1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Core registration and callback routines for MTD 4 * drivers and users. 5 * 6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 7 * Copyright © 2006 Red Hat UK Limited 8 */ 9 10 #include <linux/module.h> 11 #include <linux/kernel.h> 12 #include <linux/ptrace.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/timer.h> 16 #include <linux/major.h> 17 #include <linux/fs.h> 18 #include <linux/err.h> 19 #include <linux/ioctl.h> 20 #include <linux/init.h> 21 #include <linux/of.h> 22 #include <linux/proc_fs.h> 23 #include <linux/idr.h> 24 #include <linux/backing-dev.h> 25 #include <linux/gfp.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/reboot.h> 29 #include <linux/leds.h> 30 #include <linux/debugfs.h> 31 #include <linux/nvmem-provider.h> 32 #include <linux/root_dev.h> 33 34 #include <linux/mtd/mtd.h> 35 #include <linux/mtd/partitions.h> 36 37 #include "mtdcore.h" 38 39 struct backing_dev_info *mtd_bdi; 40 41 #ifdef CONFIG_PM_SLEEP 42 43 static int mtd_cls_suspend(struct device *dev) 44 { 45 struct mtd_info *mtd = dev_get_drvdata(dev); 46 47 return mtd ? mtd_suspend(mtd) : 0; 48 } 49 50 static int mtd_cls_resume(struct device *dev) 51 { 52 struct mtd_info *mtd = dev_get_drvdata(dev); 53 54 if (mtd) 55 mtd_resume(mtd); 56 return 0; 57 } 58 59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume); 60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops) 61 #else 62 #define MTD_CLS_PM_OPS NULL 63 #endif 64 65 static struct class mtd_class = { 66 .name = "mtd", 67 .pm = MTD_CLS_PM_OPS, 68 }; 69 70 static DEFINE_IDR(mtd_idr); 71 72 /* These are exported solely for the purpose of mtd_blkdevs.c. You 73 should not use them for _anything_ else */ 74 DEFINE_MUTEX(mtd_table_mutex); 75 EXPORT_SYMBOL_GPL(mtd_table_mutex); 76 77 struct mtd_info *__mtd_next_device(int i) 78 { 79 return idr_get_next(&mtd_idr, &i); 80 } 81 EXPORT_SYMBOL_GPL(__mtd_next_device); 82 83 static LIST_HEAD(mtd_notifiers); 84 85 86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 87 88 /* REVISIT once MTD uses the driver model better, whoever allocates 89 * the mtd_info will probably want to use the release() hook... 90 */ 91 static void mtd_release(struct device *dev) 92 { 93 struct mtd_info *mtd = dev_get_drvdata(dev); 94 dev_t index = MTD_DEVT(mtd->index); 95 96 idr_remove(&mtd_idr, mtd->index); 97 of_node_put(mtd_get_of_node(mtd)); 98 99 if (mtd_is_partition(mtd)) 100 release_mtd_partition(mtd); 101 102 /* remove /dev/mtdXro node */ 103 device_destroy(&mtd_class, index + 1); 104 } 105 106 static void mtd_device_release(struct kref *kref) 107 { 108 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt); 109 bool is_partition = mtd_is_partition(mtd); 110 111 debugfs_remove_recursive(mtd->dbg.dfs_dir); 112 113 /* Try to remove the NVMEM provider */ 114 nvmem_unregister(mtd->nvmem); 115 116 device_unregister(&mtd->dev); 117 118 /* 119 * Clear dev so mtd can be safely re-registered later if desired. 120 * Should not be done for partition, 121 * as it was already destroyed in device_unregister(). 122 */ 123 if (!is_partition) 124 memset(&mtd->dev, 0, sizeof(mtd->dev)); 125 126 module_put(THIS_MODULE); 127 } 128 129 #define MTD_DEVICE_ATTR_RO(name) \ 130 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL) 131 132 #define MTD_DEVICE_ATTR_RW(name) \ 133 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store) 134 135 static ssize_t mtd_type_show(struct device *dev, 136 struct device_attribute *attr, char *buf) 137 { 138 struct mtd_info *mtd = dev_get_drvdata(dev); 139 char *type; 140 141 switch (mtd->type) { 142 case MTD_ABSENT: 143 type = "absent"; 144 break; 145 case MTD_RAM: 146 type = "ram"; 147 break; 148 case MTD_ROM: 149 type = "rom"; 150 break; 151 case MTD_NORFLASH: 152 type = "nor"; 153 break; 154 case MTD_NANDFLASH: 155 type = "nand"; 156 break; 157 case MTD_DATAFLASH: 158 type = "dataflash"; 159 break; 160 case MTD_UBIVOLUME: 161 type = "ubi"; 162 break; 163 case MTD_MLCNANDFLASH: 164 type = "mlc-nand"; 165 break; 166 default: 167 type = "unknown"; 168 } 169 170 return sysfs_emit(buf, "%s\n", type); 171 } 172 MTD_DEVICE_ATTR_RO(type); 173 174 static ssize_t mtd_flags_show(struct device *dev, 175 struct device_attribute *attr, char *buf) 176 { 177 struct mtd_info *mtd = dev_get_drvdata(dev); 178 179 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags); 180 } 181 MTD_DEVICE_ATTR_RO(flags); 182 183 static ssize_t mtd_size_show(struct device *dev, 184 struct device_attribute *attr, char *buf) 185 { 186 struct mtd_info *mtd = dev_get_drvdata(dev); 187 188 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size); 189 } 190 MTD_DEVICE_ATTR_RO(size); 191 192 static ssize_t mtd_erasesize_show(struct device *dev, 193 struct device_attribute *attr, char *buf) 194 { 195 struct mtd_info *mtd = dev_get_drvdata(dev); 196 197 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize); 198 } 199 MTD_DEVICE_ATTR_RO(erasesize); 200 201 static ssize_t mtd_writesize_show(struct device *dev, 202 struct device_attribute *attr, char *buf) 203 { 204 struct mtd_info *mtd = dev_get_drvdata(dev); 205 206 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize); 207 } 208 MTD_DEVICE_ATTR_RO(writesize); 209 210 static ssize_t mtd_subpagesize_show(struct device *dev, 211 struct device_attribute *attr, char *buf) 212 { 213 struct mtd_info *mtd = dev_get_drvdata(dev); 214 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 215 216 return sysfs_emit(buf, "%u\n", subpagesize); 217 } 218 MTD_DEVICE_ATTR_RO(subpagesize); 219 220 static ssize_t mtd_oobsize_show(struct device *dev, 221 struct device_attribute *attr, char *buf) 222 { 223 struct mtd_info *mtd = dev_get_drvdata(dev); 224 225 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize); 226 } 227 MTD_DEVICE_ATTR_RO(oobsize); 228 229 static ssize_t mtd_oobavail_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231 { 232 struct mtd_info *mtd = dev_get_drvdata(dev); 233 234 return sysfs_emit(buf, "%u\n", mtd->oobavail); 235 } 236 MTD_DEVICE_ATTR_RO(oobavail); 237 238 static ssize_t mtd_numeraseregions_show(struct device *dev, 239 struct device_attribute *attr, char *buf) 240 { 241 struct mtd_info *mtd = dev_get_drvdata(dev); 242 243 return sysfs_emit(buf, "%u\n", mtd->numeraseregions); 244 } 245 MTD_DEVICE_ATTR_RO(numeraseregions); 246 247 static ssize_t mtd_name_show(struct device *dev, 248 struct device_attribute *attr, char *buf) 249 { 250 struct mtd_info *mtd = dev_get_drvdata(dev); 251 252 return sysfs_emit(buf, "%s\n", mtd->name); 253 } 254 MTD_DEVICE_ATTR_RO(name); 255 256 static ssize_t mtd_ecc_strength_show(struct device *dev, 257 struct device_attribute *attr, char *buf) 258 { 259 struct mtd_info *mtd = dev_get_drvdata(dev); 260 261 return sysfs_emit(buf, "%u\n", mtd->ecc_strength); 262 } 263 MTD_DEVICE_ATTR_RO(ecc_strength); 264 265 static ssize_t mtd_bitflip_threshold_show(struct device *dev, 266 struct device_attribute *attr, 267 char *buf) 268 { 269 struct mtd_info *mtd = dev_get_drvdata(dev); 270 271 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold); 272 } 273 274 static ssize_t mtd_bitflip_threshold_store(struct device *dev, 275 struct device_attribute *attr, 276 const char *buf, size_t count) 277 { 278 struct mtd_info *mtd = dev_get_drvdata(dev); 279 unsigned int bitflip_threshold; 280 int retval; 281 282 retval = kstrtouint(buf, 0, &bitflip_threshold); 283 if (retval) 284 return retval; 285 286 mtd->bitflip_threshold = bitflip_threshold; 287 return count; 288 } 289 MTD_DEVICE_ATTR_RW(bitflip_threshold); 290 291 static ssize_t mtd_ecc_step_size_show(struct device *dev, 292 struct device_attribute *attr, char *buf) 293 { 294 struct mtd_info *mtd = dev_get_drvdata(dev); 295 296 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size); 297 298 } 299 MTD_DEVICE_ATTR_RO(ecc_step_size); 300 301 static ssize_t mtd_corrected_bits_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct mtd_info *mtd = dev_get_drvdata(dev); 305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 306 307 return sysfs_emit(buf, "%u\n", ecc_stats->corrected); 308 } 309 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */ 310 311 static ssize_t mtd_ecc_failures_show(struct device *dev, 312 struct device_attribute *attr, char *buf) 313 { 314 struct mtd_info *mtd = dev_get_drvdata(dev); 315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 316 317 return sysfs_emit(buf, "%u\n", ecc_stats->failed); 318 } 319 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */ 320 321 static ssize_t mtd_bad_blocks_show(struct device *dev, 322 struct device_attribute *attr, char *buf) 323 { 324 struct mtd_info *mtd = dev_get_drvdata(dev); 325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 326 327 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks); 328 } 329 MTD_DEVICE_ATTR_RO(bad_blocks); 330 331 static ssize_t mtd_bbt_blocks_show(struct device *dev, 332 struct device_attribute *attr, char *buf) 333 { 334 struct mtd_info *mtd = dev_get_drvdata(dev); 335 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 336 337 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks); 338 } 339 MTD_DEVICE_ATTR_RO(bbt_blocks); 340 341 static struct attribute *mtd_attrs[] = { 342 &dev_attr_type.attr, 343 &dev_attr_flags.attr, 344 &dev_attr_size.attr, 345 &dev_attr_erasesize.attr, 346 &dev_attr_writesize.attr, 347 &dev_attr_subpagesize.attr, 348 &dev_attr_oobsize.attr, 349 &dev_attr_oobavail.attr, 350 &dev_attr_numeraseregions.attr, 351 &dev_attr_name.attr, 352 &dev_attr_ecc_strength.attr, 353 &dev_attr_ecc_step_size.attr, 354 &dev_attr_corrected_bits.attr, 355 &dev_attr_ecc_failures.attr, 356 &dev_attr_bad_blocks.attr, 357 &dev_attr_bbt_blocks.attr, 358 &dev_attr_bitflip_threshold.attr, 359 NULL, 360 }; 361 ATTRIBUTE_GROUPS(mtd); 362 363 static const struct device_type mtd_devtype = { 364 .name = "mtd", 365 .groups = mtd_groups, 366 .release = mtd_release, 367 }; 368 369 static bool mtd_expert_analysis_mode; 370 371 #ifdef CONFIG_DEBUG_FS 372 bool mtd_check_expert_analysis_mode(void) 373 { 374 const char *mtd_expert_analysis_warning = 375 "Bad block checks have been entirely disabled.\n" 376 "This is only reserved for post-mortem forensics and debug purposes.\n" 377 "Never enable this mode if you do not know what you are doing!\n"; 378 379 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning); 380 } 381 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode); 382 #endif 383 384 static struct dentry *dfs_dir_mtd; 385 386 static void mtd_debugfs_populate(struct mtd_info *mtd) 387 { 388 struct device *dev = &mtd->dev; 389 390 if (IS_ERR_OR_NULL(dfs_dir_mtd)) 391 return; 392 393 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd); 394 } 395 396 #ifndef CONFIG_MMU 397 unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 398 { 399 switch (mtd->type) { 400 case MTD_RAM: 401 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 402 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 403 case MTD_ROM: 404 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 405 NOMMU_MAP_READ; 406 default: 407 return NOMMU_MAP_COPY; 408 } 409 } 410 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 411 #endif 412 413 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 414 void *cmd) 415 { 416 struct mtd_info *mtd; 417 418 mtd = container_of(n, struct mtd_info, reboot_notifier); 419 mtd->_reboot(mtd); 420 421 return NOTIFY_DONE; 422 } 423 424 /** 425 * mtd_wunit_to_pairing_info - get pairing information of a wunit 426 * @mtd: pointer to new MTD device info structure 427 * @wunit: write unit we are interested in 428 * @info: returned pairing information 429 * 430 * Retrieve pairing information associated to the wunit. 431 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be 432 * paired together, and where programming a page may influence the page it is 433 * paired with. 434 * The notion of page is replaced by the term wunit (write-unit) to stay 435 * consistent with the ->writesize field. 436 * 437 * The @wunit argument can be extracted from an absolute offset using 438 * mtd_offset_to_wunit(). @info is filled with the pairing information attached 439 * to @wunit. 440 * 441 * From the pairing info the MTD user can find all the wunits paired with 442 * @wunit using the following loop: 443 * 444 * for (i = 0; i < mtd_pairing_groups(mtd); i++) { 445 * info.pair = i; 446 * mtd_pairing_info_to_wunit(mtd, &info); 447 * ... 448 * } 449 */ 450 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 451 struct mtd_pairing_info *info) 452 { 453 struct mtd_info *master = mtd_get_master(mtd); 454 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master); 455 456 if (wunit < 0 || wunit >= npairs) 457 return -EINVAL; 458 459 if (master->pairing && master->pairing->get_info) 460 return master->pairing->get_info(master, wunit, info); 461 462 info->group = 0; 463 info->pair = wunit; 464 465 return 0; 466 } 467 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); 468 469 /** 470 * mtd_pairing_info_to_wunit - get wunit from pairing information 471 * @mtd: pointer to new MTD device info structure 472 * @info: pairing information struct 473 * 474 * Returns a positive number representing the wunit associated to the info 475 * struct, or a negative error code. 476 * 477 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to 478 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info() 479 * doc). 480 * 481 * It can also be used to only program the first page of each pair (i.e. 482 * page attached to group 0), which allows one to use an MLC NAND in 483 * software-emulated SLC mode: 484 * 485 * info.group = 0; 486 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd); 487 * for (info.pair = 0; info.pair < npairs; info.pair++) { 488 * wunit = mtd_pairing_info_to_wunit(mtd, &info); 489 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit), 490 * mtd->writesize, &retlen, buf + (i * mtd->writesize)); 491 * } 492 */ 493 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 494 const struct mtd_pairing_info *info) 495 { 496 struct mtd_info *master = mtd_get_master(mtd); 497 int ngroups = mtd_pairing_groups(master); 498 int npairs = mtd_wunit_per_eb(master) / ngroups; 499 500 if (!info || info->pair < 0 || info->pair >= npairs || 501 info->group < 0 || info->group >= ngroups) 502 return -EINVAL; 503 504 if (master->pairing && master->pairing->get_wunit) 505 return mtd->pairing->get_wunit(master, info); 506 507 return info->pair; 508 } 509 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit); 510 511 /** 512 * mtd_pairing_groups - get the number of pairing groups 513 * @mtd: pointer to new MTD device info structure 514 * 515 * Returns the number of pairing groups. 516 * 517 * This number is usually equal to the number of bits exposed by a single 518 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit() 519 * to iterate over all pages of a given pair. 520 */ 521 int mtd_pairing_groups(struct mtd_info *mtd) 522 { 523 struct mtd_info *master = mtd_get_master(mtd); 524 525 if (!master->pairing || !master->pairing->ngroups) 526 return 1; 527 528 return master->pairing->ngroups; 529 } 530 EXPORT_SYMBOL_GPL(mtd_pairing_groups); 531 532 static int mtd_nvmem_reg_read(void *priv, unsigned int offset, 533 void *val, size_t bytes) 534 { 535 struct mtd_info *mtd = priv; 536 size_t retlen; 537 int err; 538 539 err = mtd_read(mtd, offset, bytes, &retlen, val); 540 if (err && err != -EUCLEAN) 541 return err; 542 543 return retlen == bytes ? 0 : -EIO; 544 } 545 546 static int mtd_nvmem_add(struct mtd_info *mtd) 547 { 548 struct device_node *node = mtd_get_of_node(mtd); 549 struct nvmem_config config = {}; 550 551 config.id = NVMEM_DEVID_NONE; 552 config.dev = &mtd->dev; 553 config.name = dev_name(&mtd->dev); 554 config.owner = THIS_MODULE; 555 config.reg_read = mtd_nvmem_reg_read; 556 config.size = mtd->size; 557 config.word_size = 1; 558 config.stride = 1; 559 config.read_only = true; 560 config.root_only = true; 561 config.ignore_wp = true; 562 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells"); 563 config.priv = mtd; 564 565 mtd->nvmem = nvmem_register(&config); 566 if (IS_ERR(mtd->nvmem)) { 567 /* Just ignore if there is no NVMEM support in the kernel */ 568 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) 569 mtd->nvmem = NULL; 570 else 571 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem), 572 "Failed to register NVMEM device\n"); 573 } 574 575 return 0; 576 } 577 578 static void mtd_check_of_node(struct mtd_info *mtd) 579 { 580 struct device_node *partitions, *parent_dn, *mtd_dn = NULL; 581 const char *pname, *prefix = "partition-"; 582 int plen, mtd_name_len, offset, prefix_len; 583 584 /* Check if MTD already has a device node */ 585 if (mtd_get_of_node(mtd)) 586 return; 587 588 if (!mtd_is_partition(mtd)) 589 return; 590 591 parent_dn = of_node_get(mtd_get_of_node(mtd->parent)); 592 if (!parent_dn) 593 return; 594 595 if (mtd_is_partition(mtd->parent)) 596 partitions = of_node_get(parent_dn); 597 else 598 partitions = of_get_child_by_name(parent_dn, "partitions"); 599 if (!partitions) 600 goto exit_parent; 601 602 prefix_len = strlen(prefix); 603 mtd_name_len = strlen(mtd->name); 604 605 /* Search if a partition is defined with the same name */ 606 for_each_child_of_node(partitions, mtd_dn) { 607 /* Skip partition with no/wrong prefix */ 608 if (!of_node_name_prefix(mtd_dn, prefix)) 609 continue; 610 611 /* Label have priority. Check that first */ 612 if (!of_property_read_string(mtd_dn, "label", &pname)) { 613 offset = 0; 614 } else { 615 pname = mtd_dn->name; 616 offset = prefix_len; 617 } 618 619 plen = strlen(pname) - offset; 620 if (plen == mtd_name_len && 621 !strncmp(mtd->name, pname + offset, plen)) { 622 mtd_set_of_node(mtd, mtd_dn); 623 break; 624 } 625 } 626 627 of_node_put(partitions); 628 exit_parent: 629 of_node_put(parent_dn); 630 } 631 632 /** 633 * add_mtd_device - register an MTD device 634 * @mtd: pointer to new MTD device info structure 635 * 636 * Add a device to the list of MTD devices present in the system, and 637 * notify each currently active MTD 'user' of its arrival. Returns 638 * zero on success or non-zero on failure. 639 */ 640 641 int add_mtd_device(struct mtd_info *mtd) 642 { 643 struct device_node *np = mtd_get_of_node(mtd); 644 struct mtd_info *master = mtd_get_master(mtd); 645 struct mtd_notifier *not; 646 int i, error, ofidx; 647 648 /* 649 * May occur, for instance, on buggy drivers which call 650 * mtd_device_parse_register() multiple times on the same master MTD, 651 * especially with CONFIG_MTD_PARTITIONED_MASTER=y. 652 */ 653 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n")) 654 return -EEXIST; 655 656 BUG_ON(mtd->writesize == 0); 657 658 /* 659 * MTD drivers should implement ->_{write,read}() or 660 * ->_{write,read}_oob(), but not both. 661 */ 662 if (WARN_ON((mtd->_write && mtd->_write_oob) || 663 (mtd->_read && mtd->_read_oob))) 664 return -EINVAL; 665 666 if (WARN_ON((!mtd->erasesize || !master->_erase) && 667 !(mtd->flags & MTD_NO_ERASE))) 668 return -EINVAL; 669 670 /* 671 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the 672 * master is an MLC NAND and has a proper pairing scheme defined. 673 * We also reject masters that implement ->_writev() for now, because 674 * NAND controller drivers don't implement this hook, and adding the 675 * SLC -> MLC address/length conversion to this path is useless if we 676 * don't have a user. 677 */ 678 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION && 679 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH || 680 !master->pairing || master->_writev)) 681 return -EINVAL; 682 683 mutex_lock(&mtd_table_mutex); 684 685 ofidx = -1; 686 if (np) 687 ofidx = of_alias_get_id(np, "mtd"); 688 if (ofidx >= 0) 689 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL); 690 else 691 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 692 if (i < 0) { 693 error = i; 694 goto fail_locked; 695 } 696 697 mtd->index = i; 698 kref_init(&mtd->refcnt); 699 700 /* default value if not set by driver */ 701 if (mtd->bitflip_threshold == 0) 702 mtd->bitflip_threshold = mtd->ecc_strength; 703 704 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 705 int ngroups = mtd_pairing_groups(master); 706 707 mtd->erasesize /= ngroups; 708 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) * 709 mtd->erasesize; 710 } 711 712 if (is_power_of_2(mtd->erasesize)) 713 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 714 else 715 mtd->erasesize_shift = 0; 716 717 if (is_power_of_2(mtd->writesize)) 718 mtd->writesize_shift = ffs(mtd->writesize) - 1; 719 else 720 mtd->writesize_shift = 0; 721 722 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 723 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 724 725 /* Some chips always power up locked. Unlock them now */ 726 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 727 error = mtd_unlock(mtd, 0, mtd->size); 728 if (error && error != -EOPNOTSUPP) 729 printk(KERN_WARNING 730 "%s: unlock failed, writes may not work\n", 731 mtd->name); 732 /* Ignore unlock failures? */ 733 error = 0; 734 } 735 736 /* Caller should have set dev.parent to match the 737 * physical device, if appropriate. 738 */ 739 mtd->dev.type = &mtd_devtype; 740 mtd->dev.class = &mtd_class; 741 mtd->dev.devt = MTD_DEVT(i); 742 dev_set_name(&mtd->dev, "mtd%d", i); 743 dev_set_drvdata(&mtd->dev, mtd); 744 mtd_check_of_node(mtd); 745 of_node_get(mtd_get_of_node(mtd)); 746 error = device_register(&mtd->dev); 747 if (error) { 748 put_device(&mtd->dev); 749 goto fail_added; 750 } 751 752 /* Add the nvmem provider */ 753 error = mtd_nvmem_add(mtd); 754 if (error) 755 goto fail_nvmem_add; 756 757 mtd_debugfs_populate(mtd); 758 759 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 760 "mtd%dro", i); 761 762 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 763 /* No need to get a refcount on the module containing 764 the notifier, since we hold the mtd_table_mutex */ 765 list_for_each_entry(not, &mtd_notifiers, list) 766 not->add(mtd); 767 768 mutex_unlock(&mtd_table_mutex); 769 770 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) { 771 if (IS_BUILTIN(CONFIG_MTD)) { 772 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name); 773 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index); 774 } else { 775 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n", 776 mtd->index, mtd->name); 777 } 778 } 779 780 /* We _know_ we aren't being removed, because 781 our caller is still holding us here. So none 782 of this try_ nonsense, and no bitching about it 783 either. :) */ 784 __module_get(THIS_MODULE); 785 return 0; 786 787 fail_nvmem_add: 788 device_unregister(&mtd->dev); 789 fail_added: 790 of_node_put(mtd_get_of_node(mtd)); 791 idr_remove(&mtd_idr, i); 792 fail_locked: 793 mutex_unlock(&mtd_table_mutex); 794 return error; 795 } 796 797 /** 798 * del_mtd_device - unregister an MTD device 799 * @mtd: pointer to MTD device info structure 800 * 801 * Remove a device from the list of MTD devices present in the system, 802 * and notify each currently active MTD 'user' of its departure. 803 * Returns zero on success or 1 on failure, which currently will happen 804 * if the requested device does not appear to be present in the list. 805 */ 806 807 int del_mtd_device(struct mtd_info *mtd) 808 { 809 int ret; 810 struct mtd_notifier *not; 811 812 mutex_lock(&mtd_table_mutex); 813 814 if (idr_find(&mtd_idr, mtd->index) != mtd) { 815 ret = -ENODEV; 816 goto out_error; 817 } 818 819 /* No need to get a refcount on the module containing 820 the notifier, since we hold the mtd_table_mutex */ 821 list_for_each_entry(not, &mtd_notifiers, list) 822 not->remove(mtd); 823 824 kref_put(&mtd->refcnt, mtd_device_release); 825 ret = 0; 826 827 out_error: 828 mutex_unlock(&mtd_table_mutex); 829 return ret; 830 } 831 832 /* 833 * Set a few defaults based on the parent devices, if not provided by the 834 * driver 835 */ 836 static void mtd_set_dev_defaults(struct mtd_info *mtd) 837 { 838 if (mtd->dev.parent) { 839 if (!mtd->owner && mtd->dev.parent->driver) 840 mtd->owner = mtd->dev.parent->driver->owner; 841 if (!mtd->name) 842 mtd->name = dev_name(mtd->dev.parent); 843 } else { 844 pr_debug("mtd device won't show a device symlink in sysfs\n"); 845 } 846 847 INIT_LIST_HEAD(&mtd->partitions); 848 mutex_init(&mtd->master.partitions_lock); 849 mutex_init(&mtd->master.chrdev_lock); 850 } 851 852 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user) 853 { 854 struct otp_info *info; 855 ssize_t size = 0; 856 unsigned int i; 857 size_t retlen; 858 int ret; 859 860 info = kmalloc(PAGE_SIZE, GFP_KERNEL); 861 if (!info) 862 return -ENOMEM; 863 864 if (is_user) 865 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info); 866 else 867 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info); 868 if (ret) 869 goto err; 870 871 for (i = 0; i < retlen / sizeof(*info); i++) 872 size += info[i].length; 873 874 kfree(info); 875 return size; 876 877 err: 878 kfree(info); 879 880 /* ENODATA means there is no OTP region. */ 881 return ret == -ENODATA ? 0 : ret; 882 } 883 884 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd, 885 const char *compatible, 886 int size, 887 nvmem_reg_read_t reg_read) 888 { 889 struct nvmem_device *nvmem = NULL; 890 struct nvmem_config config = {}; 891 struct device_node *np; 892 893 /* DT binding is optional */ 894 np = of_get_compatible_child(mtd->dev.of_node, compatible); 895 896 /* OTP nvmem will be registered on the physical device */ 897 config.dev = mtd->dev.parent; 898 config.name = compatible; 899 config.id = NVMEM_DEVID_AUTO; 900 config.owner = THIS_MODULE; 901 config.type = NVMEM_TYPE_OTP; 902 config.root_only = true; 903 config.ignore_wp = true; 904 config.reg_read = reg_read; 905 config.size = size; 906 config.of_node = np; 907 config.priv = mtd; 908 909 nvmem = nvmem_register(&config); 910 /* Just ignore if there is no NVMEM support in the kernel */ 911 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP) 912 nvmem = NULL; 913 914 of_node_put(np); 915 916 return nvmem; 917 } 918 919 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset, 920 void *val, size_t bytes) 921 { 922 struct mtd_info *mtd = priv; 923 size_t retlen; 924 int ret; 925 926 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val); 927 if (ret) 928 return ret; 929 930 return retlen == bytes ? 0 : -EIO; 931 } 932 933 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset, 934 void *val, size_t bytes) 935 { 936 struct mtd_info *mtd = priv; 937 size_t retlen; 938 int ret; 939 940 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val); 941 if (ret) 942 return ret; 943 944 return retlen == bytes ? 0 : -EIO; 945 } 946 947 static int mtd_otp_nvmem_add(struct mtd_info *mtd) 948 { 949 struct device *dev = mtd->dev.parent; 950 struct nvmem_device *nvmem; 951 ssize_t size; 952 int err; 953 954 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) { 955 size = mtd_otp_size(mtd, true); 956 if (size < 0) 957 return size; 958 959 if (size > 0) { 960 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size, 961 mtd_nvmem_user_otp_reg_read); 962 if (IS_ERR(nvmem)) { 963 err = PTR_ERR(nvmem); 964 goto err; 965 } 966 mtd->otp_user_nvmem = nvmem; 967 } 968 } 969 970 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) { 971 size = mtd_otp_size(mtd, false); 972 if (size < 0) { 973 err = size; 974 goto err; 975 } 976 977 if (size > 0) { 978 /* 979 * The factory OTP contains thing such as a unique serial 980 * number and is small, so let's read it out and put it 981 * into the entropy pool. 982 */ 983 void *otp; 984 985 otp = kmalloc(size, GFP_KERNEL); 986 if (!otp) { 987 err = -ENOMEM; 988 goto err; 989 } 990 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size); 991 if (err < 0) { 992 kfree(otp); 993 goto err; 994 } 995 add_device_randomness(otp, err); 996 kfree(otp); 997 998 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size, 999 mtd_nvmem_fact_otp_reg_read); 1000 if (IS_ERR(nvmem)) { 1001 err = PTR_ERR(nvmem); 1002 goto err; 1003 } 1004 mtd->otp_factory_nvmem = nvmem; 1005 } 1006 } 1007 1008 return 0; 1009 1010 err: 1011 nvmem_unregister(mtd->otp_user_nvmem); 1012 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n"); 1013 } 1014 1015 /** 1016 * mtd_device_parse_register - parse partitions and register an MTD device. 1017 * 1018 * @mtd: the MTD device to register 1019 * @types: the list of MTD partition probes to try, see 1020 * 'parse_mtd_partitions()' for more information 1021 * @parser_data: MTD partition parser-specific data 1022 * @parts: fallback partition information to register, if parsing fails; 1023 * only valid if %nr_parts > %0 1024 * @nr_parts: the number of partitions in parts, if zero then the full 1025 * MTD device is registered if no partition info is found 1026 * 1027 * This function aggregates MTD partitions parsing (done by 1028 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 1029 * basically follows the most common pattern found in many MTD drivers: 1030 * 1031 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is 1032 * registered first. 1033 * * Then It tries to probe partitions on MTD device @mtd using parsers 1034 * specified in @types (if @types is %NULL, then the default list of parsers 1035 * is used, see 'parse_mtd_partitions()' for more information). If none are 1036 * found this functions tries to fallback to information specified in 1037 * @parts/@nr_parts. 1038 * * If no partitions were found this function just registers the MTD device 1039 * @mtd and exits. 1040 * 1041 * Returns zero in case of success and a negative error code in case of failure. 1042 */ 1043 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 1044 struct mtd_part_parser_data *parser_data, 1045 const struct mtd_partition *parts, 1046 int nr_parts) 1047 { 1048 int ret; 1049 1050 mtd_set_dev_defaults(mtd); 1051 1052 ret = mtd_otp_nvmem_add(mtd); 1053 if (ret) 1054 goto out; 1055 1056 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 1057 ret = add_mtd_device(mtd); 1058 if (ret) 1059 goto out; 1060 } 1061 1062 /* Prefer parsed partitions over driver-provided fallback */ 1063 ret = parse_mtd_partitions(mtd, types, parser_data); 1064 if (ret == -EPROBE_DEFER) 1065 goto out; 1066 1067 if (ret > 0) 1068 ret = 0; 1069 else if (nr_parts) 1070 ret = add_mtd_partitions(mtd, parts, nr_parts); 1071 else if (!device_is_registered(&mtd->dev)) 1072 ret = add_mtd_device(mtd); 1073 else 1074 ret = 0; 1075 1076 if (ret) 1077 goto out; 1078 1079 /* 1080 * FIXME: some drivers unfortunately call this function more than once. 1081 * So we have to check if we've already assigned the reboot notifier. 1082 * 1083 * Generally, we can make multiple calls work for most cases, but it 1084 * does cause problems with parse_mtd_partitions() above (e.g., 1085 * cmdlineparts will register partitions more than once). 1086 */ 1087 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call, 1088 "MTD already registered\n"); 1089 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 1090 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 1091 register_reboot_notifier(&mtd->reboot_notifier); 1092 } 1093 1094 out: 1095 if (ret) { 1096 nvmem_unregister(mtd->otp_user_nvmem); 1097 nvmem_unregister(mtd->otp_factory_nvmem); 1098 } 1099 1100 if (ret && device_is_registered(&mtd->dev)) 1101 del_mtd_device(mtd); 1102 1103 return ret; 1104 } 1105 EXPORT_SYMBOL_GPL(mtd_device_parse_register); 1106 1107 /** 1108 * mtd_device_unregister - unregister an existing MTD device. 1109 * 1110 * @master: the MTD device to unregister. This will unregister both the master 1111 * and any partitions if registered. 1112 */ 1113 int mtd_device_unregister(struct mtd_info *master) 1114 { 1115 int err; 1116 1117 if (master->_reboot) { 1118 unregister_reboot_notifier(&master->reboot_notifier); 1119 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier)); 1120 } 1121 1122 nvmem_unregister(master->otp_user_nvmem); 1123 nvmem_unregister(master->otp_factory_nvmem); 1124 1125 err = del_mtd_partitions(master); 1126 if (err) 1127 return err; 1128 1129 if (!device_is_registered(&master->dev)) 1130 return 0; 1131 1132 return del_mtd_device(master); 1133 } 1134 EXPORT_SYMBOL_GPL(mtd_device_unregister); 1135 1136 /** 1137 * register_mtd_user - register a 'user' of MTD devices. 1138 * @new: pointer to notifier info structure 1139 * 1140 * Registers a pair of callbacks function to be called upon addition 1141 * or removal of MTD devices. Causes the 'add' callback to be immediately 1142 * invoked for each MTD device currently present in the system. 1143 */ 1144 void register_mtd_user (struct mtd_notifier *new) 1145 { 1146 struct mtd_info *mtd; 1147 1148 mutex_lock(&mtd_table_mutex); 1149 1150 list_add(&new->list, &mtd_notifiers); 1151 1152 __module_get(THIS_MODULE); 1153 1154 mtd_for_each_device(mtd) 1155 new->add(mtd); 1156 1157 mutex_unlock(&mtd_table_mutex); 1158 } 1159 EXPORT_SYMBOL_GPL(register_mtd_user); 1160 1161 /** 1162 * unregister_mtd_user - unregister a 'user' of MTD devices. 1163 * @old: pointer to notifier info structure 1164 * 1165 * Removes a callback function pair from the list of 'users' to be 1166 * notified upon addition or removal of MTD devices. Causes the 1167 * 'remove' callback to be immediately invoked for each MTD device 1168 * currently present in the system. 1169 */ 1170 int unregister_mtd_user (struct mtd_notifier *old) 1171 { 1172 struct mtd_info *mtd; 1173 1174 mutex_lock(&mtd_table_mutex); 1175 1176 module_put(THIS_MODULE); 1177 1178 mtd_for_each_device(mtd) 1179 old->remove(mtd); 1180 1181 list_del(&old->list); 1182 mutex_unlock(&mtd_table_mutex); 1183 return 0; 1184 } 1185 EXPORT_SYMBOL_GPL(unregister_mtd_user); 1186 1187 /** 1188 * get_mtd_device - obtain a validated handle for an MTD device 1189 * @mtd: last known address of the required MTD device 1190 * @num: internal device number of the required MTD device 1191 * 1192 * Given a number and NULL address, return the num'th entry in the device 1193 * table, if any. Given an address and num == -1, search the device table 1194 * for a device with that address and return if it's still present. Given 1195 * both, return the num'th driver only if its address matches. Return 1196 * error code if not. 1197 */ 1198 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 1199 { 1200 struct mtd_info *ret = NULL, *other; 1201 int err = -ENODEV; 1202 1203 mutex_lock(&mtd_table_mutex); 1204 1205 if (num == -1) { 1206 mtd_for_each_device(other) { 1207 if (other == mtd) { 1208 ret = mtd; 1209 break; 1210 } 1211 } 1212 } else if (num >= 0) { 1213 ret = idr_find(&mtd_idr, num); 1214 if (mtd && mtd != ret) 1215 ret = NULL; 1216 } 1217 1218 if (!ret) { 1219 ret = ERR_PTR(err); 1220 goto out; 1221 } 1222 1223 err = __get_mtd_device(ret); 1224 if (err) 1225 ret = ERR_PTR(err); 1226 out: 1227 mutex_unlock(&mtd_table_mutex); 1228 return ret; 1229 } 1230 EXPORT_SYMBOL_GPL(get_mtd_device); 1231 1232 1233 int __get_mtd_device(struct mtd_info *mtd) 1234 { 1235 struct mtd_info *master = mtd_get_master(mtd); 1236 int err; 1237 1238 if (master->_get_device) { 1239 err = master->_get_device(mtd); 1240 if (err) 1241 return err; 1242 } 1243 1244 if (!try_module_get(master->owner)) { 1245 if (master->_put_device) 1246 master->_put_device(master); 1247 return -ENODEV; 1248 } 1249 1250 while (mtd) { 1251 if (mtd != master) 1252 kref_get(&mtd->refcnt); 1253 mtd = mtd->parent; 1254 } 1255 1256 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1257 kref_get(&master->refcnt); 1258 1259 return 0; 1260 } 1261 EXPORT_SYMBOL_GPL(__get_mtd_device); 1262 1263 /** 1264 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node 1265 * 1266 * @np: device tree node 1267 */ 1268 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np) 1269 { 1270 struct mtd_info *mtd = NULL; 1271 struct mtd_info *tmp; 1272 int err; 1273 1274 mutex_lock(&mtd_table_mutex); 1275 1276 err = -EPROBE_DEFER; 1277 mtd_for_each_device(tmp) { 1278 if (mtd_get_of_node(tmp) == np) { 1279 mtd = tmp; 1280 err = __get_mtd_device(mtd); 1281 break; 1282 } 1283 } 1284 1285 mutex_unlock(&mtd_table_mutex); 1286 1287 return err ? ERR_PTR(err) : mtd; 1288 } 1289 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node); 1290 1291 /** 1292 * get_mtd_device_nm - obtain a validated handle for an MTD device by 1293 * device name 1294 * @name: MTD device name to open 1295 * 1296 * This function returns MTD device description structure in case of 1297 * success and an error code in case of failure. 1298 */ 1299 struct mtd_info *get_mtd_device_nm(const char *name) 1300 { 1301 int err = -ENODEV; 1302 struct mtd_info *mtd = NULL, *other; 1303 1304 mutex_lock(&mtd_table_mutex); 1305 1306 mtd_for_each_device(other) { 1307 if (!strcmp(name, other->name)) { 1308 mtd = other; 1309 break; 1310 } 1311 } 1312 1313 if (!mtd) 1314 goto out_unlock; 1315 1316 err = __get_mtd_device(mtd); 1317 if (err) 1318 goto out_unlock; 1319 1320 mutex_unlock(&mtd_table_mutex); 1321 return mtd; 1322 1323 out_unlock: 1324 mutex_unlock(&mtd_table_mutex); 1325 return ERR_PTR(err); 1326 } 1327 EXPORT_SYMBOL_GPL(get_mtd_device_nm); 1328 1329 void put_mtd_device(struct mtd_info *mtd) 1330 { 1331 mutex_lock(&mtd_table_mutex); 1332 __put_mtd_device(mtd); 1333 mutex_unlock(&mtd_table_mutex); 1334 1335 } 1336 EXPORT_SYMBOL_GPL(put_mtd_device); 1337 1338 void __put_mtd_device(struct mtd_info *mtd) 1339 { 1340 struct mtd_info *master = mtd_get_master(mtd); 1341 1342 while (mtd) { 1343 /* kref_put() can relese mtd, so keep a reference mtd->parent */ 1344 struct mtd_info *parent = mtd->parent; 1345 1346 if (mtd != master) 1347 kref_put(&mtd->refcnt, mtd_device_release); 1348 mtd = parent; 1349 } 1350 1351 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1352 kref_put(&master->refcnt, mtd_device_release); 1353 1354 module_put(master->owner); 1355 1356 /* must be the last as master can be freed in the _put_device */ 1357 if (master->_put_device) 1358 master->_put_device(master); 1359 } 1360 EXPORT_SYMBOL_GPL(__put_mtd_device); 1361 1362 /* 1363 * Erase is an synchronous operation. Device drivers are epected to return a 1364 * negative error code if the operation failed and update instr->fail_addr 1365 * to point the portion that was not properly erased. 1366 */ 1367 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 1368 { 1369 struct mtd_info *master = mtd_get_master(mtd); 1370 u64 mst_ofs = mtd_get_master_ofs(mtd, 0); 1371 struct erase_info adjinstr; 1372 int ret; 1373 1374 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 1375 adjinstr = *instr; 1376 1377 if (!mtd->erasesize || !master->_erase) 1378 return -ENOTSUPP; 1379 1380 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 1381 return -EINVAL; 1382 if (!(mtd->flags & MTD_WRITEABLE)) 1383 return -EROFS; 1384 1385 if (!instr->len) 1386 return 0; 1387 1388 ledtrig_mtd_activity(); 1389 1390 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1391 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) * 1392 master->erasesize; 1393 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) * 1394 master->erasesize) - 1395 adjinstr.addr; 1396 } 1397 1398 adjinstr.addr += mst_ofs; 1399 1400 ret = master->_erase(master, &adjinstr); 1401 1402 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) { 1403 instr->fail_addr = adjinstr.fail_addr - mst_ofs; 1404 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 1405 instr->fail_addr = mtd_div_by_eb(instr->fail_addr, 1406 master); 1407 instr->fail_addr *= mtd->erasesize; 1408 } 1409 } 1410 1411 return ret; 1412 } 1413 EXPORT_SYMBOL_GPL(mtd_erase); 1414 1415 /* 1416 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 1417 */ 1418 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1419 void **virt, resource_size_t *phys) 1420 { 1421 struct mtd_info *master = mtd_get_master(mtd); 1422 1423 *retlen = 0; 1424 *virt = NULL; 1425 if (phys) 1426 *phys = 0; 1427 if (!master->_point) 1428 return -EOPNOTSUPP; 1429 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1430 return -EINVAL; 1431 if (!len) 1432 return 0; 1433 1434 from = mtd_get_master_ofs(mtd, from); 1435 return master->_point(master, from, len, retlen, virt, phys); 1436 } 1437 EXPORT_SYMBOL_GPL(mtd_point); 1438 1439 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 1440 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 1441 { 1442 struct mtd_info *master = mtd_get_master(mtd); 1443 1444 if (!master->_unpoint) 1445 return -EOPNOTSUPP; 1446 if (from < 0 || from >= mtd->size || len > mtd->size - from) 1447 return -EINVAL; 1448 if (!len) 1449 return 0; 1450 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len); 1451 } 1452 EXPORT_SYMBOL_GPL(mtd_unpoint); 1453 1454 /* 1455 * Allow NOMMU mmap() to directly map the device (if not NULL) 1456 * - return the address to which the offset maps 1457 * - return -ENOSYS to indicate refusal to do the mapping 1458 */ 1459 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 1460 unsigned long offset, unsigned long flags) 1461 { 1462 size_t retlen; 1463 void *virt; 1464 int ret; 1465 1466 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL); 1467 if (ret) 1468 return ret; 1469 if (retlen != len) { 1470 mtd_unpoint(mtd, offset, retlen); 1471 return -ENOSYS; 1472 } 1473 return (unsigned long)virt; 1474 } 1475 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 1476 1477 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master, 1478 const struct mtd_ecc_stats *old_stats) 1479 { 1480 struct mtd_ecc_stats diff; 1481 1482 if (master == mtd) 1483 return; 1484 1485 diff = master->ecc_stats; 1486 diff.failed -= old_stats->failed; 1487 diff.corrected -= old_stats->corrected; 1488 1489 while (mtd->parent) { 1490 mtd->ecc_stats.failed += diff.failed; 1491 mtd->ecc_stats.corrected += diff.corrected; 1492 mtd = mtd->parent; 1493 } 1494 } 1495 1496 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 1497 u_char *buf) 1498 { 1499 struct mtd_oob_ops ops = { 1500 .len = len, 1501 .datbuf = buf, 1502 }; 1503 int ret; 1504 1505 ret = mtd_read_oob(mtd, from, &ops); 1506 *retlen = ops.retlen; 1507 1508 return ret; 1509 } 1510 EXPORT_SYMBOL_GPL(mtd_read); 1511 1512 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1513 const u_char *buf) 1514 { 1515 struct mtd_oob_ops ops = { 1516 .len = len, 1517 .datbuf = (u8 *)buf, 1518 }; 1519 int ret; 1520 1521 ret = mtd_write_oob(mtd, to, &ops); 1522 *retlen = ops.retlen; 1523 1524 return ret; 1525 } 1526 EXPORT_SYMBOL_GPL(mtd_write); 1527 1528 /* 1529 * In blackbox flight recorder like scenarios we want to make successful writes 1530 * in interrupt context. panic_write() is only intended to be called when its 1531 * known the kernel is about to panic and we need the write to succeed. Since 1532 * the kernel is not going to be running for much longer, this function can 1533 * break locks and delay to ensure the write succeeds (but not sleep). 1534 */ 1535 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 1536 const u_char *buf) 1537 { 1538 struct mtd_info *master = mtd_get_master(mtd); 1539 1540 *retlen = 0; 1541 if (!master->_panic_write) 1542 return -EOPNOTSUPP; 1543 if (to < 0 || to >= mtd->size || len > mtd->size - to) 1544 return -EINVAL; 1545 if (!(mtd->flags & MTD_WRITEABLE)) 1546 return -EROFS; 1547 if (!len) 1548 return 0; 1549 if (!master->oops_panic_write) 1550 master->oops_panic_write = true; 1551 1552 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len, 1553 retlen, buf); 1554 } 1555 EXPORT_SYMBOL_GPL(mtd_panic_write); 1556 1557 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs, 1558 struct mtd_oob_ops *ops) 1559 { 1560 /* 1561 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving 1562 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in 1563 * this case. 1564 */ 1565 if (!ops->datbuf) 1566 ops->len = 0; 1567 1568 if (!ops->oobbuf) 1569 ops->ooblen = 0; 1570 1571 if (offs < 0 || offs + ops->len > mtd->size) 1572 return -EINVAL; 1573 1574 if (ops->ooblen) { 1575 size_t maxooblen; 1576 1577 if (ops->ooboffs >= mtd_oobavail(mtd, ops)) 1578 return -EINVAL; 1579 1580 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) - 1581 mtd_div_by_ws(offs, mtd)) * 1582 mtd_oobavail(mtd, ops)) - ops->ooboffs; 1583 if (ops->ooblen > maxooblen) 1584 return -EINVAL; 1585 } 1586 1587 return 0; 1588 } 1589 1590 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from, 1591 struct mtd_oob_ops *ops) 1592 { 1593 struct mtd_info *master = mtd_get_master(mtd); 1594 int ret; 1595 1596 from = mtd_get_master_ofs(mtd, from); 1597 if (master->_read_oob) 1598 ret = master->_read_oob(master, from, ops); 1599 else 1600 ret = master->_read(master, from, ops->len, &ops->retlen, 1601 ops->datbuf); 1602 1603 return ret; 1604 } 1605 1606 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to, 1607 struct mtd_oob_ops *ops) 1608 { 1609 struct mtd_info *master = mtd_get_master(mtd); 1610 int ret; 1611 1612 to = mtd_get_master_ofs(mtd, to); 1613 if (master->_write_oob) 1614 ret = master->_write_oob(master, to, ops); 1615 else 1616 ret = master->_write(master, to, ops->len, &ops->retlen, 1617 ops->datbuf); 1618 1619 return ret; 1620 } 1621 1622 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read, 1623 struct mtd_oob_ops *ops) 1624 { 1625 struct mtd_info *master = mtd_get_master(mtd); 1626 int ngroups = mtd_pairing_groups(master); 1627 int npairs = mtd_wunit_per_eb(master) / ngroups; 1628 struct mtd_oob_ops adjops = *ops; 1629 unsigned int wunit, oobavail; 1630 struct mtd_pairing_info info; 1631 int max_bitflips = 0; 1632 u32 ebofs, pageofs; 1633 loff_t base, pos; 1634 1635 ebofs = mtd_mod_by_eb(start, mtd); 1636 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize; 1637 info.group = 0; 1638 info.pair = mtd_div_by_ws(ebofs, mtd); 1639 pageofs = mtd_mod_by_ws(ebofs, mtd); 1640 oobavail = mtd_oobavail(mtd, ops); 1641 1642 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) { 1643 int ret; 1644 1645 if (info.pair >= npairs) { 1646 info.pair = 0; 1647 base += master->erasesize; 1648 } 1649 1650 wunit = mtd_pairing_info_to_wunit(master, &info); 1651 pos = mtd_wunit_to_offset(mtd, base, wunit); 1652 1653 adjops.len = ops->len - ops->retlen; 1654 if (adjops.len > mtd->writesize - pageofs) 1655 adjops.len = mtd->writesize - pageofs; 1656 1657 adjops.ooblen = ops->ooblen - ops->oobretlen; 1658 if (adjops.ooblen > oobavail - adjops.ooboffs) 1659 adjops.ooblen = oobavail - adjops.ooboffs; 1660 1661 if (read) { 1662 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops); 1663 if (ret > 0) 1664 max_bitflips = max(max_bitflips, ret); 1665 } else { 1666 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops); 1667 } 1668 1669 if (ret < 0) 1670 return ret; 1671 1672 max_bitflips = max(max_bitflips, ret); 1673 ops->retlen += adjops.retlen; 1674 ops->oobretlen += adjops.oobretlen; 1675 adjops.datbuf += adjops.retlen; 1676 adjops.oobbuf += adjops.oobretlen; 1677 adjops.ooboffs = 0; 1678 pageofs = 0; 1679 info.pair++; 1680 } 1681 1682 return max_bitflips; 1683 } 1684 1685 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 1686 { 1687 struct mtd_info *master = mtd_get_master(mtd); 1688 struct mtd_ecc_stats old_stats = master->ecc_stats; 1689 int ret_code; 1690 1691 ops->retlen = ops->oobretlen = 0; 1692 1693 ret_code = mtd_check_oob_ops(mtd, from, ops); 1694 if (ret_code) 1695 return ret_code; 1696 1697 ledtrig_mtd_activity(); 1698 1699 /* Check the validity of a potential fallback on mtd->_read */ 1700 if (!master->_read_oob && (!master->_read || ops->oobbuf)) 1701 return -EOPNOTSUPP; 1702 1703 if (ops->stats) 1704 memset(ops->stats, 0, sizeof(*ops->stats)); 1705 1706 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1707 ret_code = mtd_io_emulated_slc(mtd, from, true, ops); 1708 else 1709 ret_code = mtd_read_oob_std(mtd, from, ops); 1710 1711 mtd_update_ecc_stats(mtd, master, &old_stats); 1712 1713 /* 1714 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 1715 * similar to mtd->_read(), returning a non-negative integer 1716 * representing max bitflips. In other cases, mtd->_read_oob() may 1717 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 1718 */ 1719 if (unlikely(ret_code < 0)) 1720 return ret_code; 1721 if (mtd->ecc_strength == 0) 1722 return 0; /* device lacks ecc */ 1723 if (ops->stats) 1724 ops->stats->max_bitflips = ret_code; 1725 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 1726 } 1727 EXPORT_SYMBOL_GPL(mtd_read_oob); 1728 1729 int mtd_write_oob(struct mtd_info *mtd, loff_t to, 1730 struct mtd_oob_ops *ops) 1731 { 1732 struct mtd_info *master = mtd_get_master(mtd); 1733 int ret; 1734 1735 ops->retlen = ops->oobretlen = 0; 1736 1737 if (!(mtd->flags & MTD_WRITEABLE)) 1738 return -EROFS; 1739 1740 ret = mtd_check_oob_ops(mtd, to, ops); 1741 if (ret) 1742 return ret; 1743 1744 ledtrig_mtd_activity(); 1745 1746 /* Check the validity of a potential fallback on mtd->_write */ 1747 if (!master->_write_oob && (!master->_write || ops->oobbuf)) 1748 return -EOPNOTSUPP; 1749 1750 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 1751 return mtd_io_emulated_slc(mtd, to, false, ops); 1752 1753 return mtd_write_oob_std(mtd, to, ops); 1754 } 1755 EXPORT_SYMBOL_GPL(mtd_write_oob); 1756 1757 /** 1758 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section 1759 * @mtd: MTD device structure 1760 * @section: ECC section. Depending on the layout you may have all the ECC 1761 * bytes stored in a single contiguous section, or one section 1762 * per ECC chunk (and sometime several sections for a single ECC 1763 * ECC chunk) 1764 * @oobecc: OOB region struct filled with the appropriate ECC position 1765 * information 1766 * 1767 * This function returns ECC section information in the OOB area. If you want 1768 * to get all the ECC bytes information, then you should call 1769 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE. 1770 * 1771 * Returns zero on success, a negative error code otherwise. 1772 */ 1773 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 1774 struct mtd_oob_region *oobecc) 1775 { 1776 struct mtd_info *master = mtd_get_master(mtd); 1777 1778 memset(oobecc, 0, sizeof(*oobecc)); 1779 1780 if (!master || section < 0) 1781 return -EINVAL; 1782 1783 if (!master->ooblayout || !master->ooblayout->ecc) 1784 return -ENOTSUPP; 1785 1786 return master->ooblayout->ecc(master, section, oobecc); 1787 } 1788 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc); 1789 1790 /** 1791 * mtd_ooblayout_free - Get the OOB region definition of a specific free 1792 * section 1793 * @mtd: MTD device structure 1794 * @section: Free section you are interested in. Depending on the layout 1795 * you may have all the free bytes stored in a single contiguous 1796 * section, or one section per ECC chunk plus an extra section 1797 * for the remaining bytes (or other funky layout). 1798 * @oobfree: OOB region struct filled with the appropriate free position 1799 * information 1800 * 1801 * This function returns free bytes position in the OOB area. If you want 1802 * to get all the free bytes information, then you should call 1803 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE. 1804 * 1805 * Returns zero on success, a negative error code otherwise. 1806 */ 1807 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 1808 struct mtd_oob_region *oobfree) 1809 { 1810 struct mtd_info *master = mtd_get_master(mtd); 1811 1812 memset(oobfree, 0, sizeof(*oobfree)); 1813 1814 if (!master || section < 0) 1815 return -EINVAL; 1816 1817 if (!master->ooblayout || !master->ooblayout->free) 1818 return -ENOTSUPP; 1819 1820 return master->ooblayout->free(master, section, oobfree); 1821 } 1822 EXPORT_SYMBOL_GPL(mtd_ooblayout_free); 1823 1824 /** 1825 * mtd_ooblayout_find_region - Find the region attached to a specific byte 1826 * @mtd: mtd info structure 1827 * @byte: the byte we are searching for 1828 * @sectionp: pointer where the section id will be stored 1829 * @oobregion: used to retrieve the ECC position 1830 * @iter: iterator function. Should be either mtd_ooblayout_free or 1831 * mtd_ooblayout_ecc depending on the region type you're searching for 1832 * 1833 * This function returns the section id and oobregion information of a 1834 * specific byte. For example, say you want to know where the 4th ECC byte is 1835 * stored, you'll use: 1836 * 1837 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc); 1838 * 1839 * Returns zero on success, a negative error code otherwise. 1840 */ 1841 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte, 1842 int *sectionp, struct mtd_oob_region *oobregion, 1843 int (*iter)(struct mtd_info *, 1844 int section, 1845 struct mtd_oob_region *oobregion)) 1846 { 1847 int pos = 0, ret, section = 0; 1848 1849 memset(oobregion, 0, sizeof(*oobregion)); 1850 1851 while (1) { 1852 ret = iter(mtd, section, oobregion); 1853 if (ret) 1854 return ret; 1855 1856 if (pos + oobregion->length > byte) 1857 break; 1858 1859 pos += oobregion->length; 1860 section++; 1861 } 1862 1863 /* 1864 * Adjust region info to make it start at the beginning at the 1865 * 'start' ECC byte. 1866 */ 1867 oobregion->offset += byte - pos; 1868 oobregion->length -= byte - pos; 1869 *sectionp = section; 1870 1871 return 0; 1872 } 1873 1874 /** 1875 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific 1876 * ECC byte 1877 * @mtd: mtd info structure 1878 * @eccbyte: the byte we are searching for 1879 * @section: pointer where the section id will be stored 1880 * @oobregion: OOB region information 1881 * 1882 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC 1883 * byte. 1884 * 1885 * Returns zero on success, a negative error code otherwise. 1886 */ 1887 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 1888 int *section, 1889 struct mtd_oob_region *oobregion) 1890 { 1891 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion, 1892 mtd_ooblayout_ecc); 1893 } 1894 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion); 1895 1896 /** 1897 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer 1898 * @mtd: mtd info structure 1899 * @buf: destination buffer to store OOB bytes 1900 * @oobbuf: OOB buffer 1901 * @start: first byte to retrieve 1902 * @nbytes: number of bytes to retrieve 1903 * @iter: section iterator 1904 * 1905 * Extract bytes attached to a specific category (ECC or free) 1906 * from the OOB buffer and copy them into buf. 1907 * 1908 * Returns zero on success, a negative error code otherwise. 1909 */ 1910 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf, 1911 const u8 *oobbuf, int start, int nbytes, 1912 int (*iter)(struct mtd_info *, 1913 int section, 1914 struct mtd_oob_region *oobregion)) 1915 { 1916 struct mtd_oob_region oobregion; 1917 int section, ret; 1918 1919 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1920 &oobregion, iter); 1921 1922 while (!ret) { 1923 int cnt; 1924 1925 cnt = min_t(int, nbytes, oobregion.length); 1926 memcpy(buf, oobbuf + oobregion.offset, cnt); 1927 buf += cnt; 1928 nbytes -= cnt; 1929 1930 if (!nbytes) 1931 break; 1932 1933 ret = iter(mtd, ++section, &oobregion); 1934 } 1935 1936 return ret; 1937 } 1938 1939 /** 1940 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer 1941 * @mtd: mtd info structure 1942 * @buf: source buffer to get OOB bytes from 1943 * @oobbuf: OOB buffer 1944 * @start: first OOB byte to set 1945 * @nbytes: number of OOB bytes to set 1946 * @iter: section iterator 1947 * 1948 * Fill the OOB buffer with data provided in buf. The category (ECC or free) 1949 * is selected by passing the appropriate iterator. 1950 * 1951 * Returns zero on success, a negative error code otherwise. 1952 */ 1953 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf, 1954 u8 *oobbuf, int start, int nbytes, 1955 int (*iter)(struct mtd_info *, 1956 int section, 1957 struct mtd_oob_region *oobregion)) 1958 { 1959 struct mtd_oob_region oobregion; 1960 int section, ret; 1961 1962 ret = mtd_ooblayout_find_region(mtd, start, §ion, 1963 &oobregion, iter); 1964 1965 while (!ret) { 1966 int cnt; 1967 1968 cnt = min_t(int, nbytes, oobregion.length); 1969 memcpy(oobbuf + oobregion.offset, buf, cnt); 1970 buf += cnt; 1971 nbytes -= cnt; 1972 1973 if (!nbytes) 1974 break; 1975 1976 ret = iter(mtd, ++section, &oobregion); 1977 } 1978 1979 return ret; 1980 } 1981 1982 /** 1983 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category 1984 * @mtd: mtd info structure 1985 * @iter: category iterator 1986 * 1987 * Count the number of bytes in a given category. 1988 * 1989 * Returns a positive value on success, a negative error code otherwise. 1990 */ 1991 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd, 1992 int (*iter)(struct mtd_info *, 1993 int section, 1994 struct mtd_oob_region *oobregion)) 1995 { 1996 struct mtd_oob_region oobregion; 1997 int section = 0, ret, nbytes = 0; 1998 1999 while (1) { 2000 ret = iter(mtd, section++, &oobregion); 2001 if (ret) { 2002 if (ret == -ERANGE) 2003 ret = nbytes; 2004 break; 2005 } 2006 2007 nbytes += oobregion.length; 2008 } 2009 2010 return ret; 2011 } 2012 2013 /** 2014 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer 2015 * @mtd: mtd info structure 2016 * @eccbuf: destination buffer to store ECC bytes 2017 * @oobbuf: OOB buffer 2018 * @start: first ECC byte to retrieve 2019 * @nbytes: number of ECC bytes to retrieve 2020 * 2021 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes. 2022 * 2023 * Returns zero on success, a negative error code otherwise. 2024 */ 2025 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 2026 const u8 *oobbuf, int start, int nbytes) 2027 { 2028 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2029 mtd_ooblayout_ecc); 2030 } 2031 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes); 2032 2033 /** 2034 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer 2035 * @mtd: mtd info structure 2036 * @eccbuf: source buffer to get ECC bytes from 2037 * @oobbuf: OOB buffer 2038 * @start: first ECC byte to set 2039 * @nbytes: number of ECC bytes to set 2040 * 2041 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes. 2042 * 2043 * Returns zero on success, a negative error code otherwise. 2044 */ 2045 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 2046 u8 *oobbuf, int start, int nbytes) 2047 { 2048 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes, 2049 mtd_ooblayout_ecc); 2050 } 2051 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes); 2052 2053 /** 2054 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer 2055 * @mtd: mtd info structure 2056 * @databuf: destination buffer to store ECC bytes 2057 * @oobbuf: OOB buffer 2058 * @start: first ECC byte to retrieve 2059 * @nbytes: number of ECC bytes to retrieve 2060 * 2061 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes. 2062 * 2063 * Returns zero on success, a negative error code otherwise. 2064 */ 2065 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 2066 const u8 *oobbuf, int start, int nbytes) 2067 { 2068 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes, 2069 mtd_ooblayout_free); 2070 } 2071 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); 2072 2073 /** 2074 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer 2075 * @mtd: mtd info structure 2076 * @databuf: source buffer to get data bytes from 2077 * @oobbuf: OOB buffer 2078 * @start: first ECC byte to set 2079 * @nbytes: number of ECC bytes to set 2080 * 2081 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes. 2082 * 2083 * Returns zero on success, a negative error code otherwise. 2084 */ 2085 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 2086 u8 *oobbuf, int start, int nbytes) 2087 { 2088 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes, 2089 mtd_ooblayout_free); 2090 } 2091 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes); 2092 2093 /** 2094 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB 2095 * @mtd: mtd info structure 2096 * 2097 * Works like mtd_ooblayout_count_bytes(), except it count free bytes. 2098 * 2099 * Returns zero on success, a negative error code otherwise. 2100 */ 2101 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) 2102 { 2103 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free); 2104 } 2105 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); 2106 2107 /** 2108 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB 2109 * @mtd: mtd info structure 2110 * 2111 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. 2112 * 2113 * Returns zero on success, a negative error code otherwise. 2114 */ 2115 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd) 2116 { 2117 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc); 2118 } 2119 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes); 2120 2121 /* 2122 * Method to access the protection register area, present in some flash 2123 * devices. The user data is one time programmable but the factory data is read 2124 * only. 2125 */ 2126 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2127 struct otp_info *buf) 2128 { 2129 struct mtd_info *master = mtd_get_master(mtd); 2130 2131 if (!master->_get_fact_prot_info) 2132 return -EOPNOTSUPP; 2133 if (!len) 2134 return 0; 2135 return master->_get_fact_prot_info(master, len, retlen, buf); 2136 } 2137 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 2138 2139 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2140 size_t *retlen, u_char *buf) 2141 { 2142 struct mtd_info *master = mtd_get_master(mtd); 2143 2144 *retlen = 0; 2145 if (!master->_read_fact_prot_reg) 2146 return -EOPNOTSUPP; 2147 if (!len) 2148 return 0; 2149 return master->_read_fact_prot_reg(master, from, len, retlen, buf); 2150 } 2151 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 2152 2153 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 2154 struct otp_info *buf) 2155 { 2156 struct mtd_info *master = mtd_get_master(mtd); 2157 2158 if (!master->_get_user_prot_info) 2159 return -EOPNOTSUPP; 2160 if (!len) 2161 return 0; 2162 return master->_get_user_prot_info(master, len, retlen, buf); 2163 } 2164 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 2165 2166 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 2167 size_t *retlen, u_char *buf) 2168 { 2169 struct mtd_info *master = mtd_get_master(mtd); 2170 2171 *retlen = 0; 2172 if (!master->_read_user_prot_reg) 2173 return -EOPNOTSUPP; 2174 if (!len) 2175 return 0; 2176 return master->_read_user_prot_reg(master, from, len, retlen, buf); 2177 } 2178 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 2179 2180 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 2181 size_t *retlen, const u_char *buf) 2182 { 2183 struct mtd_info *master = mtd_get_master(mtd); 2184 int ret; 2185 2186 *retlen = 0; 2187 if (!master->_write_user_prot_reg) 2188 return -EOPNOTSUPP; 2189 if (!len) 2190 return 0; 2191 ret = master->_write_user_prot_reg(master, to, len, retlen, buf); 2192 if (ret) 2193 return ret; 2194 2195 /* 2196 * If no data could be written at all, we are out of memory and 2197 * must return -ENOSPC. 2198 */ 2199 return (*retlen) ? 0 : -ENOSPC; 2200 } 2201 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 2202 2203 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2204 { 2205 struct mtd_info *master = mtd_get_master(mtd); 2206 2207 if (!master->_lock_user_prot_reg) 2208 return -EOPNOTSUPP; 2209 if (!len) 2210 return 0; 2211 return master->_lock_user_prot_reg(master, from, len); 2212 } 2213 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 2214 2215 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 2216 { 2217 struct mtd_info *master = mtd_get_master(mtd); 2218 2219 if (!master->_erase_user_prot_reg) 2220 return -EOPNOTSUPP; 2221 if (!len) 2222 return 0; 2223 return master->_erase_user_prot_reg(master, from, len); 2224 } 2225 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg); 2226 2227 /* Chip-supported device locking */ 2228 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2229 { 2230 struct mtd_info *master = mtd_get_master(mtd); 2231 2232 if (!master->_lock) 2233 return -EOPNOTSUPP; 2234 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2235 return -EINVAL; 2236 if (!len) 2237 return 0; 2238 2239 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2240 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2241 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2242 } 2243 2244 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len); 2245 } 2246 EXPORT_SYMBOL_GPL(mtd_lock); 2247 2248 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2249 { 2250 struct mtd_info *master = mtd_get_master(mtd); 2251 2252 if (!master->_unlock) 2253 return -EOPNOTSUPP; 2254 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2255 return -EINVAL; 2256 if (!len) 2257 return 0; 2258 2259 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2260 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2261 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2262 } 2263 2264 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len); 2265 } 2266 EXPORT_SYMBOL_GPL(mtd_unlock); 2267 2268 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 2269 { 2270 struct mtd_info *master = mtd_get_master(mtd); 2271 2272 if (!master->_is_locked) 2273 return -EOPNOTSUPP; 2274 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 2275 return -EINVAL; 2276 if (!len) 2277 return 0; 2278 2279 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) { 2280 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2281 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize; 2282 } 2283 2284 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len); 2285 } 2286 EXPORT_SYMBOL_GPL(mtd_is_locked); 2287 2288 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 2289 { 2290 struct mtd_info *master = mtd_get_master(mtd); 2291 2292 if (ofs < 0 || ofs >= mtd->size) 2293 return -EINVAL; 2294 if (!master->_block_isreserved) 2295 return 0; 2296 2297 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2298 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2299 2300 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs)); 2301 } 2302 EXPORT_SYMBOL_GPL(mtd_block_isreserved); 2303 2304 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 2305 { 2306 struct mtd_info *master = mtd_get_master(mtd); 2307 2308 if (ofs < 0 || ofs >= mtd->size) 2309 return -EINVAL; 2310 if (!master->_block_isbad) 2311 return 0; 2312 2313 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2314 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2315 2316 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs)); 2317 } 2318 EXPORT_SYMBOL_GPL(mtd_block_isbad); 2319 2320 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 2321 { 2322 struct mtd_info *master = mtd_get_master(mtd); 2323 int ret; 2324 2325 if (!master->_block_markbad) 2326 return -EOPNOTSUPP; 2327 if (ofs < 0 || ofs >= mtd->size) 2328 return -EINVAL; 2329 if (!(mtd->flags & MTD_WRITEABLE)) 2330 return -EROFS; 2331 2332 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) 2333 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize; 2334 2335 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs)); 2336 if (ret) 2337 return ret; 2338 2339 while (mtd->parent) { 2340 mtd->ecc_stats.badblocks++; 2341 mtd = mtd->parent; 2342 } 2343 2344 return 0; 2345 } 2346 EXPORT_SYMBOL_GPL(mtd_block_markbad); 2347 2348 /* 2349 * default_mtd_writev - the default writev method 2350 * @mtd: mtd device description object pointer 2351 * @vecs: the vectors to write 2352 * @count: count of vectors in @vecs 2353 * @to: the MTD device offset to write to 2354 * @retlen: on exit contains the count of bytes written to the MTD device. 2355 * 2356 * This function returns zero in case of success and a negative error code in 2357 * case of failure. 2358 */ 2359 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2360 unsigned long count, loff_t to, size_t *retlen) 2361 { 2362 unsigned long i; 2363 size_t totlen = 0, thislen; 2364 int ret = 0; 2365 2366 for (i = 0; i < count; i++) { 2367 if (!vecs[i].iov_len) 2368 continue; 2369 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 2370 vecs[i].iov_base); 2371 totlen += thislen; 2372 if (ret || thislen != vecs[i].iov_len) 2373 break; 2374 to += vecs[i].iov_len; 2375 } 2376 *retlen = totlen; 2377 return ret; 2378 } 2379 2380 /* 2381 * mtd_writev - the vector-based MTD write method 2382 * @mtd: mtd device description object pointer 2383 * @vecs: the vectors to write 2384 * @count: count of vectors in @vecs 2385 * @to: the MTD device offset to write to 2386 * @retlen: on exit contains the count of bytes written to the MTD device. 2387 * 2388 * This function returns zero in case of success and a negative error code in 2389 * case of failure. 2390 */ 2391 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 2392 unsigned long count, loff_t to, size_t *retlen) 2393 { 2394 struct mtd_info *master = mtd_get_master(mtd); 2395 2396 *retlen = 0; 2397 if (!(mtd->flags & MTD_WRITEABLE)) 2398 return -EROFS; 2399 2400 if (!master->_writev) 2401 return default_mtd_writev(mtd, vecs, count, to, retlen); 2402 2403 return master->_writev(master, vecs, count, 2404 mtd_get_master_ofs(mtd, to), retlen); 2405 } 2406 EXPORT_SYMBOL_GPL(mtd_writev); 2407 2408 /** 2409 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 2410 * @mtd: mtd device description object pointer 2411 * @size: a pointer to the ideal or maximum size of the allocation, points 2412 * to the actual allocation size on success. 2413 * 2414 * This routine attempts to allocate a contiguous kernel buffer up to 2415 * the specified size, backing off the size of the request exponentially 2416 * until the request succeeds or until the allocation size falls below 2417 * the system page size. This attempts to make sure it does not adversely 2418 * impact system performance, so when allocating more than one page, we 2419 * ask the memory allocator to avoid re-trying, swapping, writing back 2420 * or performing I/O. 2421 * 2422 * Note, this function also makes sure that the allocated buffer is aligned to 2423 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 2424 * 2425 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 2426 * to handle smaller (i.e. degraded) buffer allocations under low- or 2427 * fragmented-memory situations where such reduced allocations, from a 2428 * requested ideal, are allowed. 2429 * 2430 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 2431 */ 2432 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 2433 { 2434 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY; 2435 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 2436 void *kbuf; 2437 2438 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 2439 2440 while (*size > min_alloc) { 2441 kbuf = kmalloc(*size, flags); 2442 if (kbuf) 2443 return kbuf; 2444 2445 *size >>= 1; 2446 *size = ALIGN(*size, mtd->writesize); 2447 } 2448 2449 /* 2450 * For the last resort allocation allow 'kmalloc()' to do all sorts of 2451 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 2452 */ 2453 return kmalloc(*size, GFP_KERNEL); 2454 } 2455 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 2456 2457 #ifdef CONFIG_PROC_FS 2458 2459 /*====================================================================*/ 2460 /* Support for /proc/mtd */ 2461 2462 static int mtd_proc_show(struct seq_file *m, void *v) 2463 { 2464 struct mtd_info *mtd; 2465 2466 seq_puts(m, "dev: size erasesize name\n"); 2467 mutex_lock(&mtd_table_mutex); 2468 mtd_for_each_device(mtd) { 2469 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 2470 mtd->index, (unsigned long long)mtd->size, 2471 mtd->erasesize, mtd->name); 2472 } 2473 mutex_unlock(&mtd_table_mutex); 2474 return 0; 2475 } 2476 #endif /* CONFIG_PROC_FS */ 2477 2478 /*====================================================================*/ 2479 /* Init code */ 2480 2481 static struct backing_dev_info * __init mtd_bdi_init(const char *name) 2482 { 2483 struct backing_dev_info *bdi; 2484 int ret; 2485 2486 bdi = bdi_alloc(NUMA_NO_NODE); 2487 if (!bdi) 2488 return ERR_PTR(-ENOMEM); 2489 bdi->ra_pages = 0; 2490 bdi->io_pages = 0; 2491 2492 /* 2493 * We put '-0' suffix to the name to get the same name format as we 2494 * used to get. Since this is called only once, we get a unique name. 2495 */ 2496 ret = bdi_register(bdi, "%.28s-0", name); 2497 if (ret) 2498 bdi_put(bdi); 2499 2500 return ret ? ERR_PTR(ret) : bdi; 2501 } 2502 2503 static struct proc_dir_entry *proc_mtd; 2504 2505 static int __init init_mtd(void) 2506 { 2507 int ret; 2508 2509 ret = class_register(&mtd_class); 2510 if (ret) 2511 goto err_reg; 2512 2513 mtd_bdi = mtd_bdi_init("mtd"); 2514 if (IS_ERR(mtd_bdi)) { 2515 ret = PTR_ERR(mtd_bdi); 2516 goto err_bdi; 2517 } 2518 2519 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show); 2520 2521 ret = init_mtdchar(); 2522 if (ret) 2523 goto out_procfs; 2524 2525 dfs_dir_mtd = debugfs_create_dir("mtd", NULL); 2526 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd, 2527 &mtd_expert_analysis_mode); 2528 2529 return 0; 2530 2531 out_procfs: 2532 if (proc_mtd) 2533 remove_proc_entry("mtd", NULL); 2534 bdi_unregister(mtd_bdi); 2535 bdi_put(mtd_bdi); 2536 err_bdi: 2537 class_unregister(&mtd_class); 2538 err_reg: 2539 pr_err("Error registering mtd class or bdi: %d\n", ret); 2540 return ret; 2541 } 2542 2543 static void __exit cleanup_mtd(void) 2544 { 2545 debugfs_remove_recursive(dfs_dir_mtd); 2546 cleanup_mtdchar(); 2547 if (proc_mtd) 2548 remove_proc_entry("mtd", NULL); 2549 class_unregister(&mtd_class); 2550 bdi_unregister(mtd_bdi); 2551 bdi_put(mtd_bdi); 2552 idr_destroy(&mtd_idr); 2553 } 2554 2555 module_init(init_mtd); 2556 module_exit(cleanup_mtd); 2557 2558 MODULE_LICENSE("GPL"); 2559 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 2560 MODULE_DESCRIPTION("Core MTD registration and access routines"); 2561