xref: /linux/drivers/mtd/mtdconcat.c (revision a97673a1c43d005a3ae215f4ca8b4bbb5691aea1)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34 
35 #include <asm/div64.h>
36 
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44 	struct mtd_info mtd;
45 	int num_subdev;
46 	struct mtd_info **subdev;
47 };
48 
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
54 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55 
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61 
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66 
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 	    size_t * retlen, u_char * buf)
70 {
71 	struct mtd_concat *concat = CONCAT(mtd);
72 	int ret = 0, err;
73 	int i;
74 
75 	for (i = 0; i < concat->num_subdev; i++) {
76 		struct mtd_info *subdev = concat->subdev[i];
77 		size_t size, retsize;
78 
79 		if (from >= subdev->size) {
80 			/* Not destined for this subdev */
81 			size = 0;
82 			from -= subdev->size;
83 			continue;
84 		}
85 		if (from + len > subdev->size)
86 			/* First part goes into this subdev */
87 			size = subdev->size - from;
88 		else
89 			/* Entire transaction goes into this subdev */
90 			size = len;
91 
92 		err = mtd_read(subdev, from, size, &retsize, buf);
93 
94 		/* Save information about bitflips! */
95 		if (unlikely(err)) {
96 			if (mtd_is_eccerr(err)) {
97 				mtd->ecc_stats.failed++;
98 				ret = err;
99 			} else if (mtd_is_bitflip(err)) {
100 				mtd->ecc_stats.corrected++;
101 				/* Do not overwrite -EBADMSG !! */
102 				if (!ret)
103 					ret = err;
104 			} else
105 				return err;
106 		}
107 
108 		*retlen += retsize;
109 		len -= size;
110 		if (len == 0)
111 			return ret;
112 
113 		buf += size;
114 		from = 0;
115 	}
116 	return -EINVAL;
117 }
118 
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121 	     size_t * retlen, const u_char * buf)
122 {
123 	struct mtd_concat *concat = CONCAT(mtd);
124 	int err = -EINVAL;
125 	int i;
126 
127 	for (i = 0; i < concat->num_subdev; i++) {
128 		struct mtd_info *subdev = concat->subdev[i];
129 		size_t size, retsize;
130 
131 		if (to >= subdev->size) {
132 			size = 0;
133 			to -= subdev->size;
134 			continue;
135 		}
136 		if (to + len > subdev->size)
137 			size = subdev->size - to;
138 		else
139 			size = len;
140 
141 		err = mtd_write(subdev, to, size, &retsize, buf);
142 		if (err)
143 			break;
144 
145 		*retlen += retsize;
146 		len -= size;
147 		if (len == 0)
148 			break;
149 
150 		err = -EINVAL;
151 		buf += size;
152 		to = 0;
153 	}
154 	return err;
155 }
156 
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159 		unsigned long count, loff_t to, size_t * retlen)
160 {
161 	struct mtd_concat *concat = CONCAT(mtd);
162 	struct kvec *vecs_copy;
163 	unsigned long entry_low, entry_high;
164 	size_t total_len = 0;
165 	int i;
166 	int err = -EINVAL;
167 
168 	/* Calculate total length of data */
169 	for (i = 0; i < count; i++)
170 		total_len += vecs[i].iov_len;
171 
172 	/* Check alignment */
173 	if (mtd->writesize > 1) {
174 		uint64_t __to = to;
175 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176 			return -EINVAL;
177 	}
178 
179 	/* make a copy of vecs */
180 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181 	if (!vecs_copy)
182 		return -ENOMEM;
183 
184 	entry_low = 0;
185 	for (i = 0; i < concat->num_subdev; i++) {
186 		struct mtd_info *subdev = concat->subdev[i];
187 		size_t size, wsize, retsize, old_iov_len;
188 
189 		if (to >= subdev->size) {
190 			to -= subdev->size;
191 			continue;
192 		}
193 
194 		size = min_t(uint64_t, total_len, subdev->size - to);
195 		wsize = size; /* store for future use */
196 
197 		entry_high = entry_low;
198 		while (entry_high < count) {
199 			if (size <= vecs_copy[entry_high].iov_len)
200 				break;
201 			size -= vecs_copy[entry_high++].iov_len;
202 		}
203 
204 		old_iov_len = vecs_copy[entry_high].iov_len;
205 		vecs_copy[entry_high].iov_len = size;
206 
207 		err = mtd_writev(subdev, &vecs_copy[entry_low],
208 				 entry_high - entry_low + 1, to, &retsize);
209 
210 		vecs_copy[entry_high].iov_len = old_iov_len - size;
211 		vecs_copy[entry_high].iov_base += size;
212 
213 		entry_low = entry_high;
214 
215 		if (err)
216 			break;
217 
218 		*retlen += retsize;
219 		total_len -= wsize;
220 
221 		if (total_len == 0)
222 			break;
223 
224 		err = -EINVAL;
225 		to = 0;
226 	}
227 
228 	kfree(vecs_copy);
229 	return err;
230 }
231 
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234 {
235 	struct mtd_concat *concat = CONCAT(mtd);
236 	struct mtd_oob_ops devops = *ops;
237 	int i, err, ret = 0;
238 
239 	ops->retlen = ops->oobretlen = 0;
240 
241 	for (i = 0; i < concat->num_subdev; i++) {
242 		struct mtd_info *subdev = concat->subdev[i];
243 
244 		if (from >= subdev->size) {
245 			from -= subdev->size;
246 			continue;
247 		}
248 
249 		/* partial read ? */
250 		if (from + devops.len > subdev->size)
251 			devops.len = subdev->size - from;
252 
253 		err = mtd_read_oob(subdev, from, &devops);
254 		ops->retlen += devops.retlen;
255 		ops->oobretlen += devops.oobretlen;
256 
257 		/* Save information about bitflips! */
258 		if (unlikely(err)) {
259 			if (mtd_is_eccerr(err)) {
260 				mtd->ecc_stats.failed++;
261 				ret = err;
262 			} else if (mtd_is_bitflip(err)) {
263 				mtd->ecc_stats.corrected++;
264 				/* Do not overwrite -EBADMSG !! */
265 				if (!ret)
266 					ret = err;
267 			} else
268 				return err;
269 		}
270 
271 		if (devops.datbuf) {
272 			devops.len = ops->len - ops->retlen;
273 			if (!devops.len)
274 				return ret;
275 			devops.datbuf += devops.retlen;
276 		}
277 		if (devops.oobbuf) {
278 			devops.ooblen = ops->ooblen - ops->oobretlen;
279 			if (!devops.ooblen)
280 				return ret;
281 			devops.oobbuf += ops->oobretlen;
282 		}
283 
284 		from = 0;
285 	}
286 	return -EINVAL;
287 }
288 
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291 {
292 	struct mtd_concat *concat = CONCAT(mtd);
293 	struct mtd_oob_ops devops = *ops;
294 	int i, err;
295 
296 	if (!(mtd->flags & MTD_WRITEABLE))
297 		return -EROFS;
298 
299 	ops->retlen = ops->oobretlen = 0;
300 
301 	for (i = 0; i < concat->num_subdev; i++) {
302 		struct mtd_info *subdev = concat->subdev[i];
303 
304 		if (to >= subdev->size) {
305 			to -= subdev->size;
306 			continue;
307 		}
308 
309 		/* partial write ? */
310 		if (to + devops.len > subdev->size)
311 			devops.len = subdev->size - to;
312 
313 		err = mtd_write_oob(subdev, to, &devops);
314 		ops->retlen += devops.retlen;
315 		ops->oobretlen += devops.oobretlen;
316 		if (err)
317 			return err;
318 
319 		if (devops.datbuf) {
320 			devops.len = ops->len - ops->retlen;
321 			if (!devops.len)
322 				return 0;
323 			devops.datbuf += devops.retlen;
324 		}
325 		if (devops.oobbuf) {
326 			devops.ooblen = ops->ooblen - ops->oobretlen;
327 			if (!devops.ooblen)
328 				return 0;
329 			devops.oobbuf += devops.oobretlen;
330 		}
331 		to = 0;
332 	}
333 	return -EINVAL;
334 }
335 
336 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
337 {
338 	struct mtd_concat *concat = CONCAT(mtd);
339 	struct mtd_info *subdev;
340 	int i, err;
341 	uint64_t length, offset = 0;
342 	struct erase_info *erase;
343 
344 	/*
345 	 * Check for proper erase block alignment of the to-be-erased area.
346 	 * It is easier to do this based on the super device's erase
347 	 * region info rather than looking at each particular sub-device
348 	 * in turn.
349 	 */
350 	if (!concat->mtd.numeraseregions) {
351 		/* the easy case: device has uniform erase block size */
352 		if (instr->addr & (concat->mtd.erasesize - 1))
353 			return -EINVAL;
354 		if (instr->len & (concat->mtd.erasesize - 1))
355 			return -EINVAL;
356 	} else {
357 		/* device has variable erase size */
358 		struct mtd_erase_region_info *erase_regions =
359 		    concat->mtd.eraseregions;
360 
361 		/*
362 		 * Find the erase region where the to-be-erased area begins:
363 		 */
364 		for (i = 0; i < concat->mtd.numeraseregions &&
365 		     instr->addr >= erase_regions[i].offset; i++) ;
366 		--i;
367 
368 		/*
369 		 * Now erase_regions[i] is the region in which the
370 		 * to-be-erased area begins. Verify that the starting
371 		 * offset is aligned to this region's erase size:
372 		 */
373 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
374 			return -EINVAL;
375 
376 		/*
377 		 * now find the erase region where the to-be-erased area ends:
378 		 */
379 		for (; i < concat->mtd.numeraseregions &&
380 		     (instr->addr + instr->len) >= erase_regions[i].offset;
381 		     ++i) ;
382 		--i;
383 		/*
384 		 * check if the ending offset is aligned to this region's erase size
385 		 */
386 		if (i < 0 || ((instr->addr + instr->len) &
387 					(erase_regions[i].erasesize - 1)))
388 			return -EINVAL;
389 	}
390 
391 	/* make a local copy of instr to avoid modifying the caller's struct */
392 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
393 
394 	if (!erase)
395 		return -ENOMEM;
396 
397 	*erase = *instr;
398 	length = instr->len;
399 
400 	/*
401 	 * find the subdevice where the to-be-erased area begins, adjust
402 	 * starting offset to be relative to the subdevice start
403 	 */
404 	for (i = 0; i < concat->num_subdev; i++) {
405 		subdev = concat->subdev[i];
406 		if (subdev->size <= erase->addr) {
407 			erase->addr -= subdev->size;
408 			offset += subdev->size;
409 		} else {
410 			break;
411 		}
412 	}
413 
414 	/* must never happen since size limit has been verified above */
415 	BUG_ON(i >= concat->num_subdev);
416 
417 	/* now do the erase: */
418 	err = 0;
419 	for (; length > 0; i++) {
420 		/* loop for all subdevices affected by this request */
421 		subdev = concat->subdev[i];	/* get current subdevice */
422 
423 		/* limit length to subdevice's size: */
424 		if (erase->addr + length > subdev->size)
425 			erase->len = subdev->size - erase->addr;
426 		else
427 			erase->len = length;
428 
429 		length -= erase->len;
430 		if ((err = mtd_erase(subdev, erase))) {
431 			/* sanity check: should never happen since
432 			 * block alignment has been checked above */
433 			BUG_ON(err == -EINVAL);
434 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
435 				instr->fail_addr = erase->fail_addr + offset;
436 			break;
437 		}
438 		/*
439 		 * erase->addr specifies the offset of the area to be
440 		 * erased *within the current subdevice*. It can be
441 		 * non-zero only the first time through this loop, i.e.
442 		 * for the first subdevice where blocks need to be erased.
443 		 * All the following erases must begin at the start of the
444 		 * current subdevice, i.e. at offset zero.
445 		 */
446 		erase->addr = 0;
447 		offset += subdev->size;
448 	}
449 	kfree(erase);
450 
451 	return err;
452 }
453 
454 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
455 {
456 	struct mtd_concat *concat = CONCAT(mtd);
457 	int i, err = -EINVAL;
458 
459 	for (i = 0; i < concat->num_subdev; i++) {
460 		struct mtd_info *subdev = concat->subdev[i];
461 		uint64_t size;
462 
463 		if (ofs >= subdev->size) {
464 			size = 0;
465 			ofs -= subdev->size;
466 			continue;
467 		}
468 		if (ofs + len > subdev->size)
469 			size = subdev->size - ofs;
470 		else
471 			size = len;
472 
473 		err = mtd_lock(subdev, ofs, size);
474 		if (err)
475 			break;
476 
477 		len -= size;
478 		if (len == 0)
479 			break;
480 
481 		err = -EINVAL;
482 		ofs = 0;
483 	}
484 
485 	return err;
486 }
487 
488 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
489 {
490 	struct mtd_concat *concat = CONCAT(mtd);
491 	int i, err = 0;
492 
493 	for (i = 0; i < concat->num_subdev; i++) {
494 		struct mtd_info *subdev = concat->subdev[i];
495 		uint64_t size;
496 
497 		if (ofs >= subdev->size) {
498 			size = 0;
499 			ofs -= subdev->size;
500 			continue;
501 		}
502 		if (ofs + len > subdev->size)
503 			size = subdev->size - ofs;
504 		else
505 			size = len;
506 
507 		err = mtd_unlock(subdev, ofs, size);
508 		if (err)
509 			break;
510 
511 		len -= size;
512 		if (len == 0)
513 			break;
514 
515 		err = -EINVAL;
516 		ofs = 0;
517 	}
518 
519 	return err;
520 }
521 
522 static void concat_sync(struct mtd_info *mtd)
523 {
524 	struct mtd_concat *concat = CONCAT(mtd);
525 	int i;
526 
527 	for (i = 0; i < concat->num_subdev; i++) {
528 		struct mtd_info *subdev = concat->subdev[i];
529 		mtd_sync(subdev);
530 	}
531 }
532 
533 static int concat_suspend(struct mtd_info *mtd)
534 {
535 	struct mtd_concat *concat = CONCAT(mtd);
536 	int i, rc = 0;
537 
538 	for (i = 0; i < concat->num_subdev; i++) {
539 		struct mtd_info *subdev = concat->subdev[i];
540 		if ((rc = mtd_suspend(subdev)) < 0)
541 			return rc;
542 	}
543 	return rc;
544 }
545 
546 static void concat_resume(struct mtd_info *mtd)
547 {
548 	struct mtd_concat *concat = CONCAT(mtd);
549 	int i;
550 
551 	for (i = 0; i < concat->num_subdev; i++) {
552 		struct mtd_info *subdev = concat->subdev[i];
553 		mtd_resume(subdev);
554 	}
555 }
556 
557 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
558 {
559 	struct mtd_concat *concat = CONCAT(mtd);
560 	int i, res = 0;
561 
562 	if (!mtd_can_have_bb(concat->subdev[0]))
563 		return res;
564 
565 	for (i = 0; i < concat->num_subdev; i++) {
566 		struct mtd_info *subdev = concat->subdev[i];
567 
568 		if (ofs >= subdev->size) {
569 			ofs -= subdev->size;
570 			continue;
571 		}
572 
573 		res = mtd_block_isbad(subdev, ofs);
574 		break;
575 	}
576 
577 	return res;
578 }
579 
580 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
581 {
582 	struct mtd_concat *concat = CONCAT(mtd);
583 	int i, err = -EINVAL;
584 
585 	for (i = 0; i < concat->num_subdev; i++) {
586 		struct mtd_info *subdev = concat->subdev[i];
587 
588 		if (ofs >= subdev->size) {
589 			ofs -= subdev->size;
590 			continue;
591 		}
592 
593 		err = mtd_block_markbad(subdev, ofs);
594 		if (!err)
595 			mtd->ecc_stats.badblocks++;
596 		break;
597 	}
598 
599 	return err;
600 }
601 
602 /*
603  * This function constructs a virtual MTD device by concatenating
604  * num_devs MTD devices. A pointer to the new device object is
605  * stored to *new_dev upon success. This function does _not_
606  * register any devices: this is the caller's responsibility.
607  */
608 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
609 				   int num_devs,	/* number of subdevices      */
610 				   const char *name)
611 {				/* name for the new device   */
612 	int i;
613 	size_t size;
614 	struct mtd_concat *concat;
615 	uint32_t max_erasesize, curr_erasesize;
616 	int num_erase_region;
617 	int max_writebufsize = 0;
618 
619 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
620 	for (i = 0; i < num_devs; i++)
621 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
622 	printk(KERN_NOTICE "into device \"%s\"\n", name);
623 
624 	/* allocate the device structure */
625 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
626 	concat = kzalloc(size, GFP_KERNEL);
627 	if (!concat) {
628 		printk
629 		    ("memory allocation error while creating concatenated device \"%s\"\n",
630 		     name);
631 		return NULL;
632 	}
633 	concat->subdev = (struct mtd_info **) (concat + 1);
634 
635 	/*
636 	 * Set up the new "super" device's MTD object structure, check for
637 	 * incompatibilities between the subdevices.
638 	 */
639 	concat->mtd.type = subdev[0]->type;
640 	concat->mtd.flags = subdev[0]->flags;
641 	concat->mtd.size = subdev[0]->size;
642 	concat->mtd.erasesize = subdev[0]->erasesize;
643 	concat->mtd.writesize = subdev[0]->writesize;
644 
645 	for (i = 0; i < num_devs; i++)
646 		if (max_writebufsize < subdev[i]->writebufsize)
647 			max_writebufsize = subdev[i]->writebufsize;
648 	concat->mtd.writebufsize = max_writebufsize;
649 
650 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
651 	concat->mtd.oobsize = subdev[0]->oobsize;
652 	concat->mtd.oobavail = subdev[0]->oobavail;
653 	if (subdev[0]->_writev)
654 		concat->mtd._writev = concat_writev;
655 	if (subdev[0]->_read_oob)
656 		concat->mtd._read_oob = concat_read_oob;
657 	if (subdev[0]->_write_oob)
658 		concat->mtd._write_oob = concat_write_oob;
659 	if (subdev[0]->_block_isbad)
660 		concat->mtd._block_isbad = concat_block_isbad;
661 	if (subdev[0]->_block_markbad)
662 		concat->mtd._block_markbad = concat_block_markbad;
663 
664 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
665 
666 	concat->subdev[0] = subdev[0];
667 
668 	for (i = 1; i < num_devs; i++) {
669 		if (concat->mtd.type != subdev[i]->type) {
670 			kfree(concat);
671 			printk("Incompatible device type on \"%s\"\n",
672 			       subdev[i]->name);
673 			return NULL;
674 		}
675 		if (concat->mtd.flags != subdev[i]->flags) {
676 			/*
677 			 * Expect all flags except MTD_WRITEABLE to be
678 			 * equal on all subdevices.
679 			 */
680 			if ((concat->mtd.flags ^ subdev[i]->
681 			     flags) & ~MTD_WRITEABLE) {
682 				kfree(concat);
683 				printk("Incompatible device flags on \"%s\"\n",
684 				       subdev[i]->name);
685 				return NULL;
686 			} else
687 				/* if writeable attribute differs,
688 				   make super device writeable */
689 				concat->mtd.flags |=
690 				    subdev[i]->flags & MTD_WRITEABLE;
691 		}
692 
693 		concat->mtd.size += subdev[i]->size;
694 		concat->mtd.ecc_stats.badblocks +=
695 			subdev[i]->ecc_stats.badblocks;
696 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
697 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
698 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
699 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
700 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
701 			kfree(concat);
702 			printk("Incompatible OOB or ECC data on \"%s\"\n",
703 			       subdev[i]->name);
704 			return NULL;
705 		}
706 		concat->subdev[i] = subdev[i];
707 
708 	}
709 
710 	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
711 
712 	concat->num_subdev = num_devs;
713 	concat->mtd.name = name;
714 
715 	concat->mtd._erase = concat_erase;
716 	concat->mtd._read = concat_read;
717 	concat->mtd._write = concat_write;
718 	concat->mtd._sync = concat_sync;
719 	concat->mtd._lock = concat_lock;
720 	concat->mtd._unlock = concat_unlock;
721 	concat->mtd._suspend = concat_suspend;
722 	concat->mtd._resume = concat_resume;
723 
724 	/*
725 	 * Combine the erase block size info of the subdevices:
726 	 *
727 	 * first, walk the map of the new device and see how
728 	 * many changes in erase size we have
729 	 */
730 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
731 	num_erase_region = 1;
732 	for (i = 0; i < num_devs; i++) {
733 		if (subdev[i]->numeraseregions == 0) {
734 			/* current subdevice has uniform erase size */
735 			if (subdev[i]->erasesize != curr_erasesize) {
736 				/* if it differs from the last subdevice's erase size, count it */
737 				++num_erase_region;
738 				curr_erasesize = subdev[i]->erasesize;
739 				if (curr_erasesize > max_erasesize)
740 					max_erasesize = curr_erasesize;
741 			}
742 		} else {
743 			/* current subdevice has variable erase size */
744 			int j;
745 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
746 
747 				/* walk the list of erase regions, count any changes */
748 				if (subdev[i]->eraseregions[j].erasesize !=
749 				    curr_erasesize) {
750 					++num_erase_region;
751 					curr_erasesize =
752 					    subdev[i]->eraseregions[j].
753 					    erasesize;
754 					if (curr_erasesize > max_erasesize)
755 						max_erasesize = curr_erasesize;
756 				}
757 			}
758 		}
759 	}
760 
761 	if (num_erase_region == 1) {
762 		/*
763 		 * All subdevices have the same uniform erase size.
764 		 * This is easy:
765 		 */
766 		concat->mtd.erasesize = curr_erasesize;
767 		concat->mtd.numeraseregions = 0;
768 	} else {
769 		uint64_t tmp64;
770 
771 		/*
772 		 * erase block size varies across the subdevices: allocate
773 		 * space to store the data describing the variable erase regions
774 		 */
775 		struct mtd_erase_region_info *erase_region_p;
776 		uint64_t begin, position;
777 
778 		concat->mtd.erasesize = max_erasesize;
779 		concat->mtd.numeraseregions = num_erase_region;
780 		concat->mtd.eraseregions = erase_region_p =
781 		    kmalloc_array(num_erase_region,
782 				  sizeof(struct mtd_erase_region_info),
783 				  GFP_KERNEL);
784 		if (!erase_region_p) {
785 			kfree(concat);
786 			printk
787 			    ("memory allocation error while creating erase region list"
788 			     " for device \"%s\"\n", name);
789 			return NULL;
790 		}
791 
792 		/*
793 		 * walk the map of the new device once more and fill in
794 		 * in erase region info:
795 		 */
796 		curr_erasesize = subdev[0]->erasesize;
797 		begin = position = 0;
798 		for (i = 0; i < num_devs; i++) {
799 			if (subdev[i]->numeraseregions == 0) {
800 				/* current subdevice has uniform erase size */
801 				if (subdev[i]->erasesize != curr_erasesize) {
802 					/*
803 					 *  fill in an mtd_erase_region_info structure for the area
804 					 *  we have walked so far:
805 					 */
806 					erase_region_p->offset = begin;
807 					erase_region_p->erasesize =
808 					    curr_erasesize;
809 					tmp64 = position - begin;
810 					do_div(tmp64, curr_erasesize);
811 					erase_region_p->numblocks = tmp64;
812 					begin = position;
813 
814 					curr_erasesize = subdev[i]->erasesize;
815 					++erase_region_p;
816 				}
817 				position += subdev[i]->size;
818 			} else {
819 				/* current subdevice has variable erase size */
820 				int j;
821 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
822 					/* walk the list of erase regions, count any changes */
823 					if (subdev[i]->eraseregions[j].
824 					    erasesize != curr_erasesize) {
825 						erase_region_p->offset = begin;
826 						erase_region_p->erasesize =
827 						    curr_erasesize;
828 						tmp64 = position - begin;
829 						do_div(tmp64, curr_erasesize);
830 						erase_region_p->numblocks = tmp64;
831 						begin = position;
832 
833 						curr_erasesize =
834 						    subdev[i]->eraseregions[j].
835 						    erasesize;
836 						++erase_region_p;
837 					}
838 					position +=
839 					    subdev[i]->eraseregions[j].
840 					    numblocks * (uint64_t)curr_erasesize;
841 				}
842 			}
843 		}
844 		/* Now write the final entry */
845 		erase_region_p->offset = begin;
846 		erase_region_p->erasesize = curr_erasesize;
847 		tmp64 = position - begin;
848 		do_div(tmp64, curr_erasesize);
849 		erase_region_p->numblocks = tmp64;
850 	}
851 
852 	return &concat->mtd;
853 }
854 
855 /*
856  * This function destroys an MTD object obtained from concat_mtd_devs()
857  */
858 
859 void mtd_concat_destroy(struct mtd_info *mtd)
860 {
861 	struct mtd_concat *concat = CONCAT(mtd);
862 	if (concat->mtd.numeraseregions)
863 		kfree(concat->mtd.eraseregions);
864 	kfree(concat);
865 }
866 
867 EXPORT_SYMBOL(mtd_concat_create);
868 EXPORT_SYMBOL(mtd_concat_destroy);
869 
870 MODULE_LICENSE("GPL");
871 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
872 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
873