show, 263 mtd_bitflip_threshold_store); 264 265 static ssize_t mtd_ecc_step_size_show(struct device *dev, 266 struct device_attribute *attr, char *buf) 267 { 268 struct mtd_info *mtd = dev_get_drvdata(dev); 269 270 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 271 272 } 273 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 274 275 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 276 struct device_attribute *attr, char *buf) 277 { 278 struct mtd_info *mtd = dev_get_drvdata(dev); 279 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 280 281 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 282 } 283 static DEVICE_ATTR(corrected_bits, S_IRUGO, 284 mtd_ecc_stats_corrected_show, NULL); 285 286 static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 287 struct device_attribute *attr, char *buf) 288 { 289 struct mtd_info *mtd = dev_get_drvdata(dev); 290 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 291 292 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 293 } 294 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 295 296 static ssize_t mtd_badblocks_show(struct device *dev, 297 struct device_attribute *attr, char *buf) 298 { 299 struct mtd_info *mtd = dev_get_drvdata(dev); 300 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 301 302 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 303 } 304 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 305 306 static ssize_t mtd_bbtblocks_show(struct device *dev, 307 struct device_attribute *attr, char *buf) 308 { 309 struct mtd_info *mtd = dev_get_drvdata(dev); 310 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 311 312 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 313 } 314 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 315 316 static struct attribute *mtd_attrs[] = { 317 &dev_attr_type.attr, 318 &dev_attr_flags.attr, 319 &dev_attr_size.attr, 320 &dev_attr_erasesize.attr, 321 &dev_attr_writesize.attr, 322 &dev_attr_subpagesize.attr, 323 &dev_attr_oobsize.attr, 324 &dev_attr_numeraseregions.attr, 325 &dev_attr_name.attr, 326 &dev_attr_ecc_strength.attr, 327 &dev_attr_ecc_step_size.attr, 328 &dev_attr_corrected_bits.attr, 329 &dev_attr_ecc_failures.attr, 330 &dev_attr_bad_blocks.attr, 331 &dev_attr_bbt_blocks.attr, 332 &dev_attr_bitflip_threshold.attr, 333 NULL, 334 }; 335 ATTRIBUTE_GROUPS(mtd); 336 337 static struct device_type mtd_devtype = { 338 .name = "mtd", 339 .groups = mtd_groups, 340 .release = mtd_release, 341 }; 342 343 #ifndef CONFIG_MMU 344 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 345 { 346 switch (mtd->type) { 347 case MTD_RAM: 348 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 349 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 350 case MTD_ROM: 351 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 352 NOMMU_MAP_READ; 353 default: 354 return NOMMU_MAP_COPY; 355 } 356 } 357 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 358 #endif 359 360 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 361 void *cmd) 362 { 363 struct mtd_info *mtd; 364 365 mtd = container_of(n, struct mtd_info, reboot_notifier); 366 mtd->_reboot(mtd); 367 368 return NOTIFY_DONE; 369 } 370 371 /** 372 * add_mtd_device - register an MTD device 373 * @mtd: pointer to new MTD device info structure 374 * 375 * Add a device to the list of MTD devices present in the system, and 376 * notify each currently active MTD 'user' of its arrival. Returns 377 * zero on success or 1 on failure, which currently will only happen 378 * if there is insufficient memory or a sysfs error. 379 */ 380 381 int add_mtd_device(struct mtd_info *mtd) 382 { 383 struct mtd_notifier *not; 384 int i, error; 385 386 mtd->backing_dev_info = &mtd_bdi; 387 388 BUG_ON(mtd->writesize == 0); 389 mutex_lock(&mtd_table_mutex); 390 391 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 392 if (i < 0) 393 goto fail_locked; 394 395 mtd->index = i; 396 mtd->usecount = 0; 397 398 /* default value if not set by driver */ 399 if (mtd->bitflip_threshold == 0) 400 mtd->bitflip_threshold = mtd->ecc_strength; 401 402 if (is_power_of_2(mtd->erasesize)) 403 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 404 else 405 mtd->erasesize_shift = 0; 406 407 if (is_power_of_2(mtd->writesize)) 408 mtd->writesize_shift = ffs(mtd->writesize) - 1; 409 else 410 mtd->writesize_shift = 0; 411 412 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 413 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 414 415 /* Some chips always power up locked. Unlock them now */ 416 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 417 error = mtd_unlock(mtd, 0, mtd->size); 418 if (error && error != -EOPNOTSUPP) 419 printk(KERN_WARNING 420 "%s: unlock failed, writes may not work\n", 421 mtd->name); 422 } 423 424 /* Caller should have set dev.parent to match the 425 * physical device. 426 */ 427 mtd->dev.type = &mtd_devtype; 428 mtd->dev.class = &mtd_class; 429 mtd->dev.devt = MTD_DEVT(i); 430 dev_set_name(&mtd->dev, "mtd%d", i); 431 dev_set_drvdata(&mtd->dev, mtd); 432 if (device_register(&mtd->dev) != 0) 433 goto fail_added; 434 435 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 436 "mtd%dro", i); 437 438 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 439 /* No need to get a refcount on the module containing 440 the notifier, since we hold the mtd_table_mutex */ 441 list_for_each_entry(not, &mtd_notifiers, list) 442 not->add(mtd); 443 444 mutex_unlock(&mtd_table_mutex); 445 /* We _know_ we aren't being removed, because 446 our caller is still holding us here. So none 447 of this try_ nonsense, and no bitching about it 448 either. :) */ 449 __module_get(THIS_MODULE); 450 return 0; 451 452 fail_added: 453 idr_remove(&mtd_idr, i); 454 fail_locked: 455 mutex_unlock(&mtd_table_mutex); 456 return 1; 457 } 458 459 /** 460 * del_mtd_device - unregister an MTD device 461 * @mtd: pointer to MTD device info structure 462 * 463 * Remove a device from the list of MTD devices present in the system, 464 * and notify each currently active MTD 'user' of its departure. 465 * Returns zero on success or 1 on failure, which currently will happen 466 * if the requested device does not appear to be present in the list. 467 */ 468 469 int del_mtd_device(struct mtd_info *mtd) 470 { 471 int ret; 472 struct mtd_notifier *not; 473 474 mutex_lock(&mtd_table_mutex); 475 476 if (idr_find(&mtd_idr, mtd->index) != mtd) { 477 ret = -ENODEV; 478 goto out_error; 479 } 480 481 /* No need to get a refcount on the module containing 482 the notifier, since we hold the mtd_table_mutex */ 483 list_for_each_entry(not, &mtd_notifiers, list) 484 not->remove(mtd); 485 486 if (mtd->usecount) { 487 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 488 mtd->index, mtd->name, mtd->usecount); 489 ret = -EBUSY; 490 } else { 491 device_unregister(&mtd->dev); 492 493 idr_remove(&mtd_idr, mtd->index); 494 495 module_put(THIS_MODULE); 496 ret = 0; 497 } 498 499 out_error: 500 mutex_unlock(&mtd_table_mutex); 501 return ret; 502 } 503 504 /** 505 * mtd_device_parse_register - parse partitions and register an MTD device. 506 * 507 * @mtd: the MTD device to register 508 * @types: the list of MTD partition probes to try, see 509 * 'parse_mtd_partitions()' for more information 510 * @parser_data: MTD partition parser-specific data 511 * @parts: fallback partition information to register, if parsing fails; 512 * only valid if %nr_parts > %0 513 * @nr_parts: the number of partitions in parts, if zero then the full 514 * MTD device is registered if no partition info is found 515 * 516 * This function aggregates MTD partitions parsing (done by 517 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 518 * basically follows the most common pattern found in many MTD drivers: 519 * 520 * * It first tries to probe partitions on MTD device @mtd using parsers 521 * specified in @types (if @types is %NULL, then the default list of parsers 522 * is used, see 'parse_mtd_partitions()' for more information). If none are 523 * found this functions tries to fallback to information specified in 524 * @parts/@nr_parts. 525 * * If any partitioning info was found, this function registers the found 526 * partitions. 527 * * If no partitions were found this function just registers the MTD device 528 * @mtd and exits. 529 * 530 * Returns zero in case of success and a negative error code in case of failure. 531 */ 532 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 533 struct mtd_part_parser_data *parser_data, 534 const struct mtd_partition *parts, 535 int nr_parts) 536 { 537 int err; 538 struct mtd_partition *real_parts; 539 540 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 541 if (err <= 0 && nr_parts && parts) { 542 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 543 GFP_KERNEL); 544 if (!real_parts) 545 err = -ENOMEM; 546 else 547 err = nr_parts; 548 } 549 550 if (err > 0) { 551 err = add_mtd_partitions(mtd, real_parts, err); 552 kfree(real_parts); 553 } else if (err == 0) { 554 err = add_mtd_device(mtd); 555 if (err == 1) 556 err = -ENODEV; 557 } 558 559 /* 560 * FIXME: some drivers unfortunately call this function more than once. 561 * So we have to check if we've already assigned the reboot notifier. 562 * 563 * Generally, we can make multiple calls work for most cases, but it 564 * does cause problems with parse_mtd_partitions() above (e.g., 565 * cmdlineparts will register partitions more than once). 566 */ 567 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 568 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 569 register_reboot_notifier(&mtd->reboot_notifier); 570 } 571 572 return err; 573 } 574 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 575 576 /** 577 * mtd_device_unregister - unregister an existing MTD device. 578 * 579 * @master: the MTD device to unregister. This will unregister both the master 580 * and any partitions if registered. 581 */ 582 int mtd_device_unregister(struct mtd_info *master) 583 { 584 int err; 585 586 if (master->_reboot) 587 unregister_reboot_notifier(&master->reboot_notifier); 588 589 err = del_mtd_partitions(master); 590 if (err) 591 return err; 592 593 if (!device_is_registered(&master->dev)) 594 return 0; 595 596 return del_mtd_device(master); 597 } 598 EXPORT_SYMBOL_GPL(mtd_device_unregister); 599 600 /** 601 * register_mtd_user - register a 'user' of MTD devices. 602 * @new: pointer to notifier info structure 603 * 604 * Registers a pair of callbacks function to be called upon addition 605 * or removal of MTD devices. Causes the 'add' callback to be immediately 606 * invoked for each MTD device currently present in the system. 607 */ 608 void register_mtd_user (struct mtd_notifier *new) 609 { 610 struct mtd_info *mtd; 611 612 mutex_lock(&mtd_table_mutex); 613 614 list_add(&new->list, &mtd_notifiers); 615 616 __module_get(THIS_MODULE); 617 618 mtd_for_each_device(mtd) 619 new->add(mtd); 620 621 mutex_unlock(&mtd_table_mutex); 622 } 623 EXPORT_SYMBOL_GPL(register_mtd_user); 624 625 /** 626 * unregister_mtd_user - unregister a 'user' of MTD devices. 627 * @old: pointer to notifier info structure 628 * 629 * Removes a callback function pair from the list of 'users' to be 630 * notified upon addition or removal of MTD devices. Causes the 631 * 'remove' callback to be immediately invoked for each MTD device 632 * currently present in the system. 633 */ 634 int unregister_mtd_user (struct mtd_notifier *old) 635 { 636 struct mtd_info *mtd; 637 638 mutex_lock(&mtd_table_mutex); 639 640 module_put(THIS_MODULE); 641 642 mtd_for_each_device(mtd) 643 old->remove(mtd); 644 645 list_del(&old->list); 646 mutex_unlock(&mtd_table_mutex); 647 return 0; 648 } 649 EXPORT_SYMBOL_GPL(unregister_mtd_user); 650 651 /** 652 * get_mtd_device - obtain a validated handle for an MTD device 653 * @mtd: last known address of the required MTD device 654 * @num: internal device number of the required MTD device 655 * 656 * Given a number and NULL address, return the num'th entry in the device 657 * table, if any. Given an address and num == -1, search the device table 658 * for a device with that address and return if it's still present. Given 659 * both, return the num'th driver only if its address matches. Return 660 * error code if not. 661 */ 662 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 663 { 664 struct mtd_info *ret = NULL, *other; 665 int err = -ENODEV; 666 667 mutex_lock(&mtd_table_mutex); 668 669 if (num == -1) { 670 mtd_for_each_device(other) { 671 if (other == mtd) { 672 ret = mtd; 673 break; 674 } 675 } 676 } else if (num >= 0) { 677 ret = idr_find(&mtd_idr, num); 678 if (mtd && mtd != ret) 679 ret = NULL; 680 } 681 682 if (!ret) { 683 ret = ERR_PTR(err); 684 goto out; 685 } 686 687 err = __get_mtd_device(ret); 688 if (err) 689 ret = ERR_PTR(err); 690 out: 691 mutex_unlock(&mtd_table_mutex); 692 return ret; 693 } 694 EXPORT_SYMBOL_GPL(get_mtd_device); 695 696 697 int __get_mtd_device(struct mtd_info *mtd) 698 { 699 int err; 700 701 if (!try_module_get(mtd->owner)) 702 return -ENODEV; 703 704 if (mtd->_get_device) { 705 err = mtd->_get_device(mtd); 706 707 if (err) { 708 module_put(mtd->owner); 709 return err; 710 } 711 } 712 mtd->usecount++; 713 return 0; 714 } 715 EXPORT_SYMBOL_GPL(__get_mtd_device); 716 717 /** 718 * get_mtd_device_nm - obtain a validated handle for an MTD device by 719 * device name 720 * @name: MTD device name to open 721 * 722 * This function returns MTD device description structure in case of 723 * success and an error code in case of failure. 724 */ 725 struct mtd_info *get_mtd_device_nm(const char *name) 726 { 727 int err = -ENODEV; 728 struct mtd_info *mtd = NULL, *other; 729 730 mutex_lock(&mtd_table_mutex); 731 732 mtd_for_each_device(other) { 733 if (!strcmp(name, other->name)) { 734 mtd = other; 735 break; 736 } 737 } 738 739 if (!mtd) 740 goto out_unlock; 741 742 err = __get_mtd_device(mtd); 743 if (err) 744 goto out_unlock; 745 746 mutex_unlock(&mtd_table_mutex); 747 return mtd; 748 749 out_unlock: 750 mutex_unlock(&mtd_table_mutex); 751 return ERR_PTR(err); 752 } 753 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 754 755 void put_mtd_device(struct mtd_info *mtd) 756 { 757 mutex_lock(&mtd_table_mutex); 758 __put_mtd_device(mtd); 759 mutex_unlock(&mtd_table_mutex); 760 761 } 762 EXPORT_SYMBOL_GPL(put_mtd_device); 763 764 void __put_mtd_device(struct mtd_info *mtd) 765 { 766 --mtd->usecount; 767 BUG_ON(mtd->usecount < 0); 768 769 if (mtd->_put_device) 770 mtd->_put_device(mtd); 771 772 module_put(mtd->owner); 773 } 774 EXPORT_SYMBOL_GPL(__put_mtd_device); 775 776 /* 777 * Erase is an asynchronous operation. Device drivers are supposed 778 * to call instr->callback() whenever the operation completes, even 779 * if it completes with a failure. 780 * Callers are supposed to pass a callback function and wait for it 781 * to be called before writing to the block. 782 */ 783 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 784 { 785 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 786 return -EINVAL; 787 if (!(mtd->flags & MTD_WRITEABLE)) 788 return -EROFS; 789 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 790 if (!instr->len) { 791 instr->state = MTD_ERASE_DONE; 792 mtd_erase_callback(instr); 793 return 0; 794 } 795 return mtd->_erase(mtd, instr); 796 } 797 EXPORT_SYMBOL_GPL(mtd_erase); 798 799 /* 800 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 801 */ 802 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 803 void **virt, resource_size_t *phys) 804 { 805 *retlen = 0; 806 *virt = NULL; 807 if (phys) 808 *phys = 0; 809 if (!mtd->_point) 810 return -EOPNOTSUPP; 811 if (from < 0 || from >= mtd->size || len > mtd->size - from) 812 return -EINVAL; 813 if (!len) 814 return 0; 815 return mtd->_point(mtd, from, len, retlen, virt, phys); 816 } 817 EXPORT_SYMBOL_GPL(mtd_point); 818 819 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 820 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 821 { 822 if (!mtd->_point) 823 return -EOPNOTSUPP; 824 if (from < 0 || from >= mtd->size || len > mtd->size - from) 825 return -EINVAL; 826 if (!len) 827 return 0; 828 return mtd->_unpoint(mtd, from, len); 829 } 830 EXPORT_SYMBOL_GPL(mtd_unpoint); 831 832 /* 833 * Allow NOMMU mmap() to directly map the device (if not NULL) 834 * - return the address to which the offset maps 835 * - return -ENOSYS to indicate refusal to do the mapping 836 */ 837 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 838 unsigned long offset, unsigned long flags) 839 { 840 if (!mtd->_get_unmapped_area) 841 return -EOPNOTSUPP; 842 if (offset >= mtd->size || len > mtd->size - offset) 843 return -EINVAL; 844 return mtd->_get_unmapped_area(mtd, len, offset, flags); 845 } 846 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 847 848 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 849 u_char *buf) 850 { 851 int ret_code; 852 *retlen = 0; 853 if (from < 0 || from >= mtd->size || len > mtd->size - from) 854 return -EINVAL; 855 if (!len) 856 return 0; 857 858 /* 859 * In the absence of an error, drivers return a non-negative integer 860 * representing the maximum number of bitflips that were corrected on 861 * any one ecc region (if applicable; zero otherwise). 862 */ 863 ret_code = mtd->_read(mtd, from, len, retlen, buf); 864 if (unlikely(ret_code < 0)) 865 return ret_code; 866 if (mtd->ecc_strength == 0) 867 return 0; /* device lacks ecc */ 868 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 869 } 870 EXPORT_SYMBOL_GPL(mtd_read); 871 872 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 873 const u_char *buf) 874 { 875 *retlen = 0; 876 if (to < 0 || to >= mtd->size || len > mtd->size - to) 877 return -EINVAL; 878 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 879 return -EROFS; 880 if (!len) 881 return 0; 882 return mtd->_write(mtd, to, len, retlen, buf); 883 } 884 EXPORT_SYMBOL_GPL(mtd_write); 885 886 /* 887 * In blackbox flight recorder like scenarios we want to make successful writes 888 * in interrupt context. panic_write() is only intended to be called when its 889 * known the kernel is about to panic and we need the write to succeed. Since 890 * the kernel is not going to be running for much longer, this function can 891 * break locks and delay to ensure the write succeeds (but not sleep). 892 */ 893 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 894 const u_char *buf) 895 { 896 *retlen = 0; 897 if (!mtd->_panic_write) 898 return -EOPNOTSUPP; 899 if (to < 0 || to >= mtd->size || len > mtd->size - to) 900 return -EINVAL; 901 if (!(mtd->flags & MTD_WRITEABLE)) 902 return -EROFS; 903 if (!len) 904 return 0; 905 return mtd->_panic_write(mtd, to, len, retlen, buf); 906 } 907 EXPORT_SYMBOL_GPL(mtd_panic_write); 908 909 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 910 { 911 int ret_code; 912 ops->retlen = ops->oobretlen = 0; 913 if (!mtd->_read_oob) 914 return -EOPNOTSUPP; 915 /* 916 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 917 * similar to mtd->_read(), returning a non-negative integer 918 * representing max bitflips. In other cases, mtd->_read_oob() may 919 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 920 */ 921 ret_code = mtd->_read_oob(mtd, from, ops); 922 if (unlikely(ret_code < 0)) 923 return ret_code; 924 if (mtd->ecc_strength == 0) 925 return 0; /* device lacks ecc */ 926 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 927 } 928 EXPORT_SYMBOL_GPL(mtd_read_oob); 929 930 /* 931 * Method to access the protection register area, present in some flash 932 * devices. The user data is one time programmable but the factory data is read 933 * only. 934 */ 935 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 936 struct otp_info *buf) 937 { 938 if (!mtd->_get_fact_prot_info) 939 return -EOPNOTSUPP; 940 if (!len) 941 return 0; 942 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 943 } 944 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 945 946 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 947 size_t *retlen, u_char *buf) 948 { 949 *retlen = 0; 950 if (!mtd->_read_fact_prot_reg) 951 return -EOPNOTSUPP; 952 if (!len) 953 return 0; 954 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 955 } 956 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 957 958 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 959 struct otp_info *buf) 960 { 961 if (!mtd->_get_user_prot_info) 962 return -EOPNOTSUPP; 963 if (!len) 964 return 0; 965 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 966 } 967 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 968 969 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 970 size_t *retlen, u_char *buf) 971 { 972 *retlen = 0; 973 if (!mtd->_read_user_prot_reg) 974 return -EOPNOTSUPP; 975 if (!len) 976 return 0; 977 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 978 } 979 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 980 981 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 982 size_t *retlen, u_char *buf) 983 { 984 int ret; 985 986 *retlen = 0; 987 if (!mtd->_write_user_prot_reg) 988 return -EOPNOTSUPP; 989 if (!len) 990 return 0; 991 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 992 if (ret) 993 return ret; 994 995 /* 996 * If no data could be written at all, we are out of memory and 997 * must return -ENOSPC. 998 */ 999 return (*retlen) ? 0 : -ENOSPC; 1000 } 1001 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1002 1003 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1004 { 1005 if (!mtd->_lock_user_prot_reg) 1006 return -EOPNOTSUPP; 1007 if (!len) 1008 return 0; 1009 return mtd->_lock_user_prot_reg(mtd, from, len); 1010 } 1011 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1012 1013 /* Chip-supported device locking */ 1014 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1015 { 1016 if (!mtd->_lock) 1017 return -EOPNOTSUPP; 1018 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1019 return -EINVAL; 1020 if (!len) 1021 return 0; 1022 return mtd->_lock(mtd, ofs, len); 1023 } 1024 EXPORT_SYMBOL_GPL(mtd_lock); 1025 1026 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1027 { 1028 if (!mtd->_unlock) 1029 return -EOPNOTSUPP; 1030 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1031 return -EINVAL; 1032 if (!len) 1033 return 0; 1034 return mtd->_unlock(mtd, ofs, len); 1035 } 1036 EXPORT_SYMBOL_GPL(mtd_unlock); 1037 1038 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1039 { 1040 if (!mtd->_is_locked) 1041 return -EOPNOTSUPP; 1042 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1043 return -EINVAL; 1044 if (!len) 1045 return 0; 1046 return mtd->_is_locked(mtd, ofs, len); 1047 } 1048 EXPORT_SYMBOL_GPL(mtd_is_locked); 1049 1050 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1051 { 1052 if (ofs < 0 || ofs >= mtd->size) 1053 return -EINVAL; 1054 if (!mtd->_block_isreserved) 1055 return 0; 1056 return mtd->_block_isreserved(mtd, ofs); 1057 } 1058 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1059 1060 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1061 { 1062 if (ofs < 0 || ofs >= mtd->size) 1063 return -EINVAL; 1064 if (!mtd->_block_isbad) 1065 return 0; 1066 return mtd->_block_isbad(mtd, ofs); 1067 } 1068 EXPORT_SYMBOL_GPL(mtd_block_isbad); 1069 1070 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1071 { 1072 if (!mtd->_block_markbad) 1073 return -EOPNOTSUPP; 1074 if (ofs < 0 || ofs >= mtd->size) 1075 return -EINVAL; 1076 if (!(mtd->flags & MTD_WRITEABLE)) 1077 return -EROFS; 1078 return mtd->_block_markbad(mtd, ofs); 1079 } 1080 EXPORT_SYMBOL_GPL(mtd_block_markbad); 1081 1082 /* 1083 * default_mtd_writev - the default writev method 1084 * @mtd: mtd device description object pointer 1085 * @vecs: the vectors to write 1086 * @count: count of vectors in @vecs 1087 * @to: the MTD device offset to write to 1088 * @retlen: on exit contains the count of bytes written to the MTD device. 1089 * 1090 * This function returns zero in case of success and a negative error code in 1091 * case of failure. 1092 */ 1093 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1094 unsigned long count, loff_t to, size_t *retlen) 1095 { 1096 unsigned long i; 1097 size_t totlen = 0, thislen; 1098 int ret = 0; 1099 1100 for (i = 0; i < count; i++) { 1101 if (!vecs[i].iov_len) 1102 continue; 1103 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1104 vecs[i].iov_base); 1105 totlen += thislen; 1106 if (ret || thislen != vecs[i].iov_len) 1107 break; 1108 to += vecs[i].iov_len; 1109 } 1110 *retlen = totlen; 1111 return ret; 1112 } 1113 1114 /* 1115 * mtd_writev - the vector-based MTD write method 1116 * @mtd: mtd device description object pointer 1117 * @vecs: the vectors to write 1118 * @count: count of vectors in @vecs 1119 * @to: the MTD device offset to write to 1120 * @retlen: on exit contains the count of bytes written to the MTD device. 1121 * 1122 * This function returns zero in case of success and a negative error code in 1123 * case of failure. 1124 */ 1125 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1126 unsigned long count, loff_t to, size_t *retlen) 1127 { 1128 *retlen = 0; 1129 if (!(mtd->flags & MTD_WRITEABLE)) 1130 return -EROFS; 1131 if (!mtd->_writev) 1132 return default_mtd_writev(mtd, vecs, count, to, retlen); 1133 return mtd->_writev(mtd, vecs, count, to, retlen); 1134 } 1135 EXPORT_SYMBOL_GPL(mtd_writev); 1136 1137 /** 1138 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1139 * @mtd: mtd device description object pointer 1140 * @size: a pointer to the ideal or maximum size of the allocation, points 1141 * to the actual allocation size on success. 1142 * 1143 * This routine attempts to allocate a contiguous kernel buffer up to 1144 * the specified size, backing off the size of the request exponentially 1145 * until the request succeeds or until the allocation size falls below 1146 * the system page size. This attempts to make sure it does not adversely 1147 * impact system performance, so when allocating more than one page, we 1148 * ask the memory allocator to avoid re-trying, swapping, writing back 1149 * or performing I/O. 1150 * 1151 * Note, this function also makes sure that the allocated buffer is aligned to 1152 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1153 * 1154 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1155 * to handle smaller (i.e. degraded) buffer allocations under low- or 1156 * fragmented-memory situations where such reduced allocations, from a 1157 * requested ideal, are allowed. 1158 * 1159 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1160 */ 1161 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1162 { 1163 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1164 __GFP_NORETRY | __GFP_NO_KSWAPD; 1165 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1166 void *kbuf; 1167 1168 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1169 1170 while (*size > min_alloc) { 1171 kbuf = kmalloc(*size, flags); 1172 if (kbuf) 1173 return kbuf; 1174 1175 *size >>= 1; 1176 *size = ALIGN(*size, mtd->writesize); 1177 } 1178 1179 /* 1180 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1181 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1182 */ 1183 return kmalloc(*size, GFP_KERNEL); 1184 } 1185 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1186 1187 #ifdef CONFIG_PROC_FS 1188 1189 /*====================================================================*/ 1190 /* Support for /proc/mtd */ 1191 1192 static int mtd_proc_show(struct seq_file *m, void *v) 1193 { 1194 struct mtd_info *mtd; 1195 1196 seq_puts(m, "dev: size erasesize name\n"); 1197 mutex_lock(&mtd_table_mutex); 1198 mtd_for_each_device(mtd) { 1199 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1200 mtd->index, (unsigned long long)mtd->size, 1201 mtd->erasesize, mtd->name); 1202 } 1203 mutex_unlock(&mtd_table_mutex); 1204 return 0; 1205 } 1206 1207 static int mtd_proc_open(struct inode *inode, struct file *file) 1208 { 1209 return single_open(file, mtd_proc_show, NULL); 1210 } 1211 1212 static const struct file_operations mtd_proc_ops = { 1213 .open = mtd_proc_open, 1214 .read = seq_read, 1215 .llseek = seq_lseek, 1216 .release = single_release, 1217 }; 1218 #endif /* CONFIG_PROC_FS */ 1219 1220 /*====================================================================*/ 1221 /* Init code */ 1222 1223 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1224 { 1225 int ret; 1226 1227 ret = bdi_init(bdi); 1228 if (!ret) 1229 ret = bdi_register(bdi, NULL, "%s", name); 1230 1231 if (ret) 1232 bdi_destroy(bdi); 1233 1234 return ret; 1235 } 1236 1237 static struct proc_dir_entry *proc_mtd; 1238 1239 static int __init init_mtd(void) 1240 { 1241 int ret; 1242 1243 ret = class_register(&mtd_class); 1244 if (ret) 1245 goto err_reg; 1246 1247 ret = mtd_bdi_init(&mtd_bdi, "mtd"); 1248 if (ret) 1249 goto err_bdi; 1250 1251 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1252 1253 ret = init_mtdchar(); 1254 if (ret) 1255 goto out_procfs; 1256 1257 return 0; 1258 1259 out_procfs: 1260 if (proc_mtd) 1261 remove_proc_entry("mtd", NULL); 1262 err_bdi: 1263 class_unregister(&mtd_class); 1264 err_reg: 1265 pr_err("Error registering mtd class or bdi: %d\n", ret); 1266 return ret; 1267 } 1268 1269 static void __exit cleanup_mtd(void) 1270 { 1271 cleanup_mtdchar(); 1272 if (proc_mtd) 1273 remove_proc_entry("mtd", NULL); 1274 class_unregister(&mtd_class); 1275 bdi_destroy(&mtd_bdi); 1276 } 1277 1278 module_init(init_mtd); 1279 module_exit(cleanup_mtd); 1280 1281 MODULE_LICENSE("GPL"); 1282 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1283 MODULE_DESCRIPTION("Core MTD registration and access routines"); 1284