1 /* 2 * MTD device concatenation layer 3 * 4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * 6 * NAND support by Christian Gan <cgan@iders.ca> 7 * 8 * This code is GPL 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/types.h> 16 #include <linux/backing-dev.h> 17 18 #include <linux/mtd/mtd.h> 19 #include <linux/mtd/concat.h> 20 21 #include <asm/div64.h> 22 23 /* 24 * Our storage structure: 25 * Subdev points to an array of pointers to struct mtd_info objects 26 * which is allocated along with this structure 27 * 28 */ 29 struct mtd_concat { 30 struct mtd_info mtd; 31 int num_subdev; 32 struct mtd_info **subdev; 33 }; 34 35 /* 36 * how to calculate the size required for the above structure, 37 * including the pointer array subdev points to: 38 */ 39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 40 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 41 42 /* 43 * Given a pointer to the MTD object in the mtd_concat structure, 44 * we can retrieve the pointer to that structure with this macro. 45 */ 46 #define CONCAT(x) ((struct mtd_concat *)(x)) 47 48 /* 49 * MTD methods which look up the relevant subdevice, translate the 50 * effective address and pass through to the subdevice. 51 */ 52 53 static int 54 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 55 size_t * retlen, u_char * buf) 56 { 57 struct mtd_concat *concat = CONCAT(mtd); 58 int ret = 0, err; 59 int i; 60 61 *retlen = 0; 62 63 for (i = 0; i < concat->num_subdev; i++) { 64 struct mtd_info *subdev = concat->subdev[i]; 65 size_t size, retsize; 66 67 if (from >= subdev->size) { 68 /* Not destined for this subdev */ 69 size = 0; 70 from -= subdev->size; 71 continue; 72 } 73 if (from + len > subdev->size) 74 /* First part goes into this subdev */ 75 size = subdev->size - from; 76 else 77 /* Entire transaction goes into this subdev */ 78 size = len; 79 80 err = subdev->read(subdev, from, size, &retsize, buf); 81 82 /* Save information about bitflips! */ 83 if (unlikely(err)) { 84 if (err == -EBADMSG) { 85 mtd->ecc_stats.failed++; 86 ret = err; 87 } else if (err == -EUCLEAN) { 88 mtd->ecc_stats.corrected++; 89 /* Do not overwrite -EBADMSG !! */ 90 if (!ret) 91 ret = err; 92 } else 93 return err; 94 } 95 96 *retlen += retsize; 97 len -= size; 98 if (len == 0) 99 return ret; 100 101 buf += size; 102 from = 0; 103 } 104 return -EINVAL; 105 } 106 107 static int 108 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 109 size_t * retlen, const u_char * buf) 110 { 111 struct mtd_concat *concat = CONCAT(mtd); 112 int err = -EINVAL; 113 int i; 114 115 if (!(mtd->flags & MTD_WRITEABLE)) 116 return -EROFS; 117 118 *retlen = 0; 119 120 for (i = 0; i < concat->num_subdev; i++) { 121 struct mtd_info *subdev = concat->subdev[i]; 122 size_t size, retsize; 123 124 if (to >= subdev->size) { 125 size = 0; 126 to -= subdev->size; 127 continue; 128 } 129 if (to + len > subdev->size) 130 size = subdev->size - to; 131 else 132 size = len; 133 134 if (!(subdev->flags & MTD_WRITEABLE)) 135 err = -EROFS; 136 else 137 err = subdev->write(subdev, to, size, &retsize, buf); 138 139 if (err) 140 break; 141 142 *retlen += retsize; 143 len -= size; 144 if (len == 0) 145 break; 146 147 err = -EINVAL; 148 buf += size; 149 to = 0; 150 } 151 return err; 152 } 153 154 static int 155 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 156 unsigned long count, loff_t to, size_t * retlen) 157 { 158 struct mtd_concat *concat = CONCAT(mtd); 159 struct kvec *vecs_copy; 160 unsigned long entry_low, entry_high; 161 size_t total_len = 0; 162 int i; 163 int err = -EINVAL; 164 165 if (!(mtd->flags & MTD_WRITEABLE)) 166 return -EROFS; 167 168 *retlen = 0; 169 170 /* Calculate total length of data */ 171 for (i = 0; i < count; i++) 172 total_len += vecs[i].iov_len; 173 174 /* Do not allow write past end of device */ 175 if ((to + total_len) > mtd->size) 176 return -EINVAL; 177 178 /* Check alignment */ 179 if (mtd->writesize > 1) { 180 uint64_t __to = to; 181 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 182 return -EINVAL; 183 } 184 185 /* make a copy of vecs */ 186 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL); 187 if (!vecs_copy) 188 return -ENOMEM; 189 190 entry_low = 0; 191 for (i = 0; i < concat->num_subdev; i++) { 192 struct mtd_info *subdev = concat->subdev[i]; 193 size_t size, wsize, retsize, old_iov_len; 194 195 if (to >= subdev->size) { 196 to -= subdev->size; 197 continue; 198 } 199 200 size = min_t(uint64_t, total_len, subdev->size - to); 201 wsize = size; /* store for future use */ 202 203 entry_high = entry_low; 204 while (entry_high < count) { 205 if (size <= vecs_copy[entry_high].iov_len) 206 break; 207 size -= vecs_copy[entry_high++].iov_len; 208 } 209 210 old_iov_len = vecs_copy[entry_high].iov_len; 211 vecs_copy[entry_high].iov_len = size; 212 213 if (!(subdev->flags & MTD_WRITEABLE)) 214 err = -EROFS; 215 else 216 err = subdev->writev(subdev, &vecs_copy[entry_low], 217 entry_high - entry_low + 1, to, &retsize); 218 219 vecs_copy[entry_high].iov_len = old_iov_len - size; 220 vecs_copy[entry_high].iov_base += size; 221 222 entry_low = entry_high; 223 224 if (err) 225 break; 226 227 *retlen += retsize; 228 total_len -= wsize; 229 230 if (total_len == 0) 231 break; 232 233 err = -EINVAL; 234 to = 0; 235 } 236 237 kfree(vecs_copy); 238 return err; 239 } 240 241 static int 242 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 243 { 244 struct mtd_concat *concat = CONCAT(mtd); 245 struct mtd_oob_ops devops = *ops; 246 int i, err, ret = 0; 247 248 ops->retlen = ops->oobretlen = 0; 249 250 for (i = 0; i < concat->num_subdev; i++) { 251 struct mtd_info *subdev = concat->subdev[i]; 252 253 if (from >= subdev->size) { 254 from -= subdev->size; 255 continue; 256 } 257 258 /* partial read ? */ 259 if (from + devops.len > subdev->size) 260 devops.len = subdev->size - from; 261 262 err = subdev->read_oob(subdev, from, &devops); 263 ops->retlen += devops.retlen; 264 ops->oobretlen += devops.oobretlen; 265 266 /* Save information about bitflips! */ 267 if (unlikely(err)) { 268 if (err == -EBADMSG) { 269 mtd->ecc_stats.failed++; 270 ret = err; 271 } else if (err == -EUCLEAN) { 272 mtd->ecc_stats.corrected++; 273 /* Do not overwrite -EBADMSG !! */ 274 if (!ret) 275 ret = err; 276 } else 277 return err; 278 } 279 280 if (devops.datbuf) { 281 devops.len = ops->len - ops->retlen; 282 if (!devops.len) 283 return ret; 284 devops.datbuf += devops.retlen; 285 } 286 if (devops.oobbuf) { 287 devops.ooblen = ops->ooblen - ops->oobretlen; 288 if (!devops.ooblen) 289 return ret; 290 devops.oobbuf += ops->oobretlen; 291 } 292 293 from = 0; 294 } 295 return -EINVAL; 296 } 297 298 static int 299 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 300 { 301 struct mtd_concat *concat = CONCAT(mtd); 302 struct mtd_oob_ops devops = *ops; 303 int i, err; 304 305 if (!(mtd->flags & MTD_WRITEABLE)) 306 return -EROFS; 307 308 ops->retlen = 0; 309 310 for (i = 0; i < concat->num_subdev; i++) { 311 struct mtd_info *subdev = concat->subdev[i]; 312 313 if (to >= subdev->size) { 314 to -= subdev->size; 315 continue; 316 } 317 318 /* partial write ? */ 319 if (to + devops.len > subdev->size) 320 devops.len = subdev->size - to; 321 322 err = subdev->write_oob(subdev, to, &devops); 323 ops->retlen += devops.retlen; 324 if (err) 325 return err; 326 327 if (devops.datbuf) { 328 devops.len = ops->len - ops->retlen; 329 if (!devops.len) 330 return 0; 331 devops.datbuf += devops.retlen; 332 } 333 if (devops.oobbuf) { 334 devops.ooblen = ops->ooblen - ops->oobretlen; 335 if (!devops.ooblen) 336 return 0; 337 devops.oobbuf += devops.oobretlen; 338 } 339 to = 0; 340 } 341 return -EINVAL; 342 } 343 344 static void concat_erase_callback(struct erase_info *instr) 345 { 346 wake_up((wait_queue_head_t *) instr->priv); 347 } 348 349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 350 { 351 int err; 352 wait_queue_head_t waitq; 353 DECLARE_WAITQUEUE(wait, current); 354 355 /* 356 * This code was stol^H^H^H^Hinspired by mtdchar.c 357 */ 358 init_waitqueue_head(&waitq); 359 360 erase->mtd = mtd; 361 erase->callback = concat_erase_callback; 362 erase->priv = (unsigned long) &waitq; 363 364 /* 365 * FIXME: Allow INTERRUPTIBLE. Which means 366 * not having the wait_queue head on the stack. 367 */ 368 err = mtd->erase(mtd, erase); 369 if (!err) { 370 set_current_state(TASK_UNINTERRUPTIBLE); 371 add_wait_queue(&waitq, &wait); 372 if (erase->state != MTD_ERASE_DONE 373 && erase->state != MTD_ERASE_FAILED) 374 schedule(); 375 remove_wait_queue(&waitq, &wait); 376 set_current_state(TASK_RUNNING); 377 378 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 379 } 380 return err; 381 } 382 383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 384 { 385 struct mtd_concat *concat = CONCAT(mtd); 386 struct mtd_info *subdev; 387 int i, err; 388 uint64_t length, offset = 0; 389 struct erase_info *erase; 390 391 if (!(mtd->flags & MTD_WRITEABLE)) 392 return -EROFS; 393 394 if (instr->addr > concat->mtd.size) 395 return -EINVAL; 396 397 if (instr->len + instr->addr > concat->mtd.size) 398 return -EINVAL; 399 400 /* 401 * Check for proper erase block alignment of the to-be-erased area. 402 * It is easier to do this based on the super device's erase 403 * region info rather than looking at each particular sub-device 404 * in turn. 405 */ 406 if (!concat->mtd.numeraseregions) { 407 /* the easy case: device has uniform erase block size */ 408 if (instr->addr & (concat->mtd.erasesize - 1)) 409 return -EINVAL; 410 if (instr->len & (concat->mtd.erasesize - 1)) 411 return -EINVAL; 412 } else { 413 /* device has variable erase size */ 414 struct mtd_erase_region_info *erase_regions = 415 concat->mtd.eraseregions; 416 417 /* 418 * Find the erase region where the to-be-erased area begins: 419 */ 420 for (i = 0; i < concat->mtd.numeraseregions && 421 instr->addr >= erase_regions[i].offset; i++) ; 422 --i; 423 424 /* 425 * Now erase_regions[i] is the region in which the 426 * to-be-erased area begins. Verify that the starting 427 * offset is aligned to this region's erase size: 428 */ 429 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 430 return -EINVAL; 431 432 /* 433 * now find the erase region where the to-be-erased area ends: 434 */ 435 for (; i < concat->mtd.numeraseregions && 436 (instr->addr + instr->len) >= erase_regions[i].offset; 437 ++i) ; 438 --i; 439 /* 440 * check if the ending offset is aligned to this region's erase size 441 */ 442 if (i < 0 || ((instr->addr + instr->len) & 443 (erase_regions[i].erasesize - 1))) 444 return -EINVAL; 445 } 446 447 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 448 449 /* make a local copy of instr to avoid modifying the caller's struct */ 450 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 451 452 if (!erase) 453 return -ENOMEM; 454 455 *erase = *instr; 456 length = instr->len; 457 458 /* 459 * find the subdevice where the to-be-erased area begins, adjust 460 * starting offset to be relative to the subdevice start 461 */ 462 for (i = 0; i < concat->num_subdev; i++) { 463 subdev = concat->subdev[i]; 464 if (subdev->size <= erase->addr) { 465 erase->addr -= subdev->size; 466 offset += subdev->size; 467 } else { 468 break; 469 } 470 } 471 472 /* must never happen since size limit has been verified above */ 473 BUG_ON(i >= concat->num_subdev); 474 475 /* now do the erase: */ 476 err = 0; 477 for (; length > 0; i++) { 478 /* loop for all subdevices affected by this request */ 479 subdev = concat->subdev[i]; /* get current subdevice */ 480 481 /* limit length to subdevice's size: */ 482 if (erase->addr + length > subdev->size) 483 erase->len = subdev->size - erase->addr; 484 else 485 erase->len = length; 486 487 if (!(subdev->flags & MTD_WRITEABLE)) { 488 err = -EROFS; 489 break; 490 } 491 length -= erase->len; 492 if ((err = concat_dev_erase(subdev, erase))) { 493 /* sanity check: should never happen since 494 * block alignment has been checked above */ 495 BUG_ON(err == -EINVAL); 496 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 497 instr->fail_addr = erase->fail_addr + offset; 498 break; 499 } 500 /* 501 * erase->addr specifies the offset of the area to be 502 * erased *within the current subdevice*. It can be 503 * non-zero only the first time through this loop, i.e. 504 * for the first subdevice where blocks need to be erased. 505 * All the following erases must begin at the start of the 506 * current subdevice, i.e. at offset zero. 507 */ 508 erase->addr = 0; 509 offset += subdev->size; 510 } 511 instr->state = erase->state; 512 kfree(erase); 513 if (err) 514 return err; 515 516 if (instr->callback) 517 instr->callback(instr); 518 return 0; 519 } 520 521 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 522 { 523 struct mtd_concat *concat = CONCAT(mtd); 524 int i, err = -EINVAL; 525 526 if ((len + ofs) > mtd->size) 527 return -EINVAL; 528 529 for (i = 0; i < concat->num_subdev; i++) { 530 struct mtd_info *subdev = concat->subdev[i]; 531 uint64_t size; 532 533 if (ofs >= subdev->size) { 534 size = 0; 535 ofs -= subdev->size; 536 continue; 537 } 538 if (ofs + len > subdev->size) 539 size = subdev->size - ofs; 540 else 541 size = len; 542 543 err = subdev->lock(subdev, ofs, size); 544 545 if (err) 546 break; 547 548 len -= size; 549 if (len == 0) 550 break; 551 552 err = -EINVAL; 553 ofs = 0; 554 } 555 556 return err; 557 } 558 559 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 560 { 561 struct mtd_concat *concat = CONCAT(mtd); 562 int i, err = 0; 563 564 if ((len + ofs) > mtd->size) 565 return -EINVAL; 566 567 for (i = 0; i < concat->num_subdev; i++) { 568 struct mtd_info *subdev = concat->subdev[i]; 569 uint64_t size; 570 571 if (ofs >= subdev->size) { 572 size = 0; 573 ofs -= subdev->size; 574 continue; 575 } 576 if (ofs + len > subdev->size) 577 size = subdev->size - ofs; 578 else 579 size = len; 580 581 err = subdev->unlock(subdev, ofs, size); 582 583 if (err) 584 break; 585 586 len -= size; 587 if (len == 0) 588 break; 589 590 err = -EINVAL; 591 ofs = 0; 592 } 593 594 return err; 595 } 596 597 static void concat_sync(struct mtd_info *mtd) 598 { 599 struct mtd_concat *concat = CONCAT(mtd); 600 int i; 601 602 for (i = 0; i < concat->num_subdev; i++) { 603 struct mtd_info *subdev = concat->subdev[i]; 604 subdev->sync(subdev); 605 } 606 } 607 608 static int concat_suspend(struct mtd_info *mtd) 609 { 610 struct mtd_concat *concat = CONCAT(mtd); 611 int i, rc = 0; 612 613 for (i = 0; i < concat->num_subdev; i++) { 614 struct mtd_info *subdev = concat->subdev[i]; 615 if ((rc = subdev->suspend(subdev)) < 0) 616 return rc; 617 } 618 return rc; 619 } 620 621 static void concat_resume(struct mtd_info *mtd) 622 { 623 struct mtd_concat *concat = CONCAT(mtd); 624 int i; 625 626 for (i = 0; i < concat->num_subdev; i++) { 627 struct mtd_info *subdev = concat->subdev[i]; 628 subdev->resume(subdev); 629 } 630 } 631 632 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 633 { 634 struct mtd_concat *concat = CONCAT(mtd); 635 int i, res = 0; 636 637 if (!concat->subdev[0]->block_isbad) 638 return res; 639 640 if (ofs > mtd->size) 641 return -EINVAL; 642 643 for (i = 0; i < concat->num_subdev; i++) { 644 struct mtd_info *subdev = concat->subdev[i]; 645 646 if (ofs >= subdev->size) { 647 ofs -= subdev->size; 648 continue; 649 } 650 651 res = subdev->block_isbad(subdev, ofs); 652 break; 653 } 654 655 return res; 656 } 657 658 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 659 { 660 struct mtd_concat *concat = CONCAT(mtd); 661 int i, err = -EINVAL; 662 663 if (!concat->subdev[0]->block_markbad) 664 return 0; 665 666 if (ofs > mtd->size) 667 return -EINVAL; 668 669 for (i = 0; i < concat->num_subdev; i++) { 670 struct mtd_info *subdev = concat->subdev[i]; 671 672 if (ofs >= subdev->size) { 673 ofs -= subdev->size; 674 continue; 675 } 676 677 err = subdev->block_markbad(subdev, ofs); 678 if (!err) 679 mtd->ecc_stats.badblocks++; 680 break; 681 } 682 683 return err; 684 } 685 686 /* 687 * try to support NOMMU mmaps on concatenated devices 688 * - we don't support subdev spanning as we can't guarantee it'll work 689 */ 690 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd, 691 unsigned long len, 692 unsigned long offset, 693 unsigned long flags) 694 { 695 struct mtd_concat *concat = CONCAT(mtd); 696 int i; 697 698 for (i = 0; i < concat->num_subdev; i++) { 699 struct mtd_info *subdev = concat->subdev[i]; 700 701 if (offset >= subdev->size) { 702 offset -= subdev->size; 703 continue; 704 } 705 706 /* we've found the subdev over which the mapping will reside */ 707 if (offset + len > subdev->size) 708 return (unsigned long) -EINVAL; 709 710 if (subdev->get_unmapped_area) 711 return subdev->get_unmapped_area(subdev, len, offset, 712 flags); 713 714 break; 715 } 716 717 return (unsigned long) -ENOSYS; 718 } 719 720 /* 721 * This function constructs a virtual MTD device by concatenating 722 * num_devs MTD devices. A pointer to the new device object is 723 * stored to *new_dev upon success. This function does _not_ 724 * register any devices: this is the caller's responsibility. 725 */ 726 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 727 int num_devs, /* number of subdevices */ 728 const char *name) 729 { /* name for the new device */ 730 int i; 731 size_t size; 732 struct mtd_concat *concat; 733 uint32_t max_erasesize, curr_erasesize; 734 int num_erase_region; 735 736 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 737 for (i = 0; i < num_devs; i++) 738 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 739 printk(KERN_NOTICE "into device \"%s\"\n", name); 740 741 /* allocate the device structure */ 742 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 743 concat = kzalloc(size, GFP_KERNEL); 744 if (!concat) { 745 printk 746 ("memory allocation error while creating concatenated device \"%s\"\n", 747 name); 748 return NULL; 749 } 750 concat->subdev = (struct mtd_info **) (concat + 1); 751 752 /* 753 * Set up the new "super" device's MTD object structure, check for 754 * incompatibilites between the subdevices. 755 */ 756 concat->mtd.type = subdev[0]->type; 757 concat->mtd.flags = subdev[0]->flags; 758 concat->mtd.size = subdev[0]->size; 759 concat->mtd.erasesize = subdev[0]->erasesize; 760 concat->mtd.writesize = subdev[0]->writesize; 761 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 762 concat->mtd.oobsize = subdev[0]->oobsize; 763 concat->mtd.oobavail = subdev[0]->oobavail; 764 if (subdev[0]->writev) 765 concat->mtd.writev = concat_writev; 766 if (subdev[0]->read_oob) 767 concat->mtd.read_oob = concat_read_oob; 768 if (subdev[0]->write_oob) 769 concat->mtd.write_oob = concat_write_oob; 770 if (subdev[0]->block_isbad) 771 concat->mtd.block_isbad = concat_block_isbad; 772 if (subdev[0]->block_markbad) 773 concat->mtd.block_markbad = concat_block_markbad; 774 775 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 776 777 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info; 778 779 concat->subdev[0] = subdev[0]; 780 781 for (i = 1; i < num_devs; i++) { 782 if (concat->mtd.type != subdev[i]->type) { 783 kfree(concat); 784 printk("Incompatible device type on \"%s\"\n", 785 subdev[i]->name); 786 return NULL; 787 } 788 if (concat->mtd.flags != subdev[i]->flags) { 789 /* 790 * Expect all flags except MTD_WRITEABLE to be 791 * equal on all subdevices. 792 */ 793 if ((concat->mtd.flags ^ subdev[i]-> 794 flags) & ~MTD_WRITEABLE) { 795 kfree(concat); 796 printk("Incompatible device flags on \"%s\"\n", 797 subdev[i]->name); 798 return NULL; 799 } else 800 /* if writeable attribute differs, 801 make super device writeable */ 802 concat->mtd.flags |= 803 subdev[i]->flags & MTD_WRITEABLE; 804 } 805 806 /* only permit direct mapping if the BDIs are all the same 807 * - copy-mapping is still permitted 808 */ 809 if (concat->mtd.backing_dev_info != 810 subdev[i]->backing_dev_info) 811 concat->mtd.backing_dev_info = 812 &default_backing_dev_info; 813 814 concat->mtd.size += subdev[i]->size; 815 concat->mtd.ecc_stats.badblocks += 816 subdev[i]->ecc_stats.badblocks; 817 if (concat->mtd.writesize != subdev[i]->writesize || 818 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 819 concat->mtd.oobsize != subdev[i]->oobsize || 820 !concat->mtd.read_oob != !subdev[i]->read_oob || 821 !concat->mtd.write_oob != !subdev[i]->write_oob) { 822 kfree(concat); 823 printk("Incompatible OOB or ECC data on \"%s\"\n", 824 subdev[i]->name); 825 return NULL; 826 } 827 concat->subdev[i] = subdev[i]; 828 829 } 830 831 concat->mtd.ecclayout = subdev[0]->ecclayout; 832 833 concat->num_subdev = num_devs; 834 concat->mtd.name = name; 835 836 concat->mtd.erase = concat_erase; 837 concat->mtd.read = concat_read; 838 concat->mtd.write = concat_write; 839 concat->mtd.sync = concat_sync; 840 concat->mtd.lock = concat_lock; 841 concat->mtd.unlock = concat_unlock; 842 concat->mtd.suspend = concat_suspend; 843 concat->mtd.resume = concat_resume; 844 concat->mtd.get_unmapped_area = concat_get_unmapped_area; 845 846 /* 847 * Combine the erase block size info of the subdevices: 848 * 849 * first, walk the map of the new device and see how 850 * many changes in erase size we have 851 */ 852 max_erasesize = curr_erasesize = subdev[0]->erasesize; 853 num_erase_region = 1; 854 for (i = 0; i < num_devs; i++) { 855 if (subdev[i]->numeraseregions == 0) { 856 /* current subdevice has uniform erase size */ 857 if (subdev[i]->erasesize != curr_erasesize) { 858 /* if it differs from the last subdevice's erase size, count it */ 859 ++num_erase_region; 860 curr_erasesize = subdev[i]->erasesize; 861 if (curr_erasesize > max_erasesize) 862 max_erasesize = curr_erasesize; 863 } 864 } else { 865 /* current subdevice has variable erase size */ 866 int j; 867 for (j = 0; j < subdev[i]->numeraseregions; j++) { 868 869 /* walk the list of erase regions, count any changes */ 870 if (subdev[i]->eraseregions[j].erasesize != 871 curr_erasesize) { 872 ++num_erase_region; 873 curr_erasesize = 874 subdev[i]->eraseregions[j]. 875 erasesize; 876 if (curr_erasesize > max_erasesize) 877 max_erasesize = curr_erasesize; 878 } 879 } 880 } 881 } 882 883 if (num_erase_region == 1) { 884 /* 885 * All subdevices have the same uniform erase size. 886 * This is easy: 887 */ 888 concat->mtd.erasesize = curr_erasesize; 889 concat->mtd.numeraseregions = 0; 890 } else { 891 uint64_t tmp64; 892 893 /* 894 * erase block size varies across the subdevices: allocate 895 * space to store the data describing the variable erase regions 896 */ 897 struct mtd_erase_region_info *erase_region_p; 898 uint64_t begin, position; 899 900 concat->mtd.erasesize = max_erasesize; 901 concat->mtd.numeraseregions = num_erase_region; 902 concat->mtd.eraseregions = erase_region_p = 903 kmalloc(num_erase_region * 904 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 905 if (!erase_region_p) { 906 kfree(concat); 907 printk 908 ("memory allocation error while creating erase region list" 909 " for device \"%s\"\n", name); 910 return NULL; 911 } 912 913 /* 914 * walk the map of the new device once more and fill in 915 * in erase region info: 916 */ 917 curr_erasesize = subdev[0]->erasesize; 918 begin = position = 0; 919 for (i = 0; i < num_devs; i++) { 920 if (subdev[i]->numeraseregions == 0) { 921 /* current subdevice has uniform erase size */ 922 if (subdev[i]->erasesize != curr_erasesize) { 923 /* 924 * fill in an mtd_erase_region_info structure for the area 925 * we have walked so far: 926 */ 927 erase_region_p->offset = begin; 928 erase_region_p->erasesize = 929 curr_erasesize; 930 tmp64 = position - begin; 931 do_div(tmp64, curr_erasesize); 932 erase_region_p->numblocks = tmp64; 933 begin = position; 934 935 curr_erasesize = subdev[i]->erasesize; 936 ++erase_region_p; 937 } 938 position += subdev[i]->size; 939 } else { 940 /* current subdevice has variable erase size */ 941 int j; 942 for (j = 0; j < subdev[i]->numeraseregions; j++) { 943 /* walk the list of erase regions, count any changes */ 944 if (subdev[i]->eraseregions[j]. 945 erasesize != curr_erasesize) { 946 erase_region_p->offset = begin; 947 erase_region_p->erasesize = 948 curr_erasesize; 949 tmp64 = position - begin; 950 do_div(tmp64, curr_erasesize); 951 erase_region_p->numblocks = tmp64; 952 begin = position; 953 954 curr_erasesize = 955 subdev[i]->eraseregions[j]. 956 erasesize; 957 ++erase_region_p; 958 } 959 position += 960 subdev[i]->eraseregions[j]. 961 numblocks * (uint64_t)curr_erasesize; 962 } 963 } 964 } 965 /* Now write the final entry */ 966 erase_region_p->offset = begin; 967 erase_region_p->erasesize = curr_erasesize; 968 tmp64 = position - begin; 969 do_div(tmp64, curr_erasesize); 970 erase_region_p->numblocks = tmp64; 971 } 972 973 return &concat->mtd; 974 } 975 976 /* 977 * This function destroys an MTD object obtained from concat_mtd_devs() 978 */ 979 980 void mtd_concat_destroy(struct mtd_info *mtd) 981 { 982 struct mtd_concat *concat = CONCAT(mtd); 983 if (concat->mtd.numeraseregions) 984 kfree(concat->mtd.eraseregions); 985 kfree(concat); 986 } 987 988 EXPORT_SYMBOL(mtd_concat_create); 989 EXPORT_SYMBOL(mtd_concat_destroy); 990 991 MODULE_LICENSE("GPL"); 992 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 993 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 994