xref: /linux/drivers/mtd/mtdconcat.c (revision 7014568bad55c20b7ee4f439d78c9e875912d51f)
1 /*
2  * MTD device concatenation layer
3  *
4  * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5  *
6  * NAND support by Christian Gan <cgan@iders.ca>
7  *
8  * This code is GPL
9  *
10  * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/concat.h>
21 
22 #include <asm/div64.h>
23 
24 /*
25  * Our storage structure:
26  * Subdev points to an array of pointers to struct mtd_info objects
27  * which is allocated along with this structure
28  *
29  */
30 struct mtd_concat {
31 	struct mtd_info mtd;
32 	int num_subdev;
33 	struct mtd_info **subdev;
34 };
35 
36 /*
37  * how to calculate the size required for the above structure,
38  * including the pointer array subdev points to:
39  */
40 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
41 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
42 
43 /*
44  * Given a pointer to the MTD object in the mtd_concat structure,
45  * we can retrieve the pointer to that structure with this macro.
46  */
47 #define CONCAT(x)  ((struct mtd_concat *)(x))
48 
49 /*
50  * MTD methods which look up the relevant subdevice, translate the
51  * effective address and pass through to the subdevice.
52  */
53 
54 static int
55 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
56 	    size_t * retlen, u_char * buf)
57 {
58 	struct mtd_concat *concat = CONCAT(mtd);
59 	int ret = 0, err;
60 	int i;
61 
62 	*retlen = 0;
63 
64 	for (i = 0; i < concat->num_subdev; i++) {
65 		struct mtd_info *subdev = concat->subdev[i];
66 		size_t size, retsize;
67 
68 		if (from >= subdev->size) {
69 			/* Not destined for this subdev */
70 			size = 0;
71 			from -= subdev->size;
72 			continue;
73 		}
74 		if (from + len > subdev->size)
75 			/* First part goes into this subdev */
76 			size = subdev->size - from;
77 		else
78 			/* Entire transaction goes into this subdev */
79 			size = len;
80 
81 		err = subdev->read(subdev, from, size, &retsize, buf);
82 
83 		/* Save information about bitflips! */
84 		if (unlikely(err)) {
85 			if (err == -EBADMSG) {
86 				mtd->ecc_stats.failed++;
87 				ret = err;
88 			} else if (err == -EUCLEAN) {
89 				mtd->ecc_stats.corrected++;
90 				/* Do not overwrite -EBADMSG !! */
91 				if (!ret)
92 					ret = err;
93 			} else
94 				return err;
95 		}
96 
97 		*retlen += retsize;
98 		len -= size;
99 		if (len == 0)
100 			return ret;
101 
102 		buf += size;
103 		from = 0;
104 	}
105 	return -EINVAL;
106 }
107 
108 static int
109 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
110 	     size_t * retlen, const u_char * buf)
111 {
112 	struct mtd_concat *concat = CONCAT(mtd);
113 	int err = -EINVAL;
114 	int i;
115 
116 	if (!(mtd->flags & MTD_WRITEABLE))
117 		return -EROFS;
118 
119 	*retlen = 0;
120 
121 	for (i = 0; i < concat->num_subdev; i++) {
122 		struct mtd_info *subdev = concat->subdev[i];
123 		size_t size, retsize;
124 
125 		if (to >= subdev->size) {
126 			size = 0;
127 			to -= subdev->size;
128 			continue;
129 		}
130 		if (to + len > subdev->size)
131 			size = subdev->size - to;
132 		else
133 			size = len;
134 
135 		if (!(subdev->flags & MTD_WRITEABLE))
136 			err = -EROFS;
137 		else
138 			err = subdev->write(subdev, to, size, &retsize, buf);
139 
140 		if (err)
141 			break;
142 
143 		*retlen += retsize;
144 		len -= size;
145 		if (len == 0)
146 			break;
147 
148 		err = -EINVAL;
149 		buf += size;
150 		to = 0;
151 	}
152 	return err;
153 }
154 
155 static int
156 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
157 		unsigned long count, loff_t to, size_t * retlen)
158 {
159 	struct mtd_concat *concat = CONCAT(mtd);
160 	struct kvec *vecs_copy;
161 	unsigned long entry_low, entry_high;
162 	size_t total_len = 0;
163 	int i;
164 	int err = -EINVAL;
165 
166 	if (!(mtd->flags & MTD_WRITEABLE))
167 		return -EROFS;
168 
169 	*retlen = 0;
170 
171 	/* Calculate total length of data */
172 	for (i = 0; i < count; i++)
173 		total_len += vecs[i].iov_len;
174 
175 	/* Do not allow write past end of device */
176 	if ((to + total_len) > mtd->size)
177 		return -EINVAL;
178 
179 	/* Check alignment */
180 	if (mtd->writesize > 1) {
181 		loff_t __to = to;
182 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
183 			return -EINVAL;
184 	}
185 
186 	/* make a copy of vecs */
187 	vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL);
188 	if (!vecs_copy)
189 		return -ENOMEM;
190 	memcpy(vecs_copy, vecs, sizeof(struct kvec) * count);
191 
192 	entry_low = 0;
193 	for (i = 0; i < concat->num_subdev; i++) {
194 		struct mtd_info *subdev = concat->subdev[i];
195 		size_t size, wsize, retsize, old_iov_len;
196 
197 		if (to >= subdev->size) {
198 			to -= subdev->size;
199 			continue;
200 		}
201 
202 		size = min(total_len, (size_t)(subdev->size - to));
203 		wsize = size; /* store for future use */
204 
205 		entry_high = entry_low;
206 		while (entry_high < count) {
207 			if (size <= vecs_copy[entry_high].iov_len)
208 				break;
209 			size -= vecs_copy[entry_high++].iov_len;
210 		}
211 
212 		old_iov_len = vecs_copy[entry_high].iov_len;
213 		vecs_copy[entry_high].iov_len = size;
214 
215 		if (!(subdev->flags & MTD_WRITEABLE))
216 			err = -EROFS;
217 		else
218 			err = subdev->writev(subdev, &vecs_copy[entry_low],
219 				entry_high - entry_low + 1, to, &retsize);
220 
221 		vecs_copy[entry_high].iov_len = old_iov_len - size;
222 		vecs_copy[entry_high].iov_base += size;
223 
224 		entry_low = entry_high;
225 
226 		if (err)
227 			break;
228 
229 		*retlen += retsize;
230 		total_len -= wsize;
231 
232 		if (total_len == 0)
233 			break;
234 
235 		err = -EINVAL;
236 		to = 0;
237 	}
238 
239 	kfree(vecs_copy);
240 	return err;
241 }
242 
243 static int
244 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
245 {
246 	struct mtd_concat *concat = CONCAT(mtd);
247 	struct mtd_oob_ops devops = *ops;
248 	int i, err, ret = 0;
249 
250 	ops->retlen = ops->oobretlen = 0;
251 
252 	for (i = 0; i < concat->num_subdev; i++) {
253 		struct mtd_info *subdev = concat->subdev[i];
254 
255 		if (from >= subdev->size) {
256 			from -= subdev->size;
257 			continue;
258 		}
259 
260 		/* partial read ? */
261 		if (from + devops.len > subdev->size)
262 			devops.len = subdev->size - from;
263 
264 		err = subdev->read_oob(subdev, from, &devops);
265 		ops->retlen += devops.retlen;
266 		ops->oobretlen += devops.oobretlen;
267 
268 		/* Save information about bitflips! */
269 		if (unlikely(err)) {
270 			if (err == -EBADMSG) {
271 				mtd->ecc_stats.failed++;
272 				ret = err;
273 			} else if (err == -EUCLEAN) {
274 				mtd->ecc_stats.corrected++;
275 				/* Do not overwrite -EBADMSG !! */
276 				if (!ret)
277 					ret = err;
278 			} else
279 				return err;
280 		}
281 
282 		if (devops.datbuf) {
283 			devops.len = ops->len - ops->retlen;
284 			if (!devops.len)
285 				return ret;
286 			devops.datbuf += devops.retlen;
287 		}
288 		if (devops.oobbuf) {
289 			devops.ooblen = ops->ooblen - ops->oobretlen;
290 			if (!devops.ooblen)
291 				return ret;
292 			devops.oobbuf += ops->oobretlen;
293 		}
294 
295 		from = 0;
296 	}
297 	return -EINVAL;
298 }
299 
300 static int
301 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
302 {
303 	struct mtd_concat *concat = CONCAT(mtd);
304 	struct mtd_oob_ops devops = *ops;
305 	int i, err;
306 
307 	if (!(mtd->flags & MTD_WRITEABLE))
308 		return -EROFS;
309 
310 	ops->retlen = 0;
311 
312 	for (i = 0; i < concat->num_subdev; i++) {
313 		struct mtd_info *subdev = concat->subdev[i];
314 
315 		if (to >= subdev->size) {
316 			to -= subdev->size;
317 			continue;
318 		}
319 
320 		/* partial write ? */
321 		if (to + devops.len > subdev->size)
322 			devops.len = subdev->size - to;
323 
324 		err = subdev->write_oob(subdev, to, &devops);
325 		ops->retlen += devops.retlen;
326 		if (err)
327 			return err;
328 
329 		if (devops.datbuf) {
330 			devops.len = ops->len - ops->retlen;
331 			if (!devops.len)
332 				return 0;
333 			devops.datbuf += devops.retlen;
334 		}
335 		if (devops.oobbuf) {
336 			devops.ooblen = ops->ooblen - ops->oobretlen;
337 			if (!devops.ooblen)
338 				return 0;
339 			devops.oobbuf += devops.oobretlen;
340 		}
341 		to = 0;
342 	}
343 	return -EINVAL;
344 }
345 
346 static void concat_erase_callback(struct erase_info *instr)
347 {
348 	wake_up((wait_queue_head_t *) instr->priv);
349 }
350 
351 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
352 {
353 	int err;
354 	wait_queue_head_t waitq;
355 	DECLARE_WAITQUEUE(wait, current);
356 
357 	/*
358 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
359 	 */
360 	init_waitqueue_head(&waitq);
361 
362 	erase->mtd = mtd;
363 	erase->callback = concat_erase_callback;
364 	erase->priv = (unsigned long) &waitq;
365 
366 	/*
367 	 * FIXME: Allow INTERRUPTIBLE. Which means
368 	 * not having the wait_queue head on the stack.
369 	 */
370 	err = mtd->erase(mtd, erase);
371 	if (!err) {
372 		set_current_state(TASK_UNINTERRUPTIBLE);
373 		add_wait_queue(&waitq, &wait);
374 		if (erase->state != MTD_ERASE_DONE
375 		    && erase->state != MTD_ERASE_FAILED)
376 			schedule();
377 		remove_wait_queue(&waitq, &wait);
378 		set_current_state(TASK_RUNNING);
379 
380 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
381 	}
382 	return err;
383 }
384 
385 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
386 {
387 	struct mtd_concat *concat = CONCAT(mtd);
388 	struct mtd_info *subdev;
389 	int i, err;
390 	u_int32_t length, offset = 0;
391 	struct erase_info *erase;
392 
393 	if (!(mtd->flags & MTD_WRITEABLE))
394 		return -EROFS;
395 
396 	if (instr->addr > concat->mtd.size)
397 		return -EINVAL;
398 
399 	if (instr->len + instr->addr > concat->mtd.size)
400 		return -EINVAL;
401 
402 	/*
403 	 * Check for proper erase block alignment of the to-be-erased area.
404 	 * It is easier to do this based on the super device's erase
405 	 * region info rather than looking at each particular sub-device
406 	 * in turn.
407 	 */
408 	if (!concat->mtd.numeraseregions) {
409 		/* the easy case: device has uniform erase block size */
410 		if (instr->addr & (concat->mtd.erasesize - 1))
411 			return -EINVAL;
412 		if (instr->len & (concat->mtd.erasesize - 1))
413 			return -EINVAL;
414 	} else {
415 		/* device has variable erase size */
416 		struct mtd_erase_region_info *erase_regions =
417 		    concat->mtd.eraseregions;
418 
419 		/*
420 		 * Find the erase region where the to-be-erased area begins:
421 		 */
422 		for (i = 0; i < concat->mtd.numeraseregions &&
423 		     instr->addr >= erase_regions[i].offset; i++) ;
424 		--i;
425 
426 		/*
427 		 * Now erase_regions[i] is the region in which the
428 		 * to-be-erased area begins. Verify that the starting
429 		 * offset is aligned to this region's erase size:
430 		 */
431 		if (instr->addr & (erase_regions[i].erasesize - 1))
432 			return -EINVAL;
433 
434 		/*
435 		 * now find the erase region where the to-be-erased area ends:
436 		 */
437 		for (; i < concat->mtd.numeraseregions &&
438 		     (instr->addr + instr->len) >= erase_regions[i].offset;
439 		     ++i) ;
440 		--i;
441 		/*
442 		 * check if the ending offset is aligned to this region's erase size
443 		 */
444 		if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
445 						  1))
446 			return -EINVAL;
447 	}
448 
449 	instr->fail_addr = 0xffffffff;
450 
451 	/* make a local copy of instr to avoid modifying the caller's struct */
452 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
453 
454 	if (!erase)
455 		return -ENOMEM;
456 
457 	*erase = *instr;
458 	length = instr->len;
459 
460 	/*
461 	 * find the subdevice where the to-be-erased area begins, adjust
462 	 * starting offset to be relative to the subdevice start
463 	 */
464 	for (i = 0; i < concat->num_subdev; i++) {
465 		subdev = concat->subdev[i];
466 		if (subdev->size <= erase->addr) {
467 			erase->addr -= subdev->size;
468 			offset += subdev->size;
469 		} else {
470 			break;
471 		}
472 	}
473 
474 	/* must never happen since size limit has been verified above */
475 	BUG_ON(i >= concat->num_subdev);
476 
477 	/* now do the erase: */
478 	err = 0;
479 	for (; length > 0; i++) {
480 		/* loop for all subdevices affected by this request */
481 		subdev = concat->subdev[i];	/* get current subdevice */
482 
483 		/* limit length to subdevice's size: */
484 		if (erase->addr + length > subdev->size)
485 			erase->len = subdev->size - erase->addr;
486 		else
487 			erase->len = length;
488 
489 		if (!(subdev->flags & MTD_WRITEABLE)) {
490 			err = -EROFS;
491 			break;
492 		}
493 		length -= erase->len;
494 		if ((err = concat_dev_erase(subdev, erase))) {
495 			/* sanity check: should never happen since
496 			 * block alignment has been checked above */
497 			BUG_ON(err == -EINVAL);
498 			if (erase->fail_addr != 0xffffffff)
499 				instr->fail_addr = erase->fail_addr + offset;
500 			break;
501 		}
502 		/*
503 		 * erase->addr specifies the offset of the area to be
504 		 * erased *within the current subdevice*. It can be
505 		 * non-zero only the first time through this loop, i.e.
506 		 * for the first subdevice where blocks need to be erased.
507 		 * All the following erases must begin at the start of the
508 		 * current subdevice, i.e. at offset zero.
509 		 */
510 		erase->addr = 0;
511 		offset += subdev->size;
512 	}
513 	instr->state = erase->state;
514 	kfree(erase);
515 	if (err)
516 		return err;
517 
518 	if (instr->callback)
519 		instr->callback(instr);
520 	return 0;
521 }
522 
523 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
524 {
525 	struct mtd_concat *concat = CONCAT(mtd);
526 	int i, err = -EINVAL;
527 
528 	if ((len + ofs) > mtd->size)
529 		return -EINVAL;
530 
531 	for (i = 0; i < concat->num_subdev; i++) {
532 		struct mtd_info *subdev = concat->subdev[i];
533 		size_t size;
534 
535 		if (ofs >= subdev->size) {
536 			size = 0;
537 			ofs -= subdev->size;
538 			continue;
539 		}
540 		if (ofs + len > subdev->size)
541 			size = subdev->size - ofs;
542 		else
543 			size = len;
544 
545 		err = subdev->lock(subdev, ofs, size);
546 
547 		if (err)
548 			break;
549 
550 		len -= size;
551 		if (len == 0)
552 			break;
553 
554 		err = -EINVAL;
555 		ofs = 0;
556 	}
557 
558 	return err;
559 }
560 
561 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
562 {
563 	struct mtd_concat *concat = CONCAT(mtd);
564 	int i, err = 0;
565 
566 	if ((len + ofs) > mtd->size)
567 		return -EINVAL;
568 
569 	for (i = 0; i < concat->num_subdev; i++) {
570 		struct mtd_info *subdev = concat->subdev[i];
571 		size_t size;
572 
573 		if (ofs >= subdev->size) {
574 			size = 0;
575 			ofs -= subdev->size;
576 			continue;
577 		}
578 		if (ofs + len > subdev->size)
579 			size = subdev->size - ofs;
580 		else
581 			size = len;
582 
583 		err = subdev->unlock(subdev, ofs, size);
584 
585 		if (err)
586 			break;
587 
588 		len -= size;
589 		if (len == 0)
590 			break;
591 
592 		err = -EINVAL;
593 		ofs = 0;
594 	}
595 
596 	return err;
597 }
598 
599 static void concat_sync(struct mtd_info *mtd)
600 {
601 	struct mtd_concat *concat = CONCAT(mtd);
602 	int i;
603 
604 	for (i = 0; i < concat->num_subdev; i++) {
605 		struct mtd_info *subdev = concat->subdev[i];
606 		subdev->sync(subdev);
607 	}
608 }
609 
610 static int concat_suspend(struct mtd_info *mtd)
611 {
612 	struct mtd_concat *concat = CONCAT(mtd);
613 	int i, rc = 0;
614 
615 	for (i = 0; i < concat->num_subdev; i++) {
616 		struct mtd_info *subdev = concat->subdev[i];
617 		if ((rc = subdev->suspend(subdev)) < 0)
618 			return rc;
619 	}
620 	return rc;
621 }
622 
623 static void concat_resume(struct mtd_info *mtd)
624 {
625 	struct mtd_concat *concat = CONCAT(mtd);
626 	int i;
627 
628 	for (i = 0; i < concat->num_subdev; i++) {
629 		struct mtd_info *subdev = concat->subdev[i];
630 		subdev->resume(subdev);
631 	}
632 }
633 
634 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
635 {
636 	struct mtd_concat *concat = CONCAT(mtd);
637 	int i, res = 0;
638 
639 	if (!concat->subdev[0]->block_isbad)
640 		return res;
641 
642 	if (ofs > mtd->size)
643 		return -EINVAL;
644 
645 	for (i = 0; i < concat->num_subdev; i++) {
646 		struct mtd_info *subdev = concat->subdev[i];
647 
648 		if (ofs >= subdev->size) {
649 			ofs -= subdev->size;
650 			continue;
651 		}
652 
653 		res = subdev->block_isbad(subdev, ofs);
654 		break;
655 	}
656 
657 	return res;
658 }
659 
660 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
661 {
662 	struct mtd_concat *concat = CONCAT(mtd);
663 	int i, err = -EINVAL;
664 
665 	if (!concat->subdev[0]->block_markbad)
666 		return 0;
667 
668 	if (ofs > mtd->size)
669 		return -EINVAL;
670 
671 	for (i = 0; i < concat->num_subdev; i++) {
672 		struct mtd_info *subdev = concat->subdev[i];
673 
674 		if (ofs >= subdev->size) {
675 			ofs -= subdev->size;
676 			continue;
677 		}
678 
679 		err = subdev->block_markbad(subdev, ofs);
680 		if (!err)
681 			mtd->ecc_stats.badblocks++;
682 		break;
683 	}
684 
685 	return err;
686 }
687 
688 /*
689  * This function constructs a virtual MTD device by concatenating
690  * num_devs MTD devices. A pointer to the new device object is
691  * stored to *new_dev upon success. This function does _not_
692  * register any devices: this is the caller's responsibility.
693  */
694 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
695 				   int num_devs,	/* number of subdevices      */
696 				   char *name)
697 {				/* name for the new device   */
698 	int i;
699 	size_t size;
700 	struct mtd_concat *concat;
701 	u_int32_t max_erasesize, curr_erasesize;
702 	int num_erase_region;
703 
704 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
705 	for (i = 0; i < num_devs; i++)
706 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
707 	printk(KERN_NOTICE "into device \"%s\"\n", name);
708 
709 	/* allocate the device structure */
710 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
711 	concat = kmalloc(size, GFP_KERNEL);
712 	if (!concat) {
713 		printk
714 		    ("memory allocation error while creating concatenated device \"%s\"\n",
715 		     name);
716 		return NULL;
717 	}
718 	memset(concat, 0, size);
719 	concat->subdev = (struct mtd_info **) (concat + 1);
720 
721 	/*
722 	 * Set up the new "super" device's MTD object structure, check for
723 	 * incompatibilites between the subdevices.
724 	 */
725 	concat->mtd.type = subdev[0]->type;
726 	concat->mtd.flags = subdev[0]->flags;
727 	concat->mtd.size = subdev[0]->size;
728 	concat->mtd.erasesize = subdev[0]->erasesize;
729 	concat->mtd.writesize = subdev[0]->writesize;
730 	concat->mtd.oobsize = subdev[0]->oobsize;
731 	concat->mtd.ecctype = subdev[0]->ecctype;
732 	concat->mtd.eccsize = subdev[0]->eccsize;
733 	if (subdev[0]->writev)
734 		concat->mtd.writev = concat_writev;
735 	if (subdev[0]->read_oob)
736 		concat->mtd.read_oob = concat_read_oob;
737 	if (subdev[0]->write_oob)
738 		concat->mtd.write_oob = concat_write_oob;
739 	if (subdev[0]->block_isbad)
740 		concat->mtd.block_isbad = concat_block_isbad;
741 	if (subdev[0]->block_markbad)
742 		concat->mtd.block_markbad = concat_block_markbad;
743 
744 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
745 
746 	concat->subdev[0] = subdev[0];
747 
748 	for (i = 1; i < num_devs; i++) {
749 		if (concat->mtd.type != subdev[i]->type) {
750 			kfree(concat);
751 			printk("Incompatible device type on \"%s\"\n",
752 			       subdev[i]->name);
753 			return NULL;
754 		}
755 		if (concat->mtd.flags != subdev[i]->flags) {
756 			/*
757 			 * Expect all flags except MTD_WRITEABLE to be
758 			 * equal on all subdevices.
759 			 */
760 			if ((concat->mtd.flags ^ subdev[i]->
761 			     flags) & ~MTD_WRITEABLE) {
762 				kfree(concat);
763 				printk("Incompatible device flags on \"%s\"\n",
764 				       subdev[i]->name);
765 				return NULL;
766 			} else
767 				/* if writeable attribute differs,
768 				   make super device writeable */
769 				concat->mtd.flags |=
770 				    subdev[i]->flags & MTD_WRITEABLE;
771 		}
772 		concat->mtd.size += subdev[i]->size;
773 		concat->mtd.ecc_stats.badblocks +=
774 			subdev[i]->ecc_stats.badblocks;
775 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
776 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
777 		    concat->mtd.ecctype    !=  subdev[i]->ecctype ||
778 		    concat->mtd.eccsize    !=  subdev[i]->eccsize ||
779 		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
780 		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
781 			kfree(concat);
782 			printk("Incompatible OOB or ECC data on \"%s\"\n",
783 			       subdev[i]->name);
784 			return NULL;
785 		}
786 		concat->subdev[i] = subdev[i];
787 
788 	}
789 
790 	concat->mtd.ecclayout = subdev[0]->ecclayout;
791 
792 	concat->num_subdev = num_devs;
793 	concat->mtd.name = name;
794 
795 	concat->mtd.erase = concat_erase;
796 	concat->mtd.read = concat_read;
797 	concat->mtd.write = concat_write;
798 	concat->mtd.sync = concat_sync;
799 	concat->mtd.lock = concat_lock;
800 	concat->mtd.unlock = concat_unlock;
801 	concat->mtd.suspend = concat_suspend;
802 	concat->mtd.resume = concat_resume;
803 
804 	/*
805 	 * Combine the erase block size info of the subdevices:
806 	 *
807 	 * first, walk the map of the new device and see how
808 	 * many changes in erase size we have
809 	 */
810 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
811 	num_erase_region = 1;
812 	for (i = 0; i < num_devs; i++) {
813 		if (subdev[i]->numeraseregions == 0) {
814 			/* current subdevice has uniform erase size */
815 			if (subdev[i]->erasesize != curr_erasesize) {
816 				/* if it differs from the last subdevice's erase size, count it */
817 				++num_erase_region;
818 				curr_erasesize = subdev[i]->erasesize;
819 				if (curr_erasesize > max_erasesize)
820 					max_erasesize = curr_erasesize;
821 			}
822 		} else {
823 			/* current subdevice has variable erase size */
824 			int j;
825 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
826 
827 				/* walk the list of erase regions, count any changes */
828 				if (subdev[i]->eraseregions[j].erasesize !=
829 				    curr_erasesize) {
830 					++num_erase_region;
831 					curr_erasesize =
832 					    subdev[i]->eraseregions[j].
833 					    erasesize;
834 					if (curr_erasesize > max_erasesize)
835 						max_erasesize = curr_erasesize;
836 				}
837 			}
838 		}
839 	}
840 
841 	if (num_erase_region == 1) {
842 		/*
843 		 * All subdevices have the same uniform erase size.
844 		 * This is easy:
845 		 */
846 		concat->mtd.erasesize = curr_erasesize;
847 		concat->mtd.numeraseregions = 0;
848 	} else {
849 		/*
850 		 * erase block size varies across the subdevices: allocate
851 		 * space to store the data describing the variable erase regions
852 		 */
853 		struct mtd_erase_region_info *erase_region_p;
854 		u_int32_t begin, position;
855 
856 		concat->mtd.erasesize = max_erasesize;
857 		concat->mtd.numeraseregions = num_erase_region;
858 		concat->mtd.eraseregions = erase_region_p =
859 		    kmalloc(num_erase_region *
860 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
861 		if (!erase_region_p) {
862 			kfree(concat);
863 			printk
864 			    ("memory allocation error while creating erase region list"
865 			     " for device \"%s\"\n", name);
866 			return NULL;
867 		}
868 
869 		/*
870 		 * walk the map of the new device once more and fill in
871 		 * in erase region info:
872 		 */
873 		curr_erasesize = subdev[0]->erasesize;
874 		begin = position = 0;
875 		for (i = 0; i < num_devs; i++) {
876 			if (subdev[i]->numeraseregions == 0) {
877 				/* current subdevice has uniform erase size */
878 				if (subdev[i]->erasesize != curr_erasesize) {
879 					/*
880 					 *  fill in an mtd_erase_region_info structure for the area
881 					 *  we have walked so far:
882 					 */
883 					erase_region_p->offset = begin;
884 					erase_region_p->erasesize =
885 					    curr_erasesize;
886 					erase_region_p->numblocks =
887 					    (position - begin) / curr_erasesize;
888 					begin = position;
889 
890 					curr_erasesize = subdev[i]->erasesize;
891 					++erase_region_p;
892 				}
893 				position += subdev[i]->size;
894 			} else {
895 				/* current subdevice has variable erase size */
896 				int j;
897 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
898 					/* walk the list of erase regions, count any changes */
899 					if (subdev[i]->eraseregions[j].
900 					    erasesize != curr_erasesize) {
901 						erase_region_p->offset = begin;
902 						erase_region_p->erasesize =
903 						    curr_erasesize;
904 						erase_region_p->numblocks =
905 						    (position -
906 						     begin) / curr_erasesize;
907 						begin = position;
908 
909 						curr_erasesize =
910 						    subdev[i]->eraseregions[j].
911 						    erasesize;
912 						++erase_region_p;
913 					}
914 					position +=
915 					    subdev[i]->eraseregions[j].
916 					    numblocks * curr_erasesize;
917 				}
918 			}
919 		}
920 		/* Now write the final entry */
921 		erase_region_p->offset = begin;
922 		erase_region_p->erasesize = curr_erasesize;
923 		erase_region_p->numblocks = (position - begin) / curr_erasesize;
924 	}
925 
926 	return &concat->mtd;
927 }
928 
929 /*
930  * This function destroys an MTD object obtained from concat_mtd_devs()
931  */
932 
933 void mtd_concat_destroy(struct mtd_info *mtd)
934 {
935 	struct mtd_concat *concat = CONCAT(mtd);
936 	if (concat->mtd.numeraseregions)
937 		kfree(concat->mtd.eraseregions);
938 	kfree(concat);
939 }
940 
941 EXPORT_SYMBOL(mtd_concat_create);
942 EXPORT_SYMBOL(mtd_concat_destroy);
943 
944 MODULE_LICENSE("GPL");
945 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
946 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
947