xref: /linux/drivers/mtd/mtdcore.c (revision 2a2c74b2efcb1a0ca3fdcb5fbb96ad8de6a29177)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/proc_fs.h>
36 #include <linux/idr.h>
37 #include <linux/backing-dev.h>
38 #include <linux/gfp.h>
39 #include <linux/slab.h>
40 
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/partitions.h>
43 
44 #include "mtdcore.h"
45 
46 /*
47  * backing device capabilities for non-mappable devices (such as NAND flash)
48  * - permits private mappings, copies are taken of the data
49  */
50 static struct backing_dev_info mtd_bdi_unmappable = {
51 	.capabilities	= BDI_CAP_MAP_COPY,
52 };
53 
54 /*
55  * backing device capabilities for R/O mappable devices (such as ROM)
56  * - permits private mappings, copies are taken of the data
57  * - permits non-writable shared mappings
58  */
59 static struct backing_dev_info mtd_bdi_ro_mappable = {
60 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
61 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
62 };
63 
64 /*
65  * backing device capabilities for writable mappable devices (such as RAM)
66  * - permits private mappings, copies are taken of the data
67  * - permits non-writable shared mappings
68  */
69 static struct backing_dev_info mtd_bdi_rw_mappable = {
70 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
71 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
72 			   BDI_CAP_WRITE_MAP),
73 };
74 
75 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
76 static int mtd_cls_resume(struct device *dev);
77 
78 static struct class mtd_class = {
79 	.name = "mtd",
80 	.owner = THIS_MODULE,
81 	.suspend = mtd_cls_suspend,
82 	.resume = mtd_cls_resume,
83 };
84 
85 static DEFINE_IDR(mtd_idr);
86 
87 /* These are exported solely for the purpose of mtd_blkdevs.c. You
88    should not use them for _anything_ else */
89 DEFINE_MUTEX(mtd_table_mutex);
90 EXPORT_SYMBOL_GPL(mtd_table_mutex);
91 
92 struct mtd_info *__mtd_next_device(int i)
93 {
94 	return idr_get_next(&mtd_idr, &i);
95 }
96 EXPORT_SYMBOL_GPL(__mtd_next_device);
97 
98 static LIST_HEAD(mtd_notifiers);
99 
100 
101 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
102 
103 /* REVISIT once MTD uses the driver model better, whoever allocates
104  * the mtd_info will probably want to use the release() hook...
105  */
106 static void mtd_release(struct device *dev)
107 {
108 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
109 	dev_t index = MTD_DEVT(mtd->index);
110 
111 	/* remove /dev/mtdXro node if needed */
112 	if (index)
113 		device_destroy(&mtd_class, index + 1);
114 }
115 
116 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
117 {
118 	struct mtd_info *mtd = dev_get_drvdata(dev);
119 
120 	return mtd ? mtd_suspend(mtd) : 0;
121 }
122 
123 static int mtd_cls_resume(struct device *dev)
124 {
125 	struct mtd_info *mtd = dev_get_drvdata(dev);
126 
127 	if (mtd)
128 		mtd_resume(mtd);
129 	return 0;
130 }
131 
132 static ssize_t mtd_type_show(struct device *dev,
133 		struct device_attribute *attr, char *buf)
134 {
135 	struct mtd_info *mtd = dev_get_drvdata(dev);
136 	char *type;
137 
138 	switch (mtd->type) {
139 	case MTD_ABSENT:
140 		type = "absent";
141 		break;
142 	case MTD_RAM:
143 		type = "ram";
144 		break;
145 	case MTD_ROM:
146 		type = "rom";
147 		break;
148 	case MTD_NORFLASH:
149 		type = "nor";
150 		break;
151 	case MTD_NANDFLASH:
152 		type = "nand";
153 		break;
154 	case MTD_DATAFLASH:
155 		type = "dataflash";
156 		break;
157 	case MTD_UBIVOLUME:
158 		type = "ubi";
159 		break;
160 	case MTD_MLCNANDFLASH:
161 		type = "mlc-nand";
162 		break;
163 	default:
164 		type = "unknown";
165 	}
166 
167 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
168 }
169 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
170 
171 static ssize_t mtd_flags_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
177 
178 }
179 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
180 
181 static ssize_t mtd_size_show(struct device *dev,
182 		struct device_attribute *attr, char *buf)
183 {
184 	struct mtd_info *mtd = dev_get_drvdata(dev);
185 
186 	return snprintf(buf, PAGE_SIZE, "%llu\n",
187 		(unsigned long long)mtd->size);
188 
189 }
190 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
191 
192 static ssize_t mtd_erasesize_show(struct device *dev,
193 		struct device_attribute *attr, char *buf)
194 {
195 	struct mtd_info *mtd = dev_get_drvdata(dev);
196 
197 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
198 
199 }
200 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
201 
202 static ssize_t mtd_writesize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
208 
209 }
210 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
211 
212 static ssize_t mtd_subpagesize_show(struct device *dev,
213 		struct device_attribute *attr, char *buf)
214 {
215 	struct mtd_info *mtd = dev_get_drvdata(dev);
216 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
217 
218 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
219 
220 }
221 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
222 
223 static ssize_t mtd_oobsize_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	struct mtd_info *mtd = dev_get_drvdata(dev);
227 
228 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
229 
230 }
231 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
232 
233 static ssize_t mtd_numeraseregions_show(struct device *dev,
234 		struct device_attribute *attr, char *buf)
235 {
236 	struct mtd_info *mtd = dev_get_drvdata(dev);
237 
238 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
239 
240 }
241 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
242 	NULL);
243 
244 static ssize_t mtd_name_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
250 
251 }
252 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
253 
254 static ssize_t mtd_ecc_strength_show(struct device *dev,
255 				     struct device_attribute *attr, char *buf)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 
259 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
260 }
261 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
262 
263 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
264 					  struct device_attribute *attr,
265 					  char *buf)
266 {
267 	struct mtd_info *mtd = dev_get_drvdata(dev);
268 
269 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
270 }
271 
272 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
273 					   struct device_attribute *attr,
274 					   const char *buf, size_t count)
275 {
276 	struct mtd_info *mtd = dev_get_drvdata(dev);
277 	unsigned int bitflip_threshold;
278 	int retval;
279 
280 	retval = kstrtouint(buf, 0, &bitflip_threshold);
281 	if (retval)
282 		return retval;
283 
284 	mtd->bitflip_threshold = bitflip_threshold;
285 	return count;
286 }
287 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
288 		   mtd_bitflip_threshold_show,
289 		   mtd_bitflip_threshold_store);
290 
291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
297 
298 }
299 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
300 
301 static struct attribute *mtd_attrs[] = {
302 	&dev_attr_type.attr,
303 	&dev_attr_flags.attr,
304 	&dev_attr_size.attr,
305 	&dev_attr_erasesize.attr,
306 	&dev_attr_writesize.attr,
307 	&dev_attr_subpagesize.attr,
308 	&dev_attr_oobsize.attr,
309 	&dev_attr_numeraseregions.attr,
310 	&dev_attr_name.attr,
311 	&dev_attr_ecc_strength.attr,
312 	&dev_attr_ecc_step_size.attr,
313 	&dev_attr_bitflip_threshold.attr,
314 	NULL,
315 };
316 ATTRIBUTE_GROUPS(mtd);
317 
318 static struct device_type mtd_devtype = {
319 	.name		= "mtd",
320 	.groups		= mtd_groups,
321 	.release	= mtd_release,
322 };
323 
324 /**
325  *	add_mtd_device - register an MTD device
326  *	@mtd: pointer to new MTD device info structure
327  *
328  *	Add a device to the list of MTD devices present in the system, and
329  *	notify each currently active MTD 'user' of its arrival. Returns
330  *	zero on success or 1 on failure, which currently will only happen
331  *	if there is insufficient memory or a sysfs error.
332  */
333 
334 int add_mtd_device(struct mtd_info *mtd)
335 {
336 	struct mtd_notifier *not;
337 	int i, error;
338 
339 	if (!mtd->backing_dev_info) {
340 		switch (mtd->type) {
341 		case MTD_RAM:
342 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
343 			break;
344 		case MTD_ROM:
345 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
346 			break;
347 		default:
348 			mtd->backing_dev_info = &mtd_bdi_unmappable;
349 			break;
350 		}
351 	}
352 
353 	BUG_ON(mtd->writesize == 0);
354 	mutex_lock(&mtd_table_mutex);
355 
356 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
357 	if (i < 0)
358 		goto fail_locked;
359 
360 	mtd->index = i;
361 	mtd->usecount = 0;
362 
363 	/* default value if not set by driver */
364 	if (mtd->bitflip_threshold == 0)
365 		mtd->bitflip_threshold = mtd->ecc_strength;
366 
367 	if (is_power_of_2(mtd->erasesize))
368 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
369 	else
370 		mtd->erasesize_shift = 0;
371 
372 	if (is_power_of_2(mtd->writesize))
373 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
374 	else
375 		mtd->writesize_shift = 0;
376 
377 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
378 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
379 
380 	/* Some chips always power up locked. Unlock them now */
381 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
382 		error = mtd_unlock(mtd, 0, mtd->size);
383 		if (error && error != -EOPNOTSUPP)
384 			printk(KERN_WARNING
385 			       "%s: unlock failed, writes may not work\n",
386 			       mtd->name);
387 	}
388 
389 	/* Caller should have set dev.parent to match the
390 	 * physical device.
391 	 */
392 	mtd->dev.type = &mtd_devtype;
393 	mtd->dev.class = &mtd_class;
394 	mtd->dev.devt = MTD_DEVT(i);
395 	dev_set_name(&mtd->dev, "mtd%d", i);
396 	dev_set_drvdata(&mtd->dev, mtd);
397 	if (device_register(&mtd->dev) != 0)
398 		goto fail_added;
399 
400 	if (MTD_DEVT(i))
401 		device_create(&mtd_class, mtd->dev.parent,
402 			      MTD_DEVT(i) + 1,
403 			      NULL, "mtd%dro", i);
404 
405 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
406 	/* No need to get a refcount on the module containing
407 	   the notifier, since we hold the mtd_table_mutex */
408 	list_for_each_entry(not, &mtd_notifiers, list)
409 		not->add(mtd);
410 
411 	mutex_unlock(&mtd_table_mutex);
412 	/* We _know_ we aren't being removed, because
413 	   our caller is still holding us here. So none
414 	   of this try_ nonsense, and no bitching about it
415 	   either. :) */
416 	__module_get(THIS_MODULE);
417 	return 0;
418 
419 fail_added:
420 	idr_remove(&mtd_idr, i);
421 fail_locked:
422 	mutex_unlock(&mtd_table_mutex);
423 	return 1;
424 }
425 
426 /**
427  *	del_mtd_device - unregister an MTD device
428  *	@mtd: pointer to MTD device info structure
429  *
430  *	Remove a device from the list of MTD devices present in the system,
431  *	and notify each currently active MTD 'user' of its departure.
432  *	Returns zero on success or 1 on failure, which currently will happen
433  *	if the requested device does not appear to be present in the list.
434  */
435 
436 int del_mtd_device(struct mtd_info *mtd)
437 {
438 	int ret;
439 	struct mtd_notifier *not;
440 
441 	mutex_lock(&mtd_table_mutex);
442 
443 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
444 		ret = -ENODEV;
445 		goto out_error;
446 	}
447 
448 	/* No need to get a refcount on the module containing
449 		the notifier, since we hold the mtd_table_mutex */
450 	list_for_each_entry(not, &mtd_notifiers, list)
451 		not->remove(mtd);
452 
453 	if (mtd->usecount) {
454 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
455 		       mtd->index, mtd->name, mtd->usecount);
456 		ret = -EBUSY;
457 	} else {
458 		device_unregister(&mtd->dev);
459 
460 		idr_remove(&mtd_idr, mtd->index);
461 
462 		module_put(THIS_MODULE);
463 		ret = 0;
464 	}
465 
466 out_error:
467 	mutex_unlock(&mtd_table_mutex);
468 	return ret;
469 }
470 
471 /**
472  * mtd_device_parse_register - parse partitions and register an MTD device.
473  *
474  * @mtd: the MTD device to register
475  * @types: the list of MTD partition probes to try, see
476  *         'parse_mtd_partitions()' for more information
477  * @parser_data: MTD partition parser-specific data
478  * @parts: fallback partition information to register, if parsing fails;
479  *         only valid if %nr_parts > %0
480  * @nr_parts: the number of partitions in parts, if zero then the full
481  *            MTD device is registered if no partition info is found
482  *
483  * This function aggregates MTD partitions parsing (done by
484  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
485  * basically follows the most common pattern found in many MTD drivers:
486  *
487  * * It first tries to probe partitions on MTD device @mtd using parsers
488  *   specified in @types (if @types is %NULL, then the default list of parsers
489  *   is used, see 'parse_mtd_partitions()' for more information). If none are
490  *   found this functions tries to fallback to information specified in
491  *   @parts/@nr_parts.
492  * * If any partitioning info was found, this function registers the found
493  *   partitions.
494  * * If no partitions were found this function just registers the MTD device
495  *   @mtd and exits.
496  *
497  * Returns zero in case of success and a negative error code in case of failure.
498  */
499 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
500 			      struct mtd_part_parser_data *parser_data,
501 			      const struct mtd_partition *parts,
502 			      int nr_parts)
503 {
504 	int err;
505 	struct mtd_partition *real_parts;
506 
507 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
508 	if (err <= 0 && nr_parts && parts) {
509 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
510 				     GFP_KERNEL);
511 		if (!real_parts)
512 			err = -ENOMEM;
513 		else
514 			err = nr_parts;
515 	}
516 
517 	if (err > 0) {
518 		err = add_mtd_partitions(mtd, real_parts, err);
519 		kfree(real_parts);
520 	} else if (err == 0) {
521 		err = add_mtd_device(mtd);
522 		if (err == 1)
523 			err = -ENODEV;
524 	}
525 
526 	return err;
527 }
528 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
529 
530 /**
531  * mtd_device_unregister - unregister an existing MTD device.
532  *
533  * @master: the MTD device to unregister.  This will unregister both the master
534  *          and any partitions if registered.
535  */
536 int mtd_device_unregister(struct mtd_info *master)
537 {
538 	int err;
539 
540 	err = del_mtd_partitions(master);
541 	if (err)
542 		return err;
543 
544 	if (!device_is_registered(&master->dev))
545 		return 0;
546 
547 	return del_mtd_device(master);
548 }
549 EXPORT_SYMBOL_GPL(mtd_device_unregister);
550 
551 /**
552  *	register_mtd_user - register a 'user' of MTD devices.
553  *	@new: pointer to notifier info structure
554  *
555  *	Registers a pair of callbacks function to be called upon addition
556  *	or removal of MTD devices. Causes the 'add' callback to be immediately
557  *	invoked for each MTD device currently present in the system.
558  */
559 void register_mtd_user (struct mtd_notifier *new)
560 {
561 	struct mtd_info *mtd;
562 
563 	mutex_lock(&mtd_table_mutex);
564 
565 	list_add(&new->list, &mtd_notifiers);
566 
567 	__module_get(THIS_MODULE);
568 
569 	mtd_for_each_device(mtd)
570 		new->add(mtd);
571 
572 	mutex_unlock(&mtd_table_mutex);
573 }
574 EXPORT_SYMBOL_GPL(register_mtd_user);
575 
576 /**
577  *	unregister_mtd_user - unregister a 'user' of MTD devices.
578  *	@old: pointer to notifier info structure
579  *
580  *	Removes a callback function pair from the list of 'users' to be
581  *	notified upon addition or removal of MTD devices. Causes the
582  *	'remove' callback to be immediately invoked for each MTD device
583  *	currently present in the system.
584  */
585 int unregister_mtd_user (struct mtd_notifier *old)
586 {
587 	struct mtd_info *mtd;
588 
589 	mutex_lock(&mtd_table_mutex);
590 
591 	module_put(THIS_MODULE);
592 
593 	mtd_for_each_device(mtd)
594 		old->remove(mtd);
595 
596 	list_del(&old->list);
597 	mutex_unlock(&mtd_table_mutex);
598 	return 0;
599 }
600 EXPORT_SYMBOL_GPL(unregister_mtd_user);
601 
602 /**
603  *	get_mtd_device - obtain a validated handle for an MTD device
604  *	@mtd: last known address of the required MTD device
605  *	@num: internal device number of the required MTD device
606  *
607  *	Given a number and NULL address, return the num'th entry in the device
608  *	table, if any.	Given an address and num == -1, search the device table
609  *	for a device with that address and return if it's still present. Given
610  *	both, return the num'th driver only if its address matches. Return
611  *	error code if not.
612  */
613 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
614 {
615 	struct mtd_info *ret = NULL, *other;
616 	int err = -ENODEV;
617 
618 	mutex_lock(&mtd_table_mutex);
619 
620 	if (num == -1) {
621 		mtd_for_each_device(other) {
622 			if (other == mtd) {
623 				ret = mtd;
624 				break;
625 			}
626 		}
627 	} else if (num >= 0) {
628 		ret = idr_find(&mtd_idr, num);
629 		if (mtd && mtd != ret)
630 			ret = NULL;
631 	}
632 
633 	if (!ret) {
634 		ret = ERR_PTR(err);
635 		goto out;
636 	}
637 
638 	err = __get_mtd_device(ret);
639 	if (err)
640 		ret = ERR_PTR(err);
641 out:
642 	mutex_unlock(&mtd_table_mutex);
643 	return ret;
644 }
645 EXPORT_SYMBOL_GPL(get_mtd_device);
646 
647 
648 int __get_mtd_device(struct mtd_info *mtd)
649 {
650 	int err;
651 
652 	if (!try_module_get(mtd->owner))
653 		return -ENODEV;
654 
655 	if (mtd->_get_device) {
656 		err = mtd->_get_device(mtd);
657 
658 		if (err) {
659 			module_put(mtd->owner);
660 			return err;
661 		}
662 	}
663 	mtd->usecount++;
664 	return 0;
665 }
666 EXPORT_SYMBOL_GPL(__get_mtd_device);
667 
668 /**
669  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
670  *	device name
671  *	@name: MTD device name to open
672  *
673  * 	This function returns MTD device description structure in case of
674  * 	success and an error code in case of failure.
675  */
676 struct mtd_info *get_mtd_device_nm(const char *name)
677 {
678 	int err = -ENODEV;
679 	struct mtd_info *mtd = NULL, *other;
680 
681 	mutex_lock(&mtd_table_mutex);
682 
683 	mtd_for_each_device(other) {
684 		if (!strcmp(name, other->name)) {
685 			mtd = other;
686 			break;
687 		}
688 	}
689 
690 	if (!mtd)
691 		goto out_unlock;
692 
693 	err = __get_mtd_device(mtd);
694 	if (err)
695 		goto out_unlock;
696 
697 	mutex_unlock(&mtd_table_mutex);
698 	return mtd;
699 
700 out_unlock:
701 	mutex_unlock(&mtd_table_mutex);
702 	return ERR_PTR(err);
703 }
704 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
705 
706 void put_mtd_device(struct mtd_info *mtd)
707 {
708 	mutex_lock(&mtd_table_mutex);
709 	__put_mtd_device(mtd);
710 	mutex_unlock(&mtd_table_mutex);
711 
712 }
713 EXPORT_SYMBOL_GPL(put_mtd_device);
714 
715 void __put_mtd_device(struct mtd_info *mtd)
716 {
717 	--mtd->usecount;
718 	BUG_ON(mtd->usecount < 0);
719 
720 	if (mtd->_put_device)
721 		mtd->_put_device(mtd);
722 
723 	module_put(mtd->owner);
724 }
725 EXPORT_SYMBOL_GPL(__put_mtd_device);
726 
727 /*
728  * Erase is an asynchronous operation.  Device drivers are supposed
729  * to call instr->callback() whenever the operation completes, even
730  * if it completes with a failure.
731  * Callers are supposed to pass a callback function and wait for it
732  * to be called before writing to the block.
733  */
734 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
735 {
736 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
737 		return -EINVAL;
738 	if (!(mtd->flags & MTD_WRITEABLE))
739 		return -EROFS;
740 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
741 	if (!instr->len) {
742 		instr->state = MTD_ERASE_DONE;
743 		mtd_erase_callback(instr);
744 		return 0;
745 	}
746 	return mtd->_erase(mtd, instr);
747 }
748 EXPORT_SYMBOL_GPL(mtd_erase);
749 
750 /*
751  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
752  */
753 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
754 	      void **virt, resource_size_t *phys)
755 {
756 	*retlen = 0;
757 	*virt = NULL;
758 	if (phys)
759 		*phys = 0;
760 	if (!mtd->_point)
761 		return -EOPNOTSUPP;
762 	if (from < 0 || from > mtd->size || len > mtd->size - from)
763 		return -EINVAL;
764 	if (!len)
765 		return 0;
766 	return mtd->_point(mtd, from, len, retlen, virt, phys);
767 }
768 EXPORT_SYMBOL_GPL(mtd_point);
769 
770 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
771 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
772 {
773 	if (!mtd->_point)
774 		return -EOPNOTSUPP;
775 	if (from < 0 || from > mtd->size || len > mtd->size - from)
776 		return -EINVAL;
777 	if (!len)
778 		return 0;
779 	return mtd->_unpoint(mtd, from, len);
780 }
781 EXPORT_SYMBOL_GPL(mtd_unpoint);
782 
783 /*
784  * Allow NOMMU mmap() to directly map the device (if not NULL)
785  * - return the address to which the offset maps
786  * - return -ENOSYS to indicate refusal to do the mapping
787  */
788 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
789 				    unsigned long offset, unsigned long flags)
790 {
791 	if (!mtd->_get_unmapped_area)
792 		return -EOPNOTSUPP;
793 	if (offset > mtd->size || len > mtd->size - offset)
794 		return -EINVAL;
795 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
796 }
797 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
798 
799 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
800 	     u_char *buf)
801 {
802 	int ret_code;
803 	*retlen = 0;
804 	if (from < 0 || from > mtd->size || len > mtd->size - from)
805 		return -EINVAL;
806 	if (!len)
807 		return 0;
808 
809 	/*
810 	 * In the absence of an error, drivers return a non-negative integer
811 	 * representing the maximum number of bitflips that were corrected on
812 	 * any one ecc region (if applicable; zero otherwise).
813 	 */
814 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
815 	if (unlikely(ret_code < 0))
816 		return ret_code;
817 	if (mtd->ecc_strength == 0)
818 		return 0;	/* device lacks ecc */
819 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
820 }
821 EXPORT_SYMBOL_GPL(mtd_read);
822 
823 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
824 	      const u_char *buf)
825 {
826 	*retlen = 0;
827 	if (to < 0 || to > mtd->size || len > mtd->size - to)
828 		return -EINVAL;
829 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
830 		return -EROFS;
831 	if (!len)
832 		return 0;
833 	return mtd->_write(mtd, to, len, retlen, buf);
834 }
835 EXPORT_SYMBOL_GPL(mtd_write);
836 
837 /*
838  * In blackbox flight recorder like scenarios we want to make successful writes
839  * in interrupt context. panic_write() is only intended to be called when its
840  * known the kernel is about to panic and we need the write to succeed. Since
841  * the kernel is not going to be running for much longer, this function can
842  * break locks and delay to ensure the write succeeds (but not sleep).
843  */
844 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
845 		    const u_char *buf)
846 {
847 	*retlen = 0;
848 	if (!mtd->_panic_write)
849 		return -EOPNOTSUPP;
850 	if (to < 0 || to > mtd->size || len > mtd->size - to)
851 		return -EINVAL;
852 	if (!(mtd->flags & MTD_WRITEABLE))
853 		return -EROFS;
854 	if (!len)
855 		return 0;
856 	return mtd->_panic_write(mtd, to, len, retlen, buf);
857 }
858 EXPORT_SYMBOL_GPL(mtd_panic_write);
859 
860 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
861 {
862 	int ret_code;
863 	ops->retlen = ops->oobretlen = 0;
864 	if (!mtd->_read_oob)
865 		return -EOPNOTSUPP;
866 	/*
867 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
868 	 * similar to mtd->_read(), returning a non-negative integer
869 	 * representing max bitflips. In other cases, mtd->_read_oob() may
870 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
871 	 */
872 	ret_code = mtd->_read_oob(mtd, from, ops);
873 	if (unlikely(ret_code < 0))
874 		return ret_code;
875 	if (mtd->ecc_strength == 0)
876 		return 0;	/* device lacks ecc */
877 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
878 }
879 EXPORT_SYMBOL_GPL(mtd_read_oob);
880 
881 /*
882  * Method to access the protection register area, present in some flash
883  * devices. The user data is one time programmable but the factory data is read
884  * only.
885  */
886 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
887 			   struct otp_info *buf)
888 {
889 	if (!mtd->_get_fact_prot_info)
890 		return -EOPNOTSUPP;
891 	if (!len)
892 		return 0;
893 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
894 }
895 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
896 
897 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
898 			   size_t *retlen, u_char *buf)
899 {
900 	*retlen = 0;
901 	if (!mtd->_read_fact_prot_reg)
902 		return -EOPNOTSUPP;
903 	if (!len)
904 		return 0;
905 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
906 }
907 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
908 
909 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
910 			   struct otp_info *buf)
911 {
912 	if (!mtd->_get_user_prot_info)
913 		return -EOPNOTSUPP;
914 	if (!len)
915 		return 0;
916 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
917 }
918 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
919 
920 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
921 			   size_t *retlen, u_char *buf)
922 {
923 	*retlen = 0;
924 	if (!mtd->_read_user_prot_reg)
925 		return -EOPNOTSUPP;
926 	if (!len)
927 		return 0;
928 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
929 }
930 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
931 
932 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
933 			    size_t *retlen, u_char *buf)
934 {
935 	int ret;
936 
937 	*retlen = 0;
938 	if (!mtd->_write_user_prot_reg)
939 		return -EOPNOTSUPP;
940 	if (!len)
941 		return 0;
942 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
943 	if (ret)
944 		return ret;
945 
946 	/*
947 	 * If no data could be written at all, we are out of memory and
948 	 * must return -ENOSPC.
949 	 */
950 	return (*retlen) ? 0 : -ENOSPC;
951 }
952 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
953 
954 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
955 {
956 	if (!mtd->_lock_user_prot_reg)
957 		return -EOPNOTSUPP;
958 	if (!len)
959 		return 0;
960 	return mtd->_lock_user_prot_reg(mtd, from, len);
961 }
962 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
963 
964 /* Chip-supported device locking */
965 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
966 {
967 	if (!mtd->_lock)
968 		return -EOPNOTSUPP;
969 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
970 		return -EINVAL;
971 	if (!len)
972 		return 0;
973 	return mtd->_lock(mtd, ofs, len);
974 }
975 EXPORT_SYMBOL_GPL(mtd_lock);
976 
977 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
978 {
979 	if (!mtd->_unlock)
980 		return -EOPNOTSUPP;
981 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
982 		return -EINVAL;
983 	if (!len)
984 		return 0;
985 	return mtd->_unlock(mtd, ofs, len);
986 }
987 EXPORT_SYMBOL_GPL(mtd_unlock);
988 
989 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
990 {
991 	if (!mtd->_is_locked)
992 		return -EOPNOTSUPP;
993 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
994 		return -EINVAL;
995 	if (!len)
996 		return 0;
997 	return mtd->_is_locked(mtd, ofs, len);
998 }
999 EXPORT_SYMBOL_GPL(mtd_is_locked);
1000 
1001 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1002 {
1003 	if (!mtd->_block_isbad)
1004 		return 0;
1005 	if (ofs < 0 || ofs > mtd->size)
1006 		return -EINVAL;
1007 	return mtd->_block_isbad(mtd, ofs);
1008 }
1009 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1010 
1011 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1012 {
1013 	if (!mtd->_block_markbad)
1014 		return -EOPNOTSUPP;
1015 	if (ofs < 0 || ofs > mtd->size)
1016 		return -EINVAL;
1017 	if (!(mtd->flags & MTD_WRITEABLE))
1018 		return -EROFS;
1019 	return mtd->_block_markbad(mtd, ofs);
1020 }
1021 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1022 
1023 /*
1024  * default_mtd_writev - the default writev method
1025  * @mtd: mtd device description object pointer
1026  * @vecs: the vectors to write
1027  * @count: count of vectors in @vecs
1028  * @to: the MTD device offset to write to
1029  * @retlen: on exit contains the count of bytes written to the MTD device.
1030  *
1031  * This function returns zero in case of success and a negative error code in
1032  * case of failure.
1033  */
1034 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1035 			      unsigned long count, loff_t to, size_t *retlen)
1036 {
1037 	unsigned long i;
1038 	size_t totlen = 0, thislen;
1039 	int ret = 0;
1040 
1041 	for (i = 0; i < count; i++) {
1042 		if (!vecs[i].iov_len)
1043 			continue;
1044 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1045 				vecs[i].iov_base);
1046 		totlen += thislen;
1047 		if (ret || thislen != vecs[i].iov_len)
1048 			break;
1049 		to += vecs[i].iov_len;
1050 	}
1051 	*retlen = totlen;
1052 	return ret;
1053 }
1054 
1055 /*
1056  * mtd_writev - the vector-based MTD write method
1057  * @mtd: mtd device description object pointer
1058  * @vecs: the vectors to write
1059  * @count: count of vectors in @vecs
1060  * @to: the MTD device offset to write to
1061  * @retlen: on exit contains the count of bytes written to the MTD device.
1062  *
1063  * This function returns zero in case of success and a negative error code in
1064  * case of failure.
1065  */
1066 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1067 	       unsigned long count, loff_t to, size_t *retlen)
1068 {
1069 	*retlen = 0;
1070 	if (!(mtd->flags & MTD_WRITEABLE))
1071 		return -EROFS;
1072 	if (!mtd->_writev)
1073 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1074 	return mtd->_writev(mtd, vecs, count, to, retlen);
1075 }
1076 EXPORT_SYMBOL_GPL(mtd_writev);
1077 
1078 /**
1079  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1080  * @mtd: mtd device description object pointer
1081  * @size: a pointer to the ideal or maximum size of the allocation, points
1082  *        to the actual allocation size on success.
1083  *
1084  * This routine attempts to allocate a contiguous kernel buffer up to
1085  * the specified size, backing off the size of the request exponentially
1086  * until the request succeeds or until the allocation size falls below
1087  * the system page size. This attempts to make sure it does not adversely
1088  * impact system performance, so when allocating more than one page, we
1089  * ask the memory allocator to avoid re-trying, swapping, writing back
1090  * or performing I/O.
1091  *
1092  * Note, this function also makes sure that the allocated buffer is aligned to
1093  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1094  *
1095  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1096  * to handle smaller (i.e. degraded) buffer allocations under low- or
1097  * fragmented-memory situations where such reduced allocations, from a
1098  * requested ideal, are allowed.
1099  *
1100  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1101  */
1102 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1103 {
1104 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1105 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1106 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1107 	void *kbuf;
1108 
1109 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1110 
1111 	while (*size > min_alloc) {
1112 		kbuf = kmalloc(*size, flags);
1113 		if (kbuf)
1114 			return kbuf;
1115 
1116 		*size >>= 1;
1117 		*size = ALIGN(*size, mtd->writesize);
1118 	}
1119 
1120 	/*
1121 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1122 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1123 	 */
1124 	return kmalloc(*size, GFP_KERNEL);
1125 }
1126 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1127 
1128 #ifdef CONFIG_PROC_FS
1129 
1130 /*====================================================================*/
1131 /* Support for /proc/mtd */
1132 
1133 static int mtd_proc_show(struct seq_file *m, void *v)
1134 {
1135 	struct mtd_info *mtd;
1136 
1137 	seq_puts(m, "dev:    size   erasesize  name\n");
1138 	mutex_lock(&mtd_table_mutex);
1139 	mtd_for_each_device(mtd) {
1140 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1141 			   mtd->index, (unsigned long long)mtd->size,
1142 			   mtd->erasesize, mtd->name);
1143 	}
1144 	mutex_unlock(&mtd_table_mutex);
1145 	return 0;
1146 }
1147 
1148 static int mtd_proc_open(struct inode *inode, struct file *file)
1149 {
1150 	return single_open(file, mtd_proc_show, NULL);
1151 }
1152 
1153 static const struct file_operations mtd_proc_ops = {
1154 	.open		= mtd_proc_open,
1155 	.read		= seq_read,
1156 	.llseek		= seq_lseek,
1157 	.release	= single_release,
1158 };
1159 #endif /* CONFIG_PROC_FS */
1160 
1161 /*====================================================================*/
1162 /* Init code */
1163 
1164 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1165 {
1166 	int ret;
1167 
1168 	ret = bdi_init(bdi);
1169 	if (!ret)
1170 		ret = bdi_register(bdi, NULL, "%s", name);
1171 
1172 	if (ret)
1173 		bdi_destroy(bdi);
1174 
1175 	return ret;
1176 }
1177 
1178 static struct proc_dir_entry *proc_mtd;
1179 
1180 static int __init init_mtd(void)
1181 {
1182 	int ret;
1183 
1184 	ret = class_register(&mtd_class);
1185 	if (ret)
1186 		goto err_reg;
1187 
1188 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1189 	if (ret)
1190 		goto err_bdi1;
1191 
1192 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1193 	if (ret)
1194 		goto err_bdi2;
1195 
1196 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1197 	if (ret)
1198 		goto err_bdi3;
1199 
1200 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1201 
1202 	ret = init_mtdchar();
1203 	if (ret)
1204 		goto out_procfs;
1205 
1206 	return 0;
1207 
1208 out_procfs:
1209 	if (proc_mtd)
1210 		remove_proc_entry("mtd", NULL);
1211 err_bdi3:
1212 	bdi_destroy(&mtd_bdi_ro_mappable);
1213 err_bdi2:
1214 	bdi_destroy(&mtd_bdi_unmappable);
1215 err_bdi1:
1216 	class_unregister(&mtd_class);
1217 err_reg:
1218 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1219 	return ret;
1220 }
1221 
1222 static void __exit cleanup_mtd(void)
1223 {
1224 	cleanup_mtdchar();
1225 	if (proc_mtd)
1226 		remove_proc_entry("mtd", NULL);
1227 	class_unregister(&mtd_class);
1228 	bdi_destroy(&mtd_bdi_unmappable);
1229 	bdi_destroy(&mtd_bdi_ro_mappable);
1230 	bdi_destroy(&mtd_bdi_rw_mappable);
1231 }
1232 
1233 module_init(init_mtd);
1234 module_exit(cleanup_mtd);
1235 
1236 MODULE_LICENSE("GPL");
1237 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1238 MODULE_DESCRIPTION("Core MTD registration and access routines");
1239