xref: /linux/drivers/mtd/mtdconcat.c (revision 664addc248d2fed68d013d26ff2fc796d7134259)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34 
35 #include <asm/div64.h>
36 
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44 	struct mtd_info mtd;
45 	int num_subdev;
46 	struct mtd_info **subdev;
47 };
48 
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
54 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55 
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61 
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66 
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 	    size_t * retlen, u_char * buf)
70 {
71 	struct mtd_concat *concat = CONCAT(mtd);
72 	int ret = 0, err;
73 	int i;
74 
75 	*retlen = 0;
76 
77 	for (i = 0; i < concat->num_subdev; i++) {
78 		struct mtd_info *subdev = concat->subdev[i];
79 		size_t size, retsize;
80 
81 		if (from >= subdev->size) {
82 			/* Not destined for this subdev */
83 			size = 0;
84 			from -= subdev->size;
85 			continue;
86 		}
87 		if (from + len > subdev->size)
88 			/* First part goes into this subdev */
89 			size = subdev->size - from;
90 		else
91 			/* Entire transaction goes into this subdev */
92 			size = len;
93 
94 		err = mtd_read(subdev, from, size, &retsize, buf);
95 
96 		/* Save information about bitflips! */
97 		if (unlikely(err)) {
98 			if (mtd_is_eccerr(err)) {
99 				mtd->ecc_stats.failed++;
100 				ret = err;
101 			} else if (mtd_is_bitflip(err)) {
102 				mtd->ecc_stats.corrected++;
103 				/* Do not overwrite -EBADMSG !! */
104 				if (!ret)
105 					ret = err;
106 			} else
107 				return err;
108 		}
109 
110 		*retlen += retsize;
111 		len -= size;
112 		if (len == 0)
113 			return ret;
114 
115 		buf += size;
116 		from = 0;
117 	}
118 	return -EINVAL;
119 }
120 
121 static int
122 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
123 	     size_t * retlen, const u_char * buf)
124 {
125 	struct mtd_concat *concat = CONCAT(mtd);
126 	int err = -EINVAL;
127 	int i;
128 
129 	*retlen = 0;
130 
131 	for (i = 0; i < concat->num_subdev; i++) {
132 		struct mtd_info *subdev = concat->subdev[i];
133 		size_t size, retsize;
134 
135 		if (to >= subdev->size) {
136 			size = 0;
137 			to -= subdev->size;
138 			continue;
139 		}
140 		if (to + len > subdev->size)
141 			size = subdev->size - to;
142 		else
143 			size = len;
144 
145 		err = mtd_write(subdev, to, size, &retsize, buf);
146 		if (err)
147 			break;
148 
149 		*retlen += retsize;
150 		len -= size;
151 		if (len == 0)
152 			break;
153 
154 		err = -EINVAL;
155 		buf += size;
156 		to = 0;
157 	}
158 	return err;
159 }
160 
161 static int
162 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
163 		unsigned long count, loff_t to, size_t * retlen)
164 {
165 	struct mtd_concat *concat = CONCAT(mtd);
166 	struct kvec *vecs_copy;
167 	unsigned long entry_low, entry_high;
168 	size_t total_len = 0;
169 	int i;
170 	int err = -EINVAL;
171 
172 	*retlen = 0;
173 
174 	/* Calculate total length of data */
175 	for (i = 0; i < count; i++)
176 		total_len += vecs[i].iov_len;
177 
178 	/* Check alignment */
179 	if (mtd->writesize > 1) {
180 		uint64_t __to = to;
181 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
182 			return -EINVAL;
183 	}
184 
185 	/* make a copy of vecs */
186 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
187 	if (!vecs_copy)
188 		return -ENOMEM;
189 
190 	entry_low = 0;
191 	for (i = 0; i < concat->num_subdev; i++) {
192 		struct mtd_info *subdev = concat->subdev[i];
193 		size_t size, wsize, retsize, old_iov_len;
194 
195 		if (to >= subdev->size) {
196 			to -= subdev->size;
197 			continue;
198 		}
199 
200 		size = min_t(uint64_t, total_len, subdev->size - to);
201 		wsize = size; /* store for future use */
202 
203 		entry_high = entry_low;
204 		while (entry_high < count) {
205 			if (size <= vecs_copy[entry_high].iov_len)
206 				break;
207 			size -= vecs_copy[entry_high++].iov_len;
208 		}
209 
210 		old_iov_len = vecs_copy[entry_high].iov_len;
211 		vecs_copy[entry_high].iov_len = size;
212 
213 		err = mtd_writev(subdev, &vecs_copy[entry_low],
214 				 entry_high - entry_low + 1, to, &retsize);
215 
216 		vecs_copy[entry_high].iov_len = old_iov_len - size;
217 		vecs_copy[entry_high].iov_base += size;
218 
219 		entry_low = entry_high;
220 
221 		if (err)
222 			break;
223 
224 		*retlen += retsize;
225 		total_len -= wsize;
226 
227 		if (total_len == 0)
228 			break;
229 
230 		err = -EINVAL;
231 		to = 0;
232 	}
233 
234 	kfree(vecs_copy);
235 	return err;
236 }
237 
238 static int
239 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
240 {
241 	struct mtd_concat *concat = CONCAT(mtd);
242 	struct mtd_oob_ops devops = *ops;
243 	int i, err, ret = 0;
244 
245 	ops->retlen = ops->oobretlen = 0;
246 
247 	for (i = 0; i < concat->num_subdev; i++) {
248 		struct mtd_info *subdev = concat->subdev[i];
249 
250 		if (from >= subdev->size) {
251 			from -= subdev->size;
252 			continue;
253 		}
254 
255 		/* partial read ? */
256 		if (from + devops.len > subdev->size)
257 			devops.len = subdev->size - from;
258 
259 		err = mtd_read_oob(subdev, from, &devops);
260 		ops->retlen += devops.retlen;
261 		ops->oobretlen += devops.oobretlen;
262 
263 		/* Save information about bitflips! */
264 		if (unlikely(err)) {
265 			if (mtd_is_eccerr(err)) {
266 				mtd->ecc_stats.failed++;
267 				ret = err;
268 			} else if (mtd_is_bitflip(err)) {
269 				mtd->ecc_stats.corrected++;
270 				/* Do not overwrite -EBADMSG !! */
271 				if (!ret)
272 					ret = err;
273 			} else
274 				return err;
275 		}
276 
277 		if (devops.datbuf) {
278 			devops.len = ops->len - ops->retlen;
279 			if (!devops.len)
280 				return ret;
281 			devops.datbuf += devops.retlen;
282 		}
283 		if (devops.oobbuf) {
284 			devops.ooblen = ops->ooblen - ops->oobretlen;
285 			if (!devops.ooblen)
286 				return ret;
287 			devops.oobbuf += ops->oobretlen;
288 		}
289 
290 		from = 0;
291 	}
292 	return -EINVAL;
293 }
294 
295 static int
296 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
297 {
298 	struct mtd_concat *concat = CONCAT(mtd);
299 	struct mtd_oob_ops devops = *ops;
300 	int i, err;
301 
302 	if (!(mtd->flags & MTD_WRITEABLE))
303 		return -EROFS;
304 
305 	ops->retlen = ops->oobretlen = 0;
306 
307 	for (i = 0; i < concat->num_subdev; i++) {
308 		struct mtd_info *subdev = concat->subdev[i];
309 
310 		if (to >= subdev->size) {
311 			to -= subdev->size;
312 			continue;
313 		}
314 
315 		/* partial write ? */
316 		if (to + devops.len > subdev->size)
317 			devops.len = subdev->size - to;
318 
319 		err = mtd_write_oob(subdev, to, &devops);
320 		ops->retlen += devops.oobretlen;
321 		if (err)
322 			return err;
323 
324 		if (devops.datbuf) {
325 			devops.len = ops->len - ops->retlen;
326 			if (!devops.len)
327 				return 0;
328 			devops.datbuf += devops.retlen;
329 		}
330 		if (devops.oobbuf) {
331 			devops.ooblen = ops->ooblen - ops->oobretlen;
332 			if (!devops.ooblen)
333 				return 0;
334 			devops.oobbuf += devops.oobretlen;
335 		}
336 		to = 0;
337 	}
338 	return -EINVAL;
339 }
340 
341 static void concat_erase_callback(struct erase_info *instr)
342 {
343 	wake_up((wait_queue_head_t *) instr->priv);
344 }
345 
346 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
347 {
348 	int err;
349 	wait_queue_head_t waitq;
350 	DECLARE_WAITQUEUE(wait, current);
351 
352 	/*
353 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
354 	 */
355 	init_waitqueue_head(&waitq);
356 
357 	erase->mtd = mtd;
358 	erase->callback = concat_erase_callback;
359 	erase->priv = (unsigned long) &waitq;
360 
361 	/*
362 	 * FIXME: Allow INTERRUPTIBLE. Which means
363 	 * not having the wait_queue head on the stack.
364 	 */
365 	err = mtd_erase(mtd, erase);
366 	if (!err) {
367 		set_current_state(TASK_UNINTERRUPTIBLE);
368 		add_wait_queue(&waitq, &wait);
369 		if (erase->state != MTD_ERASE_DONE
370 		    && erase->state != MTD_ERASE_FAILED)
371 			schedule();
372 		remove_wait_queue(&waitq, &wait);
373 		set_current_state(TASK_RUNNING);
374 
375 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
376 	}
377 	return err;
378 }
379 
380 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
381 {
382 	struct mtd_concat *concat = CONCAT(mtd);
383 	struct mtd_info *subdev;
384 	int i, err;
385 	uint64_t length, offset = 0;
386 	struct erase_info *erase;
387 
388 	/*
389 	 * Check for proper erase block alignment of the to-be-erased area.
390 	 * It is easier to do this based on the super device's erase
391 	 * region info rather than looking at each particular sub-device
392 	 * in turn.
393 	 */
394 	if (!concat->mtd.numeraseregions) {
395 		/* the easy case: device has uniform erase block size */
396 		if (instr->addr & (concat->mtd.erasesize - 1))
397 			return -EINVAL;
398 		if (instr->len & (concat->mtd.erasesize - 1))
399 			return -EINVAL;
400 	} else {
401 		/* device has variable erase size */
402 		struct mtd_erase_region_info *erase_regions =
403 		    concat->mtd.eraseregions;
404 
405 		/*
406 		 * Find the erase region where the to-be-erased area begins:
407 		 */
408 		for (i = 0; i < concat->mtd.numeraseregions &&
409 		     instr->addr >= erase_regions[i].offset; i++) ;
410 		--i;
411 
412 		/*
413 		 * Now erase_regions[i] is the region in which the
414 		 * to-be-erased area begins. Verify that the starting
415 		 * offset is aligned to this region's erase size:
416 		 */
417 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
418 			return -EINVAL;
419 
420 		/*
421 		 * now find the erase region where the to-be-erased area ends:
422 		 */
423 		for (; i < concat->mtd.numeraseregions &&
424 		     (instr->addr + instr->len) >= erase_regions[i].offset;
425 		     ++i) ;
426 		--i;
427 		/*
428 		 * check if the ending offset is aligned to this region's erase size
429 		 */
430 		if (i < 0 || ((instr->addr + instr->len) &
431 					(erase_regions[i].erasesize - 1)))
432 			return -EINVAL;
433 	}
434 
435 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
436 
437 	/* make a local copy of instr to avoid modifying the caller's struct */
438 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
439 
440 	if (!erase)
441 		return -ENOMEM;
442 
443 	*erase = *instr;
444 	length = instr->len;
445 
446 	/*
447 	 * find the subdevice where the to-be-erased area begins, adjust
448 	 * starting offset to be relative to the subdevice start
449 	 */
450 	for (i = 0; i < concat->num_subdev; i++) {
451 		subdev = concat->subdev[i];
452 		if (subdev->size <= erase->addr) {
453 			erase->addr -= subdev->size;
454 			offset += subdev->size;
455 		} else {
456 			break;
457 		}
458 	}
459 
460 	/* must never happen since size limit has been verified above */
461 	BUG_ON(i >= concat->num_subdev);
462 
463 	/* now do the erase: */
464 	err = 0;
465 	for (; length > 0; i++) {
466 		/* loop for all subdevices affected by this request */
467 		subdev = concat->subdev[i];	/* get current subdevice */
468 
469 		/* limit length to subdevice's size: */
470 		if (erase->addr + length > subdev->size)
471 			erase->len = subdev->size - erase->addr;
472 		else
473 			erase->len = length;
474 
475 		length -= erase->len;
476 		if ((err = concat_dev_erase(subdev, erase))) {
477 			/* sanity check: should never happen since
478 			 * block alignment has been checked above */
479 			BUG_ON(err == -EINVAL);
480 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
481 				instr->fail_addr = erase->fail_addr + offset;
482 			break;
483 		}
484 		/*
485 		 * erase->addr specifies the offset of the area to be
486 		 * erased *within the current subdevice*. It can be
487 		 * non-zero only the first time through this loop, i.e.
488 		 * for the first subdevice where blocks need to be erased.
489 		 * All the following erases must begin at the start of the
490 		 * current subdevice, i.e. at offset zero.
491 		 */
492 		erase->addr = 0;
493 		offset += subdev->size;
494 	}
495 	instr->state = erase->state;
496 	kfree(erase);
497 	if (err)
498 		return err;
499 
500 	if (instr->callback)
501 		instr->callback(instr);
502 	return 0;
503 }
504 
505 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
506 {
507 	struct mtd_concat *concat = CONCAT(mtd);
508 	int i, err = -EINVAL;
509 
510 	for (i = 0; i < concat->num_subdev; i++) {
511 		struct mtd_info *subdev = concat->subdev[i];
512 		uint64_t size;
513 
514 		if (ofs >= subdev->size) {
515 			size = 0;
516 			ofs -= subdev->size;
517 			continue;
518 		}
519 		if (ofs + len > subdev->size)
520 			size = subdev->size - ofs;
521 		else
522 			size = len;
523 
524 		err = mtd_lock(subdev, ofs, size);
525 		if (err)
526 			break;
527 
528 		len -= size;
529 		if (len == 0)
530 			break;
531 
532 		err = -EINVAL;
533 		ofs = 0;
534 	}
535 
536 	return err;
537 }
538 
539 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
540 {
541 	struct mtd_concat *concat = CONCAT(mtd);
542 	int i, err = 0;
543 
544 	for (i = 0; i < concat->num_subdev; i++) {
545 		struct mtd_info *subdev = concat->subdev[i];
546 		uint64_t size;
547 
548 		if (ofs >= subdev->size) {
549 			size = 0;
550 			ofs -= subdev->size;
551 			continue;
552 		}
553 		if (ofs + len > subdev->size)
554 			size = subdev->size - ofs;
555 		else
556 			size = len;
557 
558 		err = mtd_unlock(subdev, ofs, size);
559 		if (err)
560 			break;
561 
562 		len -= size;
563 		if (len == 0)
564 			break;
565 
566 		err = -EINVAL;
567 		ofs = 0;
568 	}
569 
570 	return err;
571 }
572 
573 static void concat_sync(struct mtd_info *mtd)
574 {
575 	struct mtd_concat *concat = CONCAT(mtd);
576 	int i;
577 
578 	for (i = 0; i < concat->num_subdev; i++) {
579 		struct mtd_info *subdev = concat->subdev[i];
580 		mtd_sync(subdev);
581 	}
582 }
583 
584 static int concat_suspend(struct mtd_info *mtd)
585 {
586 	struct mtd_concat *concat = CONCAT(mtd);
587 	int i, rc = 0;
588 
589 	for (i = 0; i < concat->num_subdev; i++) {
590 		struct mtd_info *subdev = concat->subdev[i];
591 		if ((rc = mtd_suspend(subdev)) < 0)
592 			return rc;
593 	}
594 	return rc;
595 }
596 
597 static void concat_resume(struct mtd_info *mtd)
598 {
599 	struct mtd_concat *concat = CONCAT(mtd);
600 	int i;
601 
602 	for (i = 0; i < concat->num_subdev; i++) {
603 		struct mtd_info *subdev = concat->subdev[i];
604 		mtd_resume(subdev);
605 	}
606 }
607 
608 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
609 {
610 	struct mtd_concat *concat = CONCAT(mtd);
611 	int i, res = 0;
612 
613 	if (!mtd_can_have_bb(concat->subdev[0]))
614 		return res;
615 
616 	for (i = 0; i < concat->num_subdev; i++) {
617 		struct mtd_info *subdev = concat->subdev[i];
618 
619 		if (ofs >= subdev->size) {
620 			ofs -= subdev->size;
621 			continue;
622 		}
623 
624 		res = mtd_block_isbad(subdev, ofs);
625 		break;
626 	}
627 
628 	return res;
629 }
630 
631 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
632 {
633 	struct mtd_concat *concat = CONCAT(mtd);
634 	int i, err = -EINVAL;
635 
636 	for (i = 0; i < concat->num_subdev; i++) {
637 		struct mtd_info *subdev = concat->subdev[i];
638 
639 		if (ofs >= subdev->size) {
640 			ofs -= subdev->size;
641 			continue;
642 		}
643 
644 		err = mtd_block_markbad(subdev, ofs);
645 		if (!err)
646 			mtd->ecc_stats.badblocks++;
647 		break;
648 	}
649 
650 	return err;
651 }
652 
653 /*
654  * try to support NOMMU mmaps on concatenated devices
655  * - we don't support subdev spanning as we can't guarantee it'll work
656  */
657 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
658 					      unsigned long len,
659 					      unsigned long offset,
660 					      unsigned long flags)
661 {
662 	struct mtd_concat *concat = CONCAT(mtd);
663 	int i;
664 
665 	for (i = 0; i < concat->num_subdev; i++) {
666 		struct mtd_info *subdev = concat->subdev[i];
667 
668 		if (offset >= subdev->size) {
669 			offset -= subdev->size;
670 			continue;
671 		}
672 
673 		return mtd_get_unmapped_area(subdev, len, offset, flags);
674 	}
675 
676 	return (unsigned long) -ENOSYS;
677 }
678 
679 /*
680  * This function constructs a virtual MTD device by concatenating
681  * num_devs MTD devices. A pointer to the new device object is
682  * stored to *new_dev upon success. This function does _not_
683  * register any devices: this is the caller's responsibility.
684  */
685 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
686 				   int num_devs,	/* number of subdevices      */
687 				   const char *name)
688 {				/* name for the new device   */
689 	int i;
690 	size_t size;
691 	struct mtd_concat *concat;
692 	uint32_t max_erasesize, curr_erasesize;
693 	int num_erase_region;
694 	int max_writebufsize = 0;
695 
696 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
697 	for (i = 0; i < num_devs; i++)
698 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
699 	printk(KERN_NOTICE "into device \"%s\"\n", name);
700 
701 	/* allocate the device structure */
702 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
703 	concat = kzalloc(size, GFP_KERNEL);
704 	if (!concat) {
705 		printk
706 		    ("memory allocation error while creating concatenated device \"%s\"\n",
707 		     name);
708 		return NULL;
709 	}
710 	concat->subdev = (struct mtd_info **) (concat + 1);
711 
712 	/*
713 	 * Set up the new "super" device's MTD object structure, check for
714 	 * incompatibilities between the subdevices.
715 	 */
716 	concat->mtd.type = subdev[0]->type;
717 	concat->mtd.flags = subdev[0]->flags;
718 	concat->mtd.size = subdev[0]->size;
719 	concat->mtd.erasesize = subdev[0]->erasesize;
720 	concat->mtd.writesize = subdev[0]->writesize;
721 
722 	for (i = 0; i < num_devs; i++)
723 		if (max_writebufsize < subdev[i]->writebufsize)
724 			max_writebufsize = subdev[i]->writebufsize;
725 	concat->mtd.writebufsize = max_writebufsize;
726 
727 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
728 	concat->mtd.oobsize = subdev[0]->oobsize;
729 	concat->mtd.oobavail = subdev[0]->oobavail;
730 	if (subdev[0]->_writev)
731 		concat->mtd._writev = concat_writev;
732 	if (subdev[0]->_read_oob)
733 		concat->mtd._read_oob = concat_read_oob;
734 	if (subdev[0]->_write_oob)
735 		concat->mtd._write_oob = concat_write_oob;
736 	if (subdev[0]->_block_isbad)
737 		concat->mtd._block_isbad = concat_block_isbad;
738 	if (subdev[0]->_block_markbad)
739 		concat->mtd._block_markbad = concat_block_markbad;
740 
741 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
742 
743 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
744 
745 	concat->subdev[0] = subdev[0];
746 
747 	for (i = 1; i < num_devs; i++) {
748 		if (concat->mtd.type != subdev[i]->type) {
749 			kfree(concat);
750 			printk("Incompatible device type on \"%s\"\n",
751 			       subdev[i]->name);
752 			return NULL;
753 		}
754 		if (concat->mtd.flags != subdev[i]->flags) {
755 			/*
756 			 * Expect all flags except MTD_WRITEABLE to be
757 			 * equal on all subdevices.
758 			 */
759 			if ((concat->mtd.flags ^ subdev[i]->
760 			     flags) & ~MTD_WRITEABLE) {
761 				kfree(concat);
762 				printk("Incompatible device flags on \"%s\"\n",
763 				       subdev[i]->name);
764 				return NULL;
765 			} else
766 				/* if writeable attribute differs,
767 				   make super device writeable */
768 				concat->mtd.flags |=
769 				    subdev[i]->flags & MTD_WRITEABLE;
770 		}
771 
772 		/* only permit direct mapping if the BDIs are all the same
773 		 * - copy-mapping is still permitted
774 		 */
775 		if (concat->mtd.backing_dev_info !=
776 		    subdev[i]->backing_dev_info)
777 			concat->mtd.backing_dev_info =
778 				&default_backing_dev_info;
779 
780 		concat->mtd.size += subdev[i]->size;
781 		concat->mtd.ecc_stats.badblocks +=
782 			subdev[i]->ecc_stats.badblocks;
783 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
784 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
785 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
786 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
787 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
788 			kfree(concat);
789 			printk("Incompatible OOB or ECC data on \"%s\"\n",
790 			       subdev[i]->name);
791 			return NULL;
792 		}
793 		concat->subdev[i] = subdev[i];
794 
795 	}
796 
797 	concat->mtd.ecclayout = subdev[0]->ecclayout;
798 
799 	concat->num_subdev = num_devs;
800 	concat->mtd.name = name;
801 
802 	concat->mtd._erase = concat_erase;
803 	concat->mtd._read = concat_read;
804 	concat->mtd._write = concat_write;
805 	concat->mtd._sync = concat_sync;
806 	concat->mtd._lock = concat_lock;
807 	concat->mtd._unlock = concat_unlock;
808 	concat->mtd._suspend = concat_suspend;
809 	concat->mtd._resume = concat_resume;
810 	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
811 
812 	/*
813 	 * Combine the erase block size info of the subdevices:
814 	 *
815 	 * first, walk the map of the new device and see how
816 	 * many changes in erase size we have
817 	 */
818 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
819 	num_erase_region = 1;
820 	for (i = 0; i < num_devs; i++) {
821 		if (subdev[i]->numeraseregions == 0) {
822 			/* current subdevice has uniform erase size */
823 			if (subdev[i]->erasesize != curr_erasesize) {
824 				/* if it differs from the last subdevice's erase size, count it */
825 				++num_erase_region;
826 				curr_erasesize = subdev[i]->erasesize;
827 				if (curr_erasesize > max_erasesize)
828 					max_erasesize = curr_erasesize;
829 			}
830 		} else {
831 			/* current subdevice has variable erase size */
832 			int j;
833 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
834 
835 				/* walk the list of erase regions, count any changes */
836 				if (subdev[i]->eraseregions[j].erasesize !=
837 				    curr_erasesize) {
838 					++num_erase_region;
839 					curr_erasesize =
840 					    subdev[i]->eraseregions[j].
841 					    erasesize;
842 					if (curr_erasesize > max_erasesize)
843 						max_erasesize = curr_erasesize;
844 				}
845 			}
846 		}
847 	}
848 
849 	if (num_erase_region == 1) {
850 		/*
851 		 * All subdevices have the same uniform erase size.
852 		 * This is easy:
853 		 */
854 		concat->mtd.erasesize = curr_erasesize;
855 		concat->mtd.numeraseregions = 0;
856 	} else {
857 		uint64_t tmp64;
858 
859 		/*
860 		 * erase block size varies across the subdevices: allocate
861 		 * space to store the data describing the variable erase regions
862 		 */
863 		struct mtd_erase_region_info *erase_region_p;
864 		uint64_t begin, position;
865 
866 		concat->mtd.erasesize = max_erasesize;
867 		concat->mtd.numeraseregions = num_erase_region;
868 		concat->mtd.eraseregions = erase_region_p =
869 		    kmalloc(num_erase_region *
870 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
871 		if (!erase_region_p) {
872 			kfree(concat);
873 			printk
874 			    ("memory allocation error while creating erase region list"
875 			     " for device \"%s\"\n", name);
876 			return NULL;
877 		}
878 
879 		/*
880 		 * walk the map of the new device once more and fill in
881 		 * in erase region info:
882 		 */
883 		curr_erasesize = subdev[0]->erasesize;
884 		begin = position = 0;
885 		for (i = 0; i < num_devs; i++) {
886 			if (subdev[i]->numeraseregions == 0) {
887 				/* current subdevice has uniform erase size */
888 				if (subdev[i]->erasesize != curr_erasesize) {
889 					/*
890 					 *  fill in an mtd_erase_region_info structure for the area
891 					 *  we have walked so far:
892 					 */
893 					erase_region_p->offset = begin;
894 					erase_region_p->erasesize =
895 					    curr_erasesize;
896 					tmp64 = position - begin;
897 					do_div(tmp64, curr_erasesize);
898 					erase_region_p->numblocks = tmp64;
899 					begin = position;
900 
901 					curr_erasesize = subdev[i]->erasesize;
902 					++erase_region_p;
903 				}
904 				position += subdev[i]->size;
905 			} else {
906 				/* current subdevice has variable erase size */
907 				int j;
908 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
909 					/* walk the list of erase regions, count any changes */
910 					if (subdev[i]->eraseregions[j].
911 					    erasesize != curr_erasesize) {
912 						erase_region_p->offset = begin;
913 						erase_region_p->erasesize =
914 						    curr_erasesize;
915 						tmp64 = position - begin;
916 						do_div(tmp64, curr_erasesize);
917 						erase_region_p->numblocks = tmp64;
918 						begin = position;
919 
920 						curr_erasesize =
921 						    subdev[i]->eraseregions[j].
922 						    erasesize;
923 						++erase_region_p;
924 					}
925 					position +=
926 					    subdev[i]->eraseregions[j].
927 					    numblocks * (uint64_t)curr_erasesize;
928 				}
929 			}
930 		}
931 		/* Now write the final entry */
932 		erase_region_p->offset = begin;
933 		erase_region_p->erasesize = curr_erasesize;
934 		tmp64 = position - begin;
935 		do_div(tmp64, curr_erasesize);
936 		erase_region_p->numblocks = tmp64;
937 	}
938 
939 	return &concat->mtd;
940 }
941 
942 /*
943  * This function destroys an MTD object obtained from concat_mtd_devs()
944  */
945 
946 void mtd_concat_destroy(struct mtd_info *mtd)
947 {
948 	struct mtd_concat *concat = CONCAT(mtd);
949 	if (concat->mtd.numeraseregions)
950 		kfree(concat->mtd.eraseregions);
951 	kfree(concat);
952 }
953 
954 EXPORT_SYMBOL(mtd_concat_create);
955 EXPORT_SYMBOL(mtd_concat_destroy);
956 
957 MODULE_LICENSE("GPL");
958 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
959 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
960