xref: /linux/drivers/mtd/mtdcore.c (revision 086099893fcebeae50f9020588080de43c82e4c0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101 
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104 
105 static ssize_t mtd_type_show(struct device *dev,
106 		struct device_attribute *attr, char *buf)
107 {
108 	struct mtd_info *mtd = dev_get_drvdata(dev);
109 	char *type;
110 
111 	switch (mtd->type) {
112 	case MTD_ABSENT:
113 		type = "absent";
114 		break;
115 	case MTD_RAM:
116 		type = "ram";
117 		break;
118 	case MTD_ROM:
119 		type = "rom";
120 		break;
121 	case MTD_NORFLASH:
122 		type = "nor";
123 		break;
124 	case MTD_NANDFLASH:
125 		type = "nand";
126 		break;
127 	case MTD_DATAFLASH:
128 		type = "dataflash";
129 		break;
130 	case MTD_UBIVOLUME:
131 		type = "ubi";
132 		break;
133 	case MTD_MLCNANDFLASH:
134 		type = "mlc-nand";
135 		break;
136 	default:
137 		type = "unknown";
138 	}
139 
140 	return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143 
144 static ssize_t mtd_flags_show(struct device *dev,
145 		struct device_attribute *attr, char *buf)
146 {
147 	struct mtd_info *mtd = dev_get_drvdata(dev);
148 
149 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152 
153 static ssize_t mtd_size_show(struct device *dev,
154 		struct device_attribute *attr, char *buf)
155 {
156 	struct mtd_info *mtd = dev_get_drvdata(dev);
157 
158 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161 
162 static ssize_t mtd_erasesize_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170 
171 static ssize_t mtd_writesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179 
180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185 
186 	return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189 
190 static ssize_t mtd_oobsize_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198 
199 static ssize_t mtd_oobavail_show(struct device *dev,
200 				 struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207 
208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216 
217 static ssize_t mtd_name_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct mtd_info *mtd = dev_get_drvdata(dev);
221 
222 	return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225 
226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 				     struct device_attribute *attr, char *buf)
228 {
229 	struct mtd_info *mtd = dev_get_drvdata(dev);
230 
231 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234 
235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 					  struct device_attribute *attr,
237 					  char *buf)
238 {
239 	struct mtd_info *mtd = dev_get_drvdata(dev);
240 
241 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243 
244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 					   struct device_attribute *attr,
246 					   const char *buf, size_t count)
247 {
248 	struct mtd_info *mtd = dev_get_drvdata(dev);
249 	unsigned int bitflip_threshold;
250 	int retval;
251 
252 	retval = kstrtouint(buf, 0, &bitflip_threshold);
253 	if (retval)
254 		return retval;
255 
256 	mtd->bitflip_threshold = bitflip_threshold;
257 	return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260 
261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 		struct device_attribute *attr, char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267 
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270 
271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276 
277 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
280 
281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
290 
291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300 
301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310 
311 static struct attribute *mtd_attrs[] = {
312 	&dev_attr_type.attr,
313 	&dev_attr_flags.attr,
314 	&dev_attr_size.attr,
315 	&dev_attr_erasesize.attr,
316 	&dev_attr_writesize.attr,
317 	&dev_attr_subpagesize.attr,
318 	&dev_attr_oobsize.attr,
319 	&dev_attr_oobavail.attr,
320 	&dev_attr_numeraseregions.attr,
321 	&dev_attr_name.attr,
322 	&dev_attr_ecc_strength.attr,
323 	&dev_attr_ecc_step_size.attr,
324 	&dev_attr_corrected_bits.attr,
325 	&dev_attr_ecc_failures.attr,
326 	&dev_attr_bad_blocks.attr,
327 	&dev_attr_bbt_blocks.attr,
328 	&dev_attr_bitflip_threshold.attr,
329 	NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332 
333 static const struct device_type mtd_devtype = {
334 	.name		= "mtd",
335 	.groups		= mtd_groups,
336 	.release	= mtd_release,
337 };
338 
339 static int mtd_partid_debug_show(struct seq_file *s, void *p)
340 {
341 	struct mtd_info *mtd = s->private;
342 
343 	seq_printf(s, "%s\n", mtd->dbg.partid);
344 
345 	return 0;
346 }
347 
348 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
349 
350 static int mtd_partname_debug_show(struct seq_file *s, void *p)
351 {
352 	struct mtd_info *mtd = s->private;
353 
354 	seq_printf(s, "%s\n", mtd->dbg.partname);
355 
356 	return 0;
357 }
358 
359 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
360 
361 static struct dentry *dfs_dir_mtd;
362 
363 static void mtd_debugfs_populate(struct mtd_info *mtd)
364 {
365 	struct mtd_info *master = mtd_get_master(mtd);
366 	struct device *dev = &mtd->dev;
367 	struct dentry *root;
368 
369 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
370 		return;
371 
372 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
373 	mtd->dbg.dfs_dir = root;
374 
375 	if (master->dbg.partid)
376 		debugfs_create_file("partid", 0400, root, master,
377 				    &mtd_partid_debug_fops);
378 
379 	if (master->dbg.partname)
380 		debugfs_create_file("partname", 0400, root, master,
381 				    &mtd_partname_debug_fops);
382 }
383 
384 #ifndef CONFIG_MMU
385 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
386 {
387 	switch (mtd->type) {
388 	case MTD_RAM:
389 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
390 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
391 	case MTD_ROM:
392 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
393 			NOMMU_MAP_READ;
394 	default:
395 		return NOMMU_MAP_COPY;
396 	}
397 }
398 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
399 #endif
400 
401 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
402 			       void *cmd)
403 {
404 	struct mtd_info *mtd;
405 
406 	mtd = container_of(n, struct mtd_info, reboot_notifier);
407 	mtd->_reboot(mtd);
408 
409 	return NOTIFY_DONE;
410 }
411 
412 /**
413  * mtd_wunit_to_pairing_info - get pairing information of a wunit
414  * @mtd: pointer to new MTD device info structure
415  * @wunit: write unit we are interested in
416  * @info: returned pairing information
417  *
418  * Retrieve pairing information associated to the wunit.
419  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
420  * paired together, and where programming a page may influence the page it is
421  * paired with.
422  * The notion of page is replaced by the term wunit (write-unit) to stay
423  * consistent with the ->writesize field.
424  *
425  * The @wunit argument can be extracted from an absolute offset using
426  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
427  * to @wunit.
428  *
429  * From the pairing info the MTD user can find all the wunits paired with
430  * @wunit using the following loop:
431  *
432  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
433  *	info.pair = i;
434  *	mtd_pairing_info_to_wunit(mtd, &info);
435  *	...
436  * }
437  */
438 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
439 			      struct mtd_pairing_info *info)
440 {
441 	struct mtd_info *master = mtd_get_master(mtd);
442 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
443 
444 	if (wunit < 0 || wunit >= npairs)
445 		return -EINVAL;
446 
447 	if (master->pairing && master->pairing->get_info)
448 		return master->pairing->get_info(master, wunit, info);
449 
450 	info->group = 0;
451 	info->pair = wunit;
452 
453 	return 0;
454 }
455 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
456 
457 /**
458  * mtd_pairing_info_to_wunit - get wunit from pairing information
459  * @mtd: pointer to new MTD device info structure
460  * @info: pairing information struct
461  *
462  * Returns a positive number representing the wunit associated to the info
463  * struct, or a negative error code.
464  *
465  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
466  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
467  * doc).
468  *
469  * It can also be used to only program the first page of each pair (i.e.
470  * page attached to group 0), which allows one to use an MLC NAND in
471  * software-emulated SLC mode:
472  *
473  * info.group = 0;
474  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
475  * for (info.pair = 0; info.pair < npairs; info.pair++) {
476  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
477  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
478  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
479  * }
480  */
481 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
482 			      const struct mtd_pairing_info *info)
483 {
484 	struct mtd_info *master = mtd_get_master(mtd);
485 	int ngroups = mtd_pairing_groups(master);
486 	int npairs = mtd_wunit_per_eb(master) / ngroups;
487 
488 	if (!info || info->pair < 0 || info->pair >= npairs ||
489 	    info->group < 0 || info->group >= ngroups)
490 		return -EINVAL;
491 
492 	if (master->pairing && master->pairing->get_wunit)
493 		return mtd->pairing->get_wunit(master, info);
494 
495 	return info->pair;
496 }
497 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
498 
499 /**
500  * mtd_pairing_groups - get the number of pairing groups
501  * @mtd: pointer to new MTD device info structure
502  *
503  * Returns the number of pairing groups.
504  *
505  * This number is usually equal to the number of bits exposed by a single
506  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
507  * to iterate over all pages of a given pair.
508  */
509 int mtd_pairing_groups(struct mtd_info *mtd)
510 {
511 	struct mtd_info *master = mtd_get_master(mtd);
512 
513 	if (!master->pairing || !master->pairing->ngroups)
514 		return 1;
515 
516 	return master->pairing->ngroups;
517 }
518 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
519 
520 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
521 			      void *val, size_t bytes)
522 {
523 	struct mtd_info *mtd = priv;
524 	size_t retlen;
525 	int err;
526 
527 	err = mtd_read(mtd, offset, bytes, &retlen, val);
528 	if (err && err != -EUCLEAN)
529 		return err;
530 
531 	return retlen == bytes ? 0 : -EIO;
532 }
533 
534 static int mtd_nvmem_add(struct mtd_info *mtd)
535 {
536 	struct device_node *node = mtd_get_of_node(mtd);
537 	struct nvmem_config config = {};
538 
539 	config.id = -1;
540 	config.dev = &mtd->dev;
541 	config.name = dev_name(&mtd->dev);
542 	config.owner = THIS_MODULE;
543 	config.reg_read = mtd_nvmem_reg_read;
544 	config.size = mtd->size;
545 	config.word_size = 1;
546 	config.stride = 1;
547 	config.read_only = true;
548 	config.root_only = true;
549 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
550 	config.priv = mtd;
551 
552 	mtd->nvmem = nvmem_register(&config);
553 	if (IS_ERR(mtd->nvmem)) {
554 		/* Just ignore if there is no NVMEM support in the kernel */
555 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
556 			mtd->nvmem = NULL;
557 		} else {
558 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
559 			return PTR_ERR(mtd->nvmem);
560 		}
561 	}
562 
563 	return 0;
564 }
565 
566 /**
567  *	add_mtd_device - register an MTD device
568  *	@mtd: pointer to new MTD device info structure
569  *
570  *	Add a device to the list of MTD devices present in the system, and
571  *	notify each currently active MTD 'user' of its arrival. Returns
572  *	zero on success or non-zero on failure.
573  */
574 
575 int add_mtd_device(struct mtd_info *mtd)
576 {
577 	struct mtd_info *master = mtd_get_master(mtd);
578 	struct mtd_notifier *not;
579 	int i, error;
580 
581 	/*
582 	 * May occur, for instance, on buggy drivers which call
583 	 * mtd_device_parse_register() multiple times on the same master MTD,
584 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
585 	 */
586 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
587 		return -EEXIST;
588 
589 	BUG_ON(mtd->writesize == 0);
590 
591 	/*
592 	 * MTD drivers should implement ->_{write,read}() or
593 	 * ->_{write,read}_oob(), but not both.
594 	 */
595 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
596 		    (mtd->_read && mtd->_read_oob)))
597 		return -EINVAL;
598 
599 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
600 		    !(mtd->flags & MTD_NO_ERASE)))
601 		return -EINVAL;
602 
603 	/*
604 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
605 	 * master is an MLC NAND and has a proper pairing scheme defined.
606 	 * We also reject masters that implement ->_writev() for now, because
607 	 * NAND controller drivers don't implement this hook, and adding the
608 	 * SLC -> MLC address/length conversion to this path is useless if we
609 	 * don't have a user.
610 	 */
611 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
612 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
613 	     !master->pairing || master->_writev))
614 		return -EINVAL;
615 
616 	mutex_lock(&mtd_table_mutex);
617 
618 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
619 	if (i < 0) {
620 		error = i;
621 		goto fail_locked;
622 	}
623 
624 	mtd->index = i;
625 	mtd->usecount = 0;
626 
627 	/* default value if not set by driver */
628 	if (mtd->bitflip_threshold == 0)
629 		mtd->bitflip_threshold = mtd->ecc_strength;
630 
631 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
632 		int ngroups = mtd_pairing_groups(master);
633 
634 		mtd->erasesize /= ngroups;
635 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
636 			    mtd->erasesize;
637 	}
638 
639 	if (is_power_of_2(mtd->erasesize))
640 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
641 	else
642 		mtd->erasesize_shift = 0;
643 
644 	if (is_power_of_2(mtd->writesize))
645 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
646 	else
647 		mtd->writesize_shift = 0;
648 
649 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
650 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
651 
652 	/* Some chips always power up locked. Unlock them now */
653 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
654 		error = mtd_unlock(mtd, 0, mtd->size);
655 		if (error && error != -EOPNOTSUPP)
656 			printk(KERN_WARNING
657 			       "%s: unlock failed, writes may not work\n",
658 			       mtd->name);
659 		/* Ignore unlock failures? */
660 		error = 0;
661 	}
662 
663 	/* Caller should have set dev.parent to match the
664 	 * physical device, if appropriate.
665 	 */
666 	mtd->dev.type = &mtd_devtype;
667 	mtd->dev.class = &mtd_class;
668 	mtd->dev.devt = MTD_DEVT(i);
669 	dev_set_name(&mtd->dev, "mtd%d", i);
670 	dev_set_drvdata(&mtd->dev, mtd);
671 	of_node_get(mtd_get_of_node(mtd));
672 	error = device_register(&mtd->dev);
673 	if (error)
674 		goto fail_added;
675 
676 	/* Add the nvmem provider */
677 	error = mtd_nvmem_add(mtd);
678 	if (error)
679 		goto fail_nvmem_add;
680 
681 	mtd_debugfs_populate(mtd);
682 
683 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
684 		      "mtd%dro", i);
685 
686 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
687 	/* No need to get a refcount on the module containing
688 	   the notifier, since we hold the mtd_table_mutex */
689 	list_for_each_entry(not, &mtd_notifiers, list)
690 		not->add(mtd);
691 
692 	mutex_unlock(&mtd_table_mutex);
693 	/* We _know_ we aren't being removed, because
694 	   our caller is still holding us here. So none
695 	   of this try_ nonsense, and no bitching about it
696 	   either. :) */
697 	__module_get(THIS_MODULE);
698 	return 0;
699 
700 fail_nvmem_add:
701 	device_unregister(&mtd->dev);
702 fail_added:
703 	of_node_put(mtd_get_of_node(mtd));
704 	idr_remove(&mtd_idr, i);
705 fail_locked:
706 	mutex_unlock(&mtd_table_mutex);
707 	return error;
708 }
709 
710 /**
711  *	del_mtd_device - unregister an MTD device
712  *	@mtd: pointer to MTD device info structure
713  *
714  *	Remove a device from the list of MTD devices present in the system,
715  *	and notify each currently active MTD 'user' of its departure.
716  *	Returns zero on success or 1 on failure, which currently will happen
717  *	if the requested device does not appear to be present in the list.
718  */
719 
720 int del_mtd_device(struct mtd_info *mtd)
721 {
722 	int ret;
723 	struct mtd_notifier *not;
724 
725 	mutex_lock(&mtd_table_mutex);
726 
727 	debugfs_remove_recursive(mtd->dbg.dfs_dir);
728 
729 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
730 		ret = -ENODEV;
731 		goto out_error;
732 	}
733 
734 	/* No need to get a refcount on the module containing
735 		the notifier, since we hold the mtd_table_mutex */
736 	list_for_each_entry(not, &mtd_notifiers, list)
737 		not->remove(mtd);
738 
739 	if (mtd->usecount) {
740 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
741 		       mtd->index, mtd->name, mtd->usecount);
742 		ret = -EBUSY;
743 	} else {
744 		/* Try to remove the NVMEM provider */
745 		if (mtd->nvmem)
746 			nvmem_unregister(mtd->nvmem);
747 
748 		device_unregister(&mtd->dev);
749 
750 		idr_remove(&mtd_idr, mtd->index);
751 		of_node_put(mtd_get_of_node(mtd));
752 
753 		module_put(THIS_MODULE);
754 		ret = 0;
755 	}
756 
757 out_error:
758 	mutex_unlock(&mtd_table_mutex);
759 	return ret;
760 }
761 
762 /*
763  * Set a few defaults based on the parent devices, if not provided by the
764  * driver
765  */
766 static void mtd_set_dev_defaults(struct mtd_info *mtd)
767 {
768 	if (mtd->dev.parent) {
769 		if (!mtd->owner && mtd->dev.parent->driver)
770 			mtd->owner = mtd->dev.parent->driver->owner;
771 		if (!mtd->name)
772 			mtd->name = dev_name(mtd->dev.parent);
773 	} else {
774 		pr_debug("mtd device won't show a device symlink in sysfs\n");
775 	}
776 
777 	INIT_LIST_HEAD(&mtd->partitions);
778 	mutex_init(&mtd->master.partitions_lock);
779 	mutex_init(&mtd->master.chrdev_lock);
780 }
781 
782 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
783 {
784 	struct otp_info *info;
785 	ssize_t size = 0;
786 	unsigned int i;
787 	size_t retlen;
788 	int ret;
789 
790 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
791 	if (!info)
792 		return -ENOMEM;
793 
794 	if (is_user)
795 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
796 	else
797 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
798 	if (ret)
799 		goto err;
800 
801 	for (i = 0; i < retlen / sizeof(*info); i++)
802 		size += info[i].length;
803 
804 	kfree(info);
805 	return size;
806 
807 err:
808 	kfree(info);
809 
810 	/* ENODATA means there is no OTP region. */
811 	return ret == -ENODATA ? 0 : ret;
812 }
813 
814 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
815 						   const char *compatible,
816 						   int size,
817 						   nvmem_reg_read_t reg_read)
818 {
819 	struct nvmem_device *nvmem = NULL;
820 	struct nvmem_config config = {};
821 	struct device_node *np;
822 
823 	/* DT binding is optional */
824 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
825 
826 	/* OTP nvmem will be registered on the physical device */
827 	config.dev = mtd->dev.parent;
828 	/* just reuse the compatible as name */
829 	config.name = compatible;
830 	config.id = NVMEM_DEVID_NONE;
831 	config.owner = THIS_MODULE;
832 	config.type = NVMEM_TYPE_OTP;
833 	config.root_only = true;
834 	config.reg_read = reg_read;
835 	config.size = size;
836 	config.of_node = np;
837 	config.priv = mtd;
838 
839 	nvmem = nvmem_register(&config);
840 	/* Just ignore if there is no NVMEM support in the kernel */
841 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
842 		nvmem = NULL;
843 
844 	of_node_put(np);
845 
846 	return nvmem;
847 }
848 
849 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
850 				       void *val, size_t bytes)
851 {
852 	struct mtd_info *mtd = priv;
853 	size_t retlen;
854 	int ret;
855 
856 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
857 	if (ret)
858 		return ret;
859 
860 	return retlen == bytes ? 0 : -EIO;
861 }
862 
863 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
864 				       void *val, size_t bytes)
865 {
866 	struct mtd_info *mtd = priv;
867 	size_t retlen;
868 	int ret;
869 
870 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
871 	if (ret)
872 		return ret;
873 
874 	return retlen == bytes ? 0 : -EIO;
875 }
876 
877 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
878 {
879 	struct nvmem_device *nvmem;
880 	ssize_t size;
881 	int err;
882 
883 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
884 		size = mtd_otp_size(mtd, true);
885 		if (size < 0)
886 			return size;
887 
888 		if (size > 0) {
889 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
890 						       mtd_nvmem_user_otp_reg_read);
891 			if (IS_ERR(nvmem)) {
892 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
893 				return PTR_ERR(nvmem);
894 			}
895 			mtd->otp_user_nvmem = nvmem;
896 		}
897 	}
898 
899 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
900 		size = mtd_otp_size(mtd, false);
901 		if (size < 0) {
902 			err = size;
903 			goto err;
904 		}
905 
906 		if (size > 0) {
907 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
908 						       mtd_nvmem_fact_otp_reg_read);
909 			if (IS_ERR(nvmem)) {
910 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
911 				err = PTR_ERR(nvmem);
912 				goto err;
913 			}
914 			mtd->otp_factory_nvmem = nvmem;
915 		}
916 	}
917 
918 	return 0;
919 
920 err:
921 	if (mtd->otp_user_nvmem)
922 		nvmem_unregister(mtd->otp_user_nvmem);
923 	return err;
924 }
925 
926 /**
927  * mtd_device_parse_register - parse partitions and register an MTD device.
928  *
929  * @mtd: the MTD device to register
930  * @types: the list of MTD partition probes to try, see
931  *         'parse_mtd_partitions()' for more information
932  * @parser_data: MTD partition parser-specific data
933  * @parts: fallback partition information to register, if parsing fails;
934  *         only valid if %nr_parts > %0
935  * @nr_parts: the number of partitions in parts, if zero then the full
936  *            MTD device is registered if no partition info is found
937  *
938  * This function aggregates MTD partitions parsing (done by
939  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
940  * basically follows the most common pattern found in many MTD drivers:
941  *
942  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
943  *   registered first.
944  * * Then It tries to probe partitions on MTD device @mtd using parsers
945  *   specified in @types (if @types is %NULL, then the default list of parsers
946  *   is used, see 'parse_mtd_partitions()' for more information). If none are
947  *   found this functions tries to fallback to information specified in
948  *   @parts/@nr_parts.
949  * * If no partitions were found this function just registers the MTD device
950  *   @mtd and exits.
951  *
952  * Returns zero in case of success and a negative error code in case of failure.
953  */
954 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
955 			      struct mtd_part_parser_data *parser_data,
956 			      const struct mtd_partition *parts,
957 			      int nr_parts)
958 {
959 	int ret;
960 
961 	mtd_set_dev_defaults(mtd);
962 
963 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
964 		ret = add_mtd_device(mtd);
965 		if (ret)
966 			return ret;
967 	}
968 
969 	/* Prefer parsed partitions over driver-provided fallback */
970 	ret = parse_mtd_partitions(mtd, types, parser_data);
971 	if (ret == -EPROBE_DEFER)
972 		goto out;
973 
974 	if (ret > 0)
975 		ret = 0;
976 	else if (nr_parts)
977 		ret = add_mtd_partitions(mtd, parts, nr_parts);
978 	else if (!device_is_registered(&mtd->dev))
979 		ret = add_mtd_device(mtd);
980 	else
981 		ret = 0;
982 
983 	if (ret)
984 		goto out;
985 
986 	/*
987 	 * FIXME: some drivers unfortunately call this function more than once.
988 	 * So we have to check if we've already assigned the reboot notifier.
989 	 *
990 	 * Generally, we can make multiple calls work for most cases, but it
991 	 * does cause problems with parse_mtd_partitions() above (e.g.,
992 	 * cmdlineparts will register partitions more than once).
993 	 */
994 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
995 		  "MTD already registered\n");
996 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
997 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
998 		register_reboot_notifier(&mtd->reboot_notifier);
999 	}
1000 
1001 	ret = mtd_otp_nvmem_add(mtd);
1002 
1003 out:
1004 	if (ret && device_is_registered(&mtd->dev))
1005 		del_mtd_device(mtd);
1006 
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1010 
1011 /**
1012  * mtd_device_unregister - unregister an existing MTD device.
1013  *
1014  * @master: the MTD device to unregister.  This will unregister both the master
1015  *          and any partitions if registered.
1016  */
1017 int mtd_device_unregister(struct mtd_info *master)
1018 {
1019 	int err;
1020 
1021 	if (master->_reboot)
1022 		unregister_reboot_notifier(&master->reboot_notifier);
1023 
1024 	if (master->otp_user_nvmem)
1025 		nvmem_unregister(master->otp_user_nvmem);
1026 
1027 	if (master->otp_factory_nvmem)
1028 		nvmem_unregister(master->otp_factory_nvmem);
1029 
1030 	err = del_mtd_partitions(master);
1031 	if (err)
1032 		return err;
1033 
1034 	if (!device_is_registered(&master->dev))
1035 		return 0;
1036 
1037 	return del_mtd_device(master);
1038 }
1039 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1040 
1041 /**
1042  *	register_mtd_user - register a 'user' of MTD devices.
1043  *	@new: pointer to notifier info structure
1044  *
1045  *	Registers a pair of callbacks function to be called upon addition
1046  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1047  *	invoked for each MTD device currently present in the system.
1048  */
1049 void register_mtd_user (struct mtd_notifier *new)
1050 {
1051 	struct mtd_info *mtd;
1052 
1053 	mutex_lock(&mtd_table_mutex);
1054 
1055 	list_add(&new->list, &mtd_notifiers);
1056 
1057 	__module_get(THIS_MODULE);
1058 
1059 	mtd_for_each_device(mtd)
1060 		new->add(mtd);
1061 
1062 	mutex_unlock(&mtd_table_mutex);
1063 }
1064 EXPORT_SYMBOL_GPL(register_mtd_user);
1065 
1066 /**
1067  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1068  *	@old: pointer to notifier info structure
1069  *
1070  *	Removes a callback function pair from the list of 'users' to be
1071  *	notified upon addition or removal of MTD devices. Causes the
1072  *	'remove' callback to be immediately invoked for each MTD device
1073  *	currently present in the system.
1074  */
1075 int unregister_mtd_user (struct mtd_notifier *old)
1076 {
1077 	struct mtd_info *mtd;
1078 
1079 	mutex_lock(&mtd_table_mutex);
1080 
1081 	module_put(THIS_MODULE);
1082 
1083 	mtd_for_each_device(mtd)
1084 		old->remove(mtd);
1085 
1086 	list_del(&old->list);
1087 	mutex_unlock(&mtd_table_mutex);
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1091 
1092 /**
1093  *	get_mtd_device - obtain a validated handle for an MTD device
1094  *	@mtd: last known address of the required MTD device
1095  *	@num: internal device number of the required MTD device
1096  *
1097  *	Given a number and NULL address, return the num'th entry in the device
1098  *	table, if any.	Given an address and num == -1, search the device table
1099  *	for a device with that address and return if it's still present. Given
1100  *	both, return the num'th driver only if its address matches. Return
1101  *	error code if not.
1102  */
1103 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1104 {
1105 	struct mtd_info *ret = NULL, *other;
1106 	int err = -ENODEV;
1107 
1108 	mutex_lock(&mtd_table_mutex);
1109 
1110 	if (num == -1) {
1111 		mtd_for_each_device(other) {
1112 			if (other == mtd) {
1113 				ret = mtd;
1114 				break;
1115 			}
1116 		}
1117 	} else if (num >= 0) {
1118 		ret = idr_find(&mtd_idr, num);
1119 		if (mtd && mtd != ret)
1120 			ret = NULL;
1121 	}
1122 
1123 	if (!ret) {
1124 		ret = ERR_PTR(err);
1125 		goto out;
1126 	}
1127 
1128 	err = __get_mtd_device(ret);
1129 	if (err)
1130 		ret = ERR_PTR(err);
1131 out:
1132 	mutex_unlock(&mtd_table_mutex);
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL_GPL(get_mtd_device);
1136 
1137 
1138 int __get_mtd_device(struct mtd_info *mtd)
1139 {
1140 	struct mtd_info *master = mtd_get_master(mtd);
1141 	int err;
1142 
1143 	if (!try_module_get(master->owner))
1144 		return -ENODEV;
1145 
1146 	if (master->_get_device) {
1147 		err = master->_get_device(mtd);
1148 
1149 		if (err) {
1150 			module_put(master->owner);
1151 			return err;
1152 		}
1153 	}
1154 
1155 	master->usecount++;
1156 
1157 	while (mtd->parent) {
1158 		mtd->usecount++;
1159 		mtd = mtd->parent;
1160 	}
1161 
1162 	return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(__get_mtd_device);
1165 
1166 /**
1167  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1168  *	device name
1169  *	@name: MTD device name to open
1170  *
1171  * 	This function returns MTD device description structure in case of
1172  * 	success and an error code in case of failure.
1173  */
1174 struct mtd_info *get_mtd_device_nm(const char *name)
1175 {
1176 	int err = -ENODEV;
1177 	struct mtd_info *mtd = NULL, *other;
1178 
1179 	mutex_lock(&mtd_table_mutex);
1180 
1181 	mtd_for_each_device(other) {
1182 		if (!strcmp(name, other->name)) {
1183 			mtd = other;
1184 			break;
1185 		}
1186 	}
1187 
1188 	if (!mtd)
1189 		goto out_unlock;
1190 
1191 	err = __get_mtd_device(mtd);
1192 	if (err)
1193 		goto out_unlock;
1194 
1195 	mutex_unlock(&mtd_table_mutex);
1196 	return mtd;
1197 
1198 out_unlock:
1199 	mutex_unlock(&mtd_table_mutex);
1200 	return ERR_PTR(err);
1201 }
1202 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1203 
1204 void put_mtd_device(struct mtd_info *mtd)
1205 {
1206 	mutex_lock(&mtd_table_mutex);
1207 	__put_mtd_device(mtd);
1208 	mutex_unlock(&mtd_table_mutex);
1209 
1210 }
1211 EXPORT_SYMBOL_GPL(put_mtd_device);
1212 
1213 void __put_mtd_device(struct mtd_info *mtd)
1214 {
1215 	struct mtd_info *master = mtd_get_master(mtd);
1216 
1217 	while (mtd->parent) {
1218 		--mtd->usecount;
1219 		BUG_ON(mtd->usecount < 0);
1220 		mtd = mtd->parent;
1221 	}
1222 
1223 	master->usecount--;
1224 
1225 	if (master->_put_device)
1226 		master->_put_device(master);
1227 
1228 	module_put(master->owner);
1229 }
1230 EXPORT_SYMBOL_GPL(__put_mtd_device);
1231 
1232 /*
1233  * Erase is an synchronous operation. Device drivers are epected to return a
1234  * negative error code if the operation failed and update instr->fail_addr
1235  * to point the portion that was not properly erased.
1236  */
1237 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1238 {
1239 	struct mtd_info *master = mtd_get_master(mtd);
1240 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1241 	struct erase_info adjinstr;
1242 	int ret;
1243 
1244 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1245 	adjinstr = *instr;
1246 
1247 	if (!mtd->erasesize || !master->_erase)
1248 		return -ENOTSUPP;
1249 
1250 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1251 		return -EINVAL;
1252 	if (!(mtd->flags & MTD_WRITEABLE))
1253 		return -EROFS;
1254 
1255 	if (!instr->len)
1256 		return 0;
1257 
1258 	ledtrig_mtd_activity();
1259 
1260 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1261 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1262 				master->erasesize;
1263 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1264 				master->erasesize) -
1265 			       adjinstr.addr;
1266 	}
1267 
1268 	adjinstr.addr += mst_ofs;
1269 
1270 	ret = master->_erase(master, &adjinstr);
1271 
1272 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1273 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1274 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1275 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1276 							 master);
1277 			instr->fail_addr *= mtd->erasesize;
1278 		}
1279 	}
1280 
1281 	return ret;
1282 }
1283 EXPORT_SYMBOL_GPL(mtd_erase);
1284 
1285 /*
1286  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1287  */
1288 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1289 	      void **virt, resource_size_t *phys)
1290 {
1291 	struct mtd_info *master = mtd_get_master(mtd);
1292 
1293 	*retlen = 0;
1294 	*virt = NULL;
1295 	if (phys)
1296 		*phys = 0;
1297 	if (!master->_point)
1298 		return -EOPNOTSUPP;
1299 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1300 		return -EINVAL;
1301 	if (!len)
1302 		return 0;
1303 
1304 	from = mtd_get_master_ofs(mtd, from);
1305 	return master->_point(master, from, len, retlen, virt, phys);
1306 }
1307 EXPORT_SYMBOL_GPL(mtd_point);
1308 
1309 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1310 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1311 {
1312 	struct mtd_info *master = mtd_get_master(mtd);
1313 
1314 	if (!master->_unpoint)
1315 		return -EOPNOTSUPP;
1316 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1317 		return -EINVAL;
1318 	if (!len)
1319 		return 0;
1320 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1321 }
1322 EXPORT_SYMBOL_GPL(mtd_unpoint);
1323 
1324 /*
1325  * Allow NOMMU mmap() to directly map the device (if not NULL)
1326  * - return the address to which the offset maps
1327  * - return -ENOSYS to indicate refusal to do the mapping
1328  */
1329 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1330 				    unsigned long offset, unsigned long flags)
1331 {
1332 	size_t retlen;
1333 	void *virt;
1334 	int ret;
1335 
1336 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1337 	if (ret)
1338 		return ret;
1339 	if (retlen != len) {
1340 		mtd_unpoint(mtd, offset, retlen);
1341 		return -ENOSYS;
1342 	}
1343 	return (unsigned long)virt;
1344 }
1345 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1346 
1347 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1348 				 const struct mtd_ecc_stats *old_stats)
1349 {
1350 	struct mtd_ecc_stats diff;
1351 
1352 	if (master == mtd)
1353 		return;
1354 
1355 	diff = master->ecc_stats;
1356 	diff.failed -= old_stats->failed;
1357 	diff.corrected -= old_stats->corrected;
1358 
1359 	while (mtd->parent) {
1360 		mtd->ecc_stats.failed += diff.failed;
1361 		mtd->ecc_stats.corrected += diff.corrected;
1362 		mtd = mtd->parent;
1363 	}
1364 }
1365 
1366 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1367 	     u_char *buf)
1368 {
1369 	struct mtd_oob_ops ops = {
1370 		.len = len,
1371 		.datbuf = buf,
1372 	};
1373 	int ret;
1374 
1375 	ret = mtd_read_oob(mtd, from, &ops);
1376 	*retlen = ops.retlen;
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL_GPL(mtd_read);
1381 
1382 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1383 	      const u_char *buf)
1384 {
1385 	struct mtd_oob_ops ops = {
1386 		.len = len,
1387 		.datbuf = (u8 *)buf,
1388 	};
1389 	int ret;
1390 
1391 	ret = mtd_write_oob(mtd, to, &ops);
1392 	*retlen = ops.retlen;
1393 
1394 	return ret;
1395 }
1396 EXPORT_SYMBOL_GPL(mtd_write);
1397 
1398 /*
1399  * In blackbox flight recorder like scenarios we want to make successful writes
1400  * in interrupt context. panic_write() is only intended to be called when its
1401  * known the kernel is about to panic and we need the write to succeed. Since
1402  * the kernel is not going to be running for much longer, this function can
1403  * break locks and delay to ensure the write succeeds (but not sleep).
1404  */
1405 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1406 		    const u_char *buf)
1407 {
1408 	struct mtd_info *master = mtd_get_master(mtd);
1409 
1410 	*retlen = 0;
1411 	if (!master->_panic_write)
1412 		return -EOPNOTSUPP;
1413 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1414 		return -EINVAL;
1415 	if (!(mtd->flags & MTD_WRITEABLE))
1416 		return -EROFS;
1417 	if (!len)
1418 		return 0;
1419 	if (!master->oops_panic_write)
1420 		master->oops_panic_write = true;
1421 
1422 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1423 				    retlen, buf);
1424 }
1425 EXPORT_SYMBOL_GPL(mtd_panic_write);
1426 
1427 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1428 			     struct mtd_oob_ops *ops)
1429 {
1430 	/*
1431 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1432 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1433 	 *  this case.
1434 	 */
1435 	if (!ops->datbuf)
1436 		ops->len = 0;
1437 
1438 	if (!ops->oobbuf)
1439 		ops->ooblen = 0;
1440 
1441 	if (offs < 0 || offs + ops->len > mtd->size)
1442 		return -EINVAL;
1443 
1444 	if (ops->ooblen) {
1445 		size_t maxooblen;
1446 
1447 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1448 			return -EINVAL;
1449 
1450 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1451 				      mtd_div_by_ws(offs, mtd)) *
1452 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1453 		if (ops->ooblen > maxooblen)
1454 			return -EINVAL;
1455 	}
1456 
1457 	return 0;
1458 }
1459 
1460 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1461 			    struct mtd_oob_ops *ops)
1462 {
1463 	struct mtd_info *master = mtd_get_master(mtd);
1464 	int ret;
1465 
1466 	from = mtd_get_master_ofs(mtd, from);
1467 	if (master->_read_oob)
1468 		ret = master->_read_oob(master, from, ops);
1469 	else
1470 		ret = master->_read(master, from, ops->len, &ops->retlen,
1471 				    ops->datbuf);
1472 
1473 	return ret;
1474 }
1475 
1476 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1477 			     struct mtd_oob_ops *ops)
1478 {
1479 	struct mtd_info *master = mtd_get_master(mtd);
1480 	int ret;
1481 
1482 	to = mtd_get_master_ofs(mtd, to);
1483 	if (master->_write_oob)
1484 		ret = master->_write_oob(master, to, ops);
1485 	else
1486 		ret = master->_write(master, to, ops->len, &ops->retlen,
1487 				     ops->datbuf);
1488 
1489 	return ret;
1490 }
1491 
1492 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1493 			       struct mtd_oob_ops *ops)
1494 {
1495 	struct mtd_info *master = mtd_get_master(mtd);
1496 	int ngroups = mtd_pairing_groups(master);
1497 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1498 	struct mtd_oob_ops adjops = *ops;
1499 	unsigned int wunit, oobavail;
1500 	struct mtd_pairing_info info;
1501 	int max_bitflips = 0;
1502 	u32 ebofs, pageofs;
1503 	loff_t base, pos;
1504 
1505 	ebofs = mtd_mod_by_eb(start, mtd);
1506 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1507 	info.group = 0;
1508 	info.pair = mtd_div_by_ws(ebofs, mtd);
1509 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1510 	oobavail = mtd_oobavail(mtd, ops);
1511 
1512 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1513 		int ret;
1514 
1515 		if (info.pair >= npairs) {
1516 			info.pair = 0;
1517 			base += master->erasesize;
1518 		}
1519 
1520 		wunit = mtd_pairing_info_to_wunit(master, &info);
1521 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1522 
1523 		adjops.len = ops->len - ops->retlen;
1524 		if (adjops.len > mtd->writesize - pageofs)
1525 			adjops.len = mtd->writesize - pageofs;
1526 
1527 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1528 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1529 			adjops.ooblen = oobavail - adjops.ooboffs;
1530 
1531 		if (read) {
1532 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1533 			if (ret > 0)
1534 				max_bitflips = max(max_bitflips, ret);
1535 		} else {
1536 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1537 		}
1538 
1539 		if (ret < 0)
1540 			return ret;
1541 
1542 		max_bitflips = max(max_bitflips, ret);
1543 		ops->retlen += adjops.retlen;
1544 		ops->oobretlen += adjops.oobretlen;
1545 		adjops.datbuf += adjops.retlen;
1546 		adjops.oobbuf += adjops.oobretlen;
1547 		adjops.ooboffs = 0;
1548 		pageofs = 0;
1549 		info.pair++;
1550 	}
1551 
1552 	return max_bitflips;
1553 }
1554 
1555 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1556 {
1557 	struct mtd_info *master = mtd_get_master(mtd);
1558 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1559 	int ret_code;
1560 
1561 	ops->retlen = ops->oobretlen = 0;
1562 
1563 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1564 	if (ret_code)
1565 		return ret_code;
1566 
1567 	ledtrig_mtd_activity();
1568 
1569 	/* Check the validity of a potential fallback on mtd->_read */
1570 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1571 		return -EOPNOTSUPP;
1572 
1573 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1574 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1575 	else
1576 		ret_code = mtd_read_oob_std(mtd, from, ops);
1577 
1578 	mtd_update_ecc_stats(mtd, master, &old_stats);
1579 
1580 	/*
1581 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1582 	 * similar to mtd->_read(), returning a non-negative integer
1583 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1584 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1585 	 */
1586 	if (unlikely(ret_code < 0))
1587 		return ret_code;
1588 	if (mtd->ecc_strength == 0)
1589 		return 0;	/* device lacks ecc */
1590 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1591 }
1592 EXPORT_SYMBOL_GPL(mtd_read_oob);
1593 
1594 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1595 				struct mtd_oob_ops *ops)
1596 {
1597 	struct mtd_info *master = mtd_get_master(mtd);
1598 	int ret;
1599 
1600 	ops->retlen = ops->oobretlen = 0;
1601 
1602 	if (!(mtd->flags & MTD_WRITEABLE))
1603 		return -EROFS;
1604 
1605 	ret = mtd_check_oob_ops(mtd, to, ops);
1606 	if (ret)
1607 		return ret;
1608 
1609 	ledtrig_mtd_activity();
1610 
1611 	/* Check the validity of a potential fallback on mtd->_write */
1612 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1613 		return -EOPNOTSUPP;
1614 
1615 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1616 		return mtd_io_emulated_slc(mtd, to, false, ops);
1617 
1618 	return mtd_write_oob_std(mtd, to, ops);
1619 }
1620 EXPORT_SYMBOL_GPL(mtd_write_oob);
1621 
1622 /**
1623  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1624  * @mtd: MTD device structure
1625  * @section: ECC section. Depending on the layout you may have all the ECC
1626  *	     bytes stored in a single contiguous section, or one section
1627  *	     per ECC chunk (and sometime several sections for a single ECC
1628  *	     ECC chunk)
1629  * @oobecc: OOB region struct filled with the appropriate ECC position
1630  *	    information
1631  *
1632  * This function returns ECC section information in the OOB area. If you want
1633  * to get all the ECC bytes information, then you should call
1634  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1635  *
1636  * Returns zero on success, a negative error code otherwise.
1637  */
1638 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1639 		      struct mtd_oob_region *oobecc)
1640 {
1641 	struct mtd_info *master = mtd_get_master(mtd);
1642 
1643 	memset(oobecc, 0, sizeof(*oobecc));
1644 
1645 	if (!master || section < 0)
1646 		return -EINVAL;
1647 
1648 	if (!master->ooblayout || !master->ooblayout->ecc)
1649 		return -ENOTSUPP;
1650 
1651 	return master->ooblayout->ecc(master, section, oobecc);
1652 }
1653 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1654 
1655 /**
1656  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1657  *			section
1658  * @mtd: MTD device structure
1659  * @section: Free section you are interested in. Depending on the layout
1660  *	     you may have all the free bytes stored in a single contiguous
1661  *	     section, or one section per ECC chunk plus an extra section
1662  *	     for the remaining bytes (or other funky layout).
1663  * @oobfree: OOB region struct filled with the appropriate free position
1664  *	     information
1665  *
1666  * This function returns free bytes position in the OOB area. If you want
1667  * to get all the free bytes information, then you should call
1668  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1669  *
1670  * Returns zero on success, a negative error code otherwise.
1671  */
1672 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1673 		       struct mtd_oob_region *oobfree)
1674 {
1675 	struct mtd_info *master = mtd_get_master(mtd);
1676 
1677 	memset(oobfree, 0, sizeof(*oobfree));
1678 
1679 	if (!master || section < 0)
1680 		return -EINVAL;
1681 
1682 	if (!master->ooblayout || !master->ooblayout->free)
1683 		return -ENOTSUPP;
1684 
1685 	return master->ooblayout->free(master, section, oobfree);
1686 }
1687 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1688 
1689 /**
1690  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1691  * @mtd: mtd info structure
1692  * @byte: the byte we are searching for
1693  * @sectionp: pointer where the section id will be stored
1694  * @oobregion: used to retrieve the ECC position
1695  * @iter: iterator function. Should be either mtd_ooblayout_free or
1696  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1697  *
1698  * This function returns the section id and oobregion information of a
1699  * specific byte. For example, say you want to know where the 4th ECC byte is
1700  * stored, you'll use:
1701  *
1702  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1703  *
1704  * Returns zero on success, a negative error code otherwise.
1705  */
1706 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1707 				int *sectionp, struct mtd_oob_region *oobregion,
1708 				int (*iter)(struct mtd_info *,
1709 					    int section,
1710 					    struct mtd_oob_region *oobregion))
1711 {
1712 	int pos = 0, ret, section = 0;
1713 
1714 	memset(oobregion, 0, sizeof(*oobregion));
1715 
1716 	while (1) {
1717 		ret = iter(mtd, section, oobregion);
1718 		if (ret)
1719 			return ret;
1720 
1721 		if (pos + oobregion->length > byte)
1722 			break;
1723 
1724 		pos += oobregion->length;
1725 		section++;
1726 	}
1727 
1728 	/*
1729 	 * Adjust region info to make it start at the beginning at the
1730 	 * 'start' ECC byte.
1731 	 */
1732 	oobregion->offset += byte - pos;
1733 	oobregion->length -= byte - pos;
1734 	*sectionp = section;
1735 
1736 	return 0;
1737 }
1738 
1739 /**
1740  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1741  *				  ECC byte
1742  * @mtd: mtd info structure
1743  * @eccbyte: the byte we are searching for
1744  * @section: pointer where the section id will be stored
1745  * @oobregion: OOB region information
1746  *
1747  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1748  * byte.
1749  *
1750  * Returns zero on success, a negative error code otherwise.
1751  */
1752 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1753 				 int *section,
1754 				 struct mtd_oob_region *oobregion)
1755 {
1756 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1757 					 mtd_ooblayout_ecc);
1758 }
1759 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1760 
1761 /**
1762  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1763  * @mtd: mtd info structure
1764  * @buf: destination buffer to store OOB bytes
1765  * @oobbuf: OOB buffer
1766  * @start: first byte to retrieve
1767  * @nbytes: number of bytes to retrieve
1768  * @iter: section iterator
1769  *
1770  * Extract bytes attached to a specific category (ECC or free)
1771  * from the OOB buffer and copy them into buf.
1772  *
1773  * Returns zero on success, a negative error code otherwise.
1774  */
1775 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1776 				const u8 *oobbuf, int start, int nbytes,
1777 				int (*iter)(struct mtd_info *,
1778 					    int section,
1779 					    struct mtd_oob_region *oobregion))
1780 {
1781 	struct mtd_oob_region oobregion;
1782 	int section, ret;
1783 
1784 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1785 					&oobregion, iter);
1786 
1787 	while (!ret) {
1788 		int cnt;
1789 
1790 		cnt = min_t(int, nbytes, oobregion.length);
1791 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1792 		buf += cnt;
1793 		nbytes -= cnt;
1794 
1795 		if (!nbytes)
1796 			break;
1797 
1798 		ret = iter(mtd, ++section, &oobregion);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 /**
1805  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1806  * @mtd: mtd info structure
1807  * @buf: source buffer to get OOB bytes from
1808  * @oobbuf: OOB buffer
1809  * @start: first OOB byte to set
1810  * @nbytes: number of OOB bytes to set
1811  * @iter: section iterator
1812  *
1813  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1814  * is selected by passing the appropriate iterator.
1815  *
1816  * Returns zero on success, a negative error code otherwise.
1817  */
1818 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1819 				u8 *oobbuf, int start, int nbytes,
1820 				int (*iter)(struct mtd_info *,
1821 					    int section,
1822 					    struct mtd_oob_region *oobregion))
1823 {
1824 	struct mtd_oob_region oobregion;
1825 	int section, ret;
1826 
1827 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1828 					&oobregion, iter);
1829 
1830 	while (!ret) {
1831 		int cnt;
1832 
1833 		cnt = min_t(int, nbytes, oobregion.length);
1834 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1835 		buf += cnt;
1836 		nbytes -= cnt;
1837 
1838 		if (!nbytes)
1839 			break;
1840 
1841 		ret = iter(mtd, ++section, &oobregion);
1842 	}
1843 
1844 	return ret;
1845 }
1846 
1847 /**
1848  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1849  * @mtd: mtd info structure
1850  * @iter: category iterator
1851  *
1852  * Count the number of bytes in a given category.
1853  *
1854  * Returns a positive value on success, a negative error code otherwise.
1855  */
1856 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1857 				int (*iter)(struct mtd_info *,
1858 					    int section,
1859 					    struct mtd_oob_region *oobregion))
1860 {
1861 	struct mtd_oob_region oobregion;
1862 	int section = 0, ret, nbytes = 0;
1863 
1864 	while (1) {
1865 		ret = iter(mtd, section++, &oobregion);
1866 		if (ret) {
1867 			if (ret == -ERANGE)
1868 				ret = nbytes;
1869 			break;
1870 		}
1871 
1872 		nbytes += oobregion.length;
1873 	}
1874 
1875 	return ret;
1876 }
1877 
1878 /**
1879  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1880  * @mtd: mtd info structure
1881  * @eccbuf: destination buffer to store ECC bytes
1882  * @oobbuf: OOB buffer
1883  * @start: first ECC byte to retrieve
1884  * @nbytes: number of ECC bytes to retrieve
1885  *
1886  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1887  *
1888  * Returns zero on success, a negative error code otherwise.
1889  */
1890 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1891 			       const u8 *oobbuf, int start, int nbytes)
1892 {
1893 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1894 				       mtd_ooblayout_ecc);
1895 }
1896 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1897 
1898 /**
1899  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1900  * @mtd: mtd info structure
1901  * @eccbuf: source buffer to get ECC bytes from
1902  * @oobbuf: OOB buffer
1903  * @start: first ECC byte to set
1904  * @nbytes: number of ECC bytes to set
1905  *
1906  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1907  *
1908  * Returns zero on success, a negative error code otherwise.
1909  */
1910 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1911 			       u8 *oobbuf, int start, int nbytes)
1912 {
1913 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1914 				       mtd_ooblayout_ecc);
1915 }
1916 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1917 
1918 /**
1919  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1920  * @mtd: mtd info structure
1921  * @databuf: destination buffer to store ECC bytes
1922  * @oobbuf: OOB buffer
1923  * @start: first ECC byte to retrieve
1924  * @nbytes: number of ECC bytes to retrieve
1925  *
1926  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1927  *
1928  * Returns zero on success, a negative error code otherwise.
1929  */
1930 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1931 				const u8 *oobbuf, int start, int nbytes)
1932 {
1933 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1934 				       mtd_ooblayout_free);
1935 }
1936 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1937 
1938 /**
1939  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1940  * @mtd: mtd info structure
1941  * @databuf: source buffer to get data bytes from
1942  * @oobbuf: OOB buffer
1943  * @start: first ECC byte to set
1944  * @nbytes: number of ECC bytes to set
1945  *
1946  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1947  *
1948  * Returns zero on success, a negative error code otherwise.
1949  */
1950 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1951 				u8 *oobbuf, int start, int nbytes)
1952 {
1953 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1954 				       mtd_ooblayout_free);
1955 }
1956 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1957 
1958 /**
1959  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1960  * @mtd: mtd info structure
1961  *
1962  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1963  *
1964  * Returns zero on success, a negative error code otherwise.
1965  */
1966 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1967 {
1968 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1969 }
1970 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1971 
1972 /**
1973  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1974  * @mtd: mtd info structure
1975  *
1976  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1977  *
1978  * Returns zero on success, a negative error code otherwise.
1979  */
1980 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1981 {
1982 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1983 }
1984 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1985 
1986 /*
1987  * Method to access the protection register area, present in some flash
1988  * devices. The user data is one time programmable but the factory data is read
1989  * only.
1990  */
1991 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1992 			   struct otp_info *buf)
1993 {
1994 	struct mtd_info *master = mtd_get_master(mtd);
1995 
1996 	if (!master->_get_fact_prot_info)
1997 		return -EOPNOTSUPP;
1998 	if (!len)
1999 		return 0;
2000 	return master->_get_fact_prot_info(master, len, retlen, buf);
2001 }
2002 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2003 
2004 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2005 			   size_t *retlen, u_char *buf)
2006 {
2007 	struct mtd_info *master = mtd_get_master(mtd);
2008 
2009 	*retlen = 0;
2010 	if (!master->_read_fact_prot_reg)
2011 		return -EOPNOTSUPP;
2012 	if (!len)
2013 		return 0;
2014 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2015 }
2016 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2017 
2018 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2019 			   struct otp_info *buf)
2020 {
2021 	struct mtd_info *master = mtd_get_master(mtd);
2022 
2023 	if (!master->_get_user_prot_info)
2024 		return -EOPNOTSUPP;
2025 	if (!len)
2026 		return 0;
2027 	return master->_get_user_prot_info(master, len, retlen, buf);
2028 }
2029 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2030 
2031 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2032 			   size_t *retlen, u_char *buf)
2033 {
2034 	struct mtd_info *master = mtd_get_master(mtd);
2035 
2036 	*retlen = 0;
2037 	if (!master->_read_user_prot_reg)
2038 		return -EOPNOTSUPP;
2039 	if (!len)
2040 		return 0;
2041 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2042 }
2043 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2044 
2045 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2046 			    size_t *retlen, const u_char *buf)
2047 {
2048 	struct mtd_info *master = mtd_get_master(mtd);
2049 	int ret;
2050 
2051 	*retlen = 0;
2052 	if (!master->_write_user_prot_reg)
2053 		return -EOPNOTSUPP;
2054 	if (!len)
2055 		return 0;
2056 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2057 	if (ret)
2058 		return ret;
2059 
2060 	/*
2061 	 * If no data could be written at all, we are out of memory and
2062 	 * must return -ENOSPC.
2063 	 */
2064 	return (*retlen) ? 0 : -ENOSPC;
2065 }
2066 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2067 
2068 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2069 {
2070 	struct mtd_info *master = mtd_get_master(mtd);
2071 
2072 	if (!master->_lock_user_prot_reg)
2073 		return -EOPNOTSUPP;
2074 	if (!len)
2075 		return 0;
2076 	return master->_lock_user_prot_reg(master, from, len);
2077 }
2078 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2079 
2080 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2081 {
2082 	struct mtd_info *master = mtd_get_master(mtd);
2083 
2084 	if (!master->_erase_user_prot_reg)
2085 		return -EOPNOTSUPP;
2086 	if (!len)
2087 		return 0;
2088 	return master->_erase_user_prot_reg(master, from, len);
2089 }
2090 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2091 
2092 /* Chip-supported device locking */
2093 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2094 {
2095 	struct mtd_info *master = mtd_get_master(mtd);
2096 
2097 	if (!master->_lock)
2098 		return -EOPNOTSUPP;
2099 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2100 		return -EINVAL;
2101 	if (!len)
2102 		return 0;
2103 
2104 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2105 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2106 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2107 	}
2108 
2109 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2110 }
2111 EXPORT_SYMBOL_GPL(mtd_lock);
2112 
2113 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2114 {
2115 	struct mtd_info *master = mtd_get_master(mtd);
2116 
2117 	if (!master->_unlock)
2118 		return -EOPNOTSUPP;
2119 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2120 		return -EINVAL;
2121 	if (!len)
2122 		return 0;
2123 
2124 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2125 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2126 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2127 	}
2128 
2129 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2130 }
2131 EXPORT_SYMBOL_GPL(mtd_unlock);
2132 
2133 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2134 {
2135 	struct mtd_info *master = mtd_get_master(mtd);
2136 
2137 	if (!master->_is_locked)
2138 		return -EOPNOTSUPP;
2139 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2140 		return -EINVAL;
2141 	if (!len)
2142 		return 0;
2143 
2144 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2145 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2146 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2147 	}
2148 
2149 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2150 }
2151 EXPORT_SYMBOL_GPL(mtd_is_locked);
2152 
2153 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2154 {
2155 	struct mtd_info *master = mtd_get_master(mtd);
2156 
2157 	if (ofs < 0 || ofs >= mtd->size)
2158 		return -EINVAL;
2159 	if (!master->_block_isreserved)
2160 		return 0;
2161 
2162 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2163 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2164 
2165 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2166 }
2167 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2168 
2169 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2170 {
2171 	struct mtd_info *master = mtd_get_master(mtd);
2172 
2173 	if (ofs < 0 || ofs >= mtd->size)
2174 		return -EINVAL;
2175 	if (!master->_block_isbad)
2176 		return 0;
2177 
2178 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2179 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2180 
2181 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2182 }
2183 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2184 
2185 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2186 {
2187 	struct mtd_info *master = mtd_get_master(mtd);
2188 	int ret;
2189 
2190 	if (!master->_block_markbad)
2191 		return -EOPNOTSUPP;
2192 	if (ofs < 0 || ofs >= mtd->size)
2193 		return -EINVAL;
2194 	if (!(mtd->flags & MTD_WRITEABLE))
2195 		return -EROFS;
2196 
2197 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2198 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2199 
2200 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2201 	if (ret)
2202 		return ret;
2203 
2204 	while (mtd->parent) {
2205 		mtd->ecc_stats.badblocks++;
2206 		mtd = mtd->parent;
2207 	}
2208 
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2212 
2213 /*
2214  * default_mtd_writev - the default writev method
2215  * @mtd: mtd device description object pointer
2216  * @vecs: the vectors to write
2217  * @count: count of vectors in @vecs
2218  * @to: the MTD device offset to write to
2219  * @retlen: on exit contains the count of bytes written to the MTD device.
2220  *
2221  * This function returns zero in case of success and a negative error code in
2222  * case of failure.
2223  */
2224 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2225 			      unsigned long count, loff_t to, size_t *retlen)
2226 {
2227 	unsigned long i;
2228 	size_t totlen = 0, thislen;
2229 	int ret = 0;
2230 
2231 	for (i = 0; i < count; i++) {
2232 		if (!vecs[i].iov_len)
2233 			continue;
2234 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2235 				vecs[i].iov_base);
2236 		totlen += thislen;
2237 		if (ret || thislen != vecs[i].iov_len)
2238 			break;
2239 		to += vecs[i].iov_len;
2240 	}
2241 	*retlen = totlen;
2242 	return ret;
2243 }
2244 
2245 /*
2246  * mtd_writev - the vector-based MTD write method
2247  * @mtd: mtd device description object pointer
2248  * @vecs: the vectors to write
2249  * @count: count of vectors in @vecs
2250  * @to: the MTD device offset to write to
2251  * @retlen: on exit contains the count of bytes written to the MTD device.
2252  *
2253  * This function returns zero in case of success and a negative error code in
2254  * case of failure.
2255  */
2256 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2257 	       unsigned long count, loff_t to, size_t *retlen)
2258 {
2259 	struct mtd_info *master = mtd_get_master(mtd);
2260 
2261 	*retlen = 0;
2262 	if (!(mtd->flags & MTD_WRITEABLE))
2263 		return -EROFS;
2264 
2265 	if (!master->_writev)
2266 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2267 
2268 	return master->_writev(master, vecs, count,
2269 			       mtd_get_master_ofs(mtd, to), retlen);
2270 }
2271 EXPORT_SYMBOL_GPL(mtd_writev);
2272 
2273 /**
2274  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2275  * @mtd: mtd device description object pointer
2276  * @size: a pointer to the ideal or maximum size of the allocation, points
2277  *        to the actual allocation size on success.
2278  *
2279  * This routine attempts to allocate a contiguous kernel buffer up to
2280  * the specified size, backing off the size of the request exponentially
2281  * until the request succeeds or until the allocation size falls below
2282  * the system page size. This attempts to make sure it does not adversely
2283  * impact system performance, so when allocating more than one page, we
2284  * ask the memory allocator to avoid re-trying, swapping, writing back
2285  * or performing I/O.
2286  *
2287  * Note, this function also makes sure that the allocated buffer is aligned to
2288  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2289  *
2290  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2291  * to handle smaller (i.e. degraded) buffer allocations under low- or
2292  * fragmented-memory situations where such reduced allocations, from a
2293  * requested ideal, are allowed.
2294  *
2295  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2296  */
2297 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2298 {
2299 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2300 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2301 	void *kbuf;
2302 
2303 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2304 
2305 	while (*size > min_alloc) {
2306 		kbuf = kmalloc(*size, flags);
2307 		if (kbuf)
2308 			return kbuf;
2309 
2310 		*size >>= 1;
2311 		*size = ALIGN(*size, mtd->writesize);
2312 	}
2313 
2314 	/*
2315 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2316 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2317 	 */
2318 	return kmalloc(*size, GFP_KERNEL);
2319 }
2320 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2321 
2322 #ifdef CONFIG_PROC_FS
2323 
2324 /*====================================================================*/
2325 /* Support for /proc/mtd */
2326 
2327 static int mtd_proc_show(struct seq_file *m, void *v)
2328 {
2329 	struct mtd_info *mtd;
2330 
2331 	seq_puts(m, "dev:    size   erasesize  name\n");
2332 	mutex_lock(&mtd_table_mutex);
2333 	mtd_for_each_device(mtd) {
2334 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2335 			   mtd->index, (unsigned long long)mtd->size,
2336 			   mtd->erasesize, mtd->name);
2337 	}
2338 	mutex_unlock(&mtd_table_mutex);
2339 	return 0;
2340 }
2341 #endif /* CONFIG_PROC_FS */
2342 
2343 /*====================================================================*/
2344 /* Init code */
2345 
2346 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2347 {
2348 	struct backing_dev_info *bdi;
2349 	int ret;
2350 
2351 	bdi = bdi_alloc(NUMA_NO_NODE);
2352 	if (!bdi)
2353 		return ERR_PTR(-ENOMEM);
2354 	bdi->ra_pages = 0;
2355 	bdi->io_pages = 0;
2356 
2357 	/*
2358 	 * We put '-0' suffix to the name to get the same name format as we
2359 	 * used to get. Since this is called only once, we get a unique name.
2360 	 */
2361 	ret = bdi_register(bdi, "%.28s-0", name);
2362 	if (ret)
2363 		bdi_put(bdi);
2364 
2365 	return ret ? ERR_PTR(ret) : bdi;
2366 }
2367 
2368 static struct proc_dir_entry *proc_mtd;
2369 
2370 static int __init init_mtd(void)
2371 {
2372 	int ret;
2373 
2374 	ret = class_register(&mtd_class);
2375 	if (ret)
2376 		goto err_reg;
2377 
2378 	mtd_bdi = mtd_bdi_init("mtd");
2379 	if (IS_ERR(mtd_bdi)) {
2380 		ret = PTR_ERR(mtd_bdi);
2381 		goto err_bdi;
2382 	}
2383 
2384 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2385 
2386 	ret = init_mtdchar();
2387 	if (ret)
2388 		goto out_procfs;
2389 
2390 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2391 
2392 	return 0;
2393 
2394 out_procfs:
2395 	if (proc_mtd)
2396 		remove_proc_entry("mtd", NULL);
2397 	bdi_put(mtd_bdi);
2398 err_bdi:
2399 	class_unregister(&mtd_class);
2400 err_reg:
2401 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2402 	return ret;
2403 }
2404 
2405 static void __exit cleanup_mtd(void)
2406 {
2407 	debugfs_remove_recursive(dfs_dir_mtd);
2408 	cleanup_mtdchar();
2409 	if (proc_mtd)
2410 		remove_proc_entry("mtd", NULL);
2411 	class_unregister(&mtd_class);
2412 	bdi_put(mtd_bdi);
2413 	idr_destroy(&mtd_idr);
2414 }
2415 
2416 module_init(init_mtd);
2417 module_exit(cleanup_mtd);
2418 
2419 MODULE_LICENSE("GPL");
2420 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2421 MODULE_DESCRIPTION("Core MTD registration and access routines");
2422