xref: /linux/drivers/mtd/mtdcore.c (revision 1a562c0d44974d3cf89c6cc5c34c708c08af420e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33 #include <linux/error-injection.h>
34 
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 struct backing_dev_info *mtd_bdi;
41 
42 #ifdef CONFIG_PM_SLEEP
43 
44 static int mtd_cls_suspend(struct device *dev)
45 {
46 	struct mtd_info *mtd = dev_get_drvdata(dev);
47 
48 	return mtd ? mtd_suspend(mtd) : 0;
49 }
50 
51 static int mtd_cls_resume(struct device *dev)
52 {
53 	struct mtd_info *mtd = dev_get_drvdata(dev);
54 
55 	if (mtd)
56 		mtd_resume(mtd);
57 	return 0;
58 }
59 
60 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62 #else
63 #define MTD_CLS_PM_OPS NULL
64 #endif
65 
66 static struct class mtd_class = {
67 	.name = "mtd",
68 	.pm = MTD_CLS_PM_OPS,
69 };
70 
71 static DEFINE_IDR(mtd_idr);
72 
73 /* These are exported solely for the purpose of mtd_blkdevs.c. You
74    should not use them for _anything_ else */
75 DEFINE_MUTEX(mtd_table_mutex);
76 EXPORT_SYMBOL_GPL(mtd_table_mutex);
77 
78 struct mtd_info *__mtd_next_device(int i)
79 {
80 	return idr_get_next(&mtd_idr, &i);
81 }
82 EXPORT_SYMBOL_GPL(__mtd_next_device);
83 
84 static LIST_HEAD(mtd_notifiers);
85 
86 
87 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
88 
89 /* REVISIT once MTD uses the driver model better, whoever allocates
90  * the mtd_info will probably want to use the release() hook...
91  */
92 static void mtd_release(struct device *dev)
93 {
94 	struct mtd_info *mtd = dev_get_drvdata(dev);
95 	dev_t index = MTD_DEVT(mtd->index);
96 
97 	idr_remove(&mtd_idr, mtd->index);
98 	of_node_put(mtd_get_of_node(mtd));
99 
100 	if (mtd_is_partition(mtd))
101 		release_mtd_partition(mtd);
102 
103 	/* remove /dev/mtdXro node */
104 	device_destroy(&mtd_class, index + 1);
105 }
106 
107 static void mtd_device_release(struct kref *kref)
108 {
109 	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
110 	bool is_partition = mtd_is_partition(mtd);
111 
112 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
113 
114 	/* Try to remove the NVMEM provider */
115 	nvmem_unregister(mtd->nvmem);
116 
117 	device_unregister(&mtd->dev);
118 
119 	/*
120 	 *  Clear dev so mtd can be safely re-registered later if desired.
121 	 *  Should not be done for partition,
122 	 *  as it was already destroyed in device_unregister().
123 	 */
124 	if (!is_partition)
125 		memset(&mtd->dev, 0, sizeof(mtd->dev));
126 
127 	module_put(THIS_MODULE);
128 }
129 
130 #define MTD_DEVICE_ATTR_RO(name) \
131 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
132 
133 #define MTD_DEVICE_ATTR_RW(name) \
134 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
135 
136 static ssize_t mtd_type_show(struct device *dev,
137 		struct device_attribute *attr, char *buf)
138 {
139 	struct mtd_info *mtd = dev_get_drvdata(dev);
140 	char *type;
141 
142 	switch (mtd->type) {
143 	case MTD_ABSENT:
144 		type = "absent";
145 		break;
146 	case MTD_RAM:
147 		type = "ram";
148 		break;
149 	case MTD_ROM:
150 		type = "rom";
151 		break;
152 	case MTD_NORFLASH:
153 		type = "nor";
154 		break;
155 	case MTD_NANDFLASH:
156 		type = "nand";
157 		break;
158 	case MTD_DATAFLASH:
159 		type = "dataflash";
160 		break;
161 	case MTD_UBIVOLUME:
162 		type = "ubi";
163 		break;
164 	case MTD_MLCNANDFLASH:
165 		type = "mlc-nand";
166 		break;
167 	default:
168 		type = "unknown";
169 	}
170 
171 	return sysfs_emit(buf, "%s\n", type);
172 }
173 MTD_DEVICE_ATTR_RO(type);
174 
175 static ssize_t mtd_flags_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 
180 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
181 }
182 MTD_DEVICE_ATTR_RO(flags);
183 
184 static ssize_t mtd_size_show(struct device *dev,
185 		struct device_attribute *attr, char *buf)
186 {
187 	struct mtd_info *mtd = dev_get_drvdata(dev);
188 
189 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
190 }
191 MTD_DEVICE_ATTR_RO(size);
192 
193 static ssize_t mtd_erasesize_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 
198 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
199 }
200 MTD_DEVICE_ATTR_RO(erasesize);
201 
202 static ssize_t mtd_writesize_show(struct device *dev,
203 		struct device_attribute *attr, char *buf)
204 {
205 	struct mtd_info *mtd = dev_get_drvdata(dev);
206 
207 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
208 }
209 MTD_DEVICE_ATTR_RO(writesize);
210 
211 static ssize_t mtd_subpagesize_show(struct device *dev,
212 		struct device_attribute *attr, char *buf)
213 {
214 	struct mtd_info *mtd = dev_get_drvdata(dev);
215 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216 
217 	return sysfs_emit(buf, "%u\n", subpagesize);
218 }
219 MTD_DEVICE_ATTR_RO(subpagesize);
220 
221 static ssize_t mtd_oobsize_show(struct device *dev,
222 		struct device_attribute *attr, char *buf)
223 {
224 	struct mtd_info *mtd = dev_get_drvdata(dev);
225 
226 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
227 }
228 MTD_DEVICE_ATTR_RO(oobsize);
229 
230 static ssize_t mtd_oobavail_show(struct device *dev,
231 				 struct device_attribute *attr, char *buf)
232 {
233 	struct mtd_info *mtd = dev_get_drvdata(dev);
234 
235 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
236 }
237 MTD_DEVICE_ATTR_RO(oobavail);
238 
239 static ssize_t mtd_numeraseregions_show(struct device *dev,
240 		struct device_attribute *attr, char *buf)
241 {
242 	struct mtd_info *mtd = dev_get_drvdata(dev);
243 
244 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
245 }
246 MTD_DEVICE_ATTR_RO(numeraseregions);
247 
248 static ssize_t mtd_name_show(struct device *dev,
249 		struct device_attribute *attr, char *buf)
250 {
251 	struct mtd_info *mtd = dev_get_drvdata(dev);
252 
253 	return sysfs_emit(buf, "%s\n", mtd->name);
254 }
255 MTD_DEVICE_ATTR_RO(name);
256 
257 static ssize_t mtd_ecc_strength_show(struct device *dev,
258 				     struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
263 }
264 MTD_DEVICE_ATTR_RO(ecc_strength);
265 
266 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 					  struct device_attribute *attr,
268 					  char *buf)
269 {
270 	struct mtd_info *mtd = dev_get_drvdata(dev);
271 
272 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
273 }
274 
275 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 					   struct device_attribute *attr,
277 					   const char *buf, size_t count)
278 {
279 	struct mtd_info *mtd = dev_get_drvdata(dev);
280 	unsigned int bitflip_threshold;
281 	int retval;
282 
283 	retval = kstrtouint(buf, 0, &bitflip_threshold);
284 	if (retval)
285 		return retval;
286 
287 	mtd->bitflip_threshold = bitflip_threshold;
288 	return count;
289 }
290 MTD_DEVICE_ATTR_RW(bitflip_threshold);
291 
292 static ssize_t mtd_ecc_step_size_show(struct device *dev,
293 		struct device_attribute *attr, char *buf)
294 {
295 	struct mtd_info *mtd = dev_get_drvdata(dev);
296 
297 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
298 
299 }
300 MTD_DEVICE_ATTR_RO(ecc_step_size);
301 
302 static ssize_t mtd_corrected_bits_show(struct device *dev,
303 		struct device_attribute *attr, char *buf)
304 {
305 	struct mtd_info *mtd = dev_get_drvdata(dev);
306 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307 
308 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
309 }
310 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
311 
312 static ssize_t mtd_ecc_failures_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct mtd_info *mtd = dev_get_drvdata(dev);
316 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317 
318 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
319 }
320 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
321 
322 static ssize_t mtd_bad_blocks_show(struct device *dev,
323 		struct device_attribute *attr, char *buf)
324 {
325 	struct mtd_info *mtd = dev_get_drvdata(dev);
326 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327 
328 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
329 }
330 MTD_DEVICE_ATTR_RO(bad_blocks);
331 
332 static ssize_t mtd_bbt_blocks_show(struct device *dev,
333 		struct device_attribute *attr, char *buf)
334 {
335 	struct mtd_info *mtd = dev_get_drvdata(dev);
336 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337 
338 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
339 }
340 MTD_DEVICE_ATTR_RO(bbt_blocks);
341 
342 static struct attribute *mtd_attrs[] = {
343 	&dev_attr_type.attr,
344 	&dev_attr_flags.attr,
345 	&dev_attr_size.attr,
346 	&dev_attr_erasesize.attr,
347 	&dev_attr_writesize.attr,
348 	&dev_attr_subpagesize.attr,
349 	&dev_attr_oobsize.attr,
350 	&dev_attr_oobavail.attr,
351 	&dev_attr_numeraseregions.attr,
352 	&dev_attr_name.attr,
353 	&dev_attr_ecc_strength.attr,
354 	&dev_attr_ecc_step_size.attr,
355 	&dev_attr_corrected_bits.attr,
356 	&dev_attr_ecc_failures.attr,
357 	&dev_attr_bad_blocks.attr,
358 	&dev_attr_bbt_blocks.attr,
359 	&dev_attr_bitflip_threshold.attr,
360 	NULL,
361 };
362 ATTRIBUTE_GROUPS(mtd);
363 
364 static const struct device_type mtd_devtype = {
365 	.name		= "mtd",
366 	.groups		= mtd_groups,
367 	.release	= mtd_release,
368 };
369 
370 static bool mtd_expert_analysis_mode;
371 
372 #ifdef CONFIG_DEBUG_FS
373 bool mtd_check_expert_analysis_mode(void)
374 {
375 	const char *mtd_expert_analysis_warning =
376 		"Bad block checks have been entirely disabled.\n"
377 		"This is only reserved for post-mortem forensics and debug purposes.\n"
378 		"Never enable this mode if you do not know what you are doing!\n";
379 
380 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
381 }
382 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
383 #endif
384 
385 static struct dentry *dfs_dir_mtd;
386 
387 static void mtd_debugfs_populate(struct mtd_info *mtd)
388 {
389 	struct device *dev = &mtd->dev;
390 
391 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
392 		return;
393 
394 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
395 }
396 
397 #ifndef CONFIG_MMU
398 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
399 {
400 	switch (mtd->type) {
401 	case MTD_RAM:
402 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
403 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
404 	case MTD_ROM:
405 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
406 			NOMMU_MAP_READ;
407 	default:
408 		return NOMMU_MAP_COPY;
409 	}
410 }
411 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
412 #endif
413 
414 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
415 			       void *cmd)
416 {
417 	struct mtd_info *mtd;
418 
419 	mtd = container_of(n, struct mtd_info, reboot_notifier);
420 	mtd->_reboot(mtd);
421 
422 	return NOTIFY_DONE;
423 }
424 
425 /**
426  * mtd_wunit_to_pairing_info - get pairing information of a wunit
427  * @mtd: pointer to new MTD device info structure
428  * @wunit: write unit we are interested in
429  * @info: returned pairing information
430  *
431  * Retrieve pairing information associated to the wunit.
432  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
433  * paired together, and where programming a page may influence the page it is
434  * paired with.
435  * The notion of page is replaced by the term wunit (write-unit) to stay
436  * consistent with the ->writesize field.
437  *
438  * The @wunit argument can be extracted from an absolute offset using
439  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
440  * to @wunit.
441  *
442  * From the pairing info the MTD user can find all the wunits paired with
443  * @wunit using the following loop:
444  *
445  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
446  *	info.pair = i;
447  *	mtd_pairing_info_to_wunit(mtd, &info);
448  *	...
449  * }
450  */
451 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
452 			      struct mtd_pairing_info *info)
453 {
454 	struct mtd_info *master = mtd_get_master(mtd);
455 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
456 
457 	if (wunit < 0 || wunit >= npairs)
458 		return -EINVAL;
459 
460 	if (master->pairing && master->pairing->get_info)
461 		return master->pairing->get_info(master, wunit, info);
462 
463 	info->group = 0;
464 	info->pair = wunit;
465 
466 	return 0;
467 }
468 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
469 
470 /**
471  * mtd_pairing_info_to_wunit - get wunit from pairing information
472  * @mtd: pointer to new MTD device info structure
473  * @info: pairing information struct
474  *
475  * Returns a positive number representing the wunit associated to the info
476  * struct, or a negative error code.
477  *
478  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
479  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
480  * doc).
481  *
482  * It can also be used to only program the first page of each pair (i.e.
483  * page attached to group 0), which allows one to use an MLC NAND in
484  * software-emulated SLC mode:
485  *
486  * info.group = 0;
487  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
488  * for (info.pair = 0; info.pair < npairs; info.pair++) {
489  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
490  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
491  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
492  * }
493  */
494 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
495 			      const struct mtd_pairing_info *info)
496 {
497 	struct mtd_info *master = mtd_get_master(mtd);
498 	int ngroups = mtd_pairing_groups(master);
499 	int npairs = mtd_wunit_per_eb(master) / ngroups;
500 
501 	if (!info || info->pair < 0 || info->pair >= npairs ||
502 	    info->group < 0 || info->group >= ngroups)
503 		return -EINVAL;
504 
505 	if (master->pairing && master->pairing->get_wunit)
506 		return mtd->pairing->get_wunit(master, info);
507 
508 	return info->pair;
509 }
510 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
511 
512 /**
513  * mtd_pairing_groups - get the number of pairing groups
514  * @mtd: pointer to new MTD device info structure
515  *
516  * Returns the number of pairing groups.
517  *
518  * This number is usually equal to the number of bits exposed by a single
519  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
520  * to iterate over all pages of a given pair.
521  */
522 int mtd_pairing_groups(struct mtd_info *mtd)
523 {
524 	struct mtd_info *master = mtd_get_master(mtd);
525 
526 	if (!master->pairing || !master->pairing->ngroups)
527 		return 1;
528 
529 	return master->pairing->ngroups;
530 }
531 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
532 
533 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
534 			      void *val, size_t bytes)
535 {
536 	struct mtd_info *mtd = priv;
537 	size_t retlen;
538 	int err;
539 
540 	err = mtd_read(mtd, offset, bytes, &retlen, val);
541 	if (err && err != -EUCLEAN)
542 		return err;
543 
544 	return retlen == bytes ? 0 : -EIO;
545 }
546 
547 static int mtd_nvmem_add(struct mtd_info *mtd)
548 {
549 	struct device_node *node = mtd_get_of_node(mtd);
550 	struct nvmem_config config = {};
551 
552 	config.id = NVMEM_DEVID_NONE;
553 	config.dev = &mtd->dev;
554 	config.name = dev_name(&mtd->dev);
555 	config.owner = THIS_MODULE;
556 	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
557 	config.reg_read = mtd_nvmem_reg_read;
558 	config.size = mtd->size;
559 	config.word_size = 1;
560 	config.stride = 1;
561 	config.read_only = true;
562 	config.root_only = true;
563 	config.ignore_wp = true;
564 	config.priv = mtd;
565 
566 	mtd->nvmem = nvmem_register(&config);
567 	if (IS_ERR(mtd->nvmem)) {
568 		/* Just ignore if there is no NVMEM support in the kernel */
569 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
570 			mtd->nvmem = NULL;
571 		else
572 			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573 					     "Failed to register NVMEM device\n");
574 	}
575 
576 	return 0;
577 }
578 
579 static void mtd_check_of_node(struct mtd_info *mtd)
580 {
581 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582 	const char *pname, *prefix = "partition-";
583 	int plen, mtd_name_len, offset, prefix_len;
584 
585 	/* Check if MTD already has a device node */
586 	if (mtd_get_of_node(mtd))
587 		return;
588 
589 	if (!mtd_is_partition(mtd))
590 		return;
591 
592 	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
593 	if (!parent_dn)
594 		return;
595 
596 	if (mtd_is_partition(mtd->parent))
597 		partitions = of_node_get(parent_dn);
598 	else
599 		partitions = of_get_child_by_name(parent_dn, "partitions");
600 	if (!partitions)
601 		goto exit_parent;
602 
603 	prefix_len = strlen(prefix);
604 	mtd_name_len = strlen(mtd->name);
605 
606 	/* Search if a partition is defined with the same name */
607 	for_each_child_of_node(partitions, mtd_dn) {
608 		/* Skip partition with no/wrong prefix */
609 		if (!of_node_name_prefix(mtd_dn, prefix))
610 			continue;
611 
612 		/* Label have priority. Check that first */
613 		if (!of_property_read_string(mtd_dn, "label", &pname)) {
614 			offset = 0;
615 		} else {
616 			pname = mtd_dn->name;
617 			offset = prefix_len;
618 		}
619 
620 		plen = strlen(pname) - offset;
621 		if (plen == mtd_name_len &&
622 		    !strncmp(mtd->name, pname + offset, plen)) {
623 			mtd_set_of_node(mtd, mtd_dn);
624 			break;
625 		}
626 	}
627 
628 	of_node_put(partitions);
629 exit_parent:
630 	of_node_put(parent_dn);
631 }
632 
633 /**
634  *	add_mtd_device - register an MTD device
635  *	@mtd: pointer to new MTD device info structure
636  *
637  *	Add a device to the list of MTD devices present in the system, and
638  *	notify each currently active MTD 'user' of its arrival. Returns
639  *	zero on success or non-zero on failure.
640  */
641 
642 int add_mtd_device(struct mtd_info *mtd)
643 {
644 	struct device_node *np = mtd_get_of_node(mtd);
645 	struct mtd_info *master = mtd_get_master(mtd);
646 	struct mtd_notifier *not;
647 	int i, error, ofidx;
648 
649 	/*
650 	 * May occur, for instance, on buggy drivers which call
651 	 * mtd_device_parse_register() multiple times on the same master MTD,
652 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
653 	 */
654 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
655 		return -EEXIST;
656 
657 	BUG_ON(mtd->writesize == 0);
658 
659 	/*
660 	 * MTD drivers should implement ->_{write,read}() or
661 	 * ->_{write,read}_oob(), but not both.
662 	 */
663 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
664 		    (mtd->_read && mtd->_read_oob)))
665 		return -EINVAL;
666 
667 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
668 		    !(mtd->flags & MTD_NO_ERASE)))
669 		return -EINVAL;
670 
671 	/*
672 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
673 	 * master is an MLC NAND and has a proper pairing scheme defined.
674 	 * We also reject masters that implement ->_writev() for now, because
675 	 * NAND controller drivers don't implement this hook, and adding the
676 	 * SLC -> MLC address/length conversion to this path is useless if we
677 	 * don't have a user.
678 	 */
679 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
680 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
681 	     !master->pairing || master->_writev))
682 		return -EINVAL;
683 
684 	mutex_lock(&mtd_table_mutex);
685 
686 	ofidx = -1;
687 	if (np)
688 		ofidx = of_alias_get_id(np, "mtd");
689 	if (ofidx >= 0)
690 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
691 	else
692 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
693 	if (i < 0) {
694 		error = i;
695 		goto fail_locked;
696 	}
697 
698 	mtd->index = i;
699 	kref_init(&mtd->refcnt);
700 
701 	/* default value if not set by driver */
702 	if (mtd->bitflip_threshold == 0)
703 		mtd->bitflip_threshold = mtd->ecc_strength;
704 
705 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
706 		int ngroups = mtd_pairing_groups(master);
707 
708 		mtd->erasesize /= ngroups;
709 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
710 			    mtd->erasesize;
711 	}
712 
713 	if (is_power_of_2(mtd->erasesize))
714 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
715 	else
716 		mtd->erasesize_shift = 0;
717 
718 	if (is_power_of_2(mtd->writesize))
719 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
720 	else
721 		mtd->writesize_shift = 0;
722 
723 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
724 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
725 
726 	/* Some chips always power up locked. Unlock them now */
727 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
728 		error = mtd_unlock(mtd, 0, mtd->size);
729 		if (error && error != -EOPNOTSUPP)
730 			printk(KERN_WARNING
731 			       "%s: unlock failed, writes may not work\n",
732 			       mtd->name);
733 		/* Ignore unlock failures? */
734 		error = 0;
735 	}
736 
737 	/* Caller should have set dev.parent to match the
738 	 * physical device, if appropriate.
739 	 */
740 	mtd->dev.type = &mtd_devtype;
741 	mtd->dev.class = &mtd_class;
742 	mtd->dev.devt = MTD_DEVT(i);
743 	dev_set_name(&mtd->dev, "mtd%d", i);
744 	dev_set_drvdata(&mtd->dev, mtd);
745 	mtd_check_of_node(mtd);
746 	of_node_get(mtd_get_of_node(mtd));
747 	error = device_register(&mtd->dev);
748 	if (error) {
749 		put_device(&mtd->dev);
750 		goto fail_added;
751 	}
752 
753 	/* Add the nvmem provider */
754 	error = mtd_nvmem_add(mtd);
755 	if (error)
756 		goto fail_nvmem_add;
757 
758 	mtd_debugfs_populate(mtd);
759 
760 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
761 		      "mtd%dro", i);
762 
763 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
764 	/* No need to get a refcount on the module containing
765 	   the notifier, since we hold the mtd_table_mutex */
766 	list_for_each_entry(not, &mtd_notifiers, list)
767 		not->add(mtd);
768 
769 	mutex_unlock(&mtd_table_mutex);
770 
771 	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
772 		if (IS_BUILTIN(CONFIG_MTD)) {
773 			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
774 			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
775 		} else {
776 			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
777 				mtd->index, mtd->name);
778 		}
779 	}
780 
781 	/* We _know_ we aren't being removed, because
782 	   our caller is still holding us here. So none
783 	   of this try_ nonsense, and no bitching about it
784 	   either. :) */
785 	__module_get(THIS_MODULE);
786 	return 0;
787 
788 fail_nvmem_add:
789 	device_unregister(&mtd->dev);
790 fail_added:
791 	of_node_put(mtd_get_of_node(mtd));
792 	idr_remove(&mtd_idr, i);
793 fail_locked:
794 	mutex_unlock(&mtd_table_mutex);
795 	return error;
796 }
797 
798 /**
799  *	del_mtd_device - unregister an MTD device
800  *	@mtd: pointer to MTD device info structure
801  *
802  *	Remove a device from the list of MTD devices present in the system,
803  *	and notify each currently active MTD 'user' of its departure.
804  *	Returns zero on success or 1 on failure, which currently will happen
805  *	if the requested device does not appear to be present in the list.
806  */
807 
808 int del_mtd_device(struct mtd_info *mtd)
809 {
810 	int ret;
811 	struct mtd_notifier *not;
812 
813 	mutex_lock(&mtd_table_mutex);
814 
815 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
816 		ret = -ENODEV;
817 		goto out_error;
818 	}
819 
820 	/* No need to get a refcount on the module containing
821 		the notifier, since we hold the mtd_table_mutex */
822 	list_for_each_entry(not, &mtd_notifiers, list)
823 		not->remove(mtd);
824 
825 	kref_put(&mtd->refcnt, mtd_device_release);
826 	ret = 0;
827 
828 out_error:
829 	mutex_unlock(&mtd_table_mutex);
830 	return ret;
831 }
832 
833 /*
834  * Set a few defaults based on the parent devices, if not provided by the
835  * driver
836  */
837 static void mtd_set_dev_defaults(struct mtd_info *mtd)
838 {
839 	if (mtd->dev.parent) {
840 		if (!mtd->owner && mtd->dev.parent->driver)
841 			mtd->owner = mtd->dev.parent->driver->owner;
842 		if (!mtd->name)
843 			mtd->name = dev_name(mtd->dev.parent);
844 	} else {
845 		pr_debug("mtd device won't show a device symlink in sysfs\n");
846 	}
847 
848 	INIT_LIST_HEAD(&mtd->partitions);
849 	mutex_init(&mtd->master.partitions_lock);
850 	mutex_init(&mtd->master.chrdev_lock);
851 }
852 
853 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
854 {
855 	struct otp_info *info;
856 	ssize_t size = 0;
857 	unsigned int i;
858 	size_t retlen;
859 	int ret;
860 
861 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
862 	if (!info)
863 		return -ENOMEM;
864 
865 	if (is_user)
866 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
867 	else
868 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
869 	if (ret)
870 		goto err;
871 
872 	for (i = 0; i < retlen / sizeof(*info); i++)
873 		size += info[i].length;
874 
875 	kfree(info);
876 	return size;
877 
878 err:
879 	kfree(info);
880 
881 	/* ENODATA means there is no OTP region. */
882 	return ret == -ENODATA ? 0 : ret;
883 }
884 
885 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
886 						   const char *compatible,
887 						   int size,
888 						   nvmem_reg_read_t reg_read)
889 {
890 	struct nvmem_device *nvmem = NULL;
891 	struct nvmem_config config = {};
892 	struct device_node *np;
893 
894 	/* DT binding is optional */
895 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
896 
897 	/* OTP nvmem will be registered on the physical device */
898 	config.dev = mtd->dev.parent;
899 	config.name = compatible;
900 	config.id = NVMEM_DEVID_AUTO;
901 	config.owner = THIS_MODULE;
902 	config.add_legacy_fixed_of_cells = true;
903 	config.type = NVMEM_TYPE_OTP;
904 	config.root_only = true;
905 	config.ignore_wp = true;
906 	config.reg_read = reg_read;
907 	config.size = size;
908 	config.of_node = np;
909 	config.priv = mtd;
910 
911 	nvmem = nvmem_register(&config);
912 	/* Just ignore if there is no NVMEM support in the kernel */
913 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
914 		nvmem = NULL;
915 
916 	of_node_put(np);
917 
918 	return nvmem;
919 }
920 
921 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
922 				       void *val, size_t bytes)
923 {
924 	struct mtd_info *mtd = priv;
925 	size_t retlen;
926 	int ret;
927 
928 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
929 	if (ret)
930 		return ret;
931 
932 	return retlen == bytes ? 0 : -EIO;
933 }
934 
935 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
936 				       void *val, size_t bytes)
937 {
938 	struct mtd_info *mtd = priv;
939 	size_t retlen;
940 	int ret;
941 
942 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
943 	if (ret)
944 		return ret;
945 
946 	return retlen == bytes ? 0 : -EIO;
947 }
948 
949 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
950 {
951 	struct device *dev = mtd->dev.parent;
952 	struct nvmem_device *nvmem;
953 	ssize_t size;
954 	int err;
955 
956 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
957 		size = mtd_otp_size(mtd, true);
958 		if (size < 0)
959 			return size;
960 
961 		if (size > 0) {
962 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
963 						       mtd_nvmem_user_otp_reg_read);
964 			if (IS_ERR(nvmem)) {
965 				err = PTR_ERR(nvmem);
966 				goto err;
967 			}
968 			mtd->otp_user_nvmem = nvmem;
969 		}
970 	}
971 
972 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
973 		size = mtd_otp_size(mtd, false);
974 		if (size < 0) {
975 			err = size;
976 			goto err;
977 		}
978 
979 		if (size > 0) {
980 			/*
981 			 * The factory OTP contains thing such as a unique serial
982 			 * number and is small, so let's read it out and put it
983 			 * into the entropy pool.
984 			 */
985 			void *otp;
986 
987 			otp = kmalloc(size, GFP_KERNEL);
988 			if (!otp) {
989 				err = -ENOMEM;
990 				goto err;
991 			}
992 			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
993 			if (err < 0) {
994 				kfree(otp);
995 				goto err;
996 			}
997 			add_device_randomness(otp, err);
998 			kfree(otp);
999 
1000 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1001 						       mtd_nvmem_fact_otp_reg_read);
1002 			if (IS_ERR(nvmem)) {
1003 				err = PTR_ERR(nvmem);
1004 				goto err;
1005 			}
1006 			mtd->otp_factory_nvmem = nvmem;
1007 		}
1008 	}
1009 
1010 	return 0;
1011 
1012 err:
1013 	nvmem_unregister(mtd->otp_user_nvmem);
1014 	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1015 }
1016 
1017 /**
1018  * mtd_device_parse_register - parse partitions and register an MTD device.
1019  *
1020  * @mtd: the MTD device to register
1021  * @types: the list of MTD partition probes to try, see
1022  *         'parse_mtd_partitions()' for more information
1023  * @parser_data: MTD partition parser-specific data
1024  * @parts: fallback partition information to register, if parsing fails;
1025  *         only valid if %nr_parts > %0
1026  * @nr_parts: the number of partitions in parts, if zero then the full
1027  *            MTD device is registered if no partition info is found
1028  *
1029  * This function aggregates MTD partitions parsing (done by
1030  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1031  * basically follows the most common pattern found in many MTD drivers:
1032  *
1033  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1034  *   registered first.
1035  * * Then It tries to probe partitions on MTD device @mtd using parsers
1036  *   specified in @types (if @types is %NULL, then the default list of parsers
1037  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1038  *   found this functions tries to fallback to information specified in
1039  *   @parts/@nr_parts.
1040  * * If no partitions were found this function just registers the MTD device
1041  *   @mtd and exits.
1042  *
1043  * Returns zero in case of success and a negative error code in case of failure.
1044  */
1045 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1046 			      struct mtd_part_parser_data *parser_data,
1047 			      const struct mtd_partition *parts,
1048 			      int nr_parts)
1049 {
1050 	int ret;
1051 
1052 	mtd_set_dev_defaults(mtd);
1053 
1054 	ret = mtd_otp_nvmem_add(mtd);
1055 	if (ret)
1056 		goto out;
1057 
1058 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1059 		ret = add_mtd_device(mtd);
1060 		if (ret)
1061 			goto out;
1062 	}
1063 
1064 	/* Prefer parsed partitions over driver-provided fallback */
1065 	ret = parse_mtd_partitions(mtd, types, parser_data);
1066 	if (ret == -EPROBE_DEFER)
1067 		goto out;
1068 
1069 	if (ret > 0)
1070 		ret = 0;
1071 	else if (nr_parts)
1072 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1073 	else if (!device_is_registered(&mtd->dev))
1074 		ret = add_mtd_device(mtd);
1075 	else
1076 		ret = 0;
1077 
1078 	if (ret)
1079 		goto out;
1080 
1081 	/*
1082 	 * FIXME: some drivers unfortunately call this function more than once.
1083 	 * So we have to check if we've already assigned the reboot notifier.
1084 	 *
1085 	 * Generally, we can make multiple calls work for most cases, but it
1086 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1087 	 * cmdlineparts will register partitions more than once).
1088 	 */
1089 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1090 		  "MTD already registered\n");
1091 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1092 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1093 		register_reboot_notifier(&mtd->reboot_notifier);
1094 	}
1095 
1096 out:
1097 	if (ret) {
1098 		nvmem_unregister(mtd->otp_user_nvmem);
1099 		nvmem_unregister(mtd->otp_factory_nvmem);
1100 	}
1101 
1102 	if (ret && device_is_registered(&mtd->dev))
1103 		del_mtd_device(mtd);
1104 
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1108 
1109 /**
1110  * mtd_device_unregister - unregister an existing MTD device.
1111  *
1112  * @master: the MTD device to unregister.  This will unregister both the master
1113  *          and any partitions if registered.
1114  */
1115 int mtd_device_unregister(struct mtd_info *master)
1116 {
1117 	int err;
1118 
1119 	if (master->_reboot) {
1120 		unregister_reboot_notifier(&master->reboot_notifier);
1121 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1122 	}
1123 
1124 	nvmem_unregister(master->otp_user_nvmem);
1125 	nvmem_unregister(master->otp_factory_nvmem);
1126 
1127 	err = del_mtd_partitions(master);
1128 	if (err)
1129 		return err;
1130 
1131 	if (!device_is_registered(&master->dev))
1132 		return 0;
1133 
1134 	return del_mtd_device(master);
1135 }
1136 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1137 
1138 /**
1139  *	register_mtd_user - register a 'user' of MTD devices.
1140  *	@new: pointer to notifier info structure
1141  *
1142  *	Registers a pair of callbacks function to be called upon addition
1143  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1144  *	invoked for each MTD device currently present in the system.
1145  */
1146 void register_mtd_user (struct mtd_notifier *new)
1147 {
1148 	struct mtd_info *mtd;
1149 
1150 	mutex_lock(&mtd_table_mutex);
1151 
1152 	list_add(&new->list, &mtd_notifiers);
1153 
1154 	__module_get(THIS_MODULE);
1155 
1156 	mtd_for_each_device(mtd)
1157 		new->add(mtd);
1158 
1159 	mutex_unlock(&mtd_table_mutex);
1160 }
1161 EXPORT_SYMBOL_GPL(register_mtd_user);
1162 
1163 /**
1164  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1165  *	@old: pointer to notifier info structure
1166  *
1167  *	Removes a callback function pair from the list of 'users' to be
1168  *	notified upon addition or removal of MTD devices. Causes the
1169  *	'remove' callback to be immediately invoked for each MTD device
1170  *	currently present in the system.
1171  */
1172 int unregister_mtd_user (struct mtd_notifier *old)
1173 {
1174 	struct mtd_info *mtd;
1175 
1176 	mutex_lock(&mtd_table_mutex);
1177 
1178 	module_put(THIS_MODULE);
1179 
1180 	mtd_for_each_device(mtd)
1181 		old->remove(mtd);
1182 
1183 	list_del(&old->list);
1184 	mutex_unlock(&mtd_table_mutex);
1185 	return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1188 
1189 /**
1190  *	get_mtd_device - obtain a validated handle for an MTD device
1191  *	@mtd: last known address of the required MTD device
1192  *	@num: internal device number of the required MTD device
1193  *
1194  *	Given a number and NULL address, return the num'th entry in the device
1195  *	table, if any.	Given an address and num == -1, search the device table
1196  *	for a device with that address and return if it's still present. Given
1197  *	both, return the num'th driver only if its address matches. Return
1198  *	error code if not.
1199  */
1200 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1201 {
1202 	struct mtd_info *ret = NULL, *other;
1203 	int err = -ENODEV;
1204 
1205 	mutex_lock(&mtd_table_mutex);
1206 
1207 	if (num == -1) {
1208 		mtd_for_each_device(other) {
1209 			if (other == mtd) {
1210 				ret = mtd;
1211 				break;
1212 			}
1213 		}
1214 	} else if (num >= 0) {
1215 		ret = idr_find(&mtd_idr, num);
1216 		if (mtd && mtd != ret)
1217 			ret = NULL;
1218 	}
1219 
1220 	if (!ret) {
1221 		ret = ERR_PTR(err);
1222 		goto out;
1223 	}
1224 
1225 	err = __get_mtd_device(ret);
1226 	if (err)
1227 		ret = ERR_PTR(err);
1228 out:
1229 	mutex_unlock(&mtd_table_mutex);
1230 	return ret;
1231 }
1232 EXPORT_SYMBOL_GPL(get_mtd_device);
1233 
1234 
1235 int __get_mtd_device(struct mtd_info *mtd)
1236 {
1237 	struct mtd_info *master = mtd_get_master(mtd);
1238 	int err;
1239 
1240 	if (master->_get_device) {
1241 		err = master->_get_device(mtd);
1242 		if (err)
1243 			return err;
1244 	}
1245 
1246 	if (!try_module_get(master->owner)) {
1247 		if (master->_put_device)
1248 			master->_put_device(master);
1249 		return -ENODEV;
1250 	}
1251 
1252 	while (mtd) {
1253 		if (mtd != master)
1254 			kref_get(&mtd->refcnt);
1255 		mtd = mtd->parent;
1256 	}
1257 
1258 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1259 		kref_get(&master->refcnt);
1260 
1261 	return 0;
1262 }
1263 EXPORT_SYMBOL_GPL(__get_mtd_device);
1264 
1265 /**
1266  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1267  *
1268  * @np: device tree node
1269  */
1270 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1271 {
1272 	struct mtd_info *mtd = NULL;
1273 	struct mtd_info *tmp;
1274 	int err;
1275 
1276 	mutex_lock(&mtd_table_mutex);
1277 
1278 	err = -EPROBE_DEFER;
1279 	mtd_for_each_device(tmp) {
1280 		if (mtd_get_of_node(tmp) == np) {
1281 			mtd = tmp;
1282 			err = __get_mtd_device(mtd);
1283 			break;
1284 		}
1285 	}
1286 
1287 	mutex_unlock(&mtd_table_mutex);
1288 
1289 	return err ? ERR_PTR(err) : mtd;
1290 }
1291 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1292 
1293 /**
1294  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1295  *	device name
1296  *	@name: MTD device name to open
1297  *
1298  * 	This function returns MTD device description structure in case of
1299  * 	success and an error code in case of failure.
1300  */
1301 struct mtd_info *get_mtd_device_nm(const char *name)
1302 {
1303 	int err = -ENODEV;
1304 	struct mtd_info *mtd = NULL, *other;
1305 
1306 	mutex_lock(&mtd_table_mutex);
1307 
1308 	mtd_for_each_device(other) {
1309 		if (!strcmp(name, other->name)) {
1310 			mtd = other;
1311 			break;
1312 		}
1313 	}
1314 
1315 	if (!mtd)
1316 		goto out_unlock;
1317 
1318 	err = __get_mtd_device(mtd);
1319 	if (err)
1320 		goto out_unlock;
1321 
1322 	mutex_unlock(&mtd_table_mutex);
1323 	return mtd;
1324 
1325 out_unlock:
1326 	mutex_unlock(&mtd_table_mutex);
1327 	return ERR_PTR(err);
1328 }
1329 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1330 
1331 void put_mtd_device(struct mtd_info *mtd)
1332 {
1333 	mutex_lock(&mtd_table_mutex);
1334 	__put_mtd_device(mtd);
1335 	mutex_unlock(&mtd_table_mutex);
1336 
1337 }
1338 EXPORT_SYMBOL_GPL(put_mtd_device);
1339 
1340 void __put_mtd_device(struct mtd_info *mtd)
1341 {
1342 	struct mtd_info *master = mtd_get_master(mtd);
1343 
1344 	while (mtd) {
1345 		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1346 		struct mtd_info *parent = mtd->parent;
1347 
1348 		if (mtd != master)
1349 			kref_put(&mtd->refcnt, mtd_device_release);
1350 		mtd = parent;
1351 	}
1352 
1353 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1354 		kref_put(&master->refcnt, mtd_device_release);
1355 
1356 	module_put(master->owner);
1357 
1358 	/* must be the last as master can be freed in the _put_device */
1359 	if (master->_put_device)
1360 		master->_put_device(master);
1361 }
1362 EXPORT_SYMBOL_GPL(__put_mtd_device);
1363 
1364 /*
1365  * Erase is an synchronous operation. Device drivers are epected to return a
1366  * negative error code if the operation failed and update instr->fail_addr
1367  * to point the portion that was not properly erased.
1368  */
1369 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1370 {
1371 	struct mtd_info *master = mtd_get_master(mtd);
1372 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1373 	struct erase_info adjinstr;
1374 	int ret;
1375 
1376 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1377 	adjinstr = *instr;
1378 
1379 	if (!mtd->erasesize || !master->_erase)
1380 		return -ENOTSUPP;
1381 
1382 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1383 		return -EINVAL;
1384 	if (!(mtd->flags & MTD_WRITEABLE))
1385 		return -EROFS;
1386 
1387 	if (!instr->len)
1388 		return 0;
1389 
1390 	ledtrig_mtd_activity();
1391 
1392 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1393 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1394 				master->erasesize;
1395 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1396 				master->erasesize) -
1397 			       adjinstr.addr;
1398 	}
1399 
1400 	adjinstr.addr += mst_ofs;
1401 
1402 	ret = master->_erase(master, &adjinstr);
1403 
1404 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1405 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1406 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1407 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1408 							 master);
1409 			instr->fail_addr *= mtd->erasesize;
1410 		}
1411 	}
1412 
1413 	return ret;
1414 }
1415 EXPORT_SYMBOL_GPL(mtd_erase);
1416 ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1417 
1418 /*
1419  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1420  */
1421 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1422 	      void **virt, resource_size_t *phys)
1423 {
1424 	struct mtd_info *master = mtd_get_master(mtd);
1425 
1426 	*retlen = 0;
1427 	*virt = NULL;
1428 	if (phys)
1429 		*phys = 0;
1430 	if (!master->_point)
1431 		return -EOPNOTSUPP;
1432 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1433 		return -EINVAL;
1434 	if (!len)
1435 		return 0;
1436 
1437 	from = mtd_get_master_ofs(mtd, from);
1438 	return master->_point(master, from, len, retlen, virt, phys);
1439 }
1440 EXPORT_SYMBOL_GPL(mtd_point);
1441 
1442 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1443 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1444 {
1445 	struct mtd_info *master = mtd_get_master(mtd);
1446 
1447 	if (!master->_unpoint)
1448 		return -EOPNOTSUPP;
1449 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1450 		return -EINVAL;
1451 	if (!len)
1452 		return 0;
1453 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1454 }
1455 EXPORT_SYMBOL_GPL(mtd_unpoint);
1456 
1457 /*
1458  * Allow NOMMU mmap() to directly map the device (if not NULL)
1459  * - return the address to which the offset maps
1460  * - return -ENOSYS to indicate refusal to do the mapping
1461  */
1462 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1463 				    unsigned long offset, unsigned long flags)
1464 {
1465 	size_t retlen;
1466 	void *virt;
1467 	int ret;
1468 
1469 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1470 	if (ret)
1471 		return ret;
1472 	if (retlen != len) {
1473 		mtd_unpoint(mtd, offset, retlen);
1474 		return -ENOSYS;
1475 	}
1476 	return (unsigned long)virt;
1477 }
1478 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1479 
1480 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1481 				 const struct mtd_ecc_stats *old_stats)
1482 {
1483 	struct mtd_ecc_stats diff;
1484 
1485 	if (master == mtd)
1486 		return;
1487 
1488 	diff = master->ecc_stats;
1489 	diff.failed -= old_stats->failed;
1490 	diff.corrected -= old_stats->corrected;
1491 
1492 	while (mtd->parent) {
1493 		mtd->ecc_stats.failed += diff.failed;
1494 		mtd->ecc_stats.corrected += diff.corrected;
1495 		mtd = mtd->parent;
1496 	}
1497 }
1498 
1499 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1500 	     u_char *buf)
1501 {
1502 	struct mtd_oob_ops ops = {
1503 		.len = len,
1504 		.datbuf = buf,
1505 	};
1506 	int ret;
1507 
1508 	ret = mtd_read_oob(mtd, from, &ops);
1509 	*retlen = ops.retlen;
1510 
1511 	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1512 
1513 	return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(mtd_read);
1516 ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1517 
1518 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1519 	      const u_char *buf)
1520 {
1521 	struct mtd_oob_ops ops = {
1522 		.len = len,
1523 		.datbuf = (u8 *)buf,
1524 	};
1525 	int ret;
1526 
1527 	ret = mtd_write_oob(mtd, to, &ops);
1528 	*retlen = ops.retlen;
1529 
1530 	return ret;
1531 }
1532 EXPORT_SYMBOL_GPL(mtd_write);
1533 ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1534 
1535 /*
1536  * In blackbox flight recorder like scenarios we want to make successful writes
1537  * in interrupt context. panic_write() is only intended to be called when its
1538  * known the kernel is about to panic and we need the write to succeed. Since
1539  * the kernel is not going to be running for much longer, this function can
1540  * break locks and delay to ensure the write succeeds (but not sleep).
1541  */
1542 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1543 		    const u_char *buf)
1544 {
1545 	struct mtd_info *master = mtd_get_master(mtd);
1546 
1547 	*retlen = 0;
1548 	if (!master->_panic_write)
1549 		return -EOPNOTSUPP;
1550 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1551 		return -EINVAL;
1552 	if (!(mtd->flags & MTD_WRITEABLE))
1553 		return -EROFS;
1554 	if (!len)
1555 		return 0;
1556 	if (!master->oops_panic_write)
1557 		master->oops_panic_write = true;
1558 
1559 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1560 				    retlen, buf);
1561 }
1562 EXPORT_SYMBOL_GPL(mtd_panic_write);
1563 
1564 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1565 			     struct mtd_oob_ops *ops)
1566 {
1567 	/*
1568 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1569 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1570 	 *  this case.
1571 	 */
1572 	if (!ops->datbuf)
1573 		ops->len = 0;
1574 
1575 	if (!ops->oobbuf)
1576 		ops->ooblen = 0;
1577 
1578 	if (offs < 0 || offs + ops->len > mtd->size)
1579 		return -EINVAL;
1580 
1581 	if (ops->ooblen) {
1582 		size_t maxooblen;
1583 
1584 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1585 			return -EINVAL;
1586 
1587 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1588 				      mtd_div_by_ws(offs, mtd)) *
1589 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1590 		if (ops->ooblen > maxooblen)
1591 			return -EINVAL;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1598 			    struct mtd_oob_ops *ops)
1599 {
1600 	struct mtd_info *master = mtd_get_master(mtd);
1601 	int ret;
1602 
1603 	from = mtd_get_master_ofs(mtd, from);
1604 	if (master->_read_oob)
1605 		ret = master->_read_oob(master, from, ops);
1606 	else
1607 		ret = master->_read(master, from, ops->len, &ops->retlen,
1608 				    ops->datbuf);
1609 
1610 	return ret;
1611 }
1612 
1613 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1614 			     struct mtd_oob_ops *ops)
1615 {
1616 	struct mtd_info *master = mtd_get_master(mtd);
1617 	int ret;
1618 
1619 	to = mtd_get_master_ofs(mtd, to);
1620 	if (master->_write_oob)
1621 		ret = master->_write_oob(master, to, ops);
1622 	else
1623 		ret = master->_write(master, to, ops->len, &ops->retlen,
1624 				     ops->datbuf);
1625 
1626 	return ret;
1627 }
1628 
1629 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1630 			       struct mtd_oob_ops *ops)
1631 {
1632 	struct mtd_info *master = mtd_get_master(mtd);
1633 	int ngroups = mtd_pairing_groups(master);
1634 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1635 	struct mtd_oob_ops adjops = *ops;
1636 	unsigned int wunit, oobavail;
1637 	struct mtd_pairing_info info;
1638 	int max_bitflips = 0;
1639 	u32 ebofs, pageofs;
1640 	loff_t base, pos;
1641 
1642 	ebofs = mtd_mod_by_eb(start, mtd);
1643 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1644 	info.group = 0;
1645 	info.pair = mtd_div_by_ws(ebofs, mtd);
1646 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1647 	oobavail = mtd_oobavail(mtd, ops);
1648 
1649 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1650 		int ret;
1651 
1652 		if (info.pair >= npairs) {
1653 			info.pair = 0;
1654 			base += master->erasesize;
1655 		}
1656 
1657 		wunit = mtd_pairing_info_to_wunit(master, &info);
1658 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1659 
1660 		adjops.len = ops->len - ops->retlen;
1661 		if (adjops.len > mtd->writesize - pageofs)
1662 			adjops.len = mtd->writesize - pageofs;
1663 
1664 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1665 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1666 			adjops.ooblen = oobavail - adjops.ooboffs;
1667 
1668 		if (read) {
1669 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1670 			if (ret > 0)
1671 				max_bitflips = max(max_bitflips, ret);
1672 		} else {
1673 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1674 		}
1675 
1676 		if (ret < 0)
1677 			return ret;
1678 
1679 		max_bitflips = max(max_bitflips, ret);
1680 		ops->retlen += adjops.retlen;
1681 		ops->oobretlen += adjops.oobretlen;
1682 		adjops.datbuf += adjops.retlen;
1683 		adjops.oobbuf += adjops.oobretlen;
1684 		adjops.ooboffs = 0;
1685 		pageofs = 0;
1686 		info.pair++;
1687 	}
1688 
1689 	return max_bitflips;
1690 }
1691 
1692 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1693 {
1694 	struct mtd_info *master = mtd_get_master(mtd);
1695 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1696 	int ret_code;
1697 
1698 	ops->retlen = ops->oobretlen = 0;
1699 
1700 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1701 	if (ret_code)
1702 		return ret_code;
1703 
1704 	ledtrig_mtd_activity();
1705 
1706 	/* Check the validity of a potential fallback on mtd->_read */
1707 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1708 		return -EOPNOTSUPP;
1709 
1710 	if (ops->stats)
1711 		memset(ops->stats, 0, sizeof(*ops->stats));
1712 
1713 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1714 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1715 	else
1716 		ret_code = mtd_read_oob_std(mtd, from, ops);
1717 
1718 	mtd_update_ecc_stats(mtd, master, &old_stats);
1719 
1720 	/*
1721 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1722 	 * similar to mtd->_read(), returning a non-negative integer
1723 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1724 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1725 	 */
1726 	if (unlikely(ret_code < 0))
1727 		return ret_code;
1728 	if (mtd->ecc_strength == 0)
1729 		return 0;	/* device lacks ecc */
1730 	if (ops->stats)
1731 		ops->stats->max_bitflips = ret_code;
1732 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1733 }
1734 EXPORT_SYMBOL_GPL(mtd_read_oob);
1735 
1736 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1737 				struct mtd_oob_ops *ops)
1738 {
1739 	struct mtd_info *master = mtd_get_master(mtd);
1740 	int ret;
1741 
1742 	ops->retlen = ops->oobretlen = 0;
1743 
1744 	if (!(mtd->flags & MTD_WRITEABLE))
1745 		return -EROFS;
1746 
1747 	ret = mtd_check_oob_ops(mtd, to, ops);
1748 	if (ret)
1749 		return ret;
1750 
1751 	ledtrig_mtd_activity();
1752 
1753 	/* Check the validity of a potential fallback on mtd->_write */
1754 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1755 		return -EOPNOTSUPP;
1756 
1757 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1758 		return mtd_io_emulated_slc(mtd, to, false, ops);
1759 
1760 	return mtd_write_oob_std(mtd, to, ops);
1761 }
1762 EXPORT_SYMBOL_GPL(mtd_write_oob);
1763 
1764 /**
1765  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1766  * @mtd: MTD device structure
1767  * @section: ECC section. Depending on the layout you may have all the ECC
1768  *	     bytes stored in a single contiguous section, or one section
1769  *	     per ECC chunk (and sometime several sections for a single ECC
1770  *	     ECC chunk)
1771  * @oobecc: OOB region struct filled with the appropriate ECC position
1772  *	    information
1773  *
1774  * This function returns ECC section information in the OOB area. If you want
1775  * to get all the ECC bytes information, then you should call
1776  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1777  *
1778  * Returns zero on success, a negative error code otherwise.
1779  */
1780 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1781 		      struct mtd_oob_region *oobecc)
1782 {
1783 	struct mtd_info *master = mtd_get_master(mtd);
1784 
1785 	memset(oobecc, 0, sizeof(*oobecc));
1786 
1787 	if (!master || section < 0)
1788 		return -EINVAL;
1789 
1790 	if (!master->ooblayout || !master->ooblayout->ecc)
1791 		return -ENOTSUPP;
1792 
1793 	return master->ooblayout->ecc(master, section, oobecc);
1794 }
1795 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1796 
1797 /**
1798  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1799  *			section
1800  * @mtd: MTD device structure
1801  * @section: Free section you are interested in. Depending on the layout
1802  *	     you may have all the free bytes stored in a single contiguous
1803  *	     section, or one section per ECC chunk plus an extra section
1804  *	     for the remaining bytes (or other funky layout).
1805  * @oobfree: OOB region struct filled with the appropriate free position
1806  *	     information
1807  *
1808  * This function returns free bytes position in the OOB area. If you want
1809  * to get all the free bytes information, then you should call
1810  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1811  *
1812  * Returns zero on success, a negative error code otherwise.
1813  */
1814 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1815 		       struct mtd_oob_region *oobfree)
1816 {
1817 	struct mtd_info *master = mtd_get_master(mtd);
1818 
1819 	memset(oobfree, 0, sizeof(*oobfree));
1820 
1821 	if (!master || section < 0)
1822 		return -EINVAL;
1823 
1824 	if (!master->ooblayout || !master->ooblayout->free)
1825 		return -ENOTSUPP;
1826 
1827 	return master->ooblayout->free(master, section, oobfree);
1828 }
1829 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1830 
1831 /**
1832  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1833  * @mtd: mtd info structure
1834  * @byte: the byte we are searching for
1835  * @sectionp: pointer where the section id will be stored
1836  * @oobregion: used to retrieve the ECC position
1837  * @iter: iterator function. Should be either mtd_ooblayout_free or
1838  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1839  *
1840  * This function returns the section id and oobregion information of a
1841  * specific byte. For example, say you want to know where the 4th ECC byte is
1842  * stored, you'll use:
1843  *
1844  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1845  *
1846  * Returns zero on success, a negative error code otherwise.
1847  */
1848 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1849 				int *sectionp, struct mtd_oob_region *oobregion,
1850 				int (*iter)(struct mtd_info *,
1851 					    int section,
1852 					    struct mtd_oob_region *oobregion))
1853 {
1854 	int pos = 0, ret, section = 0;
1855 
1856 	memset(oobregion, 0, sizeof(*oobregion));
1857 
1858 	while (1) {
1859 		ret = iter(mtd, section, oobregion);
1860 		if (ret)
1861 			return ret;
1862 
1863 		if (pos + oobregion->length > byte)
1864 			break;
1865 
1866 		pos += oobregion->length;
1867 		section++;
1868 	}
1869 
1870 	/*
1871 	 * Adjust region info to make it start at the beginning at the
1872 	 * 'start' ECC byte.
1873 	 */
1874 	oobregion->offset += byte - pos;
1875 	oobregion->length -= byte - pos;
1876 	*sectionp = section;
1877 
1878 	return 0;
1879 }
1880 
1881 /**
1882  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1883  *				  ECC byte
1884  * @mtd: mtd info structure
1885  * @eccbyte: the byte we are searching for
1886  * @section: pointer where the section id will be stored
1887  * @oobregion: OOB region information
1888  *
1889  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1890  * byte.
1891  *
1892  * Returns zero on success, a negative error code otherwise.
1893  */
1894 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1895 				 int *section,
1896 				 struct mtd_oob_region *oobregion)
1897 {
1898 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1899 					 mtd_ooblayout_ecc);
1900 }
1901 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1902 
1903 /**
1904  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1905  * @mtd: mtd info structure
1906  * @buf: destination buffer to store OOB bytes
1907  * @oobbuf: OOB buffer
1908  * @start: first byte to retrieve
1909  * @nbytes: number of bytes to retrieve
1910  * @iter: section iterator
1911  *
1912  * Extract bytes attached to a specific category (ECC or free)
1913  * from the OOB buffer and copy them into buf.
1914  *
1915  * Returns zero on success, a negative error code otherwise.
1916  */
1917 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1918 				const u8 *oobbuf, int start, int nbytes,
1919 				int (*iter)(struct mtd_info *,
1920 					    int section,
1921 					    struct mtd_oob_region *oobregion))
1922 {
1923 	struct mtd_oob_region oobregion;
1924 	int section, ret;
1925 
1926 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1927 					&oobregion, iter);
1928 
1929 	while (!ret) {
1930 		int cnt;
1931 
1932 		cnt = min_t(int, nbytes, oobregion.length);
1933 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1934 		buf += cnt;
1935 		nbytes -= cnt;
1936 
1937 		if (!nbytes)
1938 			break;
1939 
1940 		ret = iter(mtd, ++section, &oobregion);
1941 	}
1942 
1943 	return ret;
1944 }
1945 
1946 /**
1947  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1948  * @mtd: mtd info structure
1949  * @buf: source buffer to get OOB bytes from
1950  * @oobbuf: OOB buffer
1951  * @start: first OOB byte to set
1952  * @nbytes: number of OOB bytes to set
1953  * @iter: section iterator
1954  *
1955  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1956  * is selected by passing the appropriate iterator.
1957  *
1958  * Returns zero on success, a negative error code otherwise.
1959  */
1960 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1961 				u8 *oobbuf, int start, int nbytes,
1962 				int (*iter)(struct mtd_info *,
1963 					    int section,
1964 					    struct mtd_oob_region *oobregion))
1965 {
1966 	struct mtd_oob_region oobregion;
1967 	int section, ret;
1968 
1969 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1970 					&oobregion, iter);
1971 
1972 	while (!ret) {
1973 		int cnt;
1974 
1975 		cnt = min_t(int, nbytes, oobregion.length);
1976 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1977 		buf += cnt;
1978 		nbytes -= cnt;
1979 
1980 		if (!nbytes)
1981 			break;
1982 
1983 		ret = iter(mtd, ++section, &oobregion);
1984 	}
1985 
1986 	return ret;
1987 }
1988 
1989 /**
1990  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1991  * @mtd: mtd info structure
1992  * @iter: category iterator
1993  *
1994  * Count the number of bytes in a given category.
1995  *
1996  * Returns a positive value on success, a negative error code otherwise.
1997  */
1998 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1999 				int (*iter)(struct mtd_info *,
2000 					    int section,
2001 					    struct mtd_oob_region *oobregion))
2002 {
2003 	struct mtd_oob_region oobregion;
2004 	int section = 0, ret, nbytes = 0;
2005 
2006 	while (1) {
2007 		ret = iter(mtd, section++, &oobregion);
2008 		if (ret) {
2009 			if (ret == -ERANGE)
2010 				ret = nbytes;
2011 			break;
2012 		}
2013 
2014 		nbytes += oobregion.length;
2015 	}
2016 
2017 	return ret;
2018 }
2019 
2020 /**
2021  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2022  * @mtd: mtd info structure
2023  * @eccbuf: destination buffer to store ECC bytes
2024  * @oobbuf: OOB buffer
2025  * @start: first ECC byte to retrieve
2026  * @nbytes: number of ECC bytes to retrieve
2027  *
2028  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2029  *
2030  * Returns zero on success, a negative error code otherwise.
2031  */
2032 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2033 			       const u8 *oobbuf, int start, int nbytes)
2034 {
2035 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2036 				       mtd_ooblayout_ecc);
2037 }
2038 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2039 
2040 /**
2041  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2042  * @mtd: mtd info structure
2043  * @eccbuf: source buffer to get ECC bytes from
2044  * @oobbuf: OOB buffer
2045  * @start: first ECC byte to set
2046  * @nbytes: number of ECC bytes to set
2047  *
2048  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2049  *
2050  * Returns zero on success, a negative error code otherwise.
2051  */
2052 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2053 			       u8 *oobbuf, int start, int nbytes)
2054 {
2055 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2056 				       mtd_ooblayout_ecc);
2057 }
2058 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2059 
2060 /**
2061  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2062  * @mtd: mtd info structure
2063  * @databuf: destination buffer to store ECC bytes
2064  * @oobbuf: OOB buffer
2065  * @start: first ECC byte to retrieve
2066  * @nbytes: number of ECC bytes to retrieve
2067  *
2068  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2069  *
2070  * Returns zero on success, a negative error code otherwise.
2071  */
2072 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2073 				const u8 *oobbuf, int start, int nbytes)
2074 {
2075 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2076 				       mtd_ooblayout_free);
2077 }
2078 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2079 
2080 /**
2081  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2082  * @mtd: mtd info structure
2083  * @databuf: source buffer to get data bytes from
2084  * @oobbuf: OOB buffer
2085  * @start: first ECC byte to set
2086  * @nbytes: number of ECC bytes to set
2087  *
2088  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2089  *
2090  * Returns zero on success, a negative error code otherwise.
2091  */
2092 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2093 				u8 *oobbuf, int start, int nbytes)
2094 {
2095 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2096 				       mtd_ooblayout_free);
2097 }
2098 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2099 
2100 /**
2101  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2102  * @mtd: mtd info structure
2103  *
2104  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2105  *
2106  * Returns zero on success, a negative error code otherwise.
2107  */
2108 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2109 {
2110 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2111 }
2112 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2113 
2114 /**
2115  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2116  * @mtd: mtd info structure
2117  *
2118  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2119  *
2120  * Returns zero on success, a negative error code otherwise.
2121  */
2122 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2123 {
2124 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2125 }
2126 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2127 
2128 /*
2129  * Method to access the protection register area, present in some flash
2130  * devices. The user data is one time programmable but the factory data is read
2131  * only.
2132  */
2133 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2134 			   struct otp_info *buf)
2135 {
2136 	struct mtd_info *master = mtd_get_master(mtd);
2137 
2138 	if (!master->_get_fact_prot_info)
2139 		return -EOPNOTSUPP;
2140 	if (!len)
2141 		return 0;
2142 	return master->_get_fact_prot_info(master, len, retlen, buf);
2143 }
2144 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2145 
2146 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2147 			   size_t *retlen, u_char *buf)
2148 {
2149 	struct mtd_info *master = mtd_get_master(mtd);
2150 
2151 	*retlen = 0;
2152 	if (!master->_read_fact_prot_reg)
2153 		return -EOPNOTSUPP;
2154 	if (!len)
2155 		return 0;
2156 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2157 }
2158 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2159 
2160 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2161 			   struct otp_info *buf)
2162 {
2163 	struct mtd_info *master = mtd_get_master(mtd);
2164 
2165 	if (!master->_get_user_prot_info)
2166 		return -EOPNOTSUPP;
2167 	if (!len)
2168 		return 0;
2169 	return master->_get_user_prot_info(master, len, retlen, buf);
2170 }
2171 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2172 
2173 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2174 			   size_t *retlen, u_char *buf)
2175 {
2176 	struct mtd_info *master = mtd_get_master(mtd);
2177 
2178 	*retlen = 0;
2179 	if (!master->_read_user_prot_reg)
2180 		return -EOPNOTSUPP;
2181 	if (!len)
2182 		return 0;
2183 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2184 }
2185 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2186 
2187 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2188 			    size_t *retlen, const u_char *buf)
2189 {
2190 	struct mtd_info *master = mtd_get_master(mtd);
2191 	int ret;
2192 
2193 	*retlen = 0;
2194 	if (!master->_write_user_prot_reg)
2195 		return -EOPNOTSUPP;
2196 	if (!len)
2197 		return 0;
2198 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2199 	if (ret)
2200 		return ret;
2201 
2202 	/*
2203 	 * If no data could be written at all, we are out of memory and
2204 	 * must return -ENOSPC.
2205 	 */
2206 	return (*retlen) ? 0 : -ENOSPC;
2207 }
2208 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2209 
2210 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2211 {
2212 	struct mtd_info *master = mtd_get_master(mtd);
2213 
2214 	if (!master->_lock_user_prot_reg)
2215 		return -EOPNOTSUPP;
2216 	if (!len)
2217 		return 0;
2218 	return master->_lock_user_prot_reg(master, from, len);
2219 }
2220 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2221 
2222 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2223 {
2224 	struct mtd_info *master = mtd_get_master(mtd);
2225 
2226 	if (!master->_erase_user_prot_reg)
2227 		return -EOPNOTSUPP;
2228 	if (!len)
2229 		return 0;
2230 	return master->_erase_user_prot_reg(master, from, len);
2231 }
2232 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2233 
2234 /* Chip-supported device locking */
2235 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2236 {
2237 	struct mtd_info *master = mtd_get_master(mtd);
2238 
2239 	if (!master->_lock)
2240 		return -EOPNOTSUPP;
2241 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2242 		return -EINVAL;
2243 	if (!len)
2244 		return 0;
2245 
2246 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2247 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2248 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2249 	}
2250 
2251 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2252 }
2253 EXPORT_SYMBOL_GPL(mtd_lock);
2254 
2255 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2256 {
2257 	struct mtd_info *master = mtd_get_master(mtd);
2258 
2259 	if (!master->_unlock)
2260 		return -EOPNOTSUPP;
2261 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2262 		return -EINVAL;
2263 	if (!len)
2264 		return 0;
2265 
2266 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2267 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2268 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2269 	}
2270 
2271 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2272 }
2273 EXPORT_SYMBOL_GPL(mtd_unlock);
2274 
2275 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2276 {
2277 	struct mtd_info *master = mtd_get_master(mtd);
2278 
2279 	if (!master->_is_locked)
2280 		return -EOPNOTSUPP;
2281 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2282 		return -EINVAL;
2283 	if (!len)
2284 		return 0;
2285 
2286 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2287 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2288 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2289 	}
2290 
2291 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2292 }
2293 EXPORT_SYMBOL_GPL(mtd_is_locked);
2294 
2295 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2296 {
2297 	struct mtd_info *master = mtd_get_master(mtd);
2298 
2299 	if (ofs < 0 || ofs >= mtd->size)
2300 		return -EINVAL;
2301 	if (!master->_block_isreserved)
2302 		return 0;
2303 
2304 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2305 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2306 
2307 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2308 }
2309 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2310 
2311 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2312 {
2313 	struct mtd_info *master = mtd_get_master(mtd);
2314 
2315 	if (ofs < 0 || ofs >= mtd->size)
2316 		return -EINVAL;
2317 	if (!master->_block_isbad)
2318 		return 0;
2319 
2320 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2321 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2322 
2323 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2324 }
2325 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2326 
2327 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2328 {
2329 	struct mtd_info *master = mtd_get_master(mtd);
2330 	int ret;
2331 
2332 	if (!master->_block_markbad)
2333 		return -EOPNOTSUPP;
2334 	if (ofs < 0 || ofs >= mtd->size)
2335 		return -EINVAL;
2336 	if (!(mtd->flags & MTD_WRITEABLE))
2337 		return -EROFS;
2338 
2339 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2340 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2341 
2342 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2343 	if (ret)
2344 		return ret;
2345 
2346 	while (mtd->parent) {
2347 		mtd->ecc_stats.badblocks++;
2348 		mtd = mtd->parent;
2349 	}
2350 
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2354 ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2355 
2356 /*
2357  * default_mtd_writev - the default writev method
2358  * @mtd: mtd device description object pointer
2359  * @vecs: the vectors to write
2360  * @count: count of vectors in @vecs
2361  * @to: the MTD device offset to write to
2362  * @retlen: on exit contains the count of bytes written to the MTD device.
2363  *
2364  * This function returns zero in case of success and a negative error code in
2365  * case of failure.
2366  */
2367 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2368 			      unsigned long count, loff_t to, size_t *retlen)
2369 {
2370 	unsigned long i;
2371 	size_t totlen = 0, thislen;
2372 	int ret = 0;
2373 
2374 	for (i = 0; i < count; i++) {
2375 		if (!vecs[i].iov_len)
2376 			continue;
2377 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2378 				vecs[i].iov_base);
2379 		totlen += thislen;
2380 		if (ret || thislen != vecs[i].iov_len)
2381 			break;
2382 		to += vecs[i].iov_len;
2383 	}
2384 	*retlen = totlen;
2385 	return ret;
2386 }
2387 
2388 /*
2389  * mtd_writev - the vector-based MTD write method
2390  * @mtd: mtd device description object pointer
2391  * @vecs: the vectors to write
2392  * @count: count of vectors in @vecs
2393  * @to: the MTD device offset to write to
2394  * @retlen: on exit contains the count of bytes written to the MTD device.
2395  *
2396  * This function returns zero in case of success and a negative error code in
2397  * case of failure.
2398  */
2399 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2400 	       unsigned long count, loff_t to, size_t *retlen)
2401 {
2402 	struct mtd_info *master = mtd_get_master(mtd);
2403 
2404 	*retlen = 0;
2405 	if (!(mtd->flags & MTD_WRITEABLE))
2406 		return -EROFS;
2407 
2408 	if (!master->_writev)
2409 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2410 
2411 	return master->_writev(master, vecs, count,
2412 			       mtd_get_master_ofs(mtd, to), retlen);
2413 }
2414 EXPORT_SYMBOL_GPL(mtd_writev);
2415 
2416 /**
2417  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2418  * @mtd: mtd device description object pointer
2419  * @size: a pointer to the ideal or maximum size of the allocation, points
2420  *        to the actual allocation size on success.
2421  *
2422  * This routine attempts to allocate a contiguous kernel buffer up to
2423  * the specified size, backing off the size of the request exponentially
2424  * until the request succeeds or until the allocation size falls below
2425  * the system page size. This attempts to make sure it does not adversely
2426  * impact system performance, so when allocating more than one page, we
2427  * ask the memory allocator to avoid re-trying, swapping, writing back
2428  * or performing I/O.
2429  *
2430  * Note, this function also makes sure that the allocated buffer is aligned to
2431  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2432  *
2433  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2434  * to handle smaller (i.e. degraded) buffer allocations under low- or
2435  * fragmented-memory situations where such reduced allocations, from a
2436  * requested ideal, are allowed.
2437  *
2438  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2439  */
2440 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2441 {
2442 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2443 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2444 	void *kbuf;
2445 
2446 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2447 
2448 	while (*size > min_alloc) {
2449 		kbuf = kmalloc(*size, flags);
2450 		if (kbuf)
2451 			return kbuf;
2452 
2453 		*size >>= 1;
2454 		*size = ALIGN(*size, mtd->writesize);
2455 	}
2456 
2457 	/*
2458 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2459 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2460 	 */
2461 	return kmalloc(*size, GFP_KERNEL);
2462 }
2463 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2464 
2465 #ifdef CONFIG_PROC_FS
2466 
2467 /*====================================================================*/
2468 /* Support for /proc/mtd */
2469 
2470 static int mtd_proc_show(struct seq_file *m, void *v)
2471 {
2472 	struct mtd_info *mtd;
2473 
2474 	seq_puts(m, "dev:    size   erasesize  name\n");
2475 	mutex_lock(&mtd_table_mutex);
2476 	mtd_for_each_device(mtd) {
2477 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2478 			   mtd->index, (unsigned long long)mtd->size,
2479 			   mtd->erasesize, mtd->name);
2480 	}
2481 	mutex_unlock(&mtd_table_mutex);
2482 	return 0;
2483 }
2484 #endif /* CONFIG_PROC_FS */
2485 
2486 /*====================================================================*/
2487 /* Init code */
2488 
2489 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2490 {
2491 	struct backing_dev_info *bdi;
2492 	int ret;
2493 
2494 	bdi = bdi_alloc(NUMA_NO_NODE);
2495 	if (!bdi)
2496 		return ERR_PTR(-ENOMEM);
2497 	bdi->ra_pages = 0;
2498 	bdi->io_pages = 0;
2499 
2500 	/*
2501 	 * We put '-0' suffix to the name to get the same name format as we
2502 	 * used to get. Since this is called only once, we get a unique name.
2503 	 */
2504 	ret = bdi_register(bdi, "%.28s-0", name);
2505 	if (ret)
2506 		bdi_put(bdi);
2507 
2508 	return ret ? ERR_PTR(ret) : bdi;
2509 }
2510 
2511 static struct proc_dir_entry *proc_mtd;
2512 
2513 static int __init init_mtd(void)
2514 {
2515 	int ret;
2516 
2517 	ret = class_register(&mtd_class);
2518 	if (ret)
2519 		goto err_reg;
2520 
2521 	mtd_bdi = mtd_bdi_init("mtd");
2522 	if (IS_ERR(mtd_bdi)) {
2523 		ret = PTR_ERR(mtd_bdi);
2524 		goto err_bdi;
2525 	}
2526 
2527 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2528 
2529 	ret = init_mtdchar();
2530 	if (ret)
2531 		goto out_procfs;
2532 
2533 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2534 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2535 			    &mtd_expert_analysis_mode);
2536 
2537 	return 0;
2538 
2539 out_procfs:
2540 	if (proc_mtd)
2541 		remove_proc_entry("mtd", NULL);
2542 	bdi_unregister(mtd_bdi);
2543 	bdi_put(mtd_bdi);
2544 err_bdi:
2545 	class_unregister(&mtd_class);
2546 err_reg:
2547 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2548 	return ret;
2549 }
2550 
2551 static void __exit cleanup_mtd(void)
2552 {
2553 	debugfs_remove_recursive(dfs_dir_mtd);
2554 	cleanup_mtdchar();
2555 	if (proc_mtd)
2556 		remove_proc_entry("mtd", NULL);
2557 	class_unregister(&mtd_class);
2558 	bdi_unregister(mtd_bdi);
2559 	bdi_put(mtd_bdi);
2560 	idr_destroy(&mtd_idr);
2561 }
2562 
2563 module_init(init_mtd);
2564 module_exit(cleanup_mtd);
2565 
2566 MODULE_LICENSE("GPL");
2567 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2568 MODULE_DESCRIPTION("Core MTD registration and access routines");
2569