xref: /linux/drivers/mtd/mtdconcat.c (revision 5def48982b778aaebe201f85af7170b7d0a6619f)
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34 
35 #include <asm/div64.h>
36 
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44 	struct mtd_info mtd;
45 	int num_subdev;
46 	struct mtd_info **subdev;
47 };
48 
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
54 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55 
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61 
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66 
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69 	    size_t * retlen, u_char * buf)
70 {
71 	struct mtd_concat *concat = CONCAT(mtd);
72 	int ret = 0, err;
73 	int i;
74 
75 	*retlen = 0;
76 
77 	for (i = 0; i < concat->num_subdev; i++) {
78 		struct mtd_info *subdev = concat->subdev[i];
79 		size_t size, retsize;
80 
81 		if (from >= subdev->size) {
82 			/* Not destined for this subdev */
83 			size = 0;
84 			from -= subdev->size;
85 			continue;
86 		}
87 		if (from + len > subdev->size)
88 			/* First part goes into this subdev */
89 			size = subdev->size - from;
90 		else
91 			/* Entire transaction goes into this subdev */
92 			size = len;
93 
94 		err = mtd_read(subdev, from, size, &retsize, buf);
95 
96 		/* Save information about bitflips! */
97 		if (unlikely(err)) {
98 			if (mtd_is_eccerr(err)) {
99 				mtd->ecc_stats.failed++;
100 				ret = err;
101 			} else if (mtd_is_bitflip(err)) {
102 				mtd->ecc_stats.corrected++;
103 				/* Do not overwrite -EBADMSG !! */
104 				if (!ret)
105 					ret = err;
106 			} else
107 				return err;
108 		}
109 
110 		*retlen += retsize;
111 		len -= size;
112 		if (len == 0)
113 			return ret;
114 
115 		buf += size;
116 		from = 0;
117 	}
118 	return -EINVAL;
119 }
120 
121 static int
122 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
123 	     size_t * retlen, const u_char * buf)
124 {
125 	struct mtd_concat *concat = CONCAT(mtd);
126 	int err = -EINVAL;
127 	int i;
128 
129 	if (!(mtd->flags & MTD_WRITEABLE))
130 		return -EROFS;
131 
132 	*retlen = 0;
133 
134 	for (i = 0; i < concat->num_subdev; i++) {
135 		struct mtd_info *subdev = concat->subdev[i];
136 		size_t size, retsize;
137 
138 		if (to >= subdev->size) {
139 			size = 0;
140 			to -= subdev->size;
141 			continue;
142 		}
143 		if (to + len > subdev->size)
144 			size = subdev->size - to;
145 		else
146 			size = len;
147 
148 		if (!(subdev->flags & MTD_WRITEABLE))
149 			err = -EROFS;
150 		else
151 			err = mtd_write(subdev, to, size, &retsize, buf);
152 
153 		if (err)
154 			break;
155 
156 		*retlen += retsize;
157 		len -= size;
158 		if (len == 0)
159 			break;
160 
161 		err = -EINVAL;
162 		buf += size;
163 		to = 0;
164 	}
165 	return err;
166 }
167 
168 static int
169 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
170 		unsigned long count, loff_t to, size_t * retlen)
171 {
172 	struct mtd_concat *concat = CONCAT(mtd);
173 	struct kvec *vecs_copy;
174 	unsigned long entry_low, entry_high;
175 	size_t total_len = 0;
176 	int i;
177 	int err = -EINVAL;
178 
179 	if (!(mtd->flags & MTD_WRITEABLE))
180 		return -EROFS;
181 
182 	*retlen = 0;
183 
184 	/* Calculate total length of data */
185 	for (i = 0; i < count; i++)
186 		total_len += vecs[i].iov_len;
187 
188 	/* Check alignment */
189 	if (mtd->writesize > 1) {
190 		uint64_t __to = to;
191 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
192 			return -EINVAL;
193 	}
194 
195 	/* make a copy of vecs */
196 	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
197 	if (!vecs_copy)
198 		return -ENOMEM;
199 
200 	entry_low = 0;
201 	for (i = 0; i < concat->num_subdev; i++) {
202 		struct mtd_info *subdev = concat->subdev[i];
203 		size_t size, wsize, retsize, old_iov_len;
204 
205 		if (to >= subdev->size) {
206 			to -= subdev->size;
207 			continue;
208 		}
209 
210 		size = min_t(uint64_t, total_len, subdev->size - to);
211 		wsize = size; /* store for future use */
212 
213 		entry_high = entry_low;
214 		while (entry_high < count) {
215 			if (size <= vecs_copy[entry_high].iov_len)
216 				break;
217 			size -= vecs_copy[entry_high++].iov_len;
218 		}
219 
220 		old_iov_len = vecs_copy[entry_high].iov_len;
221 		vecs_copy[entry_high].iov_len = size;
222 
223 		if (!(subdev->flags & MTD_WRITEABLE))
224 			err = -EROFS;
225 		else
226 			err = mtd_writev(subdev, &vecs_copy[entry_low],
227 					 entry_high - entry_low + 1, to,
228 					 &retsize);
229 
230 		vecs_copy[entry_high].iov_len = old_iov_len - size;
231 		vecs_copy[entry_high].iov_base += size;
232 
233 		entry_low = entry_high;
234 
235 		if (err)
236 			break;
237 
238 		*retlen += retsize;
239 		total_len -= wsize;
240 
241 		if (total_len == 0)
242 			break;
243 
244 		err = -EINVAL;
245 		to = 0;
246 	}
247 
248 	kfree(vecs_copy);
249 	return err;
250 }
251 
252 static int
253 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
254 {
255 	struct mtd_concat *concat = CONCAT(mtd);
256 	struct mtd_oob_ops devops = *ops;
257 	int i, err, ret = 0;
258 
259 	ops->retlen = ops->oobretlen = 0;
260 
261 	for (i = 0; i < concat->num_subdev; i++) {
262 		struct mtd_info *subdev = concat->subdev[i];
263 
264 		if (from >= subdev->size) {
265 			from -= subdev->size;
266 			continue;
267 		}
268 
269 		/* partial read ? */
270 		if (from + devops.len > subdev->size)
271 			devops.len = subdev->size - from;
272 
273 		err = mtd_read_oob(subdev, from, &devops);
274 		ops->retlen += devops.retlen;
275 		ops->oobretlen += devops.oobretlen;
276 
277 		/* Save information about bitflips! */
278 		if (unlikely(err)) {
279 			if (mtd_is_eccerr(err)) {
280 				mtd->ecc_stats.failed++;
281 				ret = err;
282 			} else if (mtd_is_bitflip(err)) {
283 				mtd->ecc_stats.corrected++;
284 				/* Do not overwrite -EBADMSG !! */
285 				if (!ret)
286 					ret = err;
287 			} else
288 				return err;
289 		}
290 
291 		if (devops.datbuf) {
292 			devops.len = ops->len - ops->retlen;
293 			if (!devops.len)
294 				return ret;
295 			devops.datbuf += devops.retlen;
296 		}
297 		if (devops.oobbuf) {
298 			devops.ooblen = ops->ooblen - ops->oobretlen;
299 			if (!devops.ooblen)
300 				return ret;
301 			devops.oobbuf += ops->oobretlen;
302 		}
303 
304 		from = 0;
305 	}
306 	return -EINVAL;
307 }
308 
309 static int
310 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
311 {
312 	struct mtd_concat *concat = CONCAT(mtd);
313 	struct mtd_oob_ops devops = *ops;
314 	int i, err;
315 
316 	if (!(mtd->flags & MTD_WRITEABLE))
317 		return -EROFS;
318 
319 	ops->retlen = ops->oobretlen = 0;
320 
321 	for (i = 0; i < concat->num_subdev; i++) {
322 		struct mtd_info *subdev = concat->subdev[i];
323 
324 		if (to >= subdev->size) {
325 			to -= subdev->size;
326 			continue;
327 		}
328 
329 		/* partial write ? */
330 		if (to + devops.len > subdev->size)
331 			devops.len = subdev->size - to;
332 
333 		err = mtd_write_oob(subdev, to, &devops);
334 		ops->retlen += devops.oobretlen;
335 		if (err)
336 			return err;
337 
338 		if (devops.datbuf) {
339 			devops.len = ops->len - ops->retlen;
340 			if (!devops.len)
341 				return 0;
342 			devops.datbuf += devops.retlen;
343 		}
344 		if (devops.oobbuf) {
345 			devops.ooblen = ops->ooblen - ops->oobretlen;
346 			if (!devops.ooblen)
347 				return 0;
348 			devops.oobbuf += devops.oobretlen;
349 		}
350 		to = 0;
351 	}
352 	return -EINVAL;
353 }
354 
355 static void concat_erase_callback(struct erase_info *instr)
356 {
357 	wake_up((wait_queue_head_t *) instr->priv);
358 }
359 
360 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
361 {
362 	int err;
363 	wait_queue_head_t waitq;
364 	DECLARE_WAITQUEUE(wait, current);
365 
366 	/*
367 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
368 	 */
369 	init_waitqueue_head(&waitq);
370 
371 	erase->mtd = mtd;
372 	erase->callback = concat_erase_callback;
373 	erase->priv = (unsigned long) &waitq;
374 
375 	/*
376 	 * FIXME: Allow INTERRUPTIBLE. Which means
377 	 * not having the wait_queue head on the stack.
378 	 */
379 	err = mtd_erase(mtd, erase);
380 	if (!err) {
381 		set_current_state(TASK_UNINTERRUPTIBLE);
382 		add_wait_queue(&waitq, &wait);
383 		if (erase->state != MTD_ERASE_DONE
384 		    && erase->state != MTD_ERASE_FAILED)
385 			schedule();
386 		remove_wait_queue(&waitq, &wait);
387 		set_current_state(TASK_RUNNING);
388 
389 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
390 	}
391 	return err;
392 }
393 
394 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
395 {
396 	struct mtd_concat *concat = CONCAT(mtd);
397 	struct mtd_info *subdev;
398 	int i, err;
399 	uint64_t length, offset = 0;
400 	struct erase_info *erase;
401 
402 	if (!(mtd->flags & MTD_WRITEABLE))
403 		return -EROFS;
404 
405 	/*
406 	 * Check for proper erase block alignment of the to-be-erased area.
407 	 * It is easier to do this based on the super device's erase
408 	 * region info rather than looking at each particular sub-device
409 	 * in turn.
410 	 */
411 	if (!concat->mtd.numeraseregions) {
412 		/* the easy case: device has uniform erase block size */
413 		if (instr->addr & (concat->mtd.erasesize - 1))
414 			return -EINVAL;
415 		if (instr->len & (concat->mtd.erasesize - 1))
416 			return -EINVAL;
417 	} else {
418 		/* device has variable erase size */
419 		struct mtd_erase_region_info *erase_regions =
420 		    concat->mtd.eraseregions;
421 
422 		/*
423 		 * Find the erase region where the to-be-erased area begins:
424 		 */
425 		for (i = 0; i < concat->mtd.numeraseregions &&
426 		     instr->addr >= erase_regions[i].offset; i++) ;
427 		--i;
428 
429 		/*
430 		 * Now erase_regions[i] is the region in which the
431 		 * to-be-erased area begins. Verify that the starting
432 		 * offset is aligned to this region's erase size:
433 		 */
434 		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
435 			return -EINVAL;
436 
437 		/*
438 		 * now find the erase region where the to-be-erased area ends:
439 		 */
440 		for (; i < concat->mtd.numeraseregions &&
441 		     (instr->addr + instr->len) >= erase_regions[i].offset;
442 		     ++i) ;
443 		--i;
444 		/*
445 		 * check if the ending offset is aligned to this region's erase size
446 		 */
447 		if (i < 0 || ((instr->addr + instr->len) &
448 					(erase_regions[i].erasesize - 1)))
449 			return -EINVAL;
450 	}
451 
452 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
453 
454 	/* make a local copy of instr to avoid modifying the caller's struct */
455 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
456 
457 	if (!erase)
458 		return -ENOMEM;
459 
460 	*erase = *instr;
461 	length = instr->len;
462 
463 	/*
464 	 * find the subdevice where the to-be-erased area begins, adjust
465 	 * starting offset to be relative to the subdevice start
466 	 */
467 	for (i = 0; i < concat->num_subdev; i++) {
468 		subdev = concat->subdev[i];
469 		if (subdev->size <= erase->addr) {
470 			erase->addr -= subdev->size;
471 			offset += subdev->size;
472 		} else {
473 			break;
474 		}
475 	}
476 
477 	/* must never happen since size limit has been verified above */
478 	BUG_ON(i >= concat->num_subdev);
479 
480 	/* now do the erase: */
481 	err = 0;
482 	for (; length > 0; i++) {
483 		/* loop for all subdevices affected by this request */
484 		subdev = concat->subdev[i];	/* get current subdevice */
485 
486 		/* limit length to subdevice's size: */
487 		if (erase->addr + length > subdev->size)
488 			erase->len = subdev->size - erase->addr;
489 		else
490 			erase->len = length;
491 
492 		if (!(subdev->flags & MTD_WRITEABLE)) {
493 			err = -EROFS;
494 			break;
495 		}
496 		length -= erase->len;
497 		if ((err = concat_dev_erase(subdev, erase))) {
498 			/* sanity check: should never happen since
499 			 * block alignment has been checked above */
500 			BUG_ON(err == -EINVAL);
501 			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
502 				instr->fail_addr = erase->fail_addr + offset;
503 			break;
504 		}
505 		/*
506 		 * erase->addr specifies the offset of the area to be
507 		 * erased *within the current subdevice*. It can be
508 		 * non-zero only the first time through this loop, i.e.
509 		 * for the first subdevice where blocks need to be erased.
510 		 * All the following erases must begin at the start of the
511 		 * current subdevice, i.e. at offset zero.
512 		 */
513 		erase->addr = 0;
514 		offset += subdev->size;
515 	}
516 	instr->state = erase->state;
517 	kfree(erase);
518 	if (err)
519 		return err;
520 
521 	if (instr->callback)
522 		instr->callback(instr);
523 	return 0;
524 }
525 
526 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
527 {
528 	struct mtd_concat *concat = CONCAT(mtd);
529 	int i, err = -EINVAL;
530 
531 	for (i = 0; i < concat->num_subdev; i++) {
532 		struct mtd_info *subdev = concat->subdev[i];
533 		uint64_t size;
534 
535 		if (ofs >= subdev->size) {
536 			size = 0;
537 			ofs -= subdev->size;
538 			continue;
539 		}
540 		if (ofs + len > subdev->size)
541 			size = subdev->size - ofs;
542 		else
543 			size = len;
544 
545 		err = mtd_lock(subdev, ofs, size);
546 		if (err)
547 			break;
548 
549 		len -= size;
550 		if (len == 0)
551 			break;
552 
553 		err = -EINVAL;
554 		ofs = 0;
555 	}
556 
557 	return err;
558 }
559 
560 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
561 {
562 	struct mtd_concat *concat = CONCAT(mtd);
563 	int i, err = 0;
564 
565 	for (i = 0; i < concat->num_subdev; i++) {
566 		struct mtd_info *subdev = concat->subdev[i];
567 		uint64_t size;
568 
569 		if (ofs >= subdev->size) {
570 			size = 0;
571 			ofs -= subdev->size;
572 			continue;
573 		}
574 		if (ofs + len > subdev->size)
575 			size = subdev->size - ofs;
576 		else
577 			size = len;
578 
579 		err = mtd_unlock(subdev, ofs, size);
580 		if (err)
581 			break;
582 
583 		len -= size;
584 		if (len == 0)
585 			break;
586 
587 		err = -EINVAL;
588 		ofs = 0;
589 	}
590 
591 	return err;
592 }
593 
594 static void concat_sync(struct mtd_info *mtd)
595 {
596 	struct mtd_concat *concat = CONCAT(mtd);
597 	int i;
598 
599 	for (i = 0; i < concat->num_subdev; i++) {
600 		struct mtd_info *subdev = concat->subdev[i];
601 		mtd_sync(subdev);
602 	}
603 }
604 
605 static int concat_suspend(struct mtd_info *mtd)
606 {
607 	struct mtd_concat *concat = CONCAT(mtd);
608 	int i, rc = 0;
609 
610 	for (i = 0; i < concat->num_subdev; i++) {
611 		struct mtd_info *subdev = concat->subdev[i];
612 		if ((rc = mtd_suspend(subdev)) < 0)
613 			return rc;
614 	}
615 	return rc;
616 }
617 
618 static void concat_resume(struct mtd_info *mtd)
619 {
620 	struct mtd_concat *concat = CONCAT(mtd);
621 	int i;
622 
623 	for (i = 0; i < concat->num_subdev; i++) {
624 		struct mtd_info *subdev = concat->subdev[i];
625 		mtd_resume(subdev);
626 	}
627 }
628 
629 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
630 {
631 	struct mtd_concat *concat = CONCAT(mtd);
632 	int i, res = 0;
633 
634 	if (!mtd_can_have_bb(concat->subdev[0]))
635 		return res;
636 
637 	for (i = 0; i < concat->num_subdev; i++) {
638 		struct mtd_info *subdev = concat->subdev[i];
639 
640 		if (ofs >= subdev->size) {
641 			ofs -= subdev->size;
642 			continue;
643 		}
644 
645 		res = mtd_block_isbad(subdev, ofs);
646 		break;
647 	}
648 
649 	return res;
650 }
651 
652 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
653 {
654 	struct mtd_concat *concat = CONCAT(mtd);
655 	int i, err = -EINVAL;
656 
657 	for (i = 0; i < concat->num_subdev; i++) {
658 		struct mtd_info *subdev = concat->subdev[i];
659 
660 		if (ofs >= subdev->size) {
661 			ofs -= subdev->size;
662 			continue;
663 		}
664 
665 		err = mtd_block_markbad(subdev, ofs);
666 		if (!err)
667 			mtd->ecc_stats.badblocks++;
668 		break;
669 	}
670 
671 	return err;
672 }
673 
674 /*
675  * try to support NOMMU mmaps on concatenated devices
676  * - we don't support subdev spanning as we can't guarantee it'll work
677  */
678 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
679 					      unsigned long len,
680 					      unsigned long offset,
681 					      unsigned long flags)
682 {
683 	struct mtd_concat *concat = CONCAT(mtd);
684 	int i;
685 
686 	for (i = 0; i < concat->num_subdev; i++) {
687 		struct mtd_info *subdev = concat->subdev[i];
688 
689 		if (offset >= subdev->size) {
690 			offset -= subdev->size;
691 			continue;
692 		}
693 
694 		return mtd_get_unmapped_area(subdev, len, offset, flags);
695 	}
696 
697 	return (unsigned long) -ENOSYS;
698 }
699 
700 /*
701  * This function constructs a virtual MTD device by concatenating
702  * num_devs MTD devices. A pointer to the new device object is
703  * stored to *new_dev upon success. This function does _not_
704  * register any devices: this is the caller's responsibility.
705  */
706 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
707 				   int num_devs,	/* number of subdevices      */
708 				   const char *name)
709 {				/* name for the new device   */
710 	int i;
711 	size_t size;
712 	struct mtd_concat *concat;
713 	uint32_t max_erasesize, curr_erasesize;
714 	int num_erase_region;
715 	int max_writebufsize = 0;
716 
717 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
718 	for (i = 0; i < num_devs; i++)
719 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
720 	printk(KERN_NOTICE "into device \"%s\"\n", name);
721 
722 	/* allocate the device structure */
723 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
724 	concat = kzalloc(size, GFP_KERNEL);
725 	if (!concat) {
726 		printk
727 		    ("memory allocation error while creating concatenated device \"%s\"\n",
728 		     name);
729 		return NULL;
730 	}
731 	concat->subdev = (struct mtd_info **) (concat + 1);
732 
733 	/*
734 	 * Set up the new "super" device's MTD object structure, check for
735 	 * incompatibilities between the subdevices.
736 	 */
737 	concat->mtd.type = subdev[0]->type;
738 	concat->mtd.flags = subdev[0]->flags;
739 	concat->mtd.size = subdev[0]->size;
740 	concat->mtd.erasesize = subdev[0]->erasesize;
741 	concat->mtd.writesize = subdev[0]->writesize;
742 
743 	for (i = 0; i < num_devs; i++)
744 		if (max_writebufsize < subdev[i]->writebufsize)
745 			max_writebufsize = subdev[i]->writebufsize;
746 	concat->mtd.writebufsize = max_writebufsize;
747 
748 	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
749 	concat->mtd.oobsize = subdev[0]->oobsize;
750 	concat->mtd.oobavail = subdev[0]->oobavail;
751 	if (subdev[0]->_writev)
752 		concat->mtd._writev = concat_writev;
753 	if (subdev[0]->_read_oob)
754 		concat->mtd._read_oob = concat_read_oob;
755 	if (subdev[0]->_write_oob)
756 		concat->mtd._write_oob = concat_write_oob;
757 	if (subdev[0]->_block_isbad)
758 		concat->mtd._block_isbad = concat_block_isbad;
759 	if (subdev[0]->_block_markbad)
760 		concat->mtd._block_markbad = concat_block_markbad;
761 
762 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
763 
764 	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
765 
766 	concat->subdev[0] = subdev[0];
767 
768 	for (i = 1; i < num_devs; i++) {
769 		if (concat->mtd.type != subdev[i]->type) {
770 			kfree(concat);
771 			printk("Incompatible device type on \"%s\"\n",
772 			       subdev[i]->name);
773 			return NULL;
774 		}
775 		if (concat->mtd.flags != subdev[i]->flags) {
776 			/*
777 			 * Expect all flags except MTD_WRITEABLE to be
778 			 * equal on all subdevices.
779 			 */
780 			if ((concat->mtd.flags ^ subdev[i]->
781 			     flags) & ~MTD_WRITEABLE) {
782 				kfree(concat);
783 				printk("Incompatible device flags on \"%s\"\n",
784 				       subdev[i]->name);
785 				return NULL;
786 			} else
787 				/* if writeable attribute differs,
788 				   make super device writeable */
789 				concat->mtd.flags |=
790 				    subdev[i]->flags & MTD_WRITEABLE;
791 		}
792 
793 		/* only permit direct mapping if the BDIs are all the same
794 		 * - copy-mapping is still permitted
795 		 */
796 		if (concat->mtd.backing_dev_info !=
797 		    subdev[i]->backing_dev_info)
798 			concat->mtd.backing_dev_info =
799 				&default_backing_dev_info;
800 
801 		concat->mtd.size += subdev[i]->size;
802 		concat->mtd.ecc_stats.badblocks +=
803 			subdev[i]->ecc_stats.badblocks;
804 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
805 		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
806 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
807 		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
808 		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
809 			kfree(concat);
810 			printk("Incompatible OOB or ECC data on \"%s\"\n",
811 			       subdev[i]->name);
812 			return NULL;
813 		}
814 		concat->subdev[i] = subdev[i];
815 
816 	}
817 
818 	concat->mtd.ecclayout = subdev[0]->ecclayout;
819 
820 	concat->num_subdev = num_devs;
821 	concat->mtd.name = name;
822 
823 	concat->mtd._erase = concat_erase;
824 	concat->mtd._read = concat_read;
825 	concat->mtd._write = concat_write;
826 	concat->mtd._sync = concat_sync;
827 	concat->mtd._lock = concat_lock;
828 	concat->mtd._unlock = concat_unlock;
829 	concat->mtd._suspend = concat_suspend;
830 	concat->mtd._resume = concat_resume;
831 	concat->mtd._get_unmapped_area = concat_get_unmapped_area;
832 
833 	/*
834 	 * Combine the erase block size info of the subdevices:
835 	 *
836 	 * first, walk the map of the new device and see how
837 	 * many changes in erase size we have
838 	 */
839 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
840 	num_erase_region = 1;
841 	for (i = 0; i < num_devs; i++) {
842 		if (subdev[i]->numeraseregions == 0) {
843 			/* current subdevice has uniform erase size */
844 			if (subdev[i]->erasesize != curr_erasesize) {
845 				/* if it differs from the last subdevice's erase size, count it */
846 				++num_erase_region;
847 				curr_erasesize = subdev[i]->erasesize;
848 				if (curr_erasesize > max_erasesize)
849 					max_erasesize = curr_erasesize;
850 			}
851 		} else {
852 			/* current subdevice has variable erase size */
853 			int j;
854 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
855 
856 				/* walk the list of erase regions, count any changes */
857 				if (subdev[i]->eraseregions[j].erasesize !=
858 				    curr_erasesize) {
859 					++num_erase_region;
860 					curr_erasesize =
861 					    subdev[i]->eraseregions[j].
862 					    erasesize;
863 					if (curr_erasesize > max_erasesize)
864 						max_erasesize = curr_erasesize;
865 				}
866 			}
867 		}
868 	}
869 
870 	if (num_erase_region == 1) {
871 		/*
872 		 * All subdevices have the same uniform erase size.
873 		 * This is easy:
874 		 */
875 		concat->mtd.erasesize = curr_erasesize;
876 		concat->mtd.numeraseregions = 0;
877 	} else {
878 		uint64_t tmp64;
879 
880 		/*
881 		 * erase block size varies across the subdevices: allocate
882 		 * space to store the data describing the variable erase regions
883 		 */
884 		struct mtd_erase_region_info *erase_region_p;
885 		uint64_t begin, position;
886 
887 		concat->mtd.erasesize = max_erasesize;
888 		concat->mtd.numeraseregions = num_erase_region;
889 		concat->mtd.eraseregions = erase_region_p =
890 		    kmalloc(num_erase_region *
891 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
892 		if (!erase_region_p) {
893 			kfree(concat);
894 			printk
895 			    ("memory allocation error while creating erase region list"
896 			     " for device \"%s\"\n", name);
897 			return NULL;
898 		}
899 
900 		/*
901 		 * walk the map of the new device once more and fill in
902 		 * in erase region info:
903 		 */
904 		curr_erasesize = subdev[0]->erasesize;
905 		begin = position = 0;
906 		for (i = 0; i < num_devs; i++) {
907 			if (subdev[i]->numeraseregions == 0) {
908 				/* current subdevice has uniform erase size */
909 				if (subdev[i]->erasesize != curr_erasesize) {
910 					/*
911 					 *  fill in an mtd_erase_region_info structure for the area
912 					 *  we have walked so far:
913 					 */
914 					erase_region_p->offset = begin;
915 					erase_region_p->erasesize =
916 					    curr_erasesize;
917 					tmp64 = position - begin;
918 					do_div(tmp64, curr_erasesize);
919 					erase_region_p->numblocks = tmp64;
920 					begin = position;
921 
922 					curr_erasesize = subdev[i]->erasesize;
923 					++erase_region_p;
924 				}
925 				position += subdev[i]->size;
926 			} else {
927 				/* current subdevice has variable erase size */
928 				int j;
929 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
930 					/* walk the list of erase regions, count any changes */
931 					if (subdev[i]->eraseregions[j].
932 					    erasesize != curr_erasesize) {
933 						erase_region_p->offset = begin;
934 						erase_region_p->erasesize =
935 						    curr_erasesize;
936 						tmp64 = position - begin;
937 						do_div(tmp64, curr_erasesize);
938 						erase_region_p->numblocks = tmp64;
939 						begin = position;
940 
941 						curr_erasesize =
942 						    subdev[i]->eraseregions[j].
943 						    erasesize;
944 						++erase_region_p;
945 					}
946 					position +=
947 					    subdev[i]->eraseregions[j].
948 					    numblocks * (uint64_t)curr_erasesize;
949 				}
950 			}
951 		}
952 		/* Now write the final entry */
953 		erase_region_p->offset = begin;
954 		erase_region_p->erasesize = curr_erasesize;
955 		tmp64 = position - begin;
956 		do_div(tmp64, curr_erasesize);
957 		erase_region_p->numblocks = tmp64;
958 	}
959 
960 	return &concat->mtd;
961 }
962 
963 /*
964  * This function destroys an MTD object obtained from concat_mtd_devs()
965  */
966 
967 void mtd_concat_destroy(struct mtd_info *mtd)
968 {
969 	struct mtd_concat *concat = CONCAT(mtd);
970 	if (concat->mtd.numeraseregions)
971 		kfree(concat->mtd.eraseregions);
972 	kfree(concat);
973 }
974 
975 EXPORT_SYMBOL(mtd_concat_create);
976 EXPORT_SYMBOL(mtd_concat_destroy);
977 
978 MODULE_LICENSE("GPL");
979 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
980 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
981