1 /* 2 * MTD device concatenation layer 3 * 4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de> 5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org> 6 * 7 * NAND support by Christian Gan <cgan@iders.ca> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/sched.h> 29 #include <linux/types.h> 30 #include <linux/backing-dev.h> 31 32 #include <linux/mtd/mtd.h> 33 #include <linux/mtd/concat.h> 34 35 #include <asm/div64.h> 36 37 /* 38 * Our storage structure: 39 * Subdev points to an array of pointers to struct mtd_info objects 40 * which is allocated along with this structure 41 * 42 */ 43 struct mtd_concat { 44 struct mtd_info mtd; 45 int num_subdev; 46 struct mtd_info **subdev; 47 }; 48 49 /* 50 * how to calculate the size required for the above structure, 51 * including the pointer array subdev points to: 52 */ 53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \ 54 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *))) 55 56 /* 57 * Given a pointer to the MTD object in the mtd_concat structure, 58 * we can retrieve the pointer to that structure with this macro. 59 */ 60 #define CONCAT(x) ((struct mtd_concat *)(x)) 61 62 /* 63 * MTD methods which look up the relevant subdevice, translate the 64 * effective address and pass through to the subdevice. 65 */ 66 67 static int 68 concat_read(struct mtd_info *mtd, loff_t from, size_t len, 69 size_t * retlen, u_char * buf) 70 { 71 struct mtd_concat *concat = CONCAT(mtd); 72 int ret = 0, err; 73 int i; 74 75 *retlen = 0; 76 77 for (i = 0; i < concat->num_subdev; i++) { 78 struct mtd_info *subdev = concat->subdev[i]; 79 size_t size, retsize; 80 81 if (from >= subdev->size) { 82 /* Not destined for this subdev */ 83 size = 0; 84 from -= subdev->size; 85 continue; 86 } 87 if (from + len > subdev->size) 88 /* First part goes into this subdev */ 89 size = subdev->size - from; 90 else 91 /* Entire transaction goes into this subdev */ 92 size = len; 93 94 err = mtd_read(subdev, from, size, &retsize, buf); 95 96 /* Save information about bitflips! */ 97 if (unlikely(err)) { 98 if (mtd_is_eccerr(err)) { 99 mtd->ecc_stats.failed++; 100 ret = err; 101 } else if (mtd_is_bitflip(err)) { 102 mtd->ecc_stats.corrected++; 103 /* Do not overwrite -EBADMSG !! */ 104 if (!ret) 105 ret = err; 106 } else 107 return err; 108 } 109 110 *retlen += retsize; 111 len -= size; 112 if (len == 0) 113 return ret; 114 115 buf += size; 116 from = 0; 117 } 118 return -EINVAL; 119 } 120 121 static int 122 concat_write(struct mtd_info *mtd, loff_t to, size_t len, 123 size_t * retlen, const u_char * buf) 124 { 125 struct mtd_concat *concat = CONCAT(mtd); 126 int err = -EINVAL; 127 int i; 128 129 if (!(mtd->flags & MTD_WRITEABLE)) 130 return -EROFS; 131 132 *retlen = 0; 133 134 for (i = 0; i < concat->num_subdev; i++) { 135 struct mtd_info *subdev = concat->subdev[i]; 136 size_t size, retsize; 137 138 if (to >= subdev->size) { 139 size = 0; 140 to -= subdev->size; 141 continue; 142 } 143 if (to + len > subdev->size) 144 size = subdev->size - to; 145 else 146 size = len; 147 148 if (!(subdev->flags & MTD_WRITEABLE)) 149 err = -EROFS; 150 else 151 err = mtd_write(subdev, to, size, &retsize, buf); 152 153 if (err) 154 break; 155 156 *retlen += retsize; 157 len -= size; 158 if (len == 0) 159 break; 160 161 err = -EINVAL; 162 buf += size; 163 to = 0; 164 } 165 return err; 166 } 167 168 static int 169 concat_writev(struct mtd_info *mtd, const struct kvec *vecs, 170 unsigned long count, loff_t to, size_t * retlen) 171 { 172 struct mtd_concat *concat = CONCAT(mtd); 173 struct kvec *vecs_copy; 174 unsigned long entry_low, entry_high; 175 size_t total_len = 0; 176 int i; 177 int err = -EINVAL; 178 179 if (!(mtd->flags & MTD_WRITEABLE)) 180 return -EROFS; 181 182 *retlen = 0; 183 184 /* Calculate total length of data */ 185 for (i = 0; i < count; i++) 186 total_len += vecs[i].iov_len; 187 188 /* Check alignment */ 189 if (mtd->writesize > 1) { 190 uint64_t __to = to; 191 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize)) 192 return -EINVAL; 193 } 194 195 /* make a copy of vecs */ 196 vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL); 197 if (!vecs_copy) 198 return -ENOMEM; 199 200 entry_low = 0; 201 for (i = 0; i < concat->num_subdev; i++) { 202 struct mtd_info *subdev = concat->subdev[i]; 203 size_t size, wsize, retsize, old_iov_len; 204 205 if (to >= subdev->size) { 206 to -= subdev->size; 207 continue; 208 } 209 210 size = min_t(uint64_t, total_len, subdev->size - to); 211 wsize = size; /* store for future use */ 212 213 entry_high = entry_low; 214 while (entry_high < count) { 215 if (size <= vecs_copy[entry_high].iov_len) 216 break; 217 size -= vecs_copy[entry_high++].iov_len; 218 } 219 220 old_iov_len = vecs_copy[entry_high].iov_len; 221 vecs_copy[entry_high].iov_len = size; 222 223 if (!(subdev->flags & MTD_WRITEABLE)) 224 err = -EROFS; 225 else 226 err = mtd_writev(subdev, &vecs_copy[entry_low], 227 entry_high - entry_low + 1, to, 228 &retsize); 229 230 vecs_copy[entry_high].iov_len = old_iov_len - size; 231 vecs_copy[entry_high].iov_base += size; 232 233 entry_low = entry_high; 234 235 if (err) 236 break; 237 238 *retlen += retsize; 239 total_len -= wsize; 240 241 if (total_len == 0) 242 break; 243 244 err = -EINVAL; 245 to = 0; 246 } 247 248 kfree(vecs_copy); 249 return err; 250 } 251 252 static int 253 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 254 { 255 struct mtd_concat *concat = CONCAT(mtd); 256 struct mtd_oob_ops devops = *ops; 257 int i, err, ret = 0; 258 259 ops->retlen = ops->oobretlen = 0; 260 261 for (i = 0; i < concat->num_subdev; i++) { 262 struct mtd_info *subdev = concat->subdev[i]; 263 264 if (from >= subdev->size) { 265 from -= subdev->size; 266 continue; 267 } 268 269 /* partial read ? */ 270 if (from + devops.len > subdev->size) 271 devops.len = subdev->size - from; 272 273 err = mtd_read_oob(subdev, from, &devops); 274 ops->retlen += devops.retlen; 275 ops->oobretlen += devops.oobretlen; 276 277 /* Save information about bitflips! */ 278 if (unlikely(err)) { 279 if (mtd_is_eccerr(err)) { 280 mtd->ecc_stats.failed++; 281 ret = err; 282 } else if (mtd_is_bitflip(err)) { 283 mtd->ecc_stats.corrected++; 284 /* Do not overwrite -EBADMSG !! */ 285 if (!ret) 286 ret = err; 287 } else 288 return err; 289 } 290 291 if (devops.datbuf) { 292 devops.len = ops->len - ops->retlen; 293 if (!devops.len) 294 return ret; 295 devops.datbuf += devops.retlen; 296 } 297 if (devops.oobbuf) { 298 devops.ooblen = ops->ooblen - ops->oobretlen; 299 if (!devops.ooblen) 300 return ret; 301 devops.oobbuf += ops->oobretlen; 302 } 303 304 from = 0; 305 } 306 return -EINVAL; 307 } 308 309 static int 310 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) 311 { 312 struct mtd_concat *concat = CONCAT(mtd); 313 struct mtd_oob_ops devops = *ops; 314 int i, err; 315 316 if (!(mtd->flags & MTD_WRITEABLE)) 317 return -EROFS; 318 319 ops->retlen = ops->oobretlen = 0; 320 321 for (i = 0; i < concat->num_subdev; i++) { 322 struct mtd_info *subdev = concat->subdev[i]; 323 324 if (to >= subdev->size) { 325 to -= subdev->size; 326 continue; 327 } 328 329 /* partial write ? */ 330 if (to + devops.len > subdev->size) 331 devops.len = subdev->size - to; 332 333 err = mtd_write_oob(subdev, to, &devops); 334 ops->retlen += devops.oobretlen; 335 if (err) 336 return err; 337 338 if (devops.datbuf) { 339 devops.len = ops->len - ops->retlen; 340 if (!devops.len) 341 return 0; 342 devops.datbuf += devops.retlen; 343 } 344 if (devops.oobbuf) { 345 devops.ooblen = ops->ooblen - ops->oobretlen; 346 if (!devops.ooblen) 347 return 0; 348 devops.oobbuf += devops.oobretlen; 349 } 350 to = 0; 351 } 352 return -EINVAL; 353 } 354 355 static void concat_erase_callback(struct erase_info *instr) 356 { 357 wake_up((wait_queue_head_t *) instr->priv); 358 } 359 360 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) 361 { 362 int err; 363 wait_queue_head_t waitq; 364 DECLARE_WAITQUEUE(wait, current); 365 366 /* 367 * This code was stol^H^H^H^Hinspired by mtdchar.c 368 */ 369 init_waitqueue_head(&waitq); 370 371 erase->mtd = mtd; 372 erase->callback = concat_erase_callback; 373 erase->priv = (unsigned long) &waitq; 374 375 /* 376 * FIXME: Allow INTERRUPTIBLE. Which means 377 * not having the wait_queue head on the stack. 378 */ 379 err = mtd_erase(mtd, erase); 380 if (!err) { 381 set_current_state(TASK_UNINTERRUPTIBLE); 382 add_wait_queue(&waitq, &wait); 383 if (erase->state != MTD_ERASE_DONE 384 && erase->state != MTD_ERASE_FAILED) 385 schedule(); 386 remove_wait_queue(&waitq, &wait); 387 set_current_state(TASK_RUNNING); 388 389 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; 390 } 391 return err; 392 } 393 394 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) 395 { 396 struct mtd_concat *concat = CONCAT(mtd); 397 struct mtd_info *subdev; 398 int i, err; 399 uint64_t length, offset = 0; 400 struct erase_info *erase; 401 402 if (!(mtd->flags & MTD_WRITEABLE)) 403 return -EROFS; 404 405 /* 406 * Check for proper erase block alignment of the to-be-erased area. 407 * It is easier to do this based on the super device's erase 408 * region info rather than looking at each particular sub-device 409 * in turn. 410 */ 411 if (!concat->mtd.numeraseregions) { 412 /* the easy case: device has uniform erase block size */ 413 if (instr->addr & (concat->mtd.erasesize - 1)) 414 return -EINVAL; 415 if (instr->len & (concat->mtd.erasesize - 1)) 416 return -EINVAL; 417 } else { 418 /* device has variable erase size */ 419 struct mtd_erase_region_info *erase_regions = 420 concat->mtd.eraseregions; 421 422 /* 423 * Find the erase region where the to-be-erased area begins: 424 */ 425 for (i = 0; i < concat->mtd.numeraseregions && 426 instr->addr >= erase_regions[i].offset; i++) ; 427 --i; 428 429 /* 430 * Now erase_regions[i] is the region in which the 431 * to-be-erased area begins. Verify that the starting 432 * offset is aligned to this region's erase size: 433 */ 434 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1)) 435 return -EINVAL; 436 437 /* 438 * now find the erase region where the to-be-erased area ends: 439 */ 440 for (; i < concat->mtd.numeraseregions && 441 (instr->addr + instr->len) >= erase_regions[i].offset; 442 ++i) ; 443 --i; 444 /* 445 * check if the ending offset is aligned to this region's erase size 446 */ 447 if (i < 0 || ((instr->addr + instr->len) & 448 (erase_regions[i].erasesize - 1))) 449 return -EINVAL; 450 } 451 452 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 453 454 /* make a local copy of instr to avoid modifying the caller's struct */ 455 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); 456 457 if (!erase) 458 return -ENOMEM; 459 460 *erase = *instr; 461 length = instr->len; 462 463 /* 464 * find the subdevice where the to-be-erased area begins, adjust 465 * starting offset to be relative to the subdevice start 466 */ 467 for (i = 0; i < concat->num_subdev; i++) { 468 subdev = concat->subdev[i]; 469 if (subdev->size <= erase->addr) { 470 erase->addr -= subdev->size; 471 offset += subdev->size; 472 } else { 473 break; 474 } 475 } 476 477 /* must never happen since size limit has been verified above */ 478 BUG_ON(i >= concat->num_subdev); 479 480 /* now do the erase: */ 481 err = 0; 482 for (; length > 0; i++) { 483 /* loop for all subdevices affected by this request */ 484 subdev = concat->subdev[i]; /* get current subdevice */ 485 486 /* limit length to subdevice's size: */ 487 if (erase->addr + length > subdev->size) 488 erase->len = subdev->size - erase->addr; 489 else 490 erase->len = length; 491 492 if (!(subdev->flags & MTD_WRITEABLE)) { 493 err = -EROFS; 494 break; 495 } 496 length -= erase->len; 497 if ((err = concat_dev_erase(subdev, erase))) { 498 /* sanity check: should never happen since 499 * block alignment has been checked above */ 500 BUG_ON(err == -EINVAL); 501 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) 502 instr->fail_addr = erase->fail_addr + offset; 503 break; 504 } 505 /* 506 * erase->addr specifies the offset of the area to be 507 * erased *within the current subdevice*. It can be 508 * non-zero only the first time through this loop, i.e. 509 * for the first subdevice where blocks need to be erased. 510 * All the following erases must begin at the start of the 511 * current subdevice, i.e. at offset zero. 512 */ 513 erase->addr = 0; 514 offset += subdev->size; 515 } 516 instr->state = erase->state; 517 kfree(erase); 518 if (err) 519 return err; 520 521 if (instr->callback) 522 instr->callback(instr); 523 return 0; 524 } 525 526 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 527 { 528 struct mtd_concat *concat = CONCAT(mtd); 529 int i, err = -EINVAL; 530 531 for (i = 0; i < concat->num_subdev; i++) { 532 struct mtd_info *subdev = concat->subdev[i]; 533 uint64_t size; 534 535 if (ofs >= subdev->size) { 536 size = 0; 537 ofs -= subdev->size; 538 continue; 539 } 540 if (ofs + len > subdev->size) 541 size = subdev->size - ofs; 542 else 543 size = len; 544 545 err = mtd_lock(subdev, ofs, size); 546 if (err) 547 break; 548 549 len -= size; 550 if (len == 0) 551 break; 552 553 err = -EINVAL; 554 ofs = 0; 555 } 556 557 return err; 558 } 559 560 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 561 { 562 struct mtd_concat *concat = CONCAT(mtd); 563 int i, err = 0; 564 565 for (i = 0; i < concat->num_subdev; i++) { 566 struct mtd_info *subdev = concat->subdev[i]; 567 uint64_t size; 568 569 if (ofs >= subdev->size) { 570 size = 0; 571 ofs -= subdev->size; 572 continue; 573 } 574 if (ofs + len > subdev->size) 575 size = subdev->size - ofs; 576 else 577 size = len; 578 579 err = mtd_unlock(subdev, ofs, size); 580 if (err) 581 break; 582 583 len -= size; 584 if (len == 0) 585 break; 586 587 err = -EINVAL; 588 ofs = 0; 589 } 590 591 return err; 592 } 593 594 static void concat_sync(struct mtd_info *mtd) 595 { 596 struct mtd_concat *concat = CONCAT(mtd); 597 int i; 598 599 for (i = 0; i < concat->num_subdev; i++) { 600 struct mtd_info *subdev = concat->subdev[i]; 601 mtd_sync(subdev); 602 } 603 } 604 605 static int concat_suspend(struct mtd_info *mtd) 606 { 607 struct mtd_concat *concat = CONCAT(mtd); 608 int i, rc = 0; 609 610 for (i = 0; i < concat->num_subdev; i++) { 611 struct mtd_info *subdev = concat->subdev[i]; 612 if ((rc = mtd_suspend(subdev)) < 0) 613 return rc; 614 } 615 return rc; 616 } 617 618 static void concat_resume(struct mtd_info *mtd) 619 { 620 struct mtd_concat *concat = CONCAT(mtd); 621 int i; 622 623 for (i = 0; i < concat->num_subdev; i++) { 624 struct mtd_info *subdev = concat->subdev[i]; 625 mtd_resume(subdev); 626 } 627 } 628 629 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs) 630 { 631 struct mtd_concat *concat = CONCAT(mtd); 632 int i, res = 0; 633 634 if (!mtd_can_have_bb(concat->subdev[0])) 635 return res; 636 637 for (i = 0; i < concat->num_subdev; i++) { 638 struct mtd_info *subdev = concat->subdev[i]; 639 640 if (ofs >= subdev->size) { 641 ofs -= subdev->size; 642 continue; 643 } 644 645 res = mtd_block_isbad(subdev, ofs); 646 break; 647 } 648 649 return res; 650 } 651 652 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs) 653 { 654 struct mtd_concat *concat = CONCAT(mtd); 655 int i, err = -EINVAL; 656 657 for (i = 0; i < concat->num_subdev; i++) { 658 struct mtd_info *subdev = concat->subdev[i]; 659 660 if (ofs >= subdev->size) { 661 ofs -= subdev->size; 662 continue; 663 } 664 665 err = mtd_block_markbad(subdev, ofs); 666 if (!err) 667 mtd->ecc_stats.badblocks++; 668 break; 669 } 670 671 return err; 672 } 673 674 /* 675 * try to support NOMMU mmaps on concatenated devices 676 * - we don't support subdev spanning as we can't guarantee it'll work 677 */ 678 static unsigned long concat_get_unmapped_area(struct mtd_info *mtd, 679 unsigned long len, 680 unsigned long offset, 681 unsigned long flags) 682 { 683 struct mtd_concat *concat = CONCAT(mtd); 684 int i; 685 686 for (i = 0; i < concat->num_subdev; i++) { 687 struct mtd_info *subdev = concat->subdev[i]; 688 689 if (offset >= subdev->size) { 690 offset -= subdev->size; 691 continue; 692 } 693 694 return mtd_get_unmapped_area(subdev, len, offset, flags); 695 } 696 697 return (unsigned long) -ENOSYS; 698 } 699 700 /* 701 * This function constructs a virtual MTD device by concatenating 702 * num_devs MTD devices. A pointer to the new device object is 703 * stored to *new_dev upon success. This function does _not_ 704 * register any devices: this is the caller's responsibility. 705 */ 706 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */ 707 int num_devs, /* number of subdevices */ 708 const char *name) 709 { /* name for the new device */ 710 int i; 711 size_t size; 712 struct mtd_concat *concat; 713 uint32_t max_erasesize, curr_erasesize; 714 int num_erase_region; 715 int max_writebufsize = 0; 716 717 printk(KERN_NOTICE "Concatenating MTD devices:\n"); 718 for (i = 0; i < num_devs; i++) 719 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name); 720 printk(KERN_NOTICE "into device \"%s\"\n", name); 721 722 /* allocate the device structure */ 723 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs); 724 concat = kzalloc(size, GFP_KERNEL); 725 if (!concat) { 726 printk 727 ("memory allocation error while creating concatenated device \"%s\"\n", 728 name); 729 return NULL; 730 } 731 concat->subdev = (struct mtd_info **) (concat + 1); 732 733 /* 734 * Set up the new "super" device's MTD object structure, check for 735 * incompatibilities between the subdevices. 736 */ 737 concat->mtd.type = subdev[0]->type; 738 concat->mtd.flags = subdev[0]->flags; 739 concat->mtd.size = subdev[0]->size; 740 concat->mtd.erasesize = subdev[0]->erasesize; 741 concat->mtd.writesize = subdev[0]->writesize; 742 743 for (i = 0; i < num_devs; i++) 744 if (max_writebufsize < subdev[i]->writebufsize) 745 max_writebufsize = subdev[i]->writebufsize; 746 concat->mtd.writebufsize = max_writebufsize; 747 748 concat->mtd.subpage_sft = subdev[0]->subpage_sft; 749 concat->mtd.oobsize = subdev[0]->oobsize; 750 concat->mtd.oobavail = subdev[0]->oobavail; 751 if (subdev[0]->_writev) 752 concat->mtd._writev = concat_writev; 753 if (subdev[0]->_read_oob) 754 concat->mtd._read_oob = concat_read_oob; 755 if (subdev[0]->_write_oob) 756 concat->mtd._write_oob = concat_write_oob; 757 if (subdev[0]->_block_isbad) 758 concat->mtd._block_isbad = concat_block_isbad; 759 if (subdev[0]->_block_markbad) 760 concat->mtd._block_markbad = concat_block_markbad; 761 762 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks; 763 764 concat->mtd.backing_dev_info = subdev[0]->backing_dev_info; 765 766 concat->subdev[0] = subdev[0]; 767 768 for (i = 1; i < num_devs; i++) { 769 if (concat->mtd.type != subdev[i]->type) { 770 kfree(concat); 771 printk("Incompatible device type on \"%s\"\n", 772 subdev[i]->name); 773 return NULL; 774 } 775 if (concat->mtd.flags != subdev[i]->flags) { 776 /* 777 * Expect all flags except MTD_WRITEABLE to be 778 * equal on all subdevices. 779 */ 780 if ((concat->mtd.flags ^ subdev[i]-> 781 flags) & ~MTD_WRITEABLE) { 782 kfree(concat); 783 printk("Incompatible device flags on \"%s\"\n", 784 subdev[i]->name); 785 return NULL; 786 } else 787 /* if writeable attribute differs, 788 make super device writeable */ 789 concat->mtd.flags |= 790 subdev[i]->flags & MTD_WRITEABLE; 791 } 792 793 /* only permit direct mapping if the BDIs are all the same 794 * - copy-mapping is still permitted 795 */ 796 if (concat->mtd.backing_dev_info != 797 subdev[i]->backing_dev_info) 798 concat->mtd.backing_dev_info = 799 &default_backing_dev_info; 800 801 concat->mtd.size += subdev[i]->size; 802 concat->mtd.ecc_stats.badblocks += 803 subdev[i]->ecc_stats.badblocks; 804 if (concat->mtd.writesize != subdev[i]->writesize || 805 concat->mtd.subpage_sft != subdev[i]->subpage_sft || 806 concat->mtd.oobsize != subdev[i]->oobsize || 807 !concat->mtd._read_oob != !subdev[i]->_read_oob || 808 !concat->mtd._write_oob != !subdev[i]->_write_oob) { 809 kfree(concat); 810 printk("Incompatible OOB or ECC data on \"%s\"\n", 811 subdev[i]->name); 812 return NULL; 813 } 814 concat->subdev[i] = subdev[i]; 815 816 } 817 818 concat->mtd.ecclayout = subdev[0]->ecclayout; 819 820 concat->num_subdev = num_devs; 821 concat->mtd.name = name; 822 823 concat->mtd._erase = concat_erase; 824 concat->mtd._read = concat_read; 825 concat->mtd._write = concat_write; 826 concat->mtd._sync = concat_sync; 827 concat->mtd._lock = concat_lock; 828 concat->mtd._unlock = concat_unlock; 829 concat->mtd._suspend = concat_suspend; 830 concat->mtd._resume = concat_resume; 831 concat->mtd._get_unmapped_area = concat_get_unmapped_area; 832 833 /* 834 * Combine the erase block size info of the subdevices: 835 * 836 * first, walk the map of the new device and see how 837 * many changes in erase size we have 838 */ 839 max_erasesize = curr_erasesize = subdev[0]->erasesize; 840 num_erase_region = 1; 841 for (i = 0; i < num_devs; i++) { 842 if (subdev[i]->numeraseregions == 0) { 843 /* current subdevice has uniform erase size */ 844 if (subdev[i]->erasesize != curr_erasesize) { 845 /* if it differs from the last subdevice's erase size, count it */ 846 ++num_erase_region; 847 curr_erasesize = subdev[i]->erasesize; 848 if (curr_erasesize > max_erasesize) 849 max_erasesize = curr_erasesize; 850 } 851 } else { 852 /* current subdevice has variable erase size */ 853 int j; 854 for (j = 0; j < subdev[i]->numeraseregions; j++) { 855 856 /* walk the list of erase regions, count any changes */ 857 if (subdev[i]->eraseregions[j].erasesize != 858 curr_erasesize) { 859 ++num_erase_region; 860 curr_erasesize = 861 subdev[i]->eraseregions[j]. 862 erasesize; 863 if (curr_erasesize > max_erasesize) 864 max_erasesize = curr_erasesize; 865 } 866 } 867 } 868 } 869 870 if (num_erase_region == 1) { 871 /* 872 * All subdevices have the same uniform erase size. 873 * This is easy: 874 */ 875 concat->mtd.erasesize = curr_erasesize; 876 concat->mtd.numeraseregions = 0; 877 } else { 878 uint64_t tmp64; 879 880 /* 881 * erase block size varies across the subdevices: allocate 882 * space to store the data describing the variable erase regions 883 */ 884 struct mtd_erase_region_info *erase_region_p; 885 uint64_t begin, position; 886 887 concat->mtd.erasesize = max_erasesize; 888 concat->mtd.numeraseregions = num_erase_region; 889 concat->mtd.eraseregions = erase_region_p = 890 kmalloc(num_erase_region * 891 sizeof (struct mtd_erase_region_info), GFP_KERNEL); 892 if (!erase_region_p) { 893 kfree(concat); 894 printk 895 ("memory allocation error while creating erase region list" 896 " for device \"%s\"\n", name); 897 return NULL; 898 } 899 900 /* 901 * walk the map of the new device once more and fill in 902 * in erase region info: 903 */ 904 curr_erasesize = subdev[0]->erasesize; 905 begin = position = 0; 906 for (i = 0; i < num_devs; i++) { 907 if (subdev[i]->numeraseregions == 0) { 908 /* current subdevice has uniform erase size */ 909 if (subdev[i]->erasesize != curr_erasesize) { 910 /* 911 * fill in an mtd_erase_region_info structure for the area 912 * we have walked so far: 913 */ 914 erase_region_p->offset = begin; 915 erase_region_p->erasesize = 916 curr_erasesize; 917 tmp64 = position - begin; 918 do_div(tmp64, curr_erasesize); 919 erase_region_p->numblocks = tmp64; 920 begin = position; 921 922 curr_erasesize = subdev[i]->erasesize; 923 ++erase_region_p; 924 } 925 position += subdev[i]->size; 926 } else { 927 /* current subdevice has variable erase size */ 928 int j; 929 for (j = 0; j < subdev[i]->numeraseregions; j++) { 930 /* walk the list of erase regions, count any changes */ 931 if (subdev[i]->eraseregions[j]. 932 erasesize != curr_erasesize) { 933 erase_region_p->offset = begin; 934 erase_region_p->erasesize = 935 curr_erasesize; 936 tmp64 = position - begin; 937 do_div(tmp64, curr_erasesize); 938 erase_region_p->numblocks = tmp64; 939 begin = position; 940 941 curr_erasesize = 942 subdev[i]->eraseregions[j]. 943 erasesize; 944 ++erase_region_p; 945 } 946 position += 947 subdev[i]->eraseregions[j]. 948 numblocks * (uint64_t)curr_erasesize; 949 } 950 } 951 } 952 /* Now write the final entry */ 953 erase_region_p->offset = begin; 954 erase_region_p->erasesize = curr_erasesize; 955 tmp64 = position - begin; 956 do_div(tmp64, curr_erasesize); 957 erase_region_p->numblocks = tmp64; 958 } 959 960 return &concat->mtd; 961 } 962 963 /* 964 * This function destroys an MTD object obtained from concat_mtd_devs() 965 */ 966 967 void mtd_concat_destroy(struct mtd_info *mtd) 968 { 969 struct mtd_concat *concat = CONCAT(mtd); 970 if (concat->mtd.numeraseregions) 971 kfree(concat->mtd.eraseregions); 972 kfree(concat); 973 } 974 975 EXPORT_SYMBOL(mtd_concat_create); 976 EXPORT_SYMBOL(mtd_concat_destroy); 977 978 MODULE_LICENSE("GPL"); 979 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>"); 980 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices"); 981