xref: /linux/drivers/mtd/mtdconcat.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  * MTD device concatenation layer
3  *
4  * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5  *
6  * NAND support by Christian Gan <cgan@iders.ca>
7  *
8  * This code is GPL
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
16 #include <linux/backing-dev.h>
17 
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/concat.h>
20 
21 #include <asm/div64.h>
22 
23 /*
24  * Our storage structure:
25  * Subdev points to an array of pointers to struct mtd_info objects
26  * which is allocated along with this structure
27  *
28  */
29 struct mtd_concat {
30 	struct mtd_info mtd;
31 	int num_subdev;
32 	struct mtd_info **subdev;
33 };
34 
35 /*
36  * how to calculate the size required for the above structure,
37  * including the pointer array subdev points to:
38  */
39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
40 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
41 
42 /*
43  * Given a pointer to the MTD object in the mtd_concat structure,
44  * we can retrieve the pointer to that structure with this macro.
45  */
46 #define CONCAT(x)  ((struct mtd_concat *)(x))
47 
48 /*
49  * MTD methods which look up the relevant subdevice, translate the
50  * effective address and pass through to the subdevice.
51  */
52 
53 static int
54 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
55 	    size_t * retlen, u_char * buf)
56 {
57 	struct mtd_concat *concat = CONCAT(mtd);
58 	int ret = 0, err;
59 	int i;
60 
61 	*retlen = 0;
62 
63 	for (i = 0; i < concat->num_subdev; i++) {
64 		struct mtd_info *subdev = concat->subdev[i];
65 		size_t size, retsize;
66 
67 		if (from >= subdev->size) {
68 			/* Not destined for this subdev */
69 			size = 0;
70 			from -= subdev->size;
71 			continue;
72 		}
73 		if (from + len > subdev->size)
74 			/* First part goes into this subdev */
75 			size = subdev->size - from;
76 		else
77 			/* Entire transaction goes into this subdev */
78 			size = len;
79 
80 		err = subdev->read(subdev, from, size, &retsize, buf);
81 
82 		/* Save information about bitflips! */
83 		if (unlikely(err)) {
84 			if (err == -EBADMSG) {
85 				mtd->ecc_stats.failed++;
86 				ret = err;
87 			} else if (err == -EUCLEAN) {
88 				mtd->ecc_stats.corrected++;
89 				/* Do not overwrite -EBADMSG !! */
90 				if (!ret)
91 					ret = err;
92 			} else
93 				return err;
94 		}
95 
96 		*retlen += retsize;
97 		len -= size;
98 		if (len == 0)
99 			return ret;
100 
101 		buf += size;
102 		from = 0;
103 	}
104 	return -EINVAL;
105 }
106 
107 static int
108 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
109 	     size_t * retlen, const u_char * buf)
110 {
111 	struct mtd_concat *concat = CONCAT(mtd);
112 	int err = -EINVAL;
113 	int i;
114 
115 	if (!(mtd->flags & MTD_WRITEABLE))
116 		return -EROFS;
117 
118 	*retlen = 0;
119 
120 	for (i = 0; i < concat->num_subdev; i++) {
121 		struct mtd_info *subdev = concat->subdev[i];
122 		size_t size, retsize;
123 
124 		if (to >= subdev->size) {
125 			size = 0;
126 			to -= subdev->size;
127 			continue;
128 		}
129 		if (to + len > subdev->size)
130 			size = subdev->size - to;
131 		else
132 			size = len;
133 
134 		if (!(subdev->flags & MTD_WRITEABLE))
135 			err = -EROFS;
136 		else
137 			err = subdev->write(subdev, to, size, &retsize, buf);
138 
139 		if (err)
140 			break;
141 
142 		*retlen += retsize;
143 		len -= size;
144 		if (len == 0)
145 			break;
146 
147 		err = -EINVAL;
148 		buf += size;
149 		to = 0;
150 	}
151 	return err;
152 }
153 
154 static int
155 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
156 		unsigned long count, loff_t to, size_t * retlen)
157 {
158 	struct mtd_concat *concat = CONCAT(mtd);
159 	struct kvec *vecs_copy;
160 	unsigned long entry_low, entry_high;
161 	size_t total_len = 0;
162 	int i;
163 	int err = -EINVAL;
164 
165 	if (!(mtd->flags & MTD_WRITEABLE))
166 		return -EROFS;
167 
168 	*retlen = 0;
169 
170 	/* Calculate total length of data */
171 	for (i = 0; i < count; i++)
172 		total_len += vecs[i].iov_len;
173 
174 	/* Do not allow write past end of device */
175 	if ((to + total_len) > mtd->size)
176 		return -EINVAL;
177 
178 	/* Check alignment */
179 	if (mtd->writesize > 1) {
180 		uint64_t __to = to;
181 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
182 			return -EINVAL;
183 	}
184 
185 	/* make a copy of vecs */
186 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
187 	if (!vecs_copy)
188 		return -ENOMEM;
189 
190 	entry_low = 0;
191 	for (i = 0; i < concat->num_subdev; i++) {
192 		struct mtd_info *subdev = concat->subdev[i];
193 		size_t size, wsize, retsize, old_iov_len;
194 
195 		if (to >= subdev->size) {
196 			to -= subdev->size;
197 			continue;
198 		}
199 
200 		size = min_t(uint64_t, total_len, subdev->size - to);
201 		wsize = size; /* store for future use */
202 
203 		entry_high = entry_low;
204 		while (entry_high < count) {
205 			if (size <= vecs_copy[entry_high].iov_len)
206 				break;
207 			size -= vecs_copy[entry_high++].iov_len;
208 		}
209 
210 		old_iov_len = vecs_copy[entry_high].iov_len;
211 		vecs_copy[entry_high].iov_len = size;
212 
213 		if (!(subdev->flags & MTD_WRITEABLE))
214 			err = -EROFS;
215 		else
216 			err = subdev->writev(subdev, &vecs_copy[entry_low],
217 				entry_high - entry_low + 1, to, &retsize);
218 
219 		vecs_copy[entry_high].iov_len = old_iov_len - size;
220 		vecs_copy[entry_high].iov_base += size;
221 
222 		entry_low = entry_high;
223 
224 		if (err)
225 			break;
226 
227 		*retlen += retsize;
228 		total_len -= wsize;
229 
230 		if (total_len == 0)
231 			break;
232 
233 		err = -EINVAL;
234 		to = 0;
235 	}
236 
237 	kfree(vecs_copy);
238 	return err;
239 }
240 
241 static int
242 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
243 {
244 	struct mtd_concat *concat = CONCAT(mtd);
245 	struct mtd_oob_ops devops = *ops;
246 	int i, err, ret = 0;
247 
248 	ops->retlen = ops->oobretlen = 0;
249 
250 	for (i = 0; i < concat->num_subdev; i++) {
251 		struct mtd_info *subdev = concat->subdev[i];
252 
253 		if (from >= subdev->size) {
254 			from -= subdev->size;
255 			continue;
256 		}
257 
258 		/* partial read ? */
259 		if (from + devops.len > subdev->size)
260 			devops.len = subdev->size - from;
261 
262 		err = subdev->read_oob(subdev, from, &devops);
263 		ops->retlen += devops.retlen;
264 		ops->oobretlen += devops.oobretlen;
265 
266 		/* Save information about bitflips! */
267 		if (unlikely(err)) {
268 			if (err == -EBADMSG) {
269 				mtd->ecc_stats.failed++;
270 				ret = err;
271 			} else if (err == -EUCLEAN) {
272 				mtd->ecc_stats.corrected++;
273 				/* Do not overwrite -EBADMSG !! */
274 				if (!ret)
275 					ret = err;
276 			} else
277 				return err;
278 		}
279 
280 		if (devops.datbuf) {
281 			devops.len = ops->len - ops->retlen;
282 			if (!devops.len)
283 				return ret;
284 			devops.datbuf += devops.retlen;
285 		}
286 		if (devops.oobbuf) {
287 			devops.ooblen = ops->ooblen - ops->oobretlen;
288 			if (!devops.ooblen)
289 				return ret;
290 			devops.oobbuf += ops->oobretlen;
291 		}
292 
293 		from = 0;
294 	}
295 	return -EINVAL;
296 }
297 
298 static int
299 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
300 {
301 	struct mtd_concat *concat = CONCAT(mtd);
302 	struct mtd_oob_ops devops = *ops;
303 	int i, err;
304 
305 	if (!(mtd->flags & MTD_WRITEABLE))
306 		return -EROFS;
307 
308 	ops->retlen = 0;
309 
310 	for (i = 0; i < concat->num_subdev; i++) {
311 		struct mtd_info *subdev = concat->subdev[i];
312 
313 		if (to >= subdev->size) {
314 			to -= subdev->size;
315 			continue;
316 		}
317 
318 		/* partial write ? */
319 		if (to + devops.len > subdev->size)
320 			devops.len = subdev->size - to;
321 
322 		err = subdev->write_oob(subdev, to, &devops);
323 		ops->retlen += devops.retlen;
324 		if (err)
325 			return err;
326 
327 		if (devops.datbuf) {
328 			devops.len = ops->len - ops->retlen;
329 			if (!devops.len)
330 				return 0;
331 			devops.datbuf += devops.retlen;
332 		}
333 		if (devops.oobbuf) {
334 			devops.ooblen = ops->ooblen - ops->oobretlen;
335 			if (!devops.ooblen)
336 				return 0;
337 			devops.oobbuf += devops.oobretlen;
338 		}
339 		to = 0;
340 	}
341 	return -EINVAL;
342 }
343 
344 static void concat_erase_callback(struct erase_info *instr)
345 {
346 	wake_up((wait_queue_head_t *) instr->priv);
347 }
348 
349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
350 {
351 	int err;
352 	wait_queue_head_t waitq;
353 	DECLARE_WAITQUEUE(wait, current);
354 
355 	/*
356 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
357 	 */
358 	init_waitqueue_head(&waitq);
359 
360 	erase->mtd = mtd;
361 	erase->callback = concat_erase_callback;
362 	erase->priv = (unsigned long) &waitq;
363 
364 	/*
365 	 * FIXME: Allow INTERRUPTIBLE. Which means
366 	 * not having the wait_queue head on the stack.
367 	 */
368 	err = mtd->erase(mtd, erase);
369 	if (!err) {
370 		set_current_state(TASK_UNINTERRUPTIBLE);
371 		add_wait_queue(&waitq, &wait);
372 		if (erase->state != MTD_ERASE_DONE
373 		    && erase->state != MTD_ERASE_FAILED)
374 			schedule();
375 		remove_wait_queue(&waitq, &wait);
376 		set_current_state(TASK_RUNNING);
377 
378 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
379 	}
380 	return err;
381 }
382 
383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
384 {
385 	struct mtd_concat *concat = CONCAT(mtd);
386 	struct mtd_info *subdev;
387 	int i, err;
388 	uint64_t length, offset = 0;
389 	struct erase_info *erase;
390 
391 	if (!(mtd->flags & MTD_WRITEABLE))
392 		return -EROFS;
393 
394 	if (instr->addr > concat->mtd.size)
395 		return -EINVAL;
396 
397 	if (instr->len + instr->addr > concat->mtd.size)
398 		return -EINVAL;
399 
400 	/*
401 	 * Check for proper erase block alignment of the to-be-erased area.
402 	 * It is easier to do this based on the super device's erase
403 	 * region info rather than looking at each particular sub-device
404 	 * in turn.
405 	 */
406 	if (!concat->mtd.numeraseregions) {
407 		/* the easy case: device has uniform erase block size */
408 		if (instr->addr & (concat->mtd.erasesize - 1))
409 			return -EINVAL;
410 		if (instr->len & (concat->mtd.erasesize - 1))
411 			return -EINVAL;
412 	} else {
413 		/* device has variable erase size */
414 		struct mtd_erase_region_info *erase_regions =
415 		    concat->mtd.eraseregions;
416 
417 		/*
418 		 * Find the erase region where the to-be-erased area begins:
419 		 */
420 		for (i = 0; i < concat->mtd.numeraseregions &&
421 		     instr->addr >= erase_regions[i].offset; i++) ;
422 		--i;
423 
424 		/*
425 		 * Now erase_regions[i] is the region in which the
426 		 * to-be-erased area begins. Verify that the starting
427 		 * offset is aligned to this region's erase size:
428 		 */
429 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
430 			return -EINVAL;
431 
432 		/*
433 		 * now find the erase region where the to-be-erased area ends:
434 		 */
435 		for (; i < concat->mtd.numeraseregions &&
436 		     (instr->addr + instr->len) >= erase_regions[i].offset;
437 		     ++i) ;
438 		--i;
439 		/*
440 		 * check if the ending offset is aligned to this region's erase size
441 		 */
442 		if (i < 0 || ((instr->addr + instr->len) &
443 					(erase_regions[i].erasesize - 1)))
444 			return -EINVAL;
445 	}
446 
447 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
448 
449 	/* make a local copy of instr to avoid modifying the caller's struct */
450 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
451 
452 	if (!erase)
453 		return -ENOMEM;
454 
455 	*erase = *instr;
456 	length = instr->len;
457 
458 	/*
459 	 * find the subdevice where the to-be-erased area begins, adjust
460 	 * starting offset to be relative to the subdevice start
461 	 */
462 	for (i = 0; i < concat->num_subdev; i++) {
463 		subdev = concat->subdev[i];
464 		if (subdev->size <= erase->addr) {
465 			erase->addr -= subdev->size;
466 			offset += subdev->size;
467 		} else {
468 			break;
469 		}
470 	}
471 
472 	/* must never happen since size limit has been verified above */
473 	BUG_ON(i >= concat->num_subdev);
474 
475 	/* now do the erase: */
476 	err = 0;
477 	for (; length > 0; i++) {
478 		/* loop for all subdevices affected by this request */
479 		subdev = concat->subdev[i];	/* get current subdevice */
480 
481 		/* limit length to subdevice's size: */
482 		if (erase->addr + length > subdev->size)
483 			erase->len = subdev->size - erase->addr;
484 		else
485 			erase->len = length;
486 
487 		if (!(subdev->flags & MTD_WRITEABLE)) {
488 			err = -EROFS;
489 			break;
490 		}
491 		length -= erase->len;
492 		if ((err = concat_dev_erase(subdev, erase))) {
493 			/* sanity check: should never happen since
494 			 * block alignment has been checked above */
495 			BUG_ON(err == -EINVAL);
496 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
497 				instr->fail_addr = erase->fail_addr + offset;
498 			break;
499 		}
500 		/*
501 		 * erase->addr specifies the offset of the area to be
502 		 * erased *within the current subdevice*. It can be
503 		 * non-zero only the first time through this loop, i.e.
504 		 * for the first subdevice where blocks need to be erased.
505 		 * All the following erases must begin at the start of the
506 		 * current subdevice, i.e. at offset zero.
507 		 */
508 		erase->addr = 0;
509 		offset += subdev->size;
510 	}
511 	instr->state = erase->state;
512 	kfree(erase);
513 	if (err)
514 		return err;
515 
516 	if (instr->callback)
517 		instr->callback(instr);
518 	return 0;
519 }
520 
521 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
522 {
523 	struct mtd_concat *concat = CONCAT(mtd);
524 	int i, err = -EINVAL;
525 
526 	if ((len + ofs) > mtd->size)
527 		return -EINVAL;
528 
529 	for (i = 0; i < concat->num_subdev; i++) {
530 		struct mtd_info *subdev = concat->subdev[i];
531 		uint64_t size;
532 
533 		if (ofs >= subdev->size) {
534 			size = 0;
535 			ofs -= subdev->size;
536 			continue;
537 		}
538 		if (ofs + len > subdev->size)
539 			size = subdev->size - ofs;
540 		else
541 			size = len;
542 
543 		err = subdev->lock(subdev, ofs, size);
544 
545 		if (err)
546 			break;
547 
548 		len -= size;
549 		if (len == 0)
550 			break;
551 
552 		err = -EINVAL;
553 		ofs = 0;
554 	}
555 
556 	return err;
557 }
558 
559 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
560 {
561 	struct mtd_concat *concat = CONCAT(mtd);
562 	int i, err = 0;
563 
564 	if ((len + ofs) > mtd->size)
565 		return -EINVAL;
566 
567 	for (i = 0; i < concat->num_subdev; i++) {
568 		struct mtd_info *subdev = concat->subdev[i];
569 		uint64_t size;
570 
571 		if (ofs >= subdev->size) {
572 			size = 0;
573 			ofs -= subdev->size;
574 			continue;
575 		}
576 		if (ofs + len > subdev->size)
577 			size = subdev->size - ofs;
578 		else
579 			size = len;
580 
581 		err = subdev->unlock(subdev, ofs, size);
582 
583 		if (err)
584 			break;
585 
586 		len -= size;
587 		if (len == 0)
588 			break;
589 
590 		err = -EINVAL;
591 		ofs = 0;
592 	}
593 
594 	return err;
595 }
596 
597 static void concat_sync(struct mtd_info *mtd)
598 {
599 	struct mtd_concat *concat = CONCAT(mtd);
600 	int i;
601 
602 	for (i = 0; i < concat->num_subdev; i++) {
603 		struct mtd_info *subdev = concat->subdev[i];
604 		subdev->sync(subdev);
605 	}
606 }
607 
608 static int concat_suspend(struct mtd_info *mtd)
609 {
610 	struct mtd_concat *concat = CONCAT(mtd);
611 	int i, rc = 0;
612 
613 	for (i = 0; i < concat->num_subdev; i++) {
614 		struct mtd_info *subdev = concat->subdev[i];
615 		if ((rc = subdev->suspend(subdev)) < 0)
616 			return rc;
617 	}
618 	return rc;
619 }
620 
621 static void concat_resume(struct mtd_info *mtd)
622 {
623 	struct mtd_concat *concat = CONCAT(mtd);
624 	int i;
625 
626 	for (i = 0; i < concat->num_subdev; i++) {
627 		struct mtd_info *subdev = concat->subdev[i];
628 		subdev->resume(subdev);
629 	}
630 }
631 
632 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
633 {
634 	struct mtd_concat *concat = CONCAT(mtd);
635 	int i, res = 0;
636 
637 	if (!concat->subdev[0]->block_isbad)
638 		return res;
639 
640 	if (ofs > mtd->size)
641 		return -EINVAL;
642 
643 	for (i = 0; i < concat->num_subdev; i++) {
644 		struct mtd_info *subdev = concat->subdev[i];
645 
646 		if (ofs >= subdev->size) {
647 			ofs -= subdev->size;
648 			continue;
649 		}
650 
651 		res = subdev->block_isbad(subdev, ofs);
652 		break;
653 	}
654 
655 	return res;
656 }
657 
658 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
659 {
660 	struct mtd_concat *concat = CONCAT(mtd);
661 	int i, err = -EINVAL;
662 
663 	if (!concat->subdev[0]->block_markbad)
664 		return 0;
665 
666 	if (ofs > mtd->size)
667 		return -EINVAL;
668 
669 	for (i = 0; i < concat->num_subdev; i++) {
670 		struct mtd_info *subdev = concat->subdev[i];
671 
672 		if (ofs >= subdev->size) {
673 			ofs -= subdev->size;
674 			continue;
675 		}
676 
677 		err = subdev->block_markbad(subdev, ofs);
678 		if (!err)
679 			mtd->ecc_stats.badblocks++;
680 		break;
681 	}
682 
683 	return err;
684 }
685 
686 /*
687  * try to support NOMMU mmaps on concatenated devices
688  * - we don't support subdev spanning as we can't guarantee it'll work
689  */
690 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
691 					      unsigned long len,
692 					      unsigned long offset,
693 					      unsigned long flags)
694 {
695 	struct mtd_concat *concat = CONCAT(mtd);
696 	int i;
697 
698 	for (i = 0; i < concat->num_subdev; i++) {
699 		struct mtd_info *subdev = concat->subdev[i];
700 
701 		if (offset >= subdev->size) {
702 			offset -= subdev->size;
703 			continue;
704 		}
705 
706 		/* we've found the subdev over which the mapping will reside */
707 		if (offset + len > subdev->size)
708 			return (unsigned long) -EINVAL;
709 
710 		if (subdev->get_unmapped_area)
711 			return subdev->get_unmapped_area(subdev, len, offset,
712 							 flags);
713 
714 		break;
715 	}
716 
717 	return (unsigned long) -ENOSYS;
718 }
719 
720 /*
721  * This function constructs a virtual MTD device by concatenating
722  * num_devs MTD devices. A pointer to the new device object is
723  * stored to *new_dev upon success. This function does _not_
724  * register any devices: this is the caller's responsibility.
725  */
726 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
727 				   int num_devs,	/* number of subdevices      */
728 				   const char *name)
729 {				/* name for the new device   */
730 	int i;
731 	size_t size;
732 	struct mtd_concat *concat;
733 	uint32_t max_erasesize, curr_erasesize;
734 	int num_erase_region;
735 
736 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
737 	for (i = 0; i < num_devs; i++)
738 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
739 	printk(KERN_NOTICE "into device \"%s\"\n", name);
740 
741 	/* allocate the device structure */
742 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
743 	concat = kzalloc(size, GFP_KERNEL);
744 	if (!concat) {
745 		printk
746 		    ("memory allocation error while creating concatenated device \"%s\"\n",
747 		     name);
748 		return NULL;
749 	}
750 	concat->subdev = (struct mtd_info **) (concat + 1);
751 
752 	/*
753 	 * Set up the new "super" device's MTD object structure, check for
754 	 * incompatibilites between the subdevices.
755 	 */
756 	concat->mtd.type = subdev[0]->type;
757 	concat->mtd.flags = subdev[0]->flags;
758 	concat->mtd.size = subdev[0]->size;
759 	concat->mtd.erasesize = subdev[0]->erasesize;
760 	concat->mtd.writesize = subdev[0]->writesize;
761 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
762 	concat->mtd.oobsize = subdev[0]->oobsize;
763 	concat->mtd.oobavail = subdev[0]->oobavail;
764 	if (subdev[0]->writev)
765 		concat->mtd.writev = concat_writev;
766 	if (subdev[0]->read_oob)
767 		concat->mtd.read_oob = concat_read_oob;
768 	if (subdev[0]->write_oob)
769 		concat->mtd.write_oob = concat_write_oob;
770 	if (subdev[0]->block_isbad)
771 		concat->mtd.block_isbad = concat_block_isbad;
772 	if (subdev[0]->block_markbad)
773 		concat->mtd.block_markbad = concat_block_markbad;
774 
775 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
776 
777 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
778 
779 	concat->subdev[0] = subdev[0];
780 
781 	for (i = 1; i < num_devs; i++) {
782 		if (concat->mtd.type != subdev[i]->type) {
783 			kfree(concat);
784 			printk("Incompatible device type on \"%s\"\n",
785 			       subdev[i]->name);
786 			return NULL;
787 		}
788 		if (concat->mtd.flags != subdev[i]->flags) {
789 			/*
790 			 * Expect all flags except MTD_WRITEABLE to be
791 			 * equal on all subdevices.
792 			 */
793 			if ((concat->mtd.flags ^ subdev[i]->
794 			     flags) & ~MTD_WRITEABLE) {
795 				kfree(concat);
796 				printk("Incompatible device flags on \"%s\"\n",
797 				       subdev[i]->name);
798 				return NULL;
799 			} else
800 				/* if writeable attribute differs,
801 				   make super device writeable */
802 				concat->mtd.flags |=
803 				    subdev[i]->flags & MTD_WRITEABLE;
804 		}
805 
806 		/* only permit direct mapping if the BDIs are all the same
807 		 * - copy-mapping is still permitted
808 		 */
809 		if (concat->mtd.backing_dev_info !=
810 		    subdev[i]->backing_dev_info)
811 			concat->mtd.backing_dev_info =
812 				&default_backing_dev_info;
813 
814 		concat->mtd.size += subdev[i]->size;
815 		concat->mtd.ecc_stats.badblocks +=
816 			subdev[i]->ecc_stats.badblocks;
817 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
818 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
819 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
820 		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
821 		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
822 			kfree(concat);
823 			printk("Incompatible OOB or ECC data on \"%s\"\n",
824 			       subdev[i]->name);
825 			return NULL;
826 		}
827 		concat->subdev[i] = subdev[i];
828 
829 	}
830 
831 	concat->mtd.ecclayout = subdev[0]->ecclayout;
832 
833 	concat->num_subdev = num_devs;
834 	concat->mtd.name = name;
835 
836 	concat->mtd.erase = concat_erase;
837 	concat->mtd.read = concat_read;
838 	concat->mtd.write = concat_write;
839 	concat->mtd.sync = concat_sync;
840 	concat->mtd.lock = concat_lock;
841 	concat->mtd.unlock = concat_unlock;
842 	concat->mtd.suspend = concat_suspend;
843 	concat->mtd.resume = concat_resume;
844 	concat->mtd.get_unmapped_area = concat_get_unmapped_area;
845 
846 	/*
847 	 * Combine the erase block size info of the subdevices:
848 	 *
849 	 * first, walk the map of the new device and see how
850 	 * many changes in erase size we have
851 	 */
852 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
853 	num_erase_region = 1;
854 	for (i = 0; i < num_devs; i++) {
855 		if (subdev[i]->numeraseregions == 0) {
856 			/* current subdevice has uniform erase size */
857 			if (subdev[i]->erasesize != curr_erasesize) {
858 				/* if it differs from the last subdevice's erase size, count it */
859 				++num_erase_region;
860 				curr_erasesize = subdev[i]->erasesize;
861 				if (curr_erasesize > max_erasesize)
862 					max_erasesize = curr_erasesize;
863 			}
864 		} else {
865 			/* current subdevice has variable erase size */
866 			int j;
867 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
868 
869 				/* walk the list of erase regions, count any changes */
870 				if (subdev[i]->eraseregions[j].erasesize !=
871 				    curr_erasesize) {
872 					++num_erase_region;
873 					curr_erasesize =
874 					    subdev[i]->eraseregions[j].
875 					    erasesize;
876 					if (curr_erasesize > max_erasesize)
877 						max_erasesize = curr_erasesize;
878 				}
879 			}
880 		}
881 	}
882 
883 	if (num_erase_region == 1) {
884 		/*
885 		 * All subdevices have the same uniform erase size.
886 		 * This is easy:
887 		 */
888 		concat->mtd.erasesize = curr_erasesize;
889 		concat->mtd.numeraseregions = 0;
890 	} else {
891 		uint64_t tmp64;
892 
893 		/*
894 		 * erase block size varies across the subdevices: allocate
895 		 * space to store the data describing the variable erase regions
896 		 */
897 		struct mtd_erase_region_info *erase_region_p;
898 		uint64_t begin, position;
899 
900 		concat->mtd.erasesize = max_erasesize;
901 		concat->mtd.numeraseregions = num_erase_region;
902 		concat->mtd.eraseregions = erase_region_p =
903 		    kmalloc(num_erase_region *
904 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
905 		if (!erase_region_p) {
906 			kfree(concat);
907 			printk
908 			    ("memory allocation error while creating erase region list"
909 			     " for device \"%s\"\n", name);
910 			return NULL;
911 		}
912 
913 		/*
914 		 * walk the map of the new device once more and fill in
915 		 * in erase region info:
916 		 */
917 		curr_erasesize = subdev[0]->erasesize;
918 		begin = position = 0;
919 		for (i = 0; i < num_devs; i++) {
920 			if (subdev[i]->numeraseregions == 0) {
921 				/* current subdevice has uniform erase size */
922 				if (subdev[i]->erasesize != curr_erasesize) {
923 					/*
924 					 *  fill in an mtd_erase_region_info structure for the area
925 					 *  we have walked so far:
926 					 */
927 					erase_region_p->offset = begin;
928 					erase_region_p->erasesize =
929 					    curr_erasesize;
930 					tmp64 = position - begin;
931 					do_div(tmp64, curr_erasesize);
932 					erase_region_p->numblocks = tmp64;
933 					begin = position;
934 
935 					curr_erasesize = subdev[i]->erasesize;
936 					++erase_region_p;
937 				}
938 				position += subdev[i]->size;
939 			} else {
940 				/* current subdevice has variable erase size */
941 				int j;
942 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
943 					/* walk the list of erase regions, count any changes */
944 					if (subdev[i]->eraseregions[j].
945 					    erasesize != curr_erasesize) {
946 						erase_region_p->offset = begin;
947 						erase_region_p->erasesize =
948 						    curr_erasesize;
949 						tmp64 = position - begin;
950 						do_div(tmp64, curr_erasesize);
951 						erase_region_p->numblocks = tmp64;
952 						begin = position;
953 
954 						curr_erasesize =
955 						    subdev[i]->eraseregions[j].
956 						    erasesize;
957 						++erase_region_p;
958 					}
959 					position +=
960 					    subdev[i]->eraseregions[j].
961 					    numblocks * (uint64_t)curr_erasesize;
962 				}
963 			}
964 		}
965 		/* Now write the final entry */
966 		erase_region_p->offset = begin;
967 		erase_region_p->erasesize = curr_erasesize;
968 		tmp64 = position - begin;
969 		do_div(tmp64, curr_erasesize);
970 		erase_region_p->numblocks = tmp64;
971 	}
972 
973 	return &concat->mtd;
974 }
975 
976 /*
977  * This function destroys an MTD object obtained from concat_mtd_devs()
978  */
979 
980 void mtd_concat_destroy(struct mtd_info *mtd)
981 {
982 	struct mtd_concat *concat = CONCAT(mtd);
983 	if (concat->mtd.numeraseregions)
984 		kfree(concat->mtd.eraseregions);
985 	kfree(concat);
986 }
987 
988 EXPORT_SYMBOL(mtd_concat_create);
989 EXPORT_SYMBOL(mtd_concat_destroy);
990 
991 MODULE_LICENSE("GPL");
992 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
993 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
994