1 /* 2 * MTD device concatenation layer 3 * 4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * 6 * NAND support by Christian Gan <cgan@iders.ca> 7 * 8 * This code is GPL 9 * 10 * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $ 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/sched.h> 17 #include <linux/types.h> 18 19 #include <linux/mtd/mtd.h> 20 #include <linux/mtd/concat.h> 21 22 #include <asm/div64.h> 23 24 /* 25 * Our storage structure: 26 * Subdev points to an array of pointers to struct mtd_info objects 27 * which is allocated along with this structure 28 * 29 */ 30 struct mtd_concat { 31 struct mtd_info mtd; 32 int num_subdev; 33 struct mtd_info **subdev; 34 }; 35 36 /* 37 * how to calculate the size required for the above structure, 38 * including the pointer array subdev points to: 39 */ 40 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 41 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 42 43 /* 44 * Given a pointer to the MTD object in the mtd_concat structure, 45 * we can retrieve the pointer to that structure with this macro. 46 */ 47 #define CONCAT(x) ((struct mtd_concat *)(x)) 48 49 /* 50 * MTD methods which look up the relevant subdevice, translate the 51 * effective address and pass through to the subdevice. 52 */ 53 54 static int 55 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 56 size_t * retlen, u_char * buf) 57 { 58 struct mtd_concat *concat = CONCAT(mtd); 59 int ret = 0, err; 60 int i; 61 62 *retlen = 0; 63 64 for (i = 0; i < concat->num_subdev; i++) { 65 struct mtd_info *subdev = concat->subdev[i]; 66 size_t size, retsize; 67 68 if (from >= subdev->size) { 69 /* Not destined for this subdev */ 70 size = 0; 71 from -= subdev->size; 72 continue; 73 } 74 if (from + len > subdev->size) 75 /* First part goes into this subdev */ 76 size = subdev->size - from; 77 else 78 /* Entire transaction goes into this subdev */ 79 size = len; 80 81 err = subdev->read(subdev, from, size, &retsize, buf); 82 83 /* Save information about bitflips! */ 84 if (unlikely(err)) { 85 if (err == -EBADMSG) { 86 mtd->ecc_stats.failed++; 87 ret = err; 88 } else if (err == -EUCLEAN) { 89 mtd->ecc_stats.corrected++; 90 /* Do not overwrite -EBADMSG !! */ 91 if (!ret) 92 ret = err; 93 } else 94 return err; 95 } 96 97 *retlen += retsize; 98 len -= size; 99 if (len == 0) 100 return ret; 101 102 buf += size; 103 from = 0; 104 } 105 return -EINVAL; 106 } 107 108 static int 109 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 110 size_t * retlen, const u_char * buf) 111 { 112 struct mtd_concat *concat = CONCAT(mtd); 113 int err = -EINVAL; 114 int i; 115 116 if (!(mtd->flags & MTD_WRITEABLE)) 117 return -EROFS; 118 119 *retlen = 0; 120 121 for (i = 0; i < concat->num_subdev; i++) { 122 struct mtd_info *subdev = concat->subdev[i]; 123 size_t size, retsize; 124 125 if (to >= subdev->size) { 126 size = 0; 127 to -= subdev->size; 128 continue; 129 } 130 if (to + len > subdev->size) 131 size = subdev->size - to; 132 else 133 size = len; 134 135 if (!(subdev->flags & MTD_WRITEABLE)) 136 err = -EROFS; 137 else 138 err = subdev->write(subdev, to, size, &retsize, buf); 139 140 if (err) 141 break; 142 143 *retlen += retsize; 144 len -= size; 145 if (len == 0) 146 break; 147 148 err = -EINVAL; 149 buf += size; 150 to = 0; 151 } 152 return err; 153 } 154 155 static int 156 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 157 unsigned long count, loff_t to, size_t * retlen) 158 { 159 struct mtd_concat *concat = CONCAT(mtd); 160 struct kvec *vecs_copy; 161 unsigned long entry_low, entry_high; 162 size_t total_len = 0; 163 int i; 164 int err = -EINVAL; 165 166 if (!(mtd->flags & MTD_WRITEABLE)) 167 return -EROFS; 168 169 *retlen = 0; 170 171 /* Calculate total length of data */ 172 for (i = 0; i < count; i++) 173 total_len += vecs[i].iov_len; 174 175 /* Do not allow write past end of device */ 176 if ((to + total_len) > mtd->size) 177 return -EINVAL; 178 179 /* Check alignment */ 180 if (mtd->writesize > 1) { 181 loff_t __to = to; 182 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 183 return -EINVAL; 184 } 185 186 /* make a copy of vecs */ 187 vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL); 188 if (!vecs_copy) 189 return -ENOMEM; 190 memcpy(vecs_copy, vecs, sizeof(struct kvec) * count); 191 192 entry_low = 0; 193 for (i = 0; i < concat->num_subdev; i++) { 194 struct mtd_info *subdev = concat->subdev[i]; 195 size_t size, wsize, retsize, old_iov_len; 196 197 if (to >= subdev->size) { 198 to -= subdev->size; 199 continue; 200 } 201 202 size = min(total_len, (size_t)(subdev->size - to)); 203 wsize = size; /* store for future use */ 204 205 entry_high = entry_low; 206 while (entry_high < count) { 207 if (size <= vecs_copy[entry_high].iov_len) 208 break; 209 size -= vecs_copy[entry_high++].iov_len; 210 } 211 212 old_iov_len = vecs_copy[entry_high].iov_len; 213 vecs_copy[entry_high].iov_len = size; 214 215 if (!(subdev->flags & MTD_WRITEABLE)) 216 err = -EROFS; 217 else 218 err = subdev->writev(subdev, &vecs_copy[entry_low], 219 entry_high - entry_low + 1, to, &retsize); 220 221 vecs_copy[entry_high].iov_len = old_iov_len - size; 222 vecs_copy[entry_high].iov_base += size; 223 224 entry_low = entry_high; 225 226 if (err) 227 break; 228 229 *retlen += retsize; 230 total_len -= wsize; 231 232 if (total_len == 0) 233 break; 234 235 err = -EINVAL; 236 to = 0; 237 } 238 239 kfree(vecs_copy); 240 return err; 241 } 242 243 static int 244 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 245 { 246 struct mtd_concat *concat = CONCAT(mtd); 247 struct mtd_oob_ops devops = *ops; 248 int i, err, ret = 0; 249 250 ops->retlen = ops->oobretlen = 0; 251 252 for (i = 0; i < concat->num_subdev; i++) { 253 struct mtd_info *subdev = concat->subdev[i]; 254 255 if (from >= subdev->size) { 256 from -= subdev->size; 257 continue; 258 } 259 260 /* partial read ? */ 261 if (from + devops.len > subdev->size) 262 devops.len = subdev->size - from; 263 264 err = subdev->read_oob(subdev, from, &devops); 265 ops->retlen += devops.retlen; 266 ops->oobretlen += devops.oobretlen; 267 268 /* Save information about bitflips! */ 269 if (unlikely(err)) { 270 if (err == -EBADMSG) { 271 mtd->ecc_stats.failed++; 272 ret = err; 273 } else if (err == -EUCLEAN) { 274 mtd->ecc_stats.corrected++; 275 /* Do not overwrite -EBADMSG !! */ 276 if (!ret) 277 ret = err; 278 } else 279 return err; 280 } 281 282 if (devops.datbuf) { 283 devops.len = ops->len - ops->retlen; 284 if (!devops.len) 285 return ret; 286 devops.datbuf += devops.retlen; 287 } 288 if (devops.oobbuf) { 289 devops.ooblen = ops->ooblen - ops->oobretlen; 290 if (!devops.ooblen) 291 return ret; 292 devops.oobbuf += ops->oobretlen; 293 } 294 295 from = 0; 296 } 297 return -EINVAL; 298 } 299 300 static int 301 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 302 { 303 struct mtd_concat *concat = CONCAT(mtd); 304 struct mtd_oob_ops devops = *ops; 305 int i, err; 306 307 if (!(mtd->flags & MTD_WRITEABLE)) 308 return -EROFS; 309 310 ops->retlen = 0; 311 312 for (i = 0; i < concat->num_subdev; i++) { 313 struct mtd_info *subdev = concat->subdev[i]; 314 315 if (to >= subdev->size) { 316 to -= subdev->size; 317 continue; 318 } 319 320 /* partial write ? */ 321 if (to + devops.len > subdev->size) 322 devops.len = subdev->size - to; 323 324 err = subdev->write_oob(subdev, to, &devops); 325 ops->retlen += devops.retlen; 326 if (err) 327 return err; 328 329 if (devops.datbuf) { 330 devops.len = ops->len - ops->retlen; 331 if (!devops.len) 332 return 0; 333 devops.datbuf += devops.retlen; 334 } 335 if (devops.oobbuf) { 336 devops.ooblen = ops->ooblen - ops->oobretlen; 337 if (!devops.ooblen) 338 return 0; 339 devops.oobbuf += devops.oobretlen; 340 } 341 to = 0; 342 } 343 return -EINVAL; 344 } 345 346 static void concat_erase_callback(struct erase_info *instr) 347 { 348 wake_up((wait_queue_head_t *) instr->priv); 349 } 350 351 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 352 { 353 int err; 354 wait_queue_head_t waitq; 355 DECLARE_WAITQUEUE(wait, current); 356 357 /* 358 * This code was stol^H^H^H^Hinspired by mtdchar.c 359 */ 360 init_waitqueue_head(&waitq); 361 362 erase->mtd = mtd; 363 erase->callback = concat_erase_callback; 364 erase->priv = (unsigned long) &waitq; 365 366 /* 367 * FIXME: Allow INTERRUPTIBLE. Which means 368 * not having the wait_queue head on the stack. 369 */ 370 err = mtd->erase(mtd, erase); 371 if (!err) { 372 set_current_state(TASK_UNINTERRUPTIBLE); 373 add_wait_queue(&waitq, &wait); 374 if (erase->state != MTD_ERASE_DONE 375 && erase->state != MTD_ERASE_FAILED) 376 schedule(); 377 remove_wait_queue(&waitq, &wait); 378 set_current_state(TASK_RUNNING); 379 380 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 381 } 382 return err; 383 } 384 385 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 386 { 387 struct mtd_concat *concat = CONCAT(mtd); 388 struct mtd_info *subdev; 389 int i, err; 390 u_int32_t length, offset = 0; 391 struct erase_info *erase; 392 393 if (!(mtd->flags & MTD_WRITEABLE)) 394 return -EROFS; 395 396 if (instr->addr > concat->mtd.size) 397 return -EINVAL; 398 399 if (instr->len + instr->addr > concat->mtd.size) 400 return -EINVAL; 401 402 /* 403 * Check for proper erase block alignment of the to-be-erased area. 404 * It is easier to do this based on the super device's erase 405 * region info rather than looking at each particular sub-device 406 * in turn. 407 */ 408 if (!concat->mtd.numeraseregions) { 409 /* the easy case: device has uniform erase block size */ 410 if (instr->addr & (concat->mtd.erasesize - 1)) 411 return -EINVAL; 412 if (instr->len & (concat->mtd.erasesize - 1)) 413 return -EINVAL; 414 } else { 415 /* device has variable erase size */ 416 struct mtd_erase_region_info *erase_regions = 417 concat->mtd.eraseregions; 418 419 /* 420 * Find the erase region where the to-be-erased area begins: 421 */ 422 for (i = 0; i < concat->mtd.numeraseregions && 423 instr->addr >= erase_regions[i].offset; i++) ; 424 --i; 425 426 /* 427 * Now erase_regions[i] is the region in which the 428 * to-be-erased area begins. Verify that the starting 429 * offset is aligned to this region's erase size: 430 */ 431 if (instr->addr & (erase_regions[i].erasesize - 1)) 432 return -EINVAL; 433 434 /* 435 * now find the erase region where the to-be-erased area ends: 436 */ 437 for (; i < concat->mtd.numeraseregions && 438 (instr->addr + instr->len) >= erase_regions[i].offset; 439 ++i) ; 440 --i; 441 /* 442 * check if the ending offset is aligned to this region's erase size 443 */ 444 if ((instr->addr + instr->len) & (erase_regions[i].erasesize - 445 1)) 446 return -EINVAL; 447 } 448 449 instr->fail_addr = 0xffffffff; 450 451 /* make a local copy of instr to avoid modifying the caller's struct */ 452 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 453 454 if (!erase) 455 return -ENOMEM; 456 457 *erase = *instr; 458 length = instr->len; 459 460 /* 461 * find the subdevice where the to-be-erased area begins, adjust 462 * starting offset to be relative to the subdevice start 463 */ 464 for (i = 0; i < concat->num_subdev; i++) { 465 subdev = concat->subdev[i]; 466 if (subdev->size <= erase->addr) { 467 erase->addr -= subdev->size; 468 offset += subdev->size; 469 } else { 470 break; 471 } 472 } 473 474 /* must never happen since size limit has been verified above */ 475 BUG_ON(i >= concat->num_subdev); 476 477 /* now do the erase: */ 478 err = 0; 479 for (; length > 0; i++) { 480 /* loop for all subdevices affected by this request */ 481 subdev = concat->subdev[i]; /* get current subdevice */ 482 483 /* limit length to subdevice's size: */ 484 if (erase->addr + length > subdev->size) 485 erase->len = subdev->size - erase->addr; 486 else 487 erase->len = length; 488 489 if (!(subdev->flags & MTD_WRITEABLE)) { 490 err = -EROFS; 491 break; 492 } 493 length -= erase->len; 494 if ((err = concat_dev_erase(subdev, erase))) { 495 /* sanity check: should never happen since 496 * block alignment has been checked above */ 497 BUG_ON(err == -EINVAL); 498 if (erase->fail_addr != 0xffffffff) 499 instr->fail_addr = erase->fail_addr + offset; 500 break; 501 } 502 /* 503 * erase->addr specifies the offset of the area to be 504 * erased *within the current subdevice*. It can be 505 * non-zero only the first time through this loop, i.e. 506 * for the first subdevice where blocks need to be erased. 507 * All the following erases must begin at the start of the 508 * current subdevice, i.e. at offset zero. 509 */ 510 erase->addr = 0; 511 offset += subdev->size; 512 } 513 instr->state = erase->state; 514 kfree(erase); 515 if (err) 516 return err; 517 518 if (instr->callback) 519 instr->callback(instr); 520 return 0; 521 } 522 523 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len) 524 { 525 struct mtd_concat *concat = CONCAT(mtd); 526 int i, err = -EINVAL; 527 528 if ((len + ofs) > mtd->size) 529 return -EINVAL; 530 531 for (i = 0; i < concat->num_subdev; i++) { 532 struct mtd_info *subdev = concat->subdev[i]; 533 size_t size; 534 535 if (ofs >= subdev->size) { 536 size = 0; 537 ofs -= subdev->size; 538 continue; 539 } 540 if (ofs + len > subdev->size) 541 size = subdev->size - ofs; 542 else 543 size = len; 544 545 err = subdev->lock(subdev, ofs, size); 546 547 if (err) 548 break; 549 550 len -= size; 551 if (len == 0) 552 break; 553 554 err = -EINVAL; 555 ofs = 0; 556 } 557 558 return err; 559 } 560 561 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) 562 { 563 struct mtd_concat *concat = CONCAT(mtd); 564 int i, err = 0; 565 566 if ((len + ofs) > mtd->size) 567 return -EINVAL; 568 569 for (i = 0; i < concat->num_subdev; i++) { 570 struct mtd_info *subdev = concat->subdev[i]; 571 size_t size; 572 573 if (ofs >= subdev->size) { 574 size = 0; 575 ofs -= subdev->size; 576 continue; 577 } 578 if (ofs + len > subdev->size) 579 size = subdev->size - ofs; 580 else 581 size = len; 582 583 err = subdev->unlock(subdev, ofs, size); 584 585 if (err) 586 break; 587 588 len -= size; 589 if (len == 0) 590 break; 591 592 err = -EINVAL; 593 ofs = 0; 594 } 595 596 return err; 597 } 598 599 static void concat_sync(struct mtd_info *mtd) 600 { 601 struct mtd_concat *concat = CONCAT(mtd); 602 int i; 603 604 for (i = 0; i < concat->num_subdev; i++) { 605 struct mtd_info *subdev = concat->subdev[i]; 606 subdev->sync(subdev); 607 } 608 } 609 610 static int concat_suspend(struct mtd_info *mtd) 611 { 612 struct mtd_concat *concat = CONCAT(mtd); 613 int i, rc = 0; 614 615 for (i = 0; i < concat->num_subdev; i++) { 616 struct mtd_info *subdev = concat->subdev[i]; 617 if ((rc = subdev->suspend(subdev)) < 0) 618 return rc; 619 } 620 return rc; 621 } 622 623 static void concat_resume(struct mtd_info *mtd) 624 { 625 struct mtd_concat *concat = CONCAT(mtd); 626 int i; 627 628 for (i = 0; i < concat->num_subdev; i++) { 629 struct mtd_info *subdev = concat->subdev[i]; 630 subdev->resume(subdev); 631 } 632 } 633 634 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 635 { 636 struct mtd_concat *concat = CONCAT(mtd); 637 int i, res = 0; 638 639 if (!concat->subdev[0]->block_isbad) 640 return res; 641 642 if (ofs > mtd->size) 643 return -EINVAL; 644 645 for (i = 0; i < concat->num_subdev; i++) { 646 struct mtd_info *subdev = concat->subdev[i]; 647 648 if (ofs >= subdev->size) { 649 ofs -= subdev->size; 650 continue; 651 } 652 653 res = subdev->block_isbad(subdev, ofs); 654 break; 655 } 656 657 return res; 658 } 659 660 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 661 { 662 struct mtd_concat *concat = CONCAT(mtd); 663 int i, err = -EINVAL; 664 665 if (!concat->subdev[0]->block_markbad) 666 return 0; 667 668 if (ofs > mtd->size) 669 return -EINVAL; 670 671 for (i = 0; i < concat->num_subdev; i++) { 672 struct mtd_info *subdev = concat->subdev[i]; 673 674 if (ofs >= subdev->size) { 675 ofs -= subdev->size; 676 continue; 677 } 678 679 err = subdev->block_markbad(subdev, ofs); 680 if (!err) 681 mtd->ecc_stats.badblocks++; 682 break; 683 } 684 685 return err; 686 } 687 688 /* 689 * This function constructs a virtual MTD device by concatenating 690 * num_devs MTD devices. A pointer to the new device object is 691 * stored to *new_dev upon success. This function does _not_ 692 * register any devices: this is the caller's responsibility. 693 */ 694 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 695 int num_devs, /* number of subdevices */ 696 char *name) 697 { /* name for the new device */ 698 int i; 699 size_t size; 700 struct mtd_concat *concat; 701 u_int32_t max_erasesize, curr_erasesize; 702 int num_erase_region; 703 704 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 705 for (i = 0; i < num_devs; i++) 706 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 707 printk(KERN_NOTICE "into device \"%s\"\n", name); 708 709 /* allocate the device structure */ 710 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 711 concat = kmalloc(size, GFP_KERNEL); 712 if (!concat) { 713 printk 714 ("memory allocation error while creating concatenated device \"%s\"\n", 715 name); 716 return NULL; 717 } 718 memset(concat, 0, size); 719 concat->subdev = (struct mtd_info **) (concat + 1); 720 721 /* 722 * Set up the new "super" device's MTD object structure, check for 723 * incompatibilites between the subdevices. 724 */ 725 concat->mtd.type = subdev[0]->type; 726 concat->mtd.flags = subdev[0]->flags; 727 concat->mtd.size = subdev[0]->size; 728 concat->mtd.erasesize = subdev[0]->erasesize; 729 concat->mtd.writesize = subdev[0]->writesize; 730 concat->mtd.oobsize = subdev[0]->oobsize; 731 concat->mtd.ecctype = subdev[0]->ecctype; 732 concat->mtd.eccsize = subdev[0]->eccsize; 733 if (subdev[0]->writev) 734 concat->mtd.writev = concat_writev; 735 if (subdev[0]->read_oob) 736 concat->mtd.read_oob = concat_read_oob; 737 if (subdev[0]->write_oob) 738 concat->mtd.write_oob = concat_write_oob; 739 if (subdev[0]->block_isbad) 740 concat->mtd.block_isbad = concat_block_isbad; 741 if (subdev[0]->block_markbad) 742 concat->mtd.block_markbad = concat_block_markbad; 743 744 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 745 746 concat->subdev[0] = subdev[0]; 747 748 for (i = 1; i < num_devs; i++) { 749 if (concat->mtd.type != subdev[i]->type) { 750 kfree(concat); 751 printk("Incompatible device type on \"%s\"\n", 752 subdev[i]->name); 753 return NULL; 754 } 755 if (concat->mtd.flags != subdev[i]->flags) { 756 /* 757 * Expect all flags except MTD_WRITEABLE to be 758 * equal on all subdevices. 759 */ 760 if ((concat->mtd.flags ^ subdev[i]-> 761 flags) & ~MTD_WRITEABLE) { 762 kfree(concat); 763 printk("Incompatible device flags on \"%s\"\n", 764 subdev[i]->name); 765 return NULL; 766 } else 767 /* if writeable attribute differs, 768 make super device writeable */ 769 concat->mtd.flags |= 770 subdev[i]->flags & MTD_WRITEABLE; 771 } 772 concat->mtd.size += subdev[i]->size; 773 concat->mtd.ecc_stats.badblocks += 774 subdev[i]->ecc_stats.badblocks; 775 if (concat->mtd.writesize != subdev[i]->writesize || 776 concat->mtd.oobsize != subdev[i]->oobsize || 777 concat->mtd.ecctype != subdev[i]->ecctype || 778 concat->mtd.eccsize != subdev[i]->eccsize || 779 !concat->mtd.read_oob != !subdev[i]->read_oob || 780 !concat->mtd.write_oob != !subdev[i]->write_oob) { 781 kfree(concat); 782 printk("Incompatible OOB or ECC data on \"%s\"\n", 783 subdev[i]->name); 784 return NULL; 785 } 786 concat->subdev[i] = subdev[i]; 787 788 } 789 790 concat->mtd.ecclayout = subdev[0]->ecclayout; 791 792 concat->num_subdev = num_devs; 793 concat->mtd.name = name; 794 795 concat->mtd.erase = concat_erase; 796 concat->mtd.read = concat_read; 797 concat->mtd.write = concat_write; 798 concat->mtd.sync = concat_sync; 799 concat->mtd.lock = concat_lock; 800 concat->mtd.unlock = concat_unlock; 801 concat->mtd.suspend = concat_suspend; 802 concat->mtd.resume = concat_resume; 803 804 /* 805 * Combine the erase block size info of the subdevices: 806 * 807 * first, walk the map of the new device and see how 808 * many changes in erase size we have 809 */ 810 max_erasesize = curr_erasesize = subdev[0]->erasesize; 811 num_erase_region = 1; 812 for (i = 0; i < num_devs; i++) { 813 if (subdev[i]->numeraseregions == 0) { 814 /* current subdevice has uniform erase size */ 815 if (subdev[i]->erasesize != curr_erasesize) { 816 /* if it differs from the last subdevice's erase size, count it */ 817 ++num_erase_region; 818 curr_erasesize = subdev[i]->erasesize; 819 if (curr_erasesize > max_erasesize) 820 max_erasesize = curr_erasesize; 821 } 822 } else { 823 /* current subdevice has variable erase size */ 824 int j; 825 for (j = 0; j < subdev[i]->numeraseregions; j++) { 826 827 /* walk the list of erase regions, count any changes */ 828 if (subdev[i]->eraseregions[j].erasesize != 829 curr_erasesize) { 830 ++num_erase_region; 831 curr_erasesize = 832 subdev[i]->eraseregions[j]. 833 erasesize; 834 if (curr_erasesize > max_erasesize) 835 max_erasesize = curr_erasesize; 836 } 837 } 838 } 839 } 840 841 if (num_erase_region == 1) { 842 /* 843 * All subdevices have the same uniform erase size. 844 * This is easy: 845 */ 846 concat->mtd.erasesize = curr_erasesize; 847 concat->mtd.numeraseregions = 0; 848 } else { 849 /* 850 * erase block size varies across the subdevices: allocate 851 * space to store the data describing the variable erase regions 852 */ 853 struct mtd_erase_region_info *erase_region_p; 854 u_int32_t begin, position; 855 856 concat->mtd.erasesize = max_erasesize; 857 concat->mtd.numeraseregions = num_erase_region; 858 concat->mtd.eraseregions = erase_region_p = 859 kmalloc(num_erase_region * 860 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 861 if (!erase_region_p) { 862 kfree(concat); 863 printk 864 ("memory allocation error while creating erase region list" 865 " for device \"%s\"\n", name); 866 return NULL; 867 } 868 869 /* 870 * walk the map of the new device once more and fill in 871 * in erase region info: 872 */ 873 curr_erasesize = subdev[0]->erasesize; 874 begin = position = 0; 875 for (i = 0; i < num_devs; i++) { 876 if (subdev[i]->numeraseregions == 0) { 877 /* current subdevice has uniform erase size */ 878 if (subdev[i]->erasesize != curr_erasesize) { 879 /* 880 * fill in an mtd_erase_region_info structure for the area 881 * we have walked so far: 882 */ 883 erase_region_p->offset = begin; 884 erase_region_p->erasesize = 885 curr_erasesize; 886 erase_region_p->numblocks = 887 (position - begin) / curr_erasesize; 888 begin = position; 889 890 curr_erasesize = subdev[i]->erasesize; 891 ++erase_region_p; 892 } 893 position += subdev[i]->size; 894 } else { 895 /* current subdevice has variable erase size */ 896 int j; 897 for (j = 0; j < subdev[i]->numeraseregions; j++) { 898 /* walk the list of erase regions, count any changes */ 899 if (subdev[i]->eraseregions[j]. 900 erasesize != curr_erasesize) { 901 erase_region_p->offset = begin; 902 erase_region_p->erasesize = 903 curr_erasesize; 904 erase_region_p->numblocks = 905 (position - 906 begin) / curr_erasesize; 907 begin = position; 908 909 curr_erasesize = 910 subdev[i]->eraseregions[j]. 911 erasesize; 912 ++erase_region_p; 913 } 914 position += 915 subdev[i]->eraseregions[j]. 916 numblocks * curr_erasesize; 917 } 918 } 919 } 920 /* Now write the final entry */ 921 erase_region_p->offset = begin; 922 erase_region_p->erasesize = curr_erasesize; 923 erase_region_p->numblocks = (position - begin) / curr_erasesize; 924 } 925 926 return &concat->mtd; 927 } 928 929 /* 930 * This function destroys an MTD object obtained from concat_mtd_devs() 931 */ 932 933 void mtd_concat_destroy(struct mtd_info *mtd) 934 { 935 struct mtd_concat *concat = CONCAT(mtd); 936 if (concat->mtd.numeraseregions) 937 kfree(concat->mtd.eraseregions); 938 kfree(concat); 939 } 940 941 EXPORT_SYMBOL(mtd_concat_create); 942 EXPORT_SYMBOL(mtd_concat_destroy); 943 944 MODULE_LICENSE("GPL"); 945 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 946 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 947