1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * MTD device concatenation layer 4 * 5 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> 6 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> 7 * 8 * NAND support by Christian Gan <cgan@iders.ca> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/types.h> 16 #include <linux/backing-dev.h> 17 18 #include <linux/mtd/mtd.h> 19 #include <linux/mtd/concat.h> 20 21 #include <asm/div64.h> 22 23 /* 24 * Our storage structure: 25 * Subdev points to an array of pointers to struct mtd_info objects 26 * which is allocated along with this structure 27 * 28 */ 29 struct mtd_concat { 30 struct mtd_info mtd; 31 int num_subdev; 32 struct mtd_info **subdev; 33 }; 34 35 /* 36 * how to calculate the size required for the above structure, 37 * including the pointer array subdev points to: 38 */ 39 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 40 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 41 42 /* 43 * Given a pointer to the MTD object in the mtd_concat structure, 44 * we can retrieve the pointer to that structure with this macro. 45 */ 46 #define CONCAT(x) ((struct mtd_concat *)(x)) 47 48 /* 49 * MTD methods which look up the relevant subdevice, translate the 50 * effective address and pass through to the subdevice. 51 */ 52 53 static int 54 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 55 size_t * retlen, u_char * buf) 56 { 57 struct mtd_concat *concat = CONCAT(mtd); 58 int ret = 0, err; 59 int i; 60 61 for (i = 0; i < concat->num_subdev; i++) { 62 struct mtd_info *subdev = concat->subdev[i]; 63 size_t size, retsize; 64 65 if (from >= subdev->size) { 66 /* Not destined for this subdev */ 67 size = 0; 68 from -= subdev->size; 69 continue; 70 } 71 if (from + len > subdev->size) 72 /* First part goes into this subdev */ 73 size = subdev->size - from; 74 else 75 /* Entire transaction goes into this subdev */ 76 size = len; 77 78 err = mtd_read(subdev, from, size, &retsize, buf); 79 80 /* Save information about bitflips! */ 81 if (unlikely(err)) { 82 if (mtd_is_eccerr(err)) { 83 mtd->ecc_stats.failed++; 84 ret = err; 85 } else if (mtd_is_bitflip(err)) { 86 mtd->ecc_stats.corrected++; 87 /* Do not overwrite -EBADMSG !! */ 88 if (!ret) 89 ret = err; 90 } else 91 return err; 92 } 93 94 *retlen += retsize; 95 len -= size; 96 if (len == 0) 97 return ret; 98 99 buf += size; 100 from = 0; 101 } 102 return -EINVAL; 103 } 104 105 static int 106 concat_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 107 size_t * retlen, const u_char * buf) 108 { 109 struct mtd_concat *concat = CONCAT(mtd); 110 int err = -EINVAL; 111 int i; 112 for (i = 0; i < concat->num_subdev; i++) { 113 struct mtd_info *subdev = concat->subdev[i]; 114 size_t size, retsize; 115 116 if (to >= subdev->size) { 117 to -= subdev->size; 118 continue; 119 } 120 if (to + len > subdev->size) 121 size = subdev->size - to; 122 else 123 size = len; 124 125 err = mtd_panic_write(subdev, to, size, &retsize, buf); 126 if (err == -EOPNOTSUPP) { 127 printk(KERN_ERR "mtdconcat: Cannot write from panic without panic_write\n"); 128 return err; 129 } 130 if (err) 131 break; 132 133 *retlen += retsize; 134 len -= size; 135 if (len == 0) 136 break; 137 138 err = -EINVAL; 139 buf += size; 140 to = 0; 141 } 142 return err; 143 } 144 145 146 static int 147 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 148 size_t * retlen, const u_char * buf) 149 { 150 struct mtd_concat *concat = CONCAT(mtd); 151 int err = -EINVAL; 152 int i; 153 154 for (i = 0; i < concat->num_subdev; i++) { 155 struct mtd_info *subdev = concat->subdev[i]; 156 size_t size, retsize; 157 158 if (to >= subdev->size) { 159 size = 0; 160 to -= subdev->size; 161 continue; 162 } 163 if (to + len > subdev->size) 164 size = subdev->size - to; 165 else 166 size = len; 167 168 err = mtd_write(subdev, to, size, &retsize, buf); 169 if (err) 170 break; 171 172 *retlen += retsize; 173 len -= size; 174 if (len == 0) 175 break; 176 177 err = -EINVAL; 178 buf += size; 179 to = 0; 180 } 181 return err; 182 } 183 184 static int 185 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 186 unsigned long count, loff_t to, size_t * retlen) 187 { 188 struct mtd_concat *concat = CONCAT(mtd); 189 struct kvec *vecs_copy; 190 unsigned long entry_low, entry_high; 191 size_t total_len = 0; 192 int i; 193 int err = -EINVAL; 194 195 /* Calculate total length of data */ 196 for (i = 0; i < count; i++) 197 total_len += vecs[i].iov_len; 198 199 /* Check alignment */ 200 if (mtd->writesize > 1) { 201 uint64_t __to = to; 202 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 203 return -EINVAL; 204 } 205 206 /* make a copy of vecs */ 207 vecs_copy = kmemdup_array(vecs, count, sizeof(struct kvec), GFP_KERNEL); 208 if (!vecs_copy) 209 return -ENOMEM; 210 211 entry_low = 0; 212 for (i = 0; i < concat->num_subdev; i++) { 213 struct mtd_info *subdev = concat->subdev[i]; 214 size_t size, wsize, retsize, old_iov_len; 215 216 if (to >= subdev->size) { 217 to -= subdev->size; 218 continue; 219 } 220 221 size = min_t(uint64_t, total_len, subdev->size - to); 222 wsize = size; /* store for future use */ 223 224 entry_high = entry_low; 225 while (entry_high < count) { 226 if (size <= vecs_copy[entry_high].iov_len) 227 break; 228 size -= vecs_copy[entry_high++].iov_len; 229 } 230 231 old_iov_len = vecs_copy[entry_high].iov_len; 232 vecs_copy[entry_high].iov_len = size; 233 234 err = mtd_writev(subdev, &vecs_copy[entry_low], 235 entry_high - entry_low + 1, to, &retsize); 236 237 vecs_copy[entry_high].iov_len = old_iov_len - size; 238 vecs_copy[entry_high].iov_base += size; 239 240 entry_low = entry_high; 241 242 if (err) 243 break; 244 245 *retlen += retsize; 246 total_len -= wsize; 247 248 if (total_len == 0) 249 break; 250 251 err = -EINVAL; 252 to = 0; 253 } 254 255 kfree(vecs_copy); 256 return err; 257 } 258 259 static int 260 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 261 { 262 struct mtd_concat *concat = CONCAT(mtd); 263 struct mtd_oob_ops devops = *ops; 264 int i, err, ret = 0; 265 266 ops->retlen = ops->oobretlen = 0; 267 268 for (i = 0; i < concat->num_subdev; i++) { 269 struct mtd_info *subdev = concat->subdev[i]; 270 271 if (from >= subdev->size) { 272 from -= subdev->size; 273 continue; 274 } 275 276 /* partial read ? */ 277 if (from + devops.len > subdev->size) 278 devops.len = subdev->size - from; 279 280 err = mtd_read_oob(subdev, from, &devops); 281 ops->retlen += devops.retlen; 282 ops->oobretlen += devops.oobretlen; 283 284 /* Save information about bitflips! */ 285 if (unlikely(err)) { 286 if (mtd_is_eccerr(err)) { 287 mtd->ecc_stats.failed++; 288 ret = err; 289 } else if (mtd_is_bitflip(err)) { 290 mtd->ecc_stats.corrected++; 291 /* Do not overwrite -EBADMSG !! */ 292 if (!ret) 293 ret = err; 294 } else 295 return err; 296 } 297 298 if (devops.datbuf) { 299 devops.len = ops->len - ops->retlen; 300 if (!devops.len) 301 return ret; 302 devops.datbuf += devops.retlen; 303 } 304 if (devops.oobbuf) { 305 devops.ooblen = ops->ooblen - ops->oobretlen; 306 if (!devops.ooblen) 307 return ret; 308 devops.oobbuf += ops->oobretlen; 309 } 310 311 from = 0; 312 } 313 return -EINVAL; 314 } 315 316 static int 317 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 318 { 319 struct mtd_concat *concat = CONCAT(mtd); 320 struct mtd_oob_ops devops = *ops; 321 int i, err; 322 323 if (!(mtd->flags & MTD_WRITEABLE)) 324 return -EROFS; 325 326 ops->retlen = ops->oobretlen = 0; 327 328 for (i = 0; i < concat->num_subdev; i++) { 329 struct mtd_info *subdev = concat->subdev[i]; 330 331 if (to >= subdev->size) { 332 to -= subdev->size; 333 continue; 334 } 335 336 /* partial write ? */ 337 if (to + devops.len > subdev->size) 338 devops.len = subdev->size - to; 339 340 err = mtd_write_oob(subdev, to, &devops); 341 ops->retlen += devops.retlen; 342 ops->oobretlen += devops.oobretlen; 343 if (err) 344 return err; 345 346 if (devops.datbuf) { 347 devops.len = ops->len - ops->retlen; 348 if (!devops.len) 349 return 0; 350 devops.datbuf += devops.retlen; 351 } 352 if (devops.oobbuf) { 353 devops.ooblen = ops->ooblen - ops->oobretlen; 354 if (!devops.ooblen) 355 return 0; 356 devops.oobbuf += devops.oobretlen; 357 } 358 to = 0; 359 } 360 return -EINVAL; 361 } 362 363 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 364 { 365 struct mtd_concat *concat = CONCAT(mtd); 366 struct mtd_info *subdev; 367 int i, err; 368 uint64_t length, offset = 0; 369 struct erase_info *erase; 370 371 /* 372 * Check for proper erase block alignment of the to-be-erased area. 373 * It is easier to do this based on the super device's erase 374 * region info rather than looking at each particular sub-device 375 * in turn. 376 */ 377 if (!concat->mtd.numeraseregions) { 378 /* the easy case: device has uniform erase block size */ 379 if (instr->addr & (concat->mtd.erasesize - 1)) 380 return -EINVAL; 381 if (instr->len & (concat->mtd.erasesize - 1)) 382 return -EINVAL; 383 } else { 384 /* device has variable erase size */ 385 struct mtd_erase_region_info *erase_regions = 386 concat->mtd.eraseregions; 387 388 /* 389 * Find the erase region where the to-be-erased area begins: 390 */ 391 for (i = 0; i < concat->mtd.numeraseregions && 392 instr->addr >= erase_regions[i].offset; i++) ; 393 --i; 394 395 /* 396 * Now erase_regions[i] is the region in which the 397 * to-be-erased area begins. Verify that the starting 398 * offset is aligned to this region's erase size: 399 */ 400 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 401 return -EINVAL; 402 403 /* 404 * now find the erase region where the to-be-erased area ends: 405 */ 406 for (; i < concat->mtd.numeraseregions && 407 (instr->addr + instr->len) >= erase_regions[i].offset; 408 ++i) ; 409 --i; 410 /* 411 * check if the ending offset is aligned to this region's erase size 412 */ 413 if (i < 0 || ((instr->addr + instr->len) & 414 (erase_regions[i].erasesize - 1))) 415 return -EINVAL; 416 } 417 418 /* make a local copy of instr to avoid modifying the caller's struct */ 419 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 420 421 if (!erase) 422 return -ENOMEM; 423 424 *erase = *instr; 425 length = instr->len; 426 427 /* 428 * find the subdevice where the to-be-erased area begins, adjust 429 * starting offset to be relative to the subdevice start 430 */ 431 for (i = 0; i < concat->num_subdev; i++) { 432 subdev = concat->subdev[i]; 433 if (subdev->size <= erase->addr) { 434 erase->addr -= subdev->size; 435 offset += subdev->size; 436 } else { 437 break; 438 } 439 } 440 441 /* must never happen since size limit has been verified above */ 442 BUG_ON(i >= concat->num_subdev); 443 444 /* now do the erase: */ 445 err = 0; 446 for (; length > 0; i++) { 447 /* loop for all subdevices affected by this request */ 448 subdev = concat->subdev[i]; /* get current subdevice */ 449 450 /* limit length to subdevice's size: */ 451 if (erase->addr + length > subdev->size) 452 erase->len = subdev->size - erase->addr; 453 else 454 erase->len = length; 455 456 length -= erase->len; 457 if ((err = mtd_erase(subdev, erase))) { 458 /* sanity check: should never happen since 459 * block alignment has been checked above */ 460 BUG_ON(err == -EINVAL); 461 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 462 instr->fail_addr = erase->fail_addr + offset; 463 break; 464 } 465 /* 466 * erase->addr specifies the offset of the area to be 467 * erased *within the current subdevice*. It can be 468 * non-zero only the first time through this loop, i.e. 469 * for the first subdevice where blocks need to be erased. 470 * All the following erases must begin at the start of the 471 * current subdevice, i.e. at offset zero. 472 */ 473 erase->addr = 0; 474 offset += subdev->size; 475 } 476 kfree(erase); 477 478 return err; 479 } 480 481 static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len, 482 bool is_lock) 483 { 484 struct mtd_concat *concat = CONCAT(mtd); 485 int i, err = -EINVAL; 486 487 for (i = 0; i < concat->num_subdev; i++) { 488 struct mtd_info *subdev = concat->subdev[i]; 489 uint64_t size; 490 491 if (ofs >= subdev->size) { 492 size = 0; 493 ofs -= subdev->size; 494 continue; 495 } 496 if (ofs + len > subdev->size) 497 size = subdev->size - ofs; 498 else 499 size = len; 500 501 if (is_lock) 502 err = mtd_lock(subdev, ofs, size); 503 else 504 err = mtd_unlock(subdev, ofs, size); 505 if (err) 506 break; 507 508 len -= size; 509 if (len == 0) 510 break; 511 512 err = -EINVAL; 513 ofs = 0; 514 } 515 516 return err; 517 } 518 519 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 520 { 521 return concat_xxlock(mtd, ofs, len, true); 522 } 523 524 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 525 { 526 return concat_xxlock(mtd, ofs, len, false); 527 } 528 529 static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 530 { 531 struct mtd_concat *concat = CONCAT(mtd); 532 int i, err = -EINVAL; 533 534 for (i = 0; i < concat->num_subdev; i++) { 535 struct mtd_info *subdev = concat->subdev[i]; 536 537 if (ofs >= subdev->size) { 538 ofs -= subdev->size; 539 continue; 540 } 541 542 if (ofs + len > subdev->size) 543 break; 544 545 return mtd_is_locked(subdev, ofs, len); 546 } 547 548 return err; 549 } 550 551 static void concat_sync(struct mtd_info *mtd) 552 { 553 struct mtd_concat *concat = CONCAT(mtd); 554 int i; 555 556 for (i = 0; i < concat->num_subdev; i++) { 557 struct mtd_info *subdev = concat->subdev[i]; 558 mtd_sync(subdev); 559 } 560 } 561 562 static int concat_suspend(struct mtd_info *mtd) 563 { 564 struct mtd_concat *concat = CONCAT(mtd); 565 int i, rc = 0; 566 567 for (i = 0; i < concat->num_subdev; i++) { 568 struct mtd_info *subdev = concat->subdev[i]; 569 if ((rc = mtd_suspend(subdev)) < 0) 570 return rc; 571 } 572 return rc; 573 } 574 575 static void concat_resume(struct mtd_info *mtd) 576 { 577 struct mtd_concat *concat = CONCAT(mtd); 578 int i; 579 580 for (i = 0; i < concat->num_subdev; i++) { 581 struct mtd_info *subdev = concat->subdev[i]; 582 mtd_resume(subdev); 583 } 584 } 585 586 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 587 { 588 struct mtd_concat *concat = CONCAT(mtd); 589 int i, res = 0; 590 591 if (!mtd_can_have_bb(concat->subdev[0])) 592 return res; 593 594 for (i = 0; i < concat->num_subdev; i++) { 595 struct mtd_info *subdev = concat->subdev[i]; 596 597 if (ofs >= subdev->size) { 598 ofs -= subdev->size; 599 continue; 600 } 601 602 res = mtd_block_isbad(subdev, ofs); 603 break; 604 } 605 606 return res; 607 } 608 609 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 610 { 611 struct mtd_concat *concat = CONCAT(mtd); 612 int i, err = -EINVAL; 613 614 for (i = 0; i < concat->num_subdev; i++) { 615 struct mtd_info *subdev = concat->subdev[i]; 616 617 if (ofs >= subdev->size) { 618 ofs -= subdev->size; 619 continue; 620 } 621 622 err = mtd_block_markbad(subdev, ofs); 623 if (!err) 624 mtd->ecc_stats.badblocks++; 625 break; 626 } 627 628 return err; 629 } 630 631 /* 632 * This function constructs a virtual MTD device by concatenating 633 * num_devs MTD devices. A pointer to the new device object is 634 * stored to *new_dev upon success. This function does _not_ 635 * register any devices: this is the caller's responsibility. 636 */ 637 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 638 int num_devs, /* number of subdevices */ 639 const char *name) 640 { /* name for the new device */ 641 int i; 642 size_t size; 643 struct mtd_concat *concat; 644 struct mtd_info *subdev_master = NULL; 645 uint32_t max_erasesize, curr_erasesize; 646 int num_erase_region; 647 int max_writebufsize = 0; 648 649 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 650 for (i = 0; i < num_devs; i++) 651 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 652 printk(KERN_NOTICE "into device \"%s\"\n", name); 653 654 /* allocate the device structure */ 655 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 656 concat = kzalloc(size, GFP_KERNEL); 657 if (!concat) { 658 printk 659 ("memory allocation error while creating concatenated device \"%s\"\n", 660 name); 661 return NULL; 662 } 663 concat->subdev = (struct mtd_info **) (concat + 1); 664 665 /* 666 * Set up the new "super" device's MTD object structure, check for 667 * incompatibilities between the subdevices. 668 */ 669 concat->mtd.type = subdev[0]->type; 670 concat->mtd.flags = subdev[0]->flags; 671 concat->mtd.size = subdev[0]->size; 672 concat->mtd.erasesize = subdev[0]->erasesize; 673 concat->mtd.writesize = subdev[0]->writesize; 674 675 for (i = 0; i < num_devs; i++) 676 if (max_writebufsize < subdev[i]->writebufsize) 677 max_writebufsize = subdev[i]->writebufsize; 678 concat->mtd.writebufsize = max_writebufsize; 679 680 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 681 concat->mtd.oobsize = subdev[0]->oobsize; 682 concat->mtd.oobavail = subdev[0]->oobavail; 683 684 subdev_master = mtd_get_master(subdev[0]); 685 if (subdev_master->_writev) 686 concat->mtd._writev = concat_writev; 687 if (subdev_master->_read_oob) 688 concat->mtd._read_oob = concat_read_oob; 689 if (subdev_master->_write_oob) 690 concat->mtd._write_oob = concat_write_oob; 691 if (subdev_master->_block_isbad) 692 concat->mtd._block_isbad = concat_block_isbad; 693 if (subdev_master->_block_markbad) 694 concat->mtd._block_markbad = concat_block_markbad; 695 if (subdev_master->_panic_write) 696 concat->mtd._panic_write = concat_panic_write; 697 if (subdev_master->_read) 698 concat->mtd._read = concat_read; 699 if (subdev_master->_write) 700 concat->mtd._write = concat_write; 701 702 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 703 704 concat->subdev[0] = subdev[0]; 705 706 for (i = 1; i < num_devs; i++) { 707 if (concat->mtd.type != subdev[i]->type) { 708 kfree(concat); 709 printk("Incompatible device type on \"%s\"\n", 710 subdev[i]->name); 711 return NULL; 712 } 713 if (concat->mtd.flags != subdev[i]->flags) { 714 /* 715 * Expect all flags except MTD_WRITEABLE to be 716 * equal on all subdevices. 717 */ 718 if ((concat->mtd.flags ^ subdev[i]-> 719 flags) & ~MTD_WRITEABLE) { 720 kfree(concat); 721 printk("Incompatible device flags on \"%s\"\n", 722 subdev[i]->name); 723 return NULL; 724 } else 725 /* if writeable attribute differs, 726 make super device writeable */ 727 concat->mtd.flags |= 728 subdev[i]->flags & MTD_WRITEABLE; 729 } 730 731 subdev_master = mtd_get_master(subdev[i]); 732 concat->mtd.size += subdev[i]->size; 733 concat->mtd.ecc_stats.badblocks += 734 subdev[i]->ecc_stats.badblocks; 735 if (concat->mtd.writesize != subdev[i]->writesize || 736 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 737 concat->mtd.oobsize != subdev[i]->oobsize || 738 !concat->mtd._read_oob != !subdev_master->_read_oob || 739 !concat->mtd._write_oob != !subdev_master->_write_oob) { 740 /* 741 * Check against subdev[i] for data members, because 742 * subdev's attributes may be different from master 743 * mtd device. Check against subdev's master mtd 744 * device for callbacks, because the existence of 745 * subdev's callbacks is decided by master mtd device. 746 */ 747 kfree(concat); 748 printk("Incompatible OOB or ECC data on \"%s\"\n", 749 subdev[i]->name); 750 return NULL; 751 } 752 concat->subdev[i] = subdev[i]; 753 754 } 755 756 mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout); 757 758 concat->num_subdev = num_devs; 759 concat->mtd.name = name; 760 761 concat->mtd._erase = concat_erase; 762 concat->mtd._sync = concat_sync; 763 concat->mtd._lock = concat_lock; 764 concat->mtd._unlock = concat_unlock; 765 concat->mtd._is_locked = concat_is_locked; 766 concat->mtd._suspend = concat_suspend; 767 concat->mtd._resume = concat_resume; 768 769 /* 770 * Combine the erase block size info of the subdevices: 771 * 772 * first, walk the map of the new device and see how 773 * many changes in erase size we have 774 */ 775 max_erasesize = curr_erasesize = subdev[0]->erasesize; 776 num_erase_region = 1; 777 for (i = 0; i < num_devs; i++) { 778 if (subdev[i]->numeraseregions == 0) { 779 /* current subdevice has uniform erase size */ 780 if (subdev[i]->erasesize != curr_erasesize) { 781 /* if it differs from the last subdevice's erase size, count it */ 782 ++num_erase_region; 783 curr_erasesize = subdev[i]->erasesize; 784 if (curr_erasesize > max_erasesize) 785 max_erasesize = curr_erasesize; 786 } 787 } else { 788 /* current subdevice has variable erase size */ 789 int j; 790 for (j = 0; j < subdev[i]->numeraseregions; j++) { 791 792 /* walk the list of erase regions, count any changes */ 793 if (subdev[i]->eraseregions[j].erasesize != 794 curr_erasesize) { 795 ++num_erase_region; 796 curr_erasesize = 797 subdev[i]->eraseregions[j]. 798 erasesize; 799 if (curr_erasesize > max_erasesize) 800 max_erasesize = curr_erasesize; 801 } 802 } 803 } 804 } 805 806 if (num_erase_region == 1) { 807 /* 808 * All subdevices have the same uniform erase size. 809 * This is easy: 810 */ 811 concat->mtd.erasesize = curr_erasesize; 812 concat->mtd.numeraseregions = 0; 813 } else { 814 uint64_t tmp64; 815 816 /* 817 * erase block size varies across the subdevices: allocate 818 * space to store the data describing the variable erase regions 819 */ 820 struct mtd_erase_region_info *erase_region_p; 821 uint64_t begin, position; 822 823 concat->mtd.erasesize = max_erasesize; 824 concat->mtd.numeraseregions = num_erase_region; 825 concat->mtd.eraseregions = erase_region_p = 826 kmalloc_array(num_erase_region, 827 sizeof(struct mtd_erase_region_info), 828 GFP_KERNEL); 829 if (!erase_region_p) { 830 kfree(concat); 831 printk 832 ("memory allocation error while creating erase region list" 833 " for device \"%s\"\n", name); 834 return NULL; 835 } 836 837 /* 838 * walk the map of the new device once more and fill in 839 * erase region info: 840 */ 841 curr_erasesize = subdev[0]->erasesize; 842 begin = position = 0; 843 for (i = 0; i < num_devs; i++) { 844 if (subdev[i]->numeraseregions == 0) { 845 /* current subdevice has uniform erase size */ 846 if (subdev[i]->erasesize != curr_erasesize) { 847 /* 848 * fill in an mtd_erase_region_info structure for the area 849 * we have walked so far: 850 */ 851 erase_region_p->offset = begin; 852 erase_region_p->erasesize = 853 curr_erasesize; 854 tmp64 = position - begin; 855 do_div(tmp64, curr_erasesize); 856 erase_region_p->numblocks = tmp64; 857 begin = position; 858 859 curr_erasesize = subdev[i]->erasesize; 860 ++erase_region_p; 861 } 862 position += subdev[i]->size; 863 } else { 864 /* current subdevice has variable erase size */ 865 int j; 866 for (j = 0; j < subdev[i]->numeraseregions; j++) { 867 /* walk the list of erase regions, count any changes */ 868 if (subdev[i]->eraseregions[j]. 869 erasesize != curr_erasesize) { 870 erase_region_p->offset = begin; 871 erase_region_p->erasesize = 872 curr_erasesize; 873 tmp64 = position - begin; 874 do_div(tmp64, curr_erasesize); 875 erase_region_p->numblocks = tmp64; 876 begin = position; 877 878 curr_erasesize = 879 subdev[i]->eraseregions[j]. 880 erasesize; 881 ++erase_region_p; 882 } 883 position += 884 subdev[i]->eraseregions[j]. 885 numblocks * (uint64_t)curr_erasesize; 886 } 887 } 888 } 889 /* Now write the final entry */ 890 erase_region_p->offset = begin; 891 erase_region_p->erasesize = curr_erasesize; 892 tmp64 = position - begin; 893 do_div(tmp64, curr_erasesize); 894 erase_region_p->numblocks = tmp64; 895 } 896 897 return &concat->mtd; 898 } 899 900 /* Cleans the context obtained from mtd_concat_create() */ 901 void mtd_concat_destroy(struct mtd_info *mtd) 902 { 903 struct mtd_concat *concat = CONCAT(mtd); 904 if (concat->mtd.numeraseregions) 905 kfree(concat->mtd.eraseregions); 906 kfree(concat); 907 } 908 909 EXPORT_SYMBOL(mtd_concat_create); 910 EXPORT_SYMBOL(mtd_concat_destroy); 911 912 MODULE_LICENSE("GPL"); 913 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 914 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 915