xref: /linux/drivers/mtd/mtdcore.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/leds.h>
43 #include <linux/debugfs.h>
44 #include <linux/nvmem-provider.h>
45 
46 #include <linux/mtd/mtd.h>
47 #include <linux/mtd/partitions.h>
48 
49 #include "mtdcore.h"
50 
51 struct backing_dev_info *mtd_bdi;
52 
53 #ifdef CONFIG_PM_SLEEP
54 
55 static int mtd_cls_suspend(struct device *dev)
56 {
57 	struct mtd_info *mtd = dev_get_drvdata(dev);
58 
59 	return mtd ? mtd_suspend(mtd) : 0;
60 }
61 
62 static int mtd_cls_resume(struct device *dev)
63 {
64 	struct mtd_info *mtd = dev_get_drvdata(dev);
65 
66 	if (mtd)
67 		mtd_resume(mtd);
68 	return 0;
69 }
70 
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #else
74 #define MTD_CLS_PM_OPS NULL
75 #endif
76 
77 static struct class mtd_class = {
78 	.name = "mtd",
79 	.owner = THIS_MODULE,
80 	.pm = MTD_CLS_PM_OPS,
81 };
82 
83 static DEFINE_IDR(mtd_idr);
84 
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86    should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 	return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 
96 static LIST_HEAD(mtd_notifiers);
97 
98 
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102  * the mtd_info will probably want to use the release() hook...
103  */
104 static void mtd_release(struct device *dev)
105 {
106 	struct mtd_info *mtd = dev_get_drvdata(dev);
107 	dev_t index = MTD_DEVT(mtd->index);
108 
109 	/* remove /dev/mtdXro node */
110 	device_destroy(&mtd_class, index + 1);
111 }
112 
113 static ssize_t mtd_type_show(struct device *dev,
114 		struct device_attribute *attr, char *buf)
115 {
116 	struct mtd_info *mtd = dev_get_drvdata(dev);
117 	char *type;
118 
119 	switch (mtd->type) {
120 	case MTD_ABSENT:
121 		type = "absent";
122 		break;
123 	case MTD_RAM:
124 		type = "ram";
125 		break;
126 	case MTD_ROM:
127 		type = "rom";
128 		break;
129 	case MTD_NORFLASH:
130 		type = "nor";
131 		break;
132 	case MTD_NANDFLASH:
133 		type = "nand";
134 		break;
135 	case MTD_DATAFLASH:
136 		type = "dataflash";
137 		break;
138 	case MTD_UBIVOLUME:
139 		type = "ubi";
140 		break;
141 	case MTD_MLCNANDFLASH:
142 		type = "mlc-nand";
143 		break;
144 	default:
145 		type = "unknown";
146 	}
147 
148 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 }
150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 
152 static ssize_t mtd_flags_show(struct device *dev,
153 		struct device_attribute *attr, char *buf)
154 {
155 	struct mtd_info *mtd = dev_get_drvdata(dev);
156 
157 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160 
161 static ssize_t mtd_size_show(struct device *dev,
162 		struct device_attribute *attr, char *buf)
163 {
164 	struct mtd_info *mtd = dev_get_drvdata(dev);
165 
166 	return snprintf(buf, PAGE_SIZE, "%llu\n",
167 		(unsigned long long)mtd->size);
168 }
169 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
170 
171 static ssize_t mtd_erasesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
177 }
178 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
179 
180 static ssize_t mtd_writesize_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 
185 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
186 }
187 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
188 
189 static ssize_t mtd_subpagesize_show(struct device *dev,
190 		struct device_attribute *attr, char *buf)
191 {
192 	struct mtd_info *mtd = dev_get_drvdata(dev);
193 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
194 
195 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
196 }
197 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
198 
199 static ssize_t mtd_oobsize_show(struct device *dev,
200 		struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
205 }
206 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
207 
208 static ssize_t mtd_oobavail_show(struct device *dev,
209 				 struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
214 }
215 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
216 
217 static ssize_t mtd_numeraseregions_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct mtd_info *mtd = dev_get_drvdata(dev);
221 
222 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
223 }
224 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
225 	NULL);
226 
227 static ssize_t mtd_name_show(struct device *dev,
228 		struct device_attribute *attr, char *buf)
229 {
230 	struct mtd_info *mtd = dev_get_drvdata(dev);
231 
232 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
233 }
234 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
235 
236 static ssize_t mtd_ecc_strength_show(struct device *dev,
237 				     struct device_attribute *attr, char *buf)
238 {
239 	struct mtd_info *mtd = dev_get_drvdata(dev);
240 
241 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
242 }
243 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
244 
245 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
246 					  struct device_attribute *attr,
247 					  char *buf)
248 {
249 	struct mtd_info *mtd = dev_get_drvdata(dev);
250 
251 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
252 }
253 
254 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
255 					   struct device_attribute *attr,
256 					   const char *buf, size_t count)
257 {
258 	struct mtd_info *mtd = dev_get_drvdata(dev);
259 	unsigned int bitflip_threshold;
260 	int retval;
261 
262 	retval = kstrtouint(buf, 0, &bitflip_threshold);
263 	if (retval)
264 		return retval;
265 
266 	mtd->bitflip_threshold = bitflip_threshold;
267 	return count;
268 }
269 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
270 		   mtd_bitflip_threshold_show,
271 		   mtd_bitflip_threshold_store);
272 
273 static ssize_t mtd_ecc_step_size_show(struct device *dev,
274 		struct device_attribute *attr, char *buf)
275 {
276 	struct mtd_info *mtd = dev_get_drvdata(dev);
277 
278 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
279 
280 }
281 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
282 
283 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
284 		struct device_attribute *attr, char *buf)
285 {
286 	struct mtd_info *mtd = dev_get_drvdata(dev);
287 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
288 
289 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
290 }
291 static DEVICE_ATTR(corrected_bits, S_IRUGO,
292 		   mtd_ecc_stats_corrected_show, NULL);
293 
294 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
295 		struct device_attribute *attr, char *buf)
296 {
297 	struct mtd_info *mtd = dev_get_drvdata(dev);
298 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
299 
300 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
301 }
302 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
303 
304 static ssize_t mtd_badblocks_show(struct device *dev,
305 		struct device_attribute *attr, char *buf)
306 {
307 	struct mtd_info *mtd = dev_get_drvdata(dev);
308 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
309 
310 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
311 }
312 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
313 
314 static ssize_t mtd_bbtblocks_show(struct device *dev,
315 		struct device_attribute *attr, char *buf)
316 {
317 	struct mtd_info *mtd = dev_get_drvdata(dev);
318 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
319 
320 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
321 }
322 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
323 
324 static struct attribute *mtd_attrs[] = {
325 	&dev_attr_type.attr,
326 	&dev_attr_flags.attr,
327 	&dev_attr_size.attr,
328 	&dev_attr_erasesize.attr,
329 	&dev_attr_writesize.attr,
330 	&dev_attr_subpagesize.attr,
331 	&dev_attr_oobsize.attr,
332 	&dev_attr_oobavail.attr,
333 	&dev_attr_numeraseregions.attr,
334 	&dev_attr_name.attr,
335 	&dev_attr_ecc_strength.attr,
336 	&dev_attr_ecc_step_size.attr,
337 	&dev_attr_corrected_bits.attr,
338 	&dev_attr_ecc_failures.attr,
339 	&dev_attr_bad_blocks.attr,
340 	&dev_attr_bbt_blocks.attr,
341 	&dev_attr_bitflip_threshold.attr,
342 	NULL,
343 };
344 ATTRIBUTE_GROUPS(mtd);
345 
346 static const struct device_type mtd_devtype = {
347 	.name		= "mtd",
348 	.groups		= mtd_groups,
349 	.release	= mtd_release,
350 };
351 
352 #ifndef CONFIG_MMU
353 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
354 {
355 	switch (mtd->type) {
356 	case MTD_RAM:
357 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
359 	case MTD_ROM:
360 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
361 			NOMMU_MAP_READ;
362 	default:
363 		return NOMMU_MAP_COPY;
364 	}
365 }
366 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
367 #endif
368 
369 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
370 			       void *cmd)
371 {
372 	struct mtd_info *mtd;
373 
374 	mtd = container_of(n, struct mtd_info, reboot_notifier);
375 	mtd->_reboot(mtd);
376 
377 	return NOTIFY_DONE;
378 }
379 
380 /**
381  * mtd_wunit_to_pairing_info - get pairing information of a wunit
382  * @mtd: pointer to new MTD device info structure
383  * @wunit: write unit we are interested in
384  * @info: returned pairing information
385  *
386  * Retrieve pairing information associated to the wunit.
387  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
388  * paired together, and where programming a page may influence the page it is
389  * paired with.
390  * The notion of page is replaced by the term wunit (write-unit) to stay
391  * consistent with the ->writesize field.
392  *
393  * The @wunit argument can be extracted from an absolute offset using
394  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
395  * to @wunit.
396  *
397  * From the pairing info the MTD user can find all the wunits paired with
398  * @wunit using the following loop:
399  *
400  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
401  *	info.pair = i;
402  *	mtd_pairing_info_to_wunit(mtd, &info);
403  *	...
404  * }
405  */
406 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
407 			      struct mtd_pairing_info *info)
408 {
409 	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
410 
411 	if (wunit < 0 || wunit >= npairs)
412 		return -EINVAL;
413 
414 	if (mtd->pairing && mtd->pairing->get_info)
415 		return mtd->pairing->get_info(mtd, wunit, info);
416 
417 	info->group = 0;
418 	info->pair = wunit;
419 
420 	return 0;
421 }
422 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
423 
424 /**
425  * mtd_pairing_info_to_wunit - get wunit from pairing information
426  * @mtd: pointer to new MTD device info structure
427  * @info: pairing information struct
428  *
429  * Returns a positive number representing the wunit associated to the info
430  * struct, or a negative error code.
431  *
432  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
433  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
434  * doc).
435  *
436  * It can also be used to only program the first page of each pair (i.e.
437  * page attached to group 0), which allows one to use an MLC NAND in
438  * software-emulated SLC mode:
439  *
440  * info.group = 0;
441  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
442  * for (info.pair = 0; info.pair < npairs; info.pair++) {
443  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
444  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
445  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
446  * }
447  */
448 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
449 			      const struct mtd_pairing_info *info)
450 {
451 	int ngroups = mtd_pairing_groups(mtd);
452 	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
453 
454 	if (!info || info->pair < 0 || info->pair >= npairs ||
455 	    info->group < 0 || info->group >= ngroups)
456 		return -EINVAL;
457 
458 	if (mtd->pairing && mtd->pairing->get_wunit)
459 		return mtd->pairing->get_wunit(mtd, info);
460 
461 	return info->pair;
462 }
463 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
464 
465 /**
466  * mtd_pairing_groups - get the number of pairing groups
467  * @mtd: pointer to new MTD device info structure
468  *
469  * Returns the number of pairing groups.
470  *
471  * This number is usually equal to the number of bits exposed by a single
472  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
473  * to iterate over all pages of a given pair.
474  */
475 int mtd_pairing_groups(struct mtd_info *mtd)
476 {
477 	if (!mtd->pairing || !mtd->pairing->ngroups)
478 		return 1;
479 
480 	return mtd->pairing->ngroups;
481 }
482 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
483 
484 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
485 			      void *val, size_t bytes)
486 {
487 	struct mtd_info *mtd = priv;
488 	size_t retlen;
489 	int err;
490 
491 	err = mtd_read(mtd, offset, bytes, &retlen, val);
492 	if (err && err != -EUCLEAN)
493 		return err;
494 
495 	return retlen == bytes ? 0 : -EIO;
496 }
497 
498 static int mtd_nvmem_add(struct mtd_info *mtd)
499 {
500 	struct nvmem_config config = {};
501 
502 	config.id = -1;
503 	config.dev = &mtd->dev;
504 	config.name = mtd->name;
505 	config.owner = THIS_MODULE;
506 	config.reg_read = mtd_nvmem_reg_read;
507 	config.size = mtd->size;
508 	config.word_size = 1;
509 	config.stride = 1;
510 	config.read_only = true;
511 	config.root_only = true;
512 	config.no_of_node = true;
513 	config.priv = mtd;
514 
515 	mtd->nvmem = nvmem_register(&config);
516 	if (IS_ERR(mtd->nvmem)) {
517 		/* Just ignore if there is no NVMEM support in the kernel */
518 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
519 			mtd->nvmem = NULL;
520 		} else {
521 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
522 			return PTR_ERR(mtd->nvmem);
523 		}
524 	}
525 
526 	return 0;
527 }
528 
529 static struct dentry *dfs_dir_mtd;
530 
531 /**
532  *	add_mtd_device - register an MTD device
533  *	@mtd: pointer to new MTD device info structure
534  *
535  *	Add a device to the list of MTD devices present in the system, and
536  *	notify each currently active MTD 'user' of its arrival. Returns
537  *	zero on success or non-zero on failure.
538  */
539 
540 int add_mtd_device(struct mtd_info *mtd)
541 {
542 	struct mtd_notifier *not;
543 	int i, error;
544 
545 	/*
546 	 * May occur, for instance, on buggy drivers which call
547 	 * mtd_device_parse_register() multiple times on the same master MTD,
548 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
549 	 */
550 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
551 		return -EEXIST;
552 
553 	BUG_ON(mtd->writesize == 0);
554 
555 	/*
556 	 * MTD drivers should implement ->_{write,read}() or
557 	 * ->_{write,read}_oob(), but not both.
558 	 */
559 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
560 		    (mtd->_read && mtd->_read_oob)))
561 		return -EINVAL;
562 
563 	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
564 		    !(mtd->flags & MTD_NO_ERASE)))
565 		return -EINVAL;
566 
567 	mutex_lock(&mtd_table_mutex);
568 
569 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
570 	if (i < 0) {
571 		error = i;
572 		goto fail_locked;
573 	}
574 
575 	mtd->index = i;
576 	mtd->usecount = 0;
577 
578 	/* default value if not set by driver */
579 	if (mtd->bitflip_threshold == 0)
580 		mtd->bitflip_threshold = mtd->ecc_strength;
581 
582 	if (is_power_of_2(mtd->erasesize))
583 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
584 	else
585 		mtd->erasesize_shift = 0;
586 
587 	if (is_power_of_2(mtd->writesize))
588 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
589 	else
590 		mtd->writesize_shift = 0;
591 
592 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
593 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
594 
595 	/* Some chips always power up locked. Unlock them now */
596 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
597 		error = mtd_unlock(mtd, 0, mtd->size);
598 		if (error && error != -EOPNOTSUPP)
599 			printk(KERN_WARNING
600 			       "%s: unlock failed, writes may not work\n",
601 			       mtd->name);
602 		/* Ignore unlock failures? */
603 		error = 0;
604 	}
605 
606 	/* Caller should have set dev.parent to match the
607 	 * physical device, if appropriate.
608 	 */
609 	mtd->dev.type = &mtd_devtype;
610 	mtd->dev.class = &mtd_class;
611 	mtd->dev.devt = MTD_DEVT(i);
612 	dev_set_name(&mtd->dev, "mtd%d", i);
613 	dev_set_drvdata(&mtd->dev, mtd);
614 	of_node_get(mtd_get_of_node(mtd));
615 	error = device_register(&mtd->dev);
616 	if (error)
617 		goto fail_added;
618 
619 	/* Add the nvmem provider */
620 	error = mtd_nvmem_add(mtd);
621 	if (error)
622 		goto fail_nvmem_add;
623 
624 	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
625 		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
626 		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
627 			pr_debug("mtd device %s won't show data in debugfs\n",
628 				 dev_name(&mtd->dev));
629 		}
630 	}
631 
632 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
633 		      "mtd%dro", i);
634 
635 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
636 	/* No need to get a refcount on the module containing
637 	   the notifier, since we hold the mtd_table_mutex */
638 	list_for_each_entry(not, &mtd_notifiers, list)
639 		not->add(mtd);
640 
641 	mutex_unlock(&mtd_table_mutex);
642 	/* We _know_ we aren't being removed, because
643 	   our caller is still holding us here. So none
644 	   of this try_ nonsense, and no bitching about it
645 	   either. :) */
646 	__module_get(THIS_MODULE);
647 	return 0;
648 
649 fail_nvmem_add:
650 	device_unregister(&mtd->dev);
651 fail_added:
652 	of_node_put(mtd_get_of_node(mtd));
653 	idr_remove(&mtd_idr, i);
654 fail_locked:
655 	mutex_unlock(&mtd_table_mutex);
656 	return error;
657 }
658 
659 /**
660  *	del_mtd_device - unregister an MTD device
661  *	@mtd: pointer to MTD device info structure
662  *
663  *	Remove a device from the list of MTD devices present in the system,
664  *	and notify each currently active MTD 'user' of its departure.
665  *	Returns zero on success or 1 on failure, which currently will happen
666  *	if the requested device does not appear to be present in the list.
667  */
668 
669 int del_mtd_device(struct mtd_info *mtd)
670 {
671 	int ret;
672 	struct mtd_notifier *not;
673 
674 	mutex_lock(&mtd_table_mutex);
675 
676 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
677 
678 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
679 		ret = -ENODEV;
680 		goto out_error;
681 	}
682 
683 	/* No need to get a refcount on the module containing
684 		the notifier, since we hold the mtd_table_mutex */
685 	list_for_each_entry(not, &mtd_notifiers, list)
686 		not->remove(mtd);
687 
688 	if (mtd->usecount) {
689 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
690 		       mtd->index, mtd->name, mtd->usecount);
691 		ret = -EBUSY;
692 	} else {
693 		/* Try to remove the NVMEM provider */
694 		if (mtd->nvmem)
695 			nvmem_unregister(mtd->nvmem);
696 
697 		device_unregister(&mtd->dev);
698 
699 		idr_remove(&mtd_idr, mtd->index);
700 		of_node_put(mtd_get_of_node(mtd));
701 
702 		module_put(THIS_MODULE);
703 		ret = 0;
704 	}
705 
706 out_error:
707 	mutex_unlock(&mtd_table_mutex);
708 	return ret;
709 }
710 
711 /*
712  * Set a few defaults based on the parent devices, if not provided by the
713  * driver
714  */
715 static void mtd_set_dev_defaults(struct mtd_info *mtd)
716 {
717 	if (mtd->dev.parent) {
718 		if (!mtd->owner && mtd->dev.parent->driver)
719 			mtd->owner = mtd->dev.parent->driver->owner;
720 		if (!mtd->name)
721 			mtd->name = dev_name(mtd->dev.parent);
722 	} else {
723 		pr_debug("mtd device won't show a device symlink in sysfs\n");
724 	}
725 
726 	mtd->orig_flags = mtd->flags;
727 }
728 
729 /**
730  * mtd_device_parse_register - parse partitions and register an MTD device.
731  *
732  * @mtd: the MTD device to register
733  * @types: the list of MTD partition probes to try, see
734  *         'parse_mtd_partitions()' for more information
735  * @parser_data: MTD partition parser-specific data
736  * @parts: fallback partition information to register, if parsing fails;
737  *         only valid if %nr_parts > %0
738  * @nr_parts: the number of partitions in parts, if zero then the full
739  *            MTD device is registered if no partition info is found
740  *
741  * This function aggregates MTD partitions parsing (done by
742  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
743  * basically follows the most common pattern found in many MTD drivers:
744  *
745  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
746  *   registered first.
747  * * Then It tries to probe partitions on MTD device @mtd using parsers
748  *   specified in @types (if @types is %NULL, then the default list of parsers
749  *   is used, see 'parse_mtd_partitions()' for more information). If none are
750  *   found this functions tries to fallback to information specified in
751  *   @parts/@nr_parts.
752  * * If no partitions were found this function just registers the MTD device
753  *   @mtd and exits.
754  *
755  * Returns zero in case of success and a negative error code in case of failure.
756  */
757 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
758 			      struct mtd_part_parser_data *parser_data,
759 			      const struct mtd_partition *parts,
760 			      int nr_parts)
761 {
762 	int ret;
763 
764 	mtd_set_dev_defaults(mtd);
765 
766 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
767 		ret = add_mtd_device(mtd);
768 		if (ret)
769 			return ret;
770 	}
771 
772 	/* Prefer parsed partitions over driver-provided fallback */
773 	ret = parse_mtd_partitions(mtd, types, parser_data);
774 	if (ret > 0)
775 		ret = 0;
776 	else if (nr_parts)
777 		ret = add_mtd_partitions(mtd, parts, nr_parts);
778 	else if (!device_is_registered(&mtd->dev))
779 		ret = add_mtd_device(mtd);
780 	else
781 		ret = 0;
782 
783 	if (ret)
784 		goto out;
785 
786 	/*
787 	 * FIXME: some drivers unfortunately call this function more than once.
788 	 * So we have to check if we've already assigned the reboot notifier.
789 	 *
790 	 * Generally, we can make multiple calls work for most cases, but it
791 	 * does cause problems with parse_mtd_partitions() above (e.g.,
792 	 * cmdlineparts will register partitions more than once).
793 	 */
794 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
795 		  "MTD already registered\n");
796 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
797 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
798 		register_reboot_notifier(&mtd->reboot_notifier);
799 	}
800 
801 out:
802 	if (ret && device_is_registered(&mtd->dev))
803 		del_mtd_device(mtd);
804 
805 	return ret;
806 }
807 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
808 
809 /**
810  * mtd_device_unregister - unregister an existing MTD device.
811  *
812  * @master: the MTD device to unregister.  This will unregister both the master
813  *          and any partitions if registered.
814  */
815 int mtd_device_unregister(struct mtd_info *master)
816 {
817 	int err;
818 
819 	if (master->_reboot)
820 		unregister_reboot_notifier(&master->reboot_notifier);
821 
822 	err = del_mtd_partitions(master);
823 	if (err)
824 		return err;
825 
826 	if (!device_is_registered(&master->dev))
827 		return 0;
828 
829 	return del_mtd_device(master);
830 }
831 EXPORT_SYMBOL_GPL(mtd_device_unregister);
832 
833 /**
834  *	register_mtd_user - register a 'user' of MTD devices.
835  *	@new: pointer to notifier info structure
836  *
837  *	Registers a pair of callbacks function to be called upon addition
838  *	or removal of MTD devices. Causes the 'add' callback to be immediately
839  *	invoked for each MTD device currently present in the system.
840  */
841 void register_mtd_user (struct mtd_notifier *new)
842 {
843 	struct mtd_info *mtd;
844 
845 	mutex_lock(&mtd_table_mutex);
846 
847 	list_add(&new->list, &mtd_notifiers);
848 
849 	__module_get(THIS_MODULE);
850 
851 	mtd_for_each_device(mtd)
852 		new->add(mtd);
853 
854 	mutex_unlock(&mtd_table_mutex);
855 }
856 EXPORT_SYMBOL_GPL(register_mtd_user);
857 
858 /**
859  *	unregister_mtd_user - unregister a 'user' of MTD devices.
860  *	@old: pointer to notifier info structure
861  *
862  *	Removes a callback function pair from the list of 'users' to be
863  *	notified upon addition or removal of MTD devices. Causes the
864  *	'remove' callback to be immediately invoked for each MTD device
865  *	currently present in the system.
866  */
867 int unregister_mtd_user (struct mtd_notifier *old)
868 {
869 	struct mtd_info *mtd;
870 
871 	mutex_lock(&mtd_table_mutex);
872 
873 	module_put(THIS_MODULE);
874 
875 	mtd_for_each_device(mtd)
876 		old->remove(mtd);
877 
878 	list_del(&old->list);
879 	mutex_unlock(&mtd_table_mutex);
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(unregister_mtd_user);
883 
884 /**
885  *	get_mtd_device - obtain a validated handle for an MTD device
886  *	@mtd: last known address of the required MTD device
887  *	@num: internal device number of the required MTD device
888  *
889  *	Given a number and NULL address, return the num'th entry in the device
890  *	table, if any.	Given an address and num == -1, search the device table
891  *	for a device with that address and return if it's still present. Given
892  *	both, return the num'th driver only if its address matches. Return
893  *	error code if not.
894  */
895 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
896 {
897 	struct mtd_info *ret = NULL, *other;
898 	int err = -ENODEV;
899 
900 	mutex_lock(&mtd_table_mutex);
901 
902 	if (num == -1) {
903 		mtd_for_each_device(other) {
904 			if (other == mtd) {
905 				ret = mtd;
906 				break;
907 			}
908 		}
909 	} else if (num >= 0) {
910 		ret = idr_find(&mtd_idr, num);
911 		if (mtd && mtd != ret)
912 			ret = NULL;
913 	}
914 
915 	if (!ret) {
916 		ret = ERR_PTR(err);
917 		goto out;
918 	}
919 
920 	err = __get_mtd_device(ret);
921 	if (err)
922 		ret = ERR_PTR(err);
923 out:
924 	mutex_unlock(&mtd_table_mutex);
925 	return ret;
926 }
927 EXPORT_SYMBOL_GPL(get_mtd_device);
928 
929 
930 int __get_mtd_device(struct mtd_info *mtd)
931 {
932 	int err;
933 
934 	if (!try_module_get(mtd->owner))
935 		return -ENODEV;
936 
937 	if (mtd->_get_device) {
938 		err = mtd->_get_device(mtd);
939 
940 		if (err) {
941 			module_put(mtd->owner);
942 			return err;
943 		}
944 	}
945 	mtd->usecount++;
946 	return 0;
947 }
948 EXPORT_SYMBOL_GPL(__get_mtd_device);
949 
950 /**
951  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
952  *	device name
953  *	@name: MTD device name to open
954  *
955  * 	This function returns MTD device description structure in case of
956  * 	success and an error code in case of failure.
957  */
958 struct mtd_info *get_mtd_device_nm(const char *name)
959 {
960 	int err = -ENODEV;
961 	struct mtd_info *mtd = NULL, *other;
962 
963 	mutex_lock(&mtd_table_mutex);
964 
965 	mtd_for_each_device(other) {
966 		if (!strcmp(name, other->name)) {
967 			mtd = other;
968 			break;
969 		}
970 	}
971 
972 	if (!mtd)
973 		goto out_unlock;
974 
975 	err = __get_mtd_device(mtd);
976 	if (err)
977 		goto out_unlock;
978 
979 	mutex_unlock(&mtd_table_mutex);
980 	return mtd;
981 
982 out_unlock:
983 	mutex_unlock(&mtd_table_mutex);
984 	return ERR_PTR(err);
985 }
986 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
987 
988 void put_mtd_device(struct mtd_info *mtd)
989 {
990 	mutex_lock(&mtd_table_mutex);
991 	__put_mtd_device(mtd);
992 	mutex_unlock(&mtd_table_mutex);
993 
994 }
995 EXPORT_SYMBOL_GPL(put_mtd_device);
996 
997 void __put_mtd_device(struct mtd_info *mtd)
998 {
999 	--mtd->usecount;
1000 	BUG_ON(mtd->usecount < 0);
1001 
1002 	if (mtd->_put_device)
1003 		mtd->_put_device(mtd);
1004 
1005 	module_put(mtd->owner);
1006 }
1007 EXPORT_SYMBOL_GPL(__put_mtd_device);
1008 
1009 /*
1010  * Erase is an synchronous operation. Device drivers are epected to return a
1011  * negative error code if the operation failed and update instr->fail_addr
1012  * to point the portion that was not properly erased.
1013  */
1014 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1015 {
1016 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1017 
1018 	if (!mtd->erasesize || !mtd->_erase)
1019 		return -ENOTSUPP;
1020 
1021 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1022 		return -EINVAL;
1023 	if (!(mtd->flags & MTD_WRITEABLE))
1024 		return -EROFS;
1025 
1026 	if (!instr->len)
1027 		return 0;
1028 
1029 	ledtrig_mtd_activity();
1030 	return mtd->_erase(mtd, instr);
1031 }
1032 EXPORT_SYMBOL_GPL(mtd_erase);
1033 
1034 /*
1035  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1036  */
1037 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1038 	      void **virt, resource_size_t *phys)
1039 {
1040 	*retlen = 0;
1041 	*virt = NULL;
1042 	if (phys)
1043 		*phys = 0;
1044 	if (!mtd->_point)
1045 		return -EOPNOTSUPP;
1046 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1047 		return -EINVAL;
1048 	if (!len)
1049 		return 0;
1050 	return mtd->_point(mtd, from, len, retlen, virt, phys);
1051 }
1052 EXPORT_SYMBOL_GPL(mtd_point);
1053 
1054 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1055 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1056 {
1057 	if (!mtd->_unpoint)
1058 		return -EOPNOTSUPP;
1059 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1060 		return -EINVAL;
1061 	if (!len)
1062 		return 0;
1063 	return mtd->_unpoint(mtd, from, len);
1064 }
1065 EXPORT_SYMBOL_GPL(mtd_unpoint);
1066 
1067 /*
1068  * Allow NOMMU mmap() to directly map the device (if not NULL)
1069  * - return the address to which the offset maps
1070  * - return -ENOSYS to indicate refusal to do the mapping
1071  */
1072 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1073 				    unsigned long offset, unsigned long flags)
1074 {
1075 	size_t retlen;
1076 	void *virt;
1077 	int ret;
1078 
1079 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1080 	if (ret)
1081 		return ret;
1082 	if (retlen != len) {
1083 		mtd_unpoint(mtd, offset, retlen);
1084 		return -ENOSYS;
1085 	}
1086 	return (unsigned long)virt;
1087 }
1088 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1089 
1090 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1091 	     u_char *buf)
1092 {
1093 	struct mtd_oob_ops ops = {
1094 		.len = len,
1095 		.datbuf = buf,
1096 	};
1097 	int ret;
1098 
1099 	ret = mtd_read_oob(mtd, from, &ops);
1100 	*retlen = ops.retlen;
1101 
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_read);
1105 
1106 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1107 	      const u_char *buf)
1108 {
1109 	struct mtd_oob_ops ops = {
1110 		.len = len,
1111 		.datbuf = (u8 *)buf,
1112 	};
1113 	int ret;
1114 
1115 	ret = mtd_write_oob(mtd, to, &ops);
1116 	*retlen = ops.retlen;
1117 
1118 	return ret;
1119 }
1120 EXPORT_SYMBOL_GPL(mtd_write);
1121 
1122 /*
1123  * In blackbox flight recorder like scenarios we want to make successful writes
1124  * in interrupt context. panic_write() is only intended to be called when its
1125  * known the kernel is about to panic and we need the write to succeed. Since
1126  * the kernel is not going to be running for much longer, this function can
1127  * break locks and delay to ensure the write succeeds (but not sleep).
1128  */
1129 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1130 		    const u_char *buf)
1131 {
1132 	*retlen = 0;
1133 	if (!mtd->_panic_write)
1134 		return -EOPNOTSUPP;
1135 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1136 		return -EINVAL;
1137 	if (!(mtd->flags & MTD_WRITEABLE))
1138 		return -EROFS;
1139 	if (!len)
1140 		return 0;
1141 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1142 }
1143 EXPORT_SYMBOL_GPL(mtd_panic_write);
1144 
1145 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1146 			     struct mtd_oob_ops *ops)
1147 {
1148 	/*
1149 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1150 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1151 	 *  this case.
1152 	 */
1153 	if (!ops->datbuf)
1154 		ops->len = 0;
1155 
1156 	if (!ops->oobbuf)
1157 		ops->ooblen = 0;
1158 
1159 	if (offs < 0 || offs + ops->len > mtd->size)
1160 		return -EINVAL;
1161 
1162 	if (ops->ooblen) {
1163 		size_t maxooblen;
1164 
1165 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1166 			return -EINVAL;
1167 
1168 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1169 				      mtd_div_by_ws(offs, mtd)) *
1170 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1171 		if (ops->ooblen > maxooblen)
1172 			return -EINVAL;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1179 {
1180 	int ret_code;
1181 	ops->retlen = ops->oobretlen = 0;
1182 
1183 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1184 	if (ret_code)
1185 		return ret_code;
1186 
1187 	ledtrig_mtd_activity();
1188 
1189 	/* Check the validity of a potential fallback on mtd->_read */
1190 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1191 		return -EOPNOTSUPP;
1192 
1193 	if (mtd->_read_oob)
1194 		ret_code = mtd->_read_oob(mtd, from, ops);
1195 	else
1196 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1197 				      ops->datbuf);
1198 
1199 	/*
1200 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1201 	 * similar to mtd->_read(), returning a non-negative integer
1202 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1203 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1204 	 */
1205 	if (unlikely(ret_code < 0))
1206 		return ret_code;
1207 	if (mtd->ecc_strength == 0)
1208 		return 0;	/* device lacks ecc */
1209 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1210 }
1211 EXPORT_SYMBOL_GPL(mtd_read_oob);
1212 
1213 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1214 				struct mtd_oob_ops *ops)
1215 {
1216 	int ret;
1217 
1218 	ops->retlen = ops->oobretlen = 0;
1219 
1220 	if (!(mtd->flags & MTD_WRITEABLE))
1221 		return -EROFS;
1222 
1223 	ret = mtd_check_oob_ops(mtd, to, ops);
1224 	if (ret)
1225 		return ret;
1226 
1227 	ledtrig_mtd_activity();
1228 
1229 	/* Check the validity of a potential fallback on mtd->_write */
1230 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1231 		return -EOPNOTSUPP;
1232 
1233 	if (mtd->_write_oob)
1234 		return mtd->_write_oob(mtd, to, ops);
1235 	else
1236 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1237 				   ops->datbuf);
1238 }
1239 EXPORT_SYMBOL_GPL(mtd_write_oob);
1240 
1241 /**
1242  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1243  * @mtd: MTD device structure
1244  * @section: ECC section. Depending on the layout you may have all the ECC
1245  *	     bytes stored in a single contiguous section, or one section
1246  *	     per ECC chunk (and sometime several sections for a single ECC
1247  *	     ECC chunk)
1248  * @oobecc: OOB region struct filled with the appropriate ECC position
1249  *	    information
1250  *
1251  * This function returns ECC section information in the OOB area. If you want
1252  * to get all the ECC bytes information, then you should call
1253  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1254  *
1255  * Returns zero on success, a negative error code otherwise.
1256  */
1257 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1258 		      struct mtd_oob_region *oobecc)
1259 {
1260 	memset(oobecc, 0, sizeof(*oobecc));
1261 
1262 	if (!mtd || section < 0)
1263 		return -EINVAL;
1264 
1265 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1266 		return -ENOTSUPP;
1267 
1268 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1269 }
1270 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1271 
1272 /**
1273  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1274  *			section
1275  * @mtd: MTD device structure
1276  * @section: Free section you are interested in. Depending on the layout
1277  *	     you may have all the free bytes stored in a single contiguous
1278  *	     section, or one section per ECC chunk plus an extra section
1279  *	     for the remaining bytes (or other funky layout).
1280  * @oobfree: OOB region struct filled with the appropriate free position
1281  *	     information
1282  *
1283  * This function returns free bytes position in the OOB area. If you want
1284  * to get all the free bytes information, then you should call
1285  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1286  *
1287  * Returns zero on success, a negative error code otherwise.
1288  */
1289 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1290 		       struct mtd_oob_region *oobfree)
1291 {
1292 	memset(oobfree, 0, sizeof(*oobfree));
1293 
1294 	if (!mtd || section < 0)
1295 		return -EINVAL;
1296 
1297 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1298 		return -ENOTSUPP;
1299 
1300 	return mtd->ooblayout->free(mtd, section, oobfree);
1301 }
1302 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1303 
1304 /**
1305  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1306  * @mtd: mtd info structure
1307  * @byte: the byte we are searching for
1308  * @sectionp: pointer where the section id will be stored
1309  * @oobregion: used to retrieve the ECC position
1310  * @iter: iterator function. Should be either mtd_ooblayout_free or
1311  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1312  *
1313  * This function returns the section id and oobregion information of a
1314  * specific byte. For example, say you want to know where the 4th ECC byte is
1315  * stored, you'll use:
1316  *
1317  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1318  *
1319  * Returns zero on success, a negative error code otherwise.
1320  */
1321 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1322 				int *sectionp, struct mtd_oob_region *oobregion,
1323 				int (*iter)(struct mtd_info *,
1324 					    int section,
1325 					    struct mtd_oob_region *oobregion))
1326 {
1327 	int pos = 0, ret, section = 0;
1328 
1329 	memset(oobregion, 0, sizeof(*oobregion));
1330 
1331 	while (1) {
1332 		ret = iter(mtd, section, oobregion);
1333 		if (ret)
1334 			return ret;
1335 
1336 		if (pos + oobregion->length > byte)
1337 			break;
1338 
1339 		pos += oobregion->length;
1340 		section++;
1341 	}
1342 
1343 	/*
1344 	 * Adjust region info to make it start at the beginning at the
1345 	 * 'start' ECC byte.
1346 	 */
1347 	oobregion->offset += byte - pos;
1348 	oobregion->length -= byte - pos;
1349 	*sectionp = section;
1350 
1351 	return 0;
1352 }
1353 
1354 /**
1355  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1356  *				  ECC byte
1357  * @mtd: mtd info structure
1358  * @eccbyte: the byte we are searching for
1359  * @sectionp: pointer where the section id will be stored
1360  * @oobregion: OOB region information
1361  *
1362  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1363  * byte.
1364  *
1365  * Returns zero on success, a negative error code otherwise.
1366  */
1367 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1368 				 int *section,
1369 				 struct mtd_oob_region *oobregion)
1370 {
1371 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1372 					 mtd_ooblayout_ecc);
1373 }
1374 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1375 
1376 /**
1377  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1378  * @mtd: mtd info structure
1379  * @buf: destination buffer to store OOB bytes
1380  * @oobbuf: OOB buffer
1381  * @start: first byte to retrieve
1382  * @nbytes: number of bytes to retrieve
1383  * @iter: section iterator
1384  *
1385  * Extract bytes attached to a specific category (ECC or free)
1386  * from the OOB buffer and copy them into buf.
1387  *
1388  * Returns zero on success, a negative error code otherwise.
1389  */
1390 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1391 				const u8 *oobbuf, int start, int nbytes,
1392 				int (*iter)(struct mtd_info *,
1393 					    int section,
1394 					    struct mtd_oob_region *oobregion))
1395 {
1396 	struct mtd_oob_region oobregion;
1397 	int section, ret;
1398 
1399 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1400 					&oobregion, iter);
1401 
1402 	while (!ret) {
1403 		int cnt;
1404 
1405 		cnt = min_t(int, nbytes, oobregion.length);
1406 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1407 		buf += cnt;
1408 		nbytes -= cnt;
1409 
1410 		if (!nbytes)
1411 			break;
1412 
1413 		ret = iter(mtd, ++section, &oobregion);
1414 	}
1415 
1416 	return ret;
1417 }
1418 
1419 /**
1420  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1421  * @mtd: mtd info structure
1422  * @buf: source buffer to get OOB bytes from
1423  * @oobbuf: OOB buffer
1424  * @start: first OOB byte to set
1425  * @nbytes: number of OOB bytes to set
1426  * @iter: section iterator
1427  *
1428  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1429  * is selected by passing the appropriate iterator.
1430  *
1431  * Returns zero on success, a negative error code otherwise.
1432  */
1433 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1434 				u8 *oobbuf, int start, int nbytes,
1435 				int (*iter)(struct mtd_info *,
1436 					    int section,
1437 					    struct mtd_oob_region *oobregion))
1438 {
1439 	struct mtd_oob_region oobregion;
1440 	int section, ret;
1441 
1442 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1443 					&oobregion, iter);
1444 
1445 	while (!ret) {
1446 		int cnt;
1447 
1448 		cnt = min_t(int, nbytes, oobregion.length);
1449 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1450 		buf += cnt;
1451 		nbytes -= cnt;
1452 
1453 		if (!nbytes)
1454 			break;
1455 
1456 		ret = iter(mtd, ++section, &oobregion);
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 /**
1463  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1464  * @mtd: mtd info structure
1465  * @iter: category iterator
1466  *
1467  * Count the number of bytes in a given category.
1468  *
1469  * Returns a positive value on success, a negative error code otherwise.
1470  */
1471 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1472 				int (*iter)(struct mtd_info *,
1473 					    int section,
1474 					    struct mtd_oob_region *oobregion))
1475 {
1476 	struct mtd_oob_region oobregion;
1477 	int section = 0, ret, nbytes = 0;
1478 
1479 	while (1) {
1480 		ret = iter(mtd, section++, &oobregion);
1481 		if (ret) {
1482 			if (ret == -ERANGE)
1483 				ret = nbytes;
1484 			break;
1485 		}
1486 
1487 		nbytes += oobregion.length;
1488 	}
1489 
1490 	return ret;
1491 }
1492 
1493 /**
1494  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1495  * @mtd: mtd info structure
1496  * @eccbuf: destination buffer to store ECC bytes
1497  * @oobbuf: OOB buffer
1498  * @start: first ECC byte to retrieve
1499  * @nbytes: number of ECC bytes to retrieve
1500  *
1501  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1502  *
1503  * Returns zero on success, a negative error code otherwise.
1504  */
1505 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1506 			       const u8 *oobbuf, int start, int nbytes)
1507 {
1508 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1509 				       mtd_ooblayout_ecc);
1510 }
1511 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1512 
1513 /**
1514  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1515  * @mtd: mtd info structure
1516  * @eccbuf: source buffer to get ECC bytes from
1517  * @oobbuf: OOB buffer
1518  * @start: first ECC byte to set
1519  * @nbytes: number of ECC bytes to set
1520  *
1521  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1522  *
1523  * Returns zero on success, a negative error code otherwise.
1524  */
1525 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1526 			       u8 *oobbuf, int start, int nbytes)
1527 {
1528 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1529 				       mtd_ooblayout_ecc);
1530 }
1531 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1532 
1533 /**
1534  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1535  * @mtd: mtd info structure
1536  * @databuf: destination buffer to store ECC bytes
1537  * @oobbuf: OOB buffer
1538  * @start: first ECC byte to retrieve
1539  * @nbytes: number of ECC bytes to retrieve
1540  *
1541  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1542  *
1543  * Returns zero on success, a negative error code otherwise.
1544  */
1545 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1546 				const u8 *oobbuf, int start, int nbytes)
1547 {
1548 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1549 				       mtd_ooblayout_free);
1550 }
1551 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1552 
1553 /**
1554  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1555  * @mtd: mtd info structure
1556  * @databuf: source buffer to get data bytes from
1557  * @oobbuf: OOB buffer
1558  * @start: first ECC byte to set
1559  * @nbytes: number of ECC bytes to set
1560  *
1561  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1562  *
1563  * Returns zero on success, a negative error code otherwise.
1564  */
1565 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1566 				u8 *oobbuf, int start, int nbytes)
1567 {
1568 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1569 				       mtd_ooblayout_free);
1570 }
1571 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1572 
1573 /**
1574  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1575  * @mtd: mtd info structure
1576  *
1577  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1578  *
1579  * Returns zero on success, a negative error code otherwise.
1580  */
1581 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1582 {
1583 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1584 }
1585 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1586 
1587 /**
1588  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1589  * @mtd: mtd info structure
1590  *
1591  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1592  *
1593  * Returns zero on success, a negative error code otherwise.
1594  */
1595 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1596 {
1597 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1598 }
1599 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1600 
1601 /*
1602  * Method to access the protection register area, present in some flash
1603  * devices. The user data is one time programmable but the factory data is read
1604  * only.
1605  */
1606 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1607 			   struct otp_info *buf)
1608 {
1609 	if (!mtd->_get_fact_prot_info)
1610 		return -EOPNOTSUPP;
1611 	if (!len)
1612 		return 0;
1613 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1614 }
1615 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1616 
1617 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1618 			   size_t *retlen, u_char *buf)
1619 {
1620 	*retlen = 0;
1621 	if (!mtd->_read_fact_prot_reg)
1622 		return -EOPNOTSUPP;
1623 	if (!len)
1624 		return 0;
1625 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1626 }
1627 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1628 
1629 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1630 			   struct otp_info *buf)
1631 {
1632 	if (!mtd->_get_user_prot_info)
1633 		return -EOPNOTSUPP;
1634 	if (!len)
1635 		return 0;
1636 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1637 }
1638 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1639 
1640 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1641 			   size_t *retlen, u_char *buf)
1642 {
1643 	*retlen = 0;
1644 	if (!mtd->_read_user_prot_reg)
1645 		return -EOPNOTSUPP;
1646 	if (!len)
1647 		return 0;
1648 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1649 }
1650 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1651 
1652 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1653 			    size_t *retlen, u_char *buf)
1654 {
1655 	int ret;
1656 
1657 	*retlen = 0;
1658 	if (!mtd->_write_user_prot_reg)
1659 		return -EOPNOTSUPP;
1660 	if (!len)
1661 		return 0;
1662 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1663 	if (ret)
1664 		return ret;
1665 
1666 	/*
1667 	 * If no data could be written at all, we are out of memory and
1668 	 * must return -ENOSPC.
1669 	 */
1670 	return (*retlen) ? 0 : -ENOSPC;
1671 }
1672 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1673 
1674 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1675 {
1676 	if (!mtd->_lock_user_prot_reg)
1677 		return -EOPNOTSUPP;
1678 	if (!len)
1679 		return 0;
1680 	return mtd->_lock_user_prot_reg(mtd, from, len);
1681 }
1682 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1683 
1684 /* Chip-supported device locking */
1685 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1686 {
1687 	if (!mtd->_lock)
1688 		return -EOPNOTSUPP;
1689 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1690 		return -EINVAL;
1691 	if (!len)
1692 		return 0;
1693 	return mtd->_lock(mtd, ofs, len);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_lock);
1696 
1697 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1698 {
1699 	if (!mtd->_unlock)
1700 		return -EOPNOTSUPP;
1701 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1702 		return -EINVAL;
1703 	if (!len)
1704 		return 0;
1705 	return mtd->_unlock(mtd, ofs, len);
1706 }
1707 EXPORT_SYMBOL_GPL(mtd_unlock);
1708 
1709 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1710 {
1711 	if (!mtd->_is_locked)
1712 		return -EOPNOTSUPP;
1713 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1714 		return -EINVAL;
1715 	if (!len)
1716 		return 0;
1717 	return mtd->_is_locked(mtd, ofs, len);
1718 }
1719 EXPORT_SYMBOL_GPL(mtd_is_locked);
1720 
1721 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1722 {
1723 	if (ofs < 0 || ofs >= mtd->size)
1724 		return -EINVAL;
1725 	if (!mtd->_block_isreserved)
1726 		return 0;
1727 	return mtd->_block_isreserved(mtd, ofs);
1728 }
1729 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1730 
1731 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1732 {
1733 	if (ofs < 0 || ofs >= mtd->size)
1734 		return -EINVAL;
1735 	if (!mtd->_block_isbad)
1736 		return 0;
1737 	return mtd->_block_isbad(mtd, ofs);
1738 }
1739 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1740 
1741 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1742 {
1743 	if (!mtd->_block_markbad)
1744 		return -EOPNOTSUPP;
1745 	if (ofs < 0 || ofs >= mtd->size)
1746 		return -EINVAL;
1747 	if (!(mtd->flags & MTD_WRITEABLE))
1748 		return -EROFS;
1749 	return mtd->_block_markbad(mtd, ofs);
1750 }
1751 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1752 
1753 /*
1754  * default_mtd_writev - the default writev method
1755  * @mtd: mtd device description object pointer
1756  * @vecs: the vectors to write
1757  * @count: count of vectors in @vecs
1758  * @to: the MTD device offset to write to
1759  * @retlen: on exit contains the count of bytes written to the MTD device.
1760  *
1761  * This function returns zero in case of success and a negative error code in
1762  * case of failure.
1763  */
1764 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1765 			      unsigned long count, loff_t to, size_t *retlen)
1766 {
1767 	unsigned long i;
1768 	size_t totlen = 0, thislen;
1769 	int ret = 0;
1770 
1771 	for (i = 0; i < count; i++) {
1772 		if (!vecs[i].iov_len)
1773 			continue;
1774 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1775 				vecs[i].iov_base);
1776 		totlen += thislen;
1777 		if (ret || thislen != vecs[i].iov_len)
1778 			break;
1779 		to += vecs[i].iov_len;
1780 	}
1781 	*retlen = totlen;
1782 	return ret;
1783 }
1784 
1785 /*
1786  * mtd_writev - the vector-based MTD write method
1787  * @mtd: mtd device description object pointer
1788  * @vecs: the vectors to write
1789  * @count: count of vectors in @vecs
1790  * @to: the MTD device offset to write to
1791  * @retlen: on exit contains the count of bytes written to the MTD device.
1792  *
1793  * This function returns zero in case of success and a negative error code in
1794  * case of failure.
1795  */
1796 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1797 	       unsigned long count, loff_t to, size_t *retlen)
1798 {
1799 	*retlen = 0;
1800 	if (!(mtd->flags & MTD_WRITEABLE))
1801 		return -EROFS;
1802 	if (!mtd->_writev)
1803 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1804 	return mtd->_writev(mtd, vecs, count, to, retlen);
1805 }
1806 EXPORT_SYMBOL_GPL(mtd_writev);
1807 
1808 /**
1809  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1810  * @mtd: mtd device description object pointer
1811  * @size: a pointer to the ideal or maximum size of the allocation, points
1812  *        to the actual allocation size on success.
1813  *
1814  * This routine attempts to allocate a contiguous kernel buffer up to
1815  * the specified size, backing off the size of the request exponentially
1816  * until the request succeeds or until the allocation size falls below
1817  * the system page size. This attempts to make sure it does not adversely
1818  * impact system performance, so when allocating more than one page, we
1819  * ask the memory allocator to avoid re-trying, swapping, writing back
1820  * or performing I/O.
1821  *
1822  * Note, this function also makes sure that the allocated buffer is aligned to
1823  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1824  *
1825  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1826  * to handle smaller (i.e. degraded) buffer allocations under low- or
1827  * fragmented-memory situations where such reduced allocations, from a
1828  * requested ideal, are allowed.
1829  *
1830  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1831  */
1832 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1833 {
1834 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1835 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1836 	void *kbuf;
1837 
1838 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1839 
1840 	while (*size > min_alloc) {
1841 		kbuf = kmalloc(*size, flags);
1842 		if (kbuf)
1843 			return kbuf;
1844 
1845 		*size >>= 1;
1846 		*size = ALIGN(*size, mtd->writesize);
1847 	}
1848 
1849 	/*
1850 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1851 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1852 	 */
1853 	return kmalloc(*size, GFP_KERNEL);
1854 }
1855 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1856 
1857 #ifdef CONFIG_PROC_FS
1858 
1859 /*====================================================================*/
1860 /* Support for /proc/mtd */
1861 
1862 static int mtd_proc_show(struct seq_file *m, void *v)
1863 {
1864 	struct mtd_info *mtd;
1865 
1866 	seq_puts(m, "dev:    size   erasesize  name\n");
1867 	mutex_lock(&mtd_table_mutex);
1868 	mtd_for_each_device(mtd) {
1869 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1870 			   mtd->index, (unsigned long long)mtd->size,
1871 			   mtd->erasesize, mtd->name);
1872 	}
1873 	mutex_unlock(&mtd_table_mutex);
1874 	return 0;
1875 }
1876 #endif /* CONFIG_PROC_FS */
1877 
1878 /*====================================================================*/
1879 /* Init code */
1880 
1881 static struct backing_dev_info * __init mtd_bdi_init(char *name)
1882 {
1883 	struct backing_dev_info *bdi;
1884 	int ret;
1885 
1886 	bdi = bdi_alloc(GFP_KERNEL);
1887 	if (!bdi)
1888 		return ERR_PTR(-ENOMEM);
1889 
1890 	bdi->name = name;
1891 	/*
1892 	 * We put '-0' suffix to the name to get the same name format as we
1893 	 * used to get. Since this is called only once, we get a unique name.
1894 	 */
1895 	ret = bdi_register(bdi, "%.28s-0", name);
1896 	if (ret)
1897 		bdi_put(bdi);
1898 
1899 	return ret ? ERR_PTR(ret) : bdi;
1900 }
1901 
1902 static struct proc_dir_entry *proc_mtd;
1903 
1904 static int __init init_mtd(void)
1905 {
1906 	int ret;
1907 
1908 	ret = class_register(&mtd_class);
1909 	if (ret)
1910 		goto err_reg;
1911 
1912 	mtd_bdi = mtd_bdi_init("mtd");
1913 	if (IS_ERR(mtd_bdi)) {
1914 		ret = PTR_ERR(mtd_bdi);
1915 		goto err_bdi;
1916 	}
1917 
1918 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1919 
1920 	ret = init_mtdchar();
1921 	if (ret)
1922 		goto out_procfs;
1923 
1924 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1925 
1926 	return 0;
1927 
1928 out_procfs:
1929 	if (proc_mtd)
1930 		remove_proc_entry("mtd", NULL);
1931 	bdi_put(mtd_bdi);
1932 err_bdi:
1933 	class_unregister(&mtd_class);
1934 err_reg:
1935 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1936 	return ret;
1937 }
1938 
1939 static void __exit cleanup_mtd(void)
1940 {
1941 	debugfs_remove_recursive(dfs_dir_mtd);
1942 	cleanup_mtdchar();
1943 	if (proc_mtd)
1944 		remove_proc_entry("mtd", NULL);
1945 	class_unregister(&mtd_class);
1946 	bdi_put(mtd_bdi);
1947 	idr_destroy(&mtd_idr);
1948 }
1949 
1950 module_init(init_mtd);
1951 module_exit(cleanup_mtd);
1952 
1953 MODULE_LICENSE("GPL");
1954 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1955 MODULE_DESCRIPTION("Core MTD registration and access routines");
1956