xref: /linux/drivers/mtd/mtdcore.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/kconfig.h>
43 #include <linux/leds.h>
44 
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/partitions.h>
47 
48 #include "mtdcore.h"
49 
50 static struct backing_dev_info mtd_bdi = {
51 };
52 
53 #ifdef CONFIG_PM_SLEEP
54 
55 static int mtd_cls_suspend(struct device *dev)
56 {
57 	struct mtd_info *mtd = dev_get_drvdata(dev);
58 
59 	return mtd ? mtd_suspend(mtd) : 0;
60 }
61 
62 static int mtd_cls_resume(struct device *dev)
63 {
64 	struct mtd_info *mtd = dev_get_drvdata(dev);
65 
66 	if (mtd)
67 		mtd_resume(mtd);
68 	return 0;
69 }
70 
71 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
72 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
73 #else
74 #define MTD_CLS_PM_OPS NULL
75 #endif
76 
77 static struct class mtd_class = {
78 	.name = "mtd",
79 	.owner = THIS_MODULE,
80 	.pm = MTD_CLS_PM_OPS,
81 };
82 
83 static DEFINE_IDR(mtd_idr);
84 
85 /* These are exported solely for the purpose of mtd_blkdevs.c. You
86    should not use them for _anything_ else */
87 DEFINE_MUTEX(mtd_table_mutex);
88 EXPORT_SYMBOL_GPL(mtd_table_mutex);
89 
90 struct mtd_info *__mtd_next_device(int i)
91 {
92 	return idr_get_next(&mtd_idr, &i);
93 }
94 EXPORT_SYMBOL_GPL(__mtd_next_device);
95 
96 static LIST_HEAD(mtd_notifiers);
97 
98 
99 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
100 
101 /* REVISIT once MTD uses the driver model better, whoever allocates
102  * the mtd_info will probably want to use the release() hook...
103  */
104 static void mtd_release(struct device *dev)
105 {
106 	struct mtd_info *mtd = dev_get_drvdata(dev);
107 	dev_t index = MTD_DEVT(mtd->index);
108 
109 	/* remove /dev/mtdXro node */
110 	device_destroy(&mtd_class, index + 1);
111 }
112 
113 static ssize_t mtd_type_show(struct device *dev,
114 		struct device_attribute *attr, char *buf)
115 {
116 	struct mtd_info *mtd = dev_get_drvdata(dev);
117 	char *type;
118 
119 	switch (mtd->type) {
120 	case MTD_ABSENT:
121 		type = "absent";
122 		break;
123 	case MTD_RAM:
124 		type = "ram";
125 		break;
126 	case MTD_ROM:
127 		type = "rom";
128 		break;
129 	case MTD_NORFLASH:
130 		type = "nor";
131 		break;
132 	case MTD_NANDFLASH:
133 		type = "nand";
134 		break;
135 	case MTD_DATAFLASH:
136 		type = "dataflash";
137 		break;
138 	case MTD_UBIVOLUME:
139 		type = "ubi";
140 		break;
141 	case MTD_MLCNANDFLASH:
142 		type = "mlc-nand";
143 		break;
144 	default:
145 		type = "unknown";
146 	}
147 
148 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
149 }
150 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
151 
152 static ssize_t mtd_flags_show(struct device *dev,
153 		struct device_attribute *attr, char *buf)
154 {
155 	struct mtd_info *mtd = dev_get_drvdata(dev);
156 
157 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
158 
159 }
160 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
161 
162 static ssize_t mtd_size_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return snprintf(buf, PAGE_SIZE, "%llu\n",
168 		(unsigned long long)mtd->size);
169 
170 }
171 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
172 
173 static ssize_t mtd_erasesize_show(struct device *dev,
174 		struct device_attribute *attr, char *buf)
175 {
176 	struct mtd_info *mtd = dev_get_drvdata(dev);
177 
178 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
179 
180 }
181 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
182 
183 static ssize_t mtd_writesize_show(struct device *dev,
184 		struct device_attribute *attr, char *buf)
185 {
186 	struct mtd_info *mtd = dev_get_drvdata(dev);
187 
188 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
189 
190 }
191 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
192 
193 static ssize_t mtd_subpagesize_show(struct device *dev,
194 		struct device_attribute *attr, char *buf)
195 {
196 	struct mtd_info *mtd = dev_get_drvdata(dev);
197 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
200 
201 }
202 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
203 
204 static ssize_t mtd_oobsize_show(struct device *dev,
205 		struct device_attribute *attr, char *buf)
206 {
207 	struct mtd_info *mtd = dev_get_drvdata(dev);
208 
209 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
210 
211 }
212 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
213 
214 static ssize_t mtd_numeraseregions_show(struct device *dev,
215 		struct device_attribute *attr, char *buf)
216 {
217 	struct mtd_info *mtd = dev_get_drvdata(dev);
218 
219 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
220 
221 }
222 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
223 	NULL);
224 
225 static ssize_t mtd_name_show(struct device *dev,
226 		struct device_attribute *attr, char *buf)
227 {
228 	struct mtd_info *mtd = dev_get_drvdata(dev);
229 
230 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
231 
232 }
233 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
234 
235 static ssize_t mtd_ecc_strength_show(struct device *dev,
236 				     struct device_attribute *attr, char *buf)
237 {
238 	struct mtd_info *mtd = dev_get_drvdata(dev);
239 
240 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
241 }
242 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
243 
244 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
245 					  struct device_attribute *attr,
246 					  char *buf)
247 {
248 	struct mtd_info *mtd = dev_get_drvdata(dev);
249 
250 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
251 }
252 
253 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
254 					   struct device_attribute *attr,
255 					   const char *buf, size_t count)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 	unsigned int bitflip_threshold;
259 	int retval;
260 
261 	retval = kstrtouint(buf, 0, &bitflip_threshold);
262 	if (retval)
263 		return retval;
264 
265 	mtd->bitflip_threshold = bitflip_threshold;
266 	return count;
267 }
268 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
269 		   mtd_bitflip_threshold_show,
270 		   mtd_bitflip_threshold_store);
271 
272 static ssize_t mtd_ecc_step_size_show(struct device *dev,
273 		struct device_attribute *attr, char *buf)
274 {
275 	struct mtd_info *mtd = dev_get_drvdata(dev);
276 
277 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
278 
279 }
280 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
281 
282 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
283 		struct device_attribute *attr, char *buf)
284 {
285 	struct mtd_info *mtd = dev_get_drvdata(dev);
286 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
287 
288 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
289 }
290 static DEVICE_ATTR(corrected_bits, S_IRUGO,
291 		   mtd_ecc_stats_corrected_show, NULL);
292 
293 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
294 		struct device_attribute *attr, char *buf)
295 {
296 	struct mtd_info *mtd = dev_get_drvdata(dev);
297 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
298 
299 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
300 }
301 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
302 
303 static ssize_t mtd_badblocks_show(struct device *dev,
304 		struct device_attribute *attr, char *buf)
305 {
306 	struct mtd_info *mtd = dev_get_drvdata(dev);
307 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
308 
309 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
310 }
311 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
312 
313 static ssize_t mtd_bbtblocks_show(struct device *dev,
314 		struct device_attribute *attr, char *buf)
315 {
316 	struct mtd_info *mtd = dev_get_drvdata(dev);
317 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
318 
319 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
320 }
321 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
322 
323 static struct attribute *mtd_attrs[] = {
324 	&dev_attr_type.attr,
325 	&dev_attr_flags.attr,
326 	&dev_attr_size.attr,
327 	&dev_attr_erasesize.attr,
328 	&dev_attr_writesize.attr,
329 	&dev_attr_subpagesize.attr,
330 	&dev_attr_oobsize.attr,
331 	&dev_attr_numeraseregions.attr,
332 	&dev_attr_name.attr,
333 	&dev_attr_ecc_strength.attr,
334 	&dev_attr_ecc_step_size.attr,
335 	&dev_attr_corrected_bits.attr,
336 	&dev_attr_ecc_failures.attr,
337 	&dev_attr_bad_blocks.attr,
338 	&dev_attr_bbt_blocks.attr,
339 	&dev_attr_bitflip_threshold.attr,
340 	NULL,
341 };
342 ATTRIBUTE_GROUPS(mtd);
343 
344 static struct device_type mtd_devtype = {
345 	.name		= "mtd",
346 	.groups		= mtd_groups,
347 	.release	= mtd_release,
348 };
349 
350 #ifndef CONFIG_MMU
351 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
352 {
353 	switch (mtd->type) {
354 	case MTD_RAM:
355 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
356 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
357 	case MTD_ROM:
358 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
359 			NOMMU_MAP_READ;
360 	default:
361 		return NOMMU_MAP_COPY;
362 	}
363 }
364 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
365 #endif
366 
367 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
368 			       void *cmd)
369 {
370 	struct mtd_info *mtd;
371 
372 	mtd = container_of(n, struct mtd_info, reboot_notifier);
373 	mtd->_reboot(mtd);
374 
375 	return NOTIFY_DONE;
376 }
377 
378 /**
379  *	add_mtd_device - register an MTD device
380  *	@mtd: pointer to new MTD device info structure
381  *
382  *	Add a device to the list of MTD devices present in the system, and
383  *	notify each currently active MTD 'user' of its arrival. Returns
384  *	zero on success or non-zero on failure.
385  */
386 
387 int add_mtd_device(struct mtd_info *mtd)
388 {
389 	struct mtd_notifier *not;
390 	int i, error;
391 
392 	/*
393 	 * May occur, for instance, on buggy drivers which call
394 	 * mtd_device_parse_register() multiple times on the same master MTD,
395 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
396 	 */
397 	if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
398 		return -EEXIST;
399 
400 	mtd->backing_dev_info = &mtd_bdi;
401 
402 	BUG_ON(mtd->writesize == 0);
403 	mutex_lock(&mtd_table_mutex);
404 
405 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
406 	if (i < 0) {
407 		error = i;
408 		goto fail_locked;
409 	}
410 
411 	mtd->index = i;
412 	mtd->usecount = 0;
413 
414 	/* default value if not set by driver */
415 	if (mtd->bitflip_threshold == 0)
416 		mtd->bitflip_threshold = mtd->ecc_strength;
417 
418 	if (is_power_of_2(mtd->erasesize))
419 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
420 	else
421 		mtd->erasesize_shift = 0;
422 
423 	if (is_power_of_2(mtd->writesize))
424 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
425 	else
426 		mtd->writesize_shift = 0;
427 
428 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
429 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
430 
431 	/* Some chips always power up locked. Unlock them now */
432 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
433 		error = mtd_unlock(mtd, 0, mtd->size);
434 		if (error && error != -EOPNOTSUPP)
435 			printk(KERN_WARNING
436 			       "%s: unlock failed, writes may not work\n",
437 			       mtd->name);
438 		/* Ignore unlock failures? */
439 		error = 0;
440 	}
441 
442 	/* Caller should have set dev.parent to match the
443 	 * physical device, if appropriate.
444 	 */
445 	mtd->dev.type = &mtd_devtype;
446 	mtd->dev.class = &mtd_class;
447 	mtd->dev.devt = MTD_DEVT(i);
448 	dev_set_name(&mtd->dev, "mtd%d", i);
449 	dev_set_drvdata(&mtd->dev, mtd);
450 	of_node_get(mtd_get_of_node(mtd));
451 	error = device_register(&mtd->dev);
452 	if (error)
453 		goto fail_added;
454 
455 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
456 		      "mtd%dro", i);
457 
458 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
459 	/* No need to get a refcount on the module containing
460 	   the notifier, since we hold the mtd_table_mutex */
461 	list_for_each_entry(not, &mtd_notifiers, list)
462 		not->add(mtd);
463 
464 	mutex_unlock(&mtd_table_mutex);
465 	/* We _know_ we aren't being removed, because
466 	   our caller is still holding us here. So none
467 	   of this try_ nonsense, and no bitching about it
468 	   either. :) */
469 	__module_get(THIS_MODULE);
470 	return 0;
471 
472 fail_added:
473 	of_node_put(mtd_get_of_node(mtd));
474 	idr_remove(&mtd_idr, i);
475 fail_locked:
476 	mutex_unlock(&mtd_table_mutex);
477 	return error;
478 }
479 
480 /**
481  *	del_mtd_device - unregister an MTD device
482  *	@mtd: pointer to MTD device info structure
483  *
484  *	Remove a device from the list of MTD devices present in the system,
485  *	and notify each currently active MTD 'user' of its departure.
486  *	Returns zero on success or 1 on failure, which currently will happen
487  *	if the requested device does not appear to be present in the list.
488  */
489 
490 int del_mtd_device(struct mtd_info *mtd)
491 {
492 	int ret;
493 	struct mtd_notifier *not;
494 
495 	mutex_lock(&mtd_table_mutex);
496 
497 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
498 		ret = -ENODEV;
499 		goto out_error;
500 	}
501 
502 	/* No need to get a refcount on the module containing
503 		the notifier, since we hold the mtd_table_mutex */
504 	list_for_each_entry(not, &mtd_notifiers, list)
505 		not->remove(mtd);
506 
507 	if (mtd->usecount) {
508 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
509 		       mtd->index, mtd->name, mtd->usecount);
510 		ret = -EBUSY;
511 	} else {
512 		device_unregister(&mtd->dev);
513 
514 		idr_remove(&mtd_idr, mtd->index);
515 		of_node_put(mtd_get_of_node(mtd));
516 
517 		module_put(THIS_MODULE);
518 		ret = 0;
519 	}
520 
521 out_error:
522 	mutex_unlock(&mtd_table_mutex);
523 	return ret;
524 }
525 
526 static int mtd_add_device_partitions(struct mtd_info *mtd,
527 				     struct mtd_partitions *parts)
528 {
529 	const struct mtd_partition *real_parts = parts->parts;
530 	int nbparts = parts->nr_parts;
531 	int ret;
532 
533 	if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
534 		ret = add_mtd_device(mtd);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	if (nbparts > 0) {
540 		ret = add_mtd_partitions(mtd, real_parts, nbparts);
541 		if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
542 			del_mtd_device(mtd);
543 		return ret;
544 	}
545 
546 	return 0;
547 }
548 
549 /*
550  * Set a few defaults based on the parent devices, if not provided by the
551  * driver
552  */
553 static void mtd_set_dev_defaults(struct mtd_info *mtd)
554 {
555 	if (mtd->dev.parent) {
556 		if (!mtd->owner && mtd->dev.parent->driver)
557 			mtd->owner = mtd->dev.parent->driver->owner;
558 		if (!mtd->name)
559 			mtd->name = dev_name(mtd->dev.parent);
560 	} else {
561 		pr_debug("mtd device won't show a device symlink in sysfs\n");
562 	}
563 }
564 
565 /**
566  * mtd_device_parse_register - parse partitions and register an MTD device.
567  *
568  * @mtd: the MTD device to register
569  * @types: the list of MTD partition probes to try, see
570  *         'parse_mtd_partitions()' for more information
571  * @parser_data: MTD partition parser-specific data
572  * @parts: fallback partition information to register, if parsing fails;
573  *         only valid if %nr_parts > %0
574  * @nr_parts: the number of partitions in parts, if zero then the full
575  *            MTD device is registered if no partition info is found
576  *
577  * This function aggregates MTD partitions parsing (done by
578  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
579  * basically follows the most common pattern found in many MTD drivers:
580  *
581  * * It first tries to probe partitions on MTD device @mtd using parsers
582  *   specified in @types (if @types is %NULL, then the default list of parsers
583  *   is used, see 'parse_mtd_partitions()' for more information). If none are
584  *   found this functions tries to fallback to information specified in
585  *   @parts/@nr_parts.
586  * * If any partitioning info was found, this function registers the found
587  *   partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
588  *   as a whole is registered first.
589  * * If no partitions were found this function just registers the MTD device
590  *   @mtd and exits.
591  *
592  * Returns zero in case of success and a negative error code in case of failure.
593  */
594 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
595 			      struct mtd_part_parser_data *parser_data,
596 			      const struct mtd_partition *parts,
597 			      int nr_parts)
598 {
599 	struct mtd_partitions parsed;
600 	int ret;
601 
602 	mtd_set_dev_defaults(mtd);
603 
604 	memset(&parsed, 0, sizeof(parsed));
605 
606 	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
607 	if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
608 		/* Fall back to driver-provided partitions */
609 		parsed = (struct mtd_partitions){
610 			.parts		= parts,
611 			.nr_parts	= nr_parts,
612 		};
613 	} else if (ret < 0) {
614 		/* Didn't come up with parsed OR fallback partitions */
615 		pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
616 			ret);
617 		/* Don't abort on errors; we can still use unpartitioned MTD */
618 		memset(&parsed, 0, sizeof(parsed));
619 	}
620 
621 	ret = mtd_add_device_partitions(mtd, &parsed);
622 	if (ret)
623 		goto out;
624 
625 	/*
626 	 * FIXME: some drivers unfortunately call this function more than once.
627 	 * So we have to check if we've already assigned the reboot notifier.
628 	 *
629 	 * Generally, we can make multiple calls work for most cases, but it
630 	 * does cause problems with parse_mtd_partitions() above (e.g.,
631 	 * cmdlineparts will register partitions more than once).
632 	 */
633 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
634 		  "MTD already registered\n");
635 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
636 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
637 		register_reboot_notifier(&mtd->reboot_notifier);
638 	}
639 
640 out:
641 	/* Cleanup any parsed partitions */
642 	mtd_part_parser_cleanup(&parsed);
643 	return ret;
644 }
645 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
646 
647 /**
648  * mtd_device_unregister - unregister an existing MTD device.
649  *
650  * @master: the MTD device to unregister.  This will unregister both the master
651  *          and any partitions if registered.
652  */
653 int mtd_device_unregister(struct mtd_info *master)
654 {
655 	int err;
656 
657 	if (master->_reboot)
658 		unregister_reboot_notifier(&master->reboot_notifier);
659 
660 	err = del_mtd_partitions(master);
661 	if (err)
662 		return err;
663 
664 	if (!device_is_registered(&master->dev))
665 		return 0;
666 
667 	return del_mtd_device(master);
668 }
669 EXPORT_SYMBOL_GPL(mtd_device_unregister);
670 
671 /**
672  *	register_mtd_user - register a 'user' of MTD devices.
673  *	@new: pointer to notifier info structure
674  *
675  *	Registers a pair of callbacks function to be called upon addition
676  *	or removal of MTD devices. Causes the 'add' callback to be immediately
677  *	invoked for each MTD device currently present in the system.
678  */
679 void register_mtd_user (struct mtd_notifier *new)
680 {
681 	struct mtd_info *mtd;
682 
683 	mutex_lock(&mtd_table_mutex);
684 
685 	list_add(&new->list, &mtd_notifiers);
686 
687 	__module_get(THIS_MODULE);
688 
689 	mtd_for_each_device(mtd)
690 		new->add(mtd);
691 
692 	mutex_unlock(&mtd_table_mutex);
693 }
694 EXPORT_SYMBOL_GPL(register_mtd_user);
695 
696 /**
697  *	unregister_mtd_user - unregister a 'user' of MTD devices.
698  *	@old: pointer to notifier info structure
699  *
700  *	Removes a callback function pair from the list of 'users' to be
701  *	notified upon addition or removal of MTD devices. Causes the
702  *	'remove' callback to be immediately invoked for each MTD device
703  *	currently present in the system.
704  */
705 int unregister_mtd_user (struct mtd_notifier *old)
706 {
707 	struct mtd_info *mtd;
708 
709 	mutex_lock(&mtd_table_mutex);
710 
711 	module_put(THIS_MODULE);
712 
713 	mtd_for_each_device(mtd)
714 		old->remove(mtd);
715 
716 	list_del(&old->list);
717 	mutex_unlock(&mtd_table_mutex);
718 	return 0;
719 }
720 EXPORT_SYMBOL_GPL(unregister_mtd_user);
721 
722 /**
723  *	get_mtd_device - obtain a validated handle for an MTD device
724  *	@mtd: last known address of the required MTD device
725  *	@num: internal device number of the required MTD device
726  *
727  *	Given a number and NULL address, return the num'th entry in the device
728  *	table, if any.	Given an address and num == -1, search the device table
729  *	for a device with that address and return if it's still present. Given
730  *	both, return the num'th driver only if its address matches. Return
731  *	error code if not.
732  */
733 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
734 {
735 	struct mtd_info *ret = NULL, *other;
736 	int err = -ENODEV;
737 
738 	mutex_lock(&mtd_table_mutex);
739 
740 	if (num == -1) {
741 		mtd_for_each_device(other) {
742 			if (other == mtd) {
743 				ret = mtd;
744 				break;
745 			}
746 		}
747 	} else if (num >= 0) {
748 		ret = idr_find(&mtd_idr, num);
749 		if (mtd && mtd != ret)
750 			ret = NULL;
751 	}
752 
753 	if (!ret) {
754 		ret = ERR_PTR(err);
755 		goto out;
756 	}
757 
758 	err = __get_mtd_device(ret);
759 	if (err)
760 		ret = ERR_PTR(err);
761 out:
762 	mutex_unlock(&mtd_table_mutex);
763 	return ret;
764 }
765 EXPORT_SYMBOL_GPL(get_mtd_device);
766 
767 
768 int __get_mtd_device(struct mtd_info *mtd)
769 {
770 	int err;
771 
772 	if (!try_module_get(mtd->owner))
773 		return -ENODEV;
774 
775 	if (mtd->_get_device) {
776 		err = mtd->_get_device(mtd);
777 
778 		if (err) {
779 			module_put(mtd->owner);
780 			return err;
781 		}
782 	}
783 	mtd->usecount++;
784 	return 0;
785 }
786 EXPORT_SYMBOL_GPL(__get_mtd_device);
787 
788 /**
789  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
790  *	device name
791  *	@name: MTD device name to open
792  *
793  * 	This function returns MTD device description structure in case of
794  * 	success and an error code in case of failure.
795  */
796 struct mtd_info *get_mtd_device_nm(const char *name)
797 {
798 	int err = -ENODEV;
799 	struct mtd_info *mtd = NULL, *other;
800 
801 	mutex_lock(&mtd_table_mutex);
802 
803 	mtd_for_each_device(other) {
804 		if (!strcmp(name, other->name)) {
805 			mtd = other;
806 			break;
807 		}
808 	}
809 
810 	if (!mtd)
811 		goto out_unlock;
812 
813 	err = __get_mtd_device(mtd);
814 	if (err)
815 		goto out_unlock;
816 
817 	mutex_unlock(&mtd_table_mutex);
818 	return mtd;
819 
820 out_unlock:
821 	mutex_unlock(&mtd_table_mutex);
822 	return ERR_PTR(err);
823 }
824 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
825 
826 void put_mtd_device(struct mtd_info *mtd)
827 {
828 	mutex_lock(&mtd_table_mutex);
829 	__put_mtd_device(mtd);
830 	mutex_unlock(&mtd_table_mutex);
831 
832 }
833 EXPORT_SYMBOL_GPL(put_mtd_device);
834 
835 void __put_mtd_device(struct mtd_info *mtd)
836 {
837 	--mtd->usecount;
838 	BUG_ON(mtd->usecount < 0);
839 
840 	if (mtd->_put_device)
841 		mtd->_put_device(mtd);
842 
843 	module_put(mtd->owner);
844 }
845 EXPORT_SYMBOL_GPL(__put_mtd_device);
846 
847 /*
848  * Erase is an asynchronous operation.  Device drivers are supposed
849  * to call instr->callback() whenever the operation completes, even
850  * if it completes with a failure.
851  * Callers are supposed to pass a callback function and wait for it
852  * to be called before writing to the block.
853  */
854 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
855 {
856 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
857 		return -EINVAL;
858 	if (!(mtd->flags & MTD_WRITEABLE))
859 		return -EROFS;
860 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
861 	if (!instr->len) {
862 		instr->state = MTD_ERASE_DONE;
863 		mtd_erase_callback(instr);
864 		return 0;
865 	}
866 	ledtrig_mtd_activity();
867 	return mtd->_erase(mtd, instr);
868 }
869 EXPORT_SYMBOL_GPL(mtd_erase);
870 
871 /*
872  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
873  */
874 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
875 	      void **virt, resource_size_t *phys)
876 {
877 	*retlen = 0;
878 	*virt = NULL;
879 	if (phys)
880 		*phys = 0;
881 	if (!mtd->_point)
882 		return -EOPNOTSUPP;
883 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
884 		return -EINVAL;
885 	if (!len)
886 		return 0;
887 	return mtd->_point(mtd, from, len, retlen, virt, phys);
888 }
889 EXPORT_SYMBOL_GPL(mtd_point);
890 
891 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
892 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
893 {
894 	if (!mtd->_point)
895 		return -EOPNOTSUPP;
896 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
897 		return -EINVAL;
898 	if (!len)
899 		return 0;
900 	return mtd->_unpoint(mtd, from, len);
901 }
902 EXPORT_SYMBOL_GPL(mtd_unpoint);
903 
904 /*
905  * Allow NOMMU mmap() to directly map the device (if not NULL)
906  * - return the address to which the offset maps
907  * - return -ENOSYS to indicate refusal to do the mapping
908  */
909 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
910 				    unsigned long offset, unsigned long flags)
911 {
912 	if (!mtd->_get_unmapped_area)
913 		return -EOPNOTSUPP;
914 	if (offset >= mtd->size || len > mtd->size - offset)
915 		return -EINVAL;
916 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
917 }
918 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
919 
920 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
921 	     u_char *buf)
922 {
923 	int ret_code;
924 	*retlen = 0;
925 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
926 		return -EINVAL;
927 	if (!len)
928 		return 0;
929 
930 	ledtrig_mtd_activity();
931 	/*
932 	 * In the absence of an error, drivers return a non-negative integer
933 	 * representing the maximum number of bitflips that were corrected on
934 	 * any one ecc region (if applicable; zero otherwise).
935 	 */
936 	ret_code = mtd->_read(mtd, from, len, retlen, buf);
937 	if (unlikely(ret_code < 0))
938 		return ret_code;
939 	if (mtd->ecc_strength == 0)
940 		return 0;	/* device lacks ecc */
941 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
942 }
943 EXPORT_SYMBOL_GPL(mtd_read);
944 
945 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
946 	      const u_char *buf)
947 {
948 	*retlen = 0;
949 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
950 		return -EINVAL;
951 	if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
952 		return -EROFS;
953 	if (!len)
954 		return 0;
955 	ledtrig_mtd_activity();
956 	return mtd->_write(mtd, to, len, retlen, buf);
957 }
958 EXPORT_SYMBOL_GPL(mtd_write);
959 
960 /*
961  * In blackbox flight recorder like scenarios we want to make successful writes
962  * in interrupt context. panic_write() is only intended to be called when its
963  * known the kernel is about to panic and we need the write to succeed. Since
964  * the kernel is not going to be running for much longer, this function can
965  * break locks and delay to ensure the write succeeds (but not sleep).
966  */
967 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
968 		    const u_char *buf)
969 {
970 	*retlen = 0;
971 	if (!mtd->_panic_write)
972 		return -EOPNOTSUPP;
973 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
974 		return -EINVAL;
975 	if (!(mtd->flags & MTD_WRITEABLE))
976 		return -EROFS;
977 	if (!len)
978 		return 0;
979 	return mtd->_panic_write(mtd, to, len, retlen, buf);
980 }
981 EXPORT_SYMBOL_GPL(mtd_panic_write);
982 
983 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
984 {
985 	int ret_code;
986 	ops->retlen = ops->oobretlen = 0;
987 	if (!mtd->_read_oob)
988 		return -EOPNOTSUPP;
989 
990 	ledtrig_mtd_activity();
991 	/*
992 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
993 	 * similar to mtd->_read(), returning a non-negative integer
994 	 * representing max bitflips. In other cases, mtd->_read_oob() may
995 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
996 	 */
997 	ret_code = mtd->_read_oob(mtd, from, ops);
998 	if (unlikely(ret_code < 0))
999 		return ret_code;
1000 	if (mtd->ecc_strength == 0)
1001 		return 0;	/* device lacks ecc */
1002 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1003 }
1004 EXPORT_SYMBOL_GPL(mtd_read_oob);
1005 
1006 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1007 				struct mtd_oob_ops *ops)
1008 {
1009 	ops->retlen = ops->oobretlen = 0;
1010 	if (!mtd->_write_oob)
1011 		return -EOPNOTSUPP;
1012 	if (!(mtd->flags & MTD_WRITEABLE))
1013 		return -EROFS;
1014 	ledtrig_mtd_activity();
1015 	return mtd->_write_oob(mtd, to, ops);
1016 }
1017 EXPORT_SYMBOL_GPL(mtd_write_oob);
1018 
1019 /**
1020  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1021  * @mtd: MTD device structure
1022  * @section: ECC section. Depending on the layout you may have all the ECC
1023  *	     bytes stored in a single contiguous section, or one section
1024  *	     per ECC chunk (and sometime several sections for a single ECC
1025  *	     ECC chunk)
1026  * @oobecc: OOB region struct filled with the appropriate ECC position
1027  *	    information
1028  *
1029  * This functions return ECC section information in the OOB area. I you want
1030  * to get all the ECC bytes information, then you should call
1031  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1032  *
1033  * Returns zero on success, a negative error code otherwise.
1034  */
1035 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1036 		      struct mtd_oob_region *oobecc)
1037 {
1038 	memset(oobecc, 0, sizeof(*oobecc));
1039 
1040 	if (!mtd || section < 0)
1041 		return -EINVAL;
1042 
1043 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1044 		return -ENOTSUPP;
1045 
1046 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1047 }
1048 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1049 
1050 /**
1051  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1052  *			section
1053  * @mtd: MTD device structure
1054  * @section: Free section you are interested in. Depending on the layout
1055  *	     you may have all the free bytes stored in a single contiguous
1056  *	     section, or one section per ECC chunk plus an extra section
1057  *	     for the remaining bytes (or other funky layout).
1058  * @oobfree: OOB region struct filled with the appropriate free position
1059  *	     information
1060  *
1061  * This functions return free bytes position in the OOB area. I you want
1062  * to get all the free bytes information, then you should call
1063  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1064  *
1065  * Returns zero on success, a negative error code otherwise.
1066  */
1067 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1068 		       struct mtd_oob_region *oobfree)
1069 {
1070 	memset(oobfree, 0, sizeof(*oobfree));
1071 
1072 	if (!mtd || section < 0)
1073 		return -EINVAL;
1074 
1075 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1076 		return -ENOTSUPP;
1077 
1078 	return mtd->ooblayout->free(mtd, section, oobfree);
1079 }
1080 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1081 
1082 /**
1083  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1084  * @mtd: mtd info structure
1085  * @byte: the byte we are searching for
1086  * @sectionp: pointer where the section id will be stored
1087  * @oobregion: used to retrieve the ECC position
1088  * @iter: iterator function. Should be either mtd_ooblayout_free or
1089  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1090  *
1091  * This functions returns the section id and oobregion information of a
1092  * specific byte. For example, say you want to know where the 4th ECC byte is
1093  * stored, you'll use:
1094  *
1095  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1096  *
1097  * Returns zero on success, a negative error code otherwise.
1098  */
1099 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1100 				int *sectionp, struct mtd_oob_region *oobregion,
1101 				int (*iter)(struct mtd_info *,
1102 					    int section,
1103 					    struct mtd_oob_region *oobregion))
1104 {
1105 	int pos = 0, ret, section = 0;
1106 
1107 	memset(oobregion, 0, sizeof(*oobregion));
1108 
1109 	while (1) {
1110 		ret = iter(mtd, section, oobregion);
1111 		if (ret)
1112 			return ret;
1113 
1114 		if (pos + oobregion->length > byte)
1115 			break;
1116 
1117 		pos += oobregion->length;
1118 		section++;
1119 	}
1120 
1121 	/*
1122 	 * Adjust region info to make it start at the beginning at the
1123 	 * 'start' ECC byte.
1124 	 */
1125 	oobregion->offset += byte - pos;
1126 	oobregion->length -= byte - pos;
1127 	*sectionp = section;
1128 
1129 	return 0;
1130 }
1131 
1132 /**
1133  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1134  *				  ECC byte
1135  * @mtd: mtd info structure
1136  * @eccbyte: the byte we are searching for
1137  * @sectionp: pointer where the section id will be stored
1138  * @oobregion: OOB region information
1139  *
1140  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1141  * byte.
1142  *
1143  * Returns zero on success, a negative error code otherwise.
1144  */
1145 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1146 				 int *section,
1147 				 struct mtd_oob_region *oobregion)
1148 {
1149 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1150 					 mtd_ooblayout_ecc);
1151 }
1152 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1153 
1154 /**
1155  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1156  * @mtd: mtd info structure
1157  * @buf: destination buffer to store OOB bytes
1158  * @oobbuf: OOB buffer
1159  * @start: first byte to retrieve
1160  * @nbytes: number of bytes to retrieve
1161  * @iter: section iterator
1162  *
1163  * Extract bytes attached to a specific category (ECC or free)
1164  * from the OOB buffer and copy them into buf.
1165  *
1166  * Returns zero on success, a negative error code otherwise.
1167  */
1168 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1169 				const u8 *oobbuf, int start, int nbytes,
1170 				int (*iter)(struct mtd_info *,
1171 					    int section,
1172 					    struct mtd_oob_region *oobregion))
1173 {
1174 	struct mtd_oob_region oobregion = { };
1175 	int section = 0, ret;
1176 
1177 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1178 					&oobregion, iter);
1179 
1180 	while (!ret) {
1181 		int cnt;
1182 
1183 		cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1184 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1185 		buf += cnt;
1186 		nbytes -= cnt;
1187 
1188 		if (!nbytes)
1189 			break;
1190 
1191 		ret = iter(mtd, ++section, &oobregion);
1192 	}
1193 
1194 	return ret;
1195 }
1196 
1197 /**
1198  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1199  * @mtd: mtd info structure
1200  * @buf: source buffer to get OOB bytes from
1201  * @oobbuf: OOB buffer
1202  * @start: first OOB byte to set
1203  * @nbytes: number of OOB bytes to set
1204  * @iter: section iterator
1205  *
1206  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1207  * is selected by passing the appropriate iterator.
1208  *
1209  * Returns zero on success, a negative error code otherwise.
1210  */
1211 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1212 				u8 *oobbuf, int start, int nbytes,
1213 				int (*iter)(struct mtd_info *,
1214 					    int section,
1215 					    struct mtd_oob_region *oobregion))
1216 {
1217 	struct mtd_oob_region oobregion = { };
1218 	int section = 0, ret;
1219 
1220 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1221 					&oobregion, iter);
1222 
1223 	while (!ret) {
1224 		int cnt;
1225 
1226 		cnt = oobregion.length > nbytes ? nbytes : oobregion.length;
1227 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1228 		buf += cnt;
1229 		nbytes -= cnt;
1230 
1231 		if (!nbytes)
1232 			break;
1233 
1234 		ret = iter(mtd, ++section, &oobregion);
1235 	}
1236 
1237 	return ret;
1238 }
1239 
1240 /**
1241  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1242  * @mtd: mtd info structure
1243  * @iter: category iterator
1244  *
1245  * Count the number of bytes in a given category.
1246  *
1247  * Returns a positive value on success, a negative error code otherwise.
1248  */
1249 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1250 				int (*iter)(struct mtd_info *,
1251 					    int section,
1252 					    struct mtd_oob_region *oobregion))
1253 {
1254 	struct mtd_oob_region oobregion = { };
1255 	int section = 0, ret, nbytes = 0;
1256 
1257 	while (1) {
1258 		ret = iter(mtd, section++, &oobregion);
1259 		if (ret) {
1260 			if (ret == -ERANGE)
1261 				ret = nbytes;
1262 			break;
1263 		}
1264 
1265 		nbytes += oobregion.length;
1266 	}
1267 
1268 	return ret;
1269 }
1270 
1271 /**
1272  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1273  * @mtd: mtd info structure
1274  * @eccbuf: destination buffer to store ECC bytes
1275  * @oobbuf: OOB buffer
1276  * @start: first ECC byte to retrieve
1277  * @nbytes: number of ECC bytes to retrieve
1278  *
1279  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1280  *
1281  * Returns zero on success, a negative error code otherwise.
1282  */
1283 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1284 			       const u8 *oobbuf, int start, int nbytes)
1285 {
1286 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1287 				       mtd_ooblayout_ecc);
1288 }
1289 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1290 
1291 /**
1292  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1293  * @mtd: mtd info structure
1294  * @eccbuf: source buffer to get ECC bytes from
1295  * @oobbuf: OOB buffer
1296  * @start: first ECC byte to set
1297  * @nbytes: number of ECC bytes to set
1298  *
1299  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1300  *
1301  * Returns zero on success, a negative error code otherwise.
1302  */
1303 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1304 			       u8 *oobbuf, int start, int nbytes)
1305 {
1306 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1307 				       mtd_ooblayout_ecc);
1308 }
1309 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1310 
1311 /**
1312  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1313  * @mtd: mtd info structure
1314  * @databuf: destination buffer to store ECC bytes
1315  * @oobbuf: OOB buffer
1316  * @start: first ECC byte to retrieve
1317  * @nbytes: number of ECC bytes to retrieve
1318  *
1319  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1320  *
1321  * Returns zero on success, a negative error code otherwise.
1322  */
1323 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1324 				const u8 *oobbuf, int start, int nbytes)
1325 {
1326 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1327 				       mtd_ooblayout_free);
1328 }
1329 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1330 
1331 /**
1332  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1333  * @mtd: mtd info structure
1334  * @eccbuf: source buffer to get data bytes from
1335  * @oobbuf: OOB buffer
1336  * @start: first ECC byte to set
1337  * @nbytes: number of ECC bytes to set
1338  *
1339  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1340  *
1341  * Returns zero on success, a negative error code otherwise.
1342  */
1343 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1344 				u8 *oobbuf, int start, int nbytes)
1345 {
1346 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1347 				       mtd_ooblayout_free);
1348 }
1349 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1350 
1351 /**
1352  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1353  * @mtd: mtd info structure
1354  *
1355  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1356  *
1357  * Returns zero on success, a negative error code otherwise.
1358  */
1359 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1360 {
1361 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1362 }
1363 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1364 
1365 /**
1366  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1367  * @mtd: mtd info structure
1368  *
1369  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1370  *
1371  * Returns zero on success, a negative error code otherwise.
1372  */
1373 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1374 {
1375 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1376 }
1377 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1378 
1379 /*
1380  * Method to access the protection register area, present in some flash
1381  * devices. The user data is one time programmable but the factory data is read
1382  * only.
1383  */
1384 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1385 			   struct otp_info *buf)
1386 {
1387 	if (!mtd->_get_fact_prot_info)
1388 		return -EOPNOTSUPP;
1389 	if (!len)
1390 		return 0;
1391 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1392 }
1393 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1394 
1395 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1396 			   size_t *retlen, u_char *buf)
1397 {
1398 	*retlen = 0;
1399 	if (!mtd->_read_fact_prot_reg)
1400 		return -EOPNOTSUPP;
1401 	if (!len)
1402 		return 0;
1403 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1404 }
1405 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1406 
1407 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1408 			   struct otp_info *buf)
1409 {
1410 	if (!mtd->_get_user_prot_info)
1411 		return -EOPNOTSUPP;
1412 	if (!len)
1413 		return 0;
1414 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1417 
1418 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1419 			   size_t *retlen, u_char *buf)
1420 {
1421 	*retlen = 0;
1422 	if (!mtd->_read_user_prot_reg)
1423 		return -EOPNOTSUPP;
1424 	if (!len)
1425 		return 0;
1426 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1427 }
1428 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1429 
1430 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1431 			    size_t *retlen, u_char *buf)
1432 {
1433 	int ret;
1434 
1435 	*retlen = 0;
1436 	if (!mtd->_write_user_prot_reg)
1437 		return -EOPNOTSUPP;
1438 	if (!len)
1439 		return 0;
1440 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1441 	if (ret)
1442 		return ret;
1443 
1444 	/*
1445 	 * If no data could be written at all, we are out of memory and
1446 	 * must return -ENOSPC.
1447 	 */
1448 	return (*retlen) ? 0 : -ENOSPC;
1449 }
1450 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1451 
1452 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1453 {
1454 	if (!mtd->_lock_user_prot_reg)
1455 		return -EOPNOTSUPP;
1456 	if (!len)
1457 		return 0;
1458 	return mtd->_lock_user_prot_reg(mtd, from, len);
1459 }
1460 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1461 
1462 /* Chip-supported device locking */
1463 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1464 {
1465 	if (!mtd->_lock)
1466 		return -EOPNOTSUPP;
1467 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1468 		return -EINVAL;
1469 	if (!len)
1470 		return 0;
1471 	return mtd->_lock(mtd, ofs, len);
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_lock);
1474 
1475 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1476 {
1477 	if (!mtd->_unlock)
1478 		return -EOPNOTSUPP;
1479 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1480 		return -EINVAL;
1481 	if (!len)
1482 		return 0;
1483 	return mtd->_unlock(mtd, ofs, len);
1484 }
1485 EXPORT_SYMBOL_GPL(mtd_unlock);
1486 
1487 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1488 {
1489 	if (!mtd->_is_locked)
1490 		return -EOPNOTSUPP;
1491 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1492 		return -EINVAL;
1493 	if (!len)
1494 		return 0;
1495 	return mtd->_is_locked(mtd, ofs, len);
1496 }
1497 EXPORT_SYMBOL_GPL(mtd_is_locked);
1498 
1499 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1500 {
1501 	if (ofs < 0 || ofs >= mtd->size)
1502 		return -EINVAL;
1503 	if (!mtd->_block_isreserved)
1504 		return 0;
1505 	return mtd->_block_isreserved(mtd, ofs);
1506 }
1507 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1508 
1509 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1510 {
1511 	if (ofs < 0 || ofs >= mtd->size)
1512 		return -EINVAL;
1513 	if (!mtd->_block_isbad)
1514 		return 0;
1515 	return mtd->_block_isbad(mtd, ofs);
1516 }
1517 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1518 
1519 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1520 {
1521 	if (!mtd->_block_markbad)
1522 		return -EOPNOTSUPP;
1523 	if (ofs < 0 || ofs >= mtd->size)
1524 		return -EINVAL;
1525 	if (!(mtd->flags & MTD_WRITEABLE))
1526 		return -EROFS;
1527 	return mtd->_block_markbad(mtd, ofs);
1528 }
1529 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1530 
1531 /*
1532  * default_mtd_writev - the default writev method
1533  * @mtd: mtd device description object pointer
1534  * @vecs: the vectors to write
1535  * @count: count of vectors in @vecs
1536  * @to: the MTD device offset to write to
1537  * @retlen: on exit contains the count of bytes written to the MTD device.
1538  *
1539  * This function returns zero in case of success and a negative error code in
1540  * case of failure.
1541  */
1542 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1543 			      unsigned long count, loff_t to, size_t *retlen)
1544 {
1545 	unsigned long i;
1546 	size_t totlen = 0, thislen;
1547 	int ret = 0;
1548 
1549 	for (i = 0; i < count; i++) {
1550 		if (!vecs[i].iov_len)
1551 			continue;
1552 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1553 				vecs[i].iov_base);
1554 		totlen += thislen;
1555 		if (ret || thislen != vecs[i].iov_len)
1556 			break;
1557 		to += vecs[i].iov_len;
1558 	}
1559 	*retlen = totlen;
1560 	return ret;
1561 }
1562 
1563 /*
1564  * mtd_writev - the vector-based MTD write method
1565  * @mtd: mtd device description object pointer
1566  * @vecs: the vectors to write
1567  * @count: count of vectors in @vecs
1568  * @to: the MTD device offset to write to
1569  * @retlen: on exit contains the count of bytes written to the MTD device.
1570  *
1571  * This function returns zero in case of success and a negative error code in
1572  * case of failure.
1573  */
1574 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1575 	       unsigned long count, loff_t to, size_t *retlen)
1576 {
1577 	*retlen = 0;
1578 	if (!(mtd->flags & MTD_WRITEABLE))
1579 		return -EROFS;
1580 	if (!mtd->_writev)
1581 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1582 	return mtd->_writev(mtd, vecs, count, to, retlen);
1583 }
1584 EXPORT_SYMBOL_GPL(mtd_writev);
1585 
1586 /**
1587  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1588  * @mtd: mtd device description object pointer
1589  * @size: a pointer to the ideal or maximum size of the allocation, points
1590  *        to the actual allocation size on success.
1591  *
1592  * This routine attempts to allocate a contiguous kernel buffer up to
1593  * the specified size, backing off the size of the request exponentially
1594  * until the request succeeds or until the allocation size falls below
1595  * the system page size. This attempts to make sure it does not adversely
1596  * impact system performance, so when allocating more than one page, we
1597  * ask the memory allocator to avoid re-trying, swapping, writing back
1598  * or performing I/O.
1599  *
1600  * Note, this function also makes sure that the allocated buffer is aligned to
1601  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1602  *
1603  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1604  * to handle smaller (i.e. degraded) buffer allocations under low- or
1605  * fragmented-memory situations where such reduced allocations, from a
1606  * requested ideal, are allowed.
1607  *
1608  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1609  */
1610 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1611 {
1612 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1613 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1614 	void *kbuf;
1615 
1616 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1617 
1618 	while (*size > min_alloc) {
1619 		kbuf = kmalloc(*size, flags);
1620 		if (kbuf)
1621 			return kbuf;
1622 
1623 		*size >>= 1;
1624 		*size = ALIGN(*size, mtd->writesize);
1625 	}
1626 
1627 	/*
1628 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1629 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1630 	 */
1631 	return kmalloc(*size, GFP_KERNEL);
1632 }
1633 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1634 
1635 #ifdef CONFIG_PROC_FS
1636 
1637 /*====================================================================*/
1638 /* Support for /proc/mtd */
1639 
1640 static int mtd_proc_show(struct seq_file *m, void *v)
1641 {
1642 	struct mtd_info *mtd;
1643 
1644 	seq_puts(m, "dev:    size   erasesize  name\n");
1645 	mutex_lock(&mtd_table_mutex);
1646 	mtd_for_each_device(mtd) {
1647 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1648 			   mtd->index, (unsigned long long)mtd->size,
1649 			   mtd->erasesize, mtd->name);
1650 	}
1651 	mutex_unlock(&mtd_table_mutex);
1652 	return 0;
1653 }
1654 
1655 static int mtd_proc_open(struct inode *inode, struct file *file)
1656 {
1657 	return single_open(file, mtd_proc_show, NULL);
1658 }
1659 
1660 static const struct file_operations mtd_proc_ops = {
1661 	.open		= mtd_proc_open,
1662 	.read		= seq_read,
1663 	.llseek		= seq_lseek,
1664 	.release	= single_release,
1665 };
1666 #endif /* CONFIG_PROC_FS */
1667 
1668 /*====================================================================*/
1669 /* Init code */
1670 
1671 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1672 {
1673 	int ret;
1674 
1675 	ret = bdi_init(bdi);
1676 	if (!ret)
1677 		ret = bdi_register(bdi, NULL, "%s", name);
1678 
1679 	if (ret)
1680 		bdi_destroy(bdi);
1681 
1682 	return ret;
1683 }
1684 
1685 static struct proc_dir_entry *proc_mtd;
1686 
1687 static int __init init_mtd(void)
1688 {
1689 	int ret;
1690 
1691 	ret = class_register(&mtd_class);
1692 	if (ret)
1693 		goto err_reg;
1694 
1695 	ret = mtd_bdi_init(&mtd_bdi, "mtd");
1696 	if (ret)
1697 		goto err_bdi;
1698 
1699 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1700 
1701 	ret = init_mtdchar();
1702 	if (ret)
1703 		goto out_procfs;
1704 
1705 	return 0;
1706 
1707 out_procfs:
1708 	if (proc_mtd)
1709 		remove_proc_entry("mtd", NULL);
1710 err_bdi:
1711 	class_unregister(&mtd_class);
1712 err_reg:
1713 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1714 	return ret;
1715 }
1716 
1717 static void __exit cleanup_mtd(void)
1718 {
1719 	cleanup_mtdchar();
1720 	if (proc_mtd)
1721 		remove_proc_entry("mtd", NULL);
1722 	class_unregister(&mtd_class);
1723 	bdi_destroy(&mtd_bdi);
1724 	idr_destroy(&mtd_idr);
1725 }
1726 
1727 module_init(init_mtd);
1728 module_exit(cleanup_mtd);
1729 
1730 MODULE_LICENSE("GPL");
1731 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1732 MODULE_DESCRIPTION("Core MTD registration and access routines");
1733