xref: /linux/drivers/mtd/mtdconcat.c (revision 0a1340c185734a57fbf4775927966ad4a1347b02)
1 /*
2  * MTD device concatenation layer
3  *
4  * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
5  *
6  * NAND support by Christian Gan <cgan@iders.ca>
7  *
8  * This code is GPL
9  *
10  * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/concat.h>
21 
22 #include <asm/div64.h>
23 
24 /*
25  * Our storage structure:
26  * Subdev points to an array of pointers to struct mtd_info objects
27  * which is allocated along with this structure
28  *
29  */
30 struct mtd_concat {
31 	struct mtd_info mtd;
32 	int num_subdev;
33 	struct mtd_info **subdev;
34 };
35 
36 /*
37  * how to calculate the size required for the above structure,
38  * including the pointer array subdev points to:
39  */
40 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
41 	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
42 
43 /*
44  * Given a pointer to the MTD object in the mtd_concat structure,
45  * we can retrieve the pointer to that structure with this macro.
46  */
47 #define CONCAT(x)  ((struct mtd_concat *)(x))
48 
49 /*
50  * MTD methods which look up the relevant subdevice, translate the
51  * effective address and pass through to the subdevice.
52  */
53 
54 static int
55 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
56 	    size_t * retlen, u_char * buf)
57 {
58 	struct mtd_concat *concat = CONCAT(mtd);
59 	int ret = 0, err;
60 	int i;
61 
62 	*retlen = 0;
63 
64 	for (i = 0; i < concat->num_subdev; i++) {
65 		struct mtd_info *subdev = concat->subdev[i];
66 		size_t size, retsize;
67 
68 		if (from >= subdev->size) {
69 			/* Not destined for this subdev */
70 			size = 0;
71 			from -= subdev->size;
72 			continue;
73 		}
74 		if (from + len > subdev->size)
75 			/* First part goes into this subdev */
76 			size = subdev->size - from;
77 		else
78 			/* Entire transaction goes into this subdev */
79 			size = len;
80 
81 		err = subdev->read(subdev, from, size, &retsize, buf);
82 
83 		/* Save information about bitflips! */
84 		if (unlikely(err)) {
85 			if (err == -EBADMSG) {
86 				mtd->ecc_stats.failed++;
87 				ret = err;
88 			} else if (err == -EUCLEAN) {
89 				mtd->ecc_stats.corrected++;
90 				/* Do not overwrite -EBADMSG !! */
91 				if (!ret)
92 					ret = err;
93 			} else
94 				return err;
95 		}
96 
97 		*retlen += retsize;
98 		len -= size;
99 		if (len == 0)
100 			return ret;
101 
102 		buf += size;
103 		from = 0;
104 	}
105 	return -EINVAL;
106 }
107 
108 static int
109 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
110 	     size_t * retlen, const u_char * buf)
111 {
112 	struct mtd_concat *concat = CONCAT(mtd);
113 	int err = -EINVAL;
114 	int i;
115 
116 	if (!(mtd->flags & MTD_WRITEABLE))
117 		return -EROFS;
118 
119 	*retlen = 0;
120 
121 	for (i = 0; i < concat->num_subdev; i++) {
122 		struct mtd_info *subdev = concat->subdev[i];
123 		size_t size, retsize;
124 
125 		if (to >= subdev->size) {
126 			size = 0;
127 			to -= subdev->size;
128 			continue;
129 		}
130 		if (to + len > subdev->size)
131 			size = subdev->size - to;
132 		else
133 			size = len;
134 
135 		if (!(subdev->flags & MTD_WRITEABLE))
136 			err = -EROFS;
137 		else
138 			err = subdev->write(subdev, to, size, &retsize, buf);
139 
140 		if (err)
141 			break;
142 
143 		*retlen += retsize;
144 		len -= size;
145 		if (len == 0)
146 			break;
147 
148 		err = -EINVAL;
149 		buf += size;
150 		to = 0;
151 	}
152 	return err;
153 }
154 
155 static int
156 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
157 		unsigned long count, loff_t to, size_t * retlen)
158 {
159 	struct mtd_concat *concat = CONCAT(mtd);
160 	struct kvec *vecs_copy;
161 	unsigned long entry_low, entry_high;
162 	size_t total_len = 0;
163 	int i;
164 	int err = -EINVAL;
165 
166 	if (!(mtd->flags & MTD_WRITEABLE))
167 		return -EROFS;
168 
169 	*retlen = 0;
170 
171 	/* Calculate total length of data */
172 	for (i = 0; i < count; i++)
173 		total_len += vecs[i].iov_len;
174 
175 	/* Do not allow write past end of device */
176 	if ((to + total_len) > mtd->size)
177 		return -EINVAL;
178 
179 	/* Check alignment */
180 	if (mtd->writesize > 1) {
181 		loff_t __to = to;
182 		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
183 			return -EINVAL;
184 	}
185 
186 	/* make a copy of vecs */
187 	vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL);
188 	if (!vecs_copy)
189 		return -ENOMEM;
190 	memcpy(vecs_copy, vecs, sizeof(struct kvec) * count);
191 
192 	entry_low = 0;
193 	for (i = 0; i < concat->num_subdev; i++) {
194 		struct mtd_info *subdev = concat->subdev[i];
195 		size_t size, wsize, retsize, old_iov_len;
196 
197 		if (to >= subdev->size) {
198 			to -= subdev->size;
199 			continue;
200 		}
201 
202 		size = min(total_len, (size_t)(subdev->size - to));
203 		wsize = size; /* store for future use */
204 
205 		entry_high = entry_low;
206 		while (entry_high < count) {
207 			if (size <= vecs_copy[entry_high].iov_len)
208 				break;
209 			size -= vecs_copy[entry_high++].iov_len;
210 		}
211 
212 		old_iov_len = vecs_copy[entry_high].iov_len;
213 		vecs_copy[entry_high].iov_len = size;
214 
215 		if (!(subdev->flags & MTD_WRITEABLE))
216 			err = -EROFS;
217 		else
218 			err = subdev->writev(subdev, &vecs_copy[entry_low],
219 				entry_high - entry_low + 1, to, &retsize);
220 
221 		vecs_copy[entry_high].iov_len = old_iov_len - size;
222 		vecs_copy[entry_high].iov_base += size;
223 
224 		entry_low = entry_high;
225 
226 		if (err)
227 			break;
228 
229 		*retlen += retsize;
230 		total_len -= wsize;
231 
232 		if (total_len == 0)
233 			break;
234 
235 		err = -EINVAL;
236 		to = 0;
237 	}
238 
239 	kfree(vecs_copy);
240 	return err;
241 }
242 
243 static int
244 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
245 {
246 	struct mtd_concat *concat = CONCAT(mtd);
247 	struct mtd_oob_ops devops = *ops;
248 	int i, err, ret = 0;
249 
250 	ops->retlen = 0;
251 
252 	for (i = 0; i < concat->num_subdev; i++) {
253 		struct mtd_info *subdev = concat->subdev[i];
254 
255 		if (from >= subdev->size) {
256 			from -= subdev->size;
257 			continue;
258 		}
259 
260 		/* partial read ? */
261 		if (from + devops.len > subdev->size)
262 			devops.len = subdev->size - from;
263 
264 		err = subdev->read_oob(subdev, from, &devops);
265 		ops->retlen += devops.retlen;
266 
267 		/* Save information about bitflips! */
268 		if (unlikely(err)) {
269 			if (err == -EBADMSG) {
270 				mtd->ecc_stats.failed++;
271 				ret = err;
272 			} else if (err == -EUCLEAN) {
273 				mtd->ecc_stats.corrected++;
274 				/* Do not overwrite -EBADMSG !! */
275 				if (!ret)
276 					ret = err;
277 			} else
278 				return err;
279 		}
280 
281 		devops.len = ops->len - ops->retlen;
282 		if (!devops.len)
283 			return ret;
284 
285 		if (devops.datbuf)
286 			devops.datbuf += devops.retlen;
287 		if (devops.oobbuf)
288 			devops.oobbuf += devops.ooblen;
289 
290 		from = 0;
291 	}
292 	return -EINVAL;
293 }
294 
295 static int
296 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
297 {
298 	struct mtd_concat *concat = CONCAT(mtd);
299 	struct mtd_oob_ops devops = *ops;
300 	int i, err;
301 
302 	if (!(mtd->flags & MTD_WRITEABLE))
303 		return -EROFS;
304 
305 	ops->retlen = 0;
306 
307 	for (i = 0; i < concat->num_subdev; i++) {
308 		struct mtd_info *subdev = concat->subdev[i];
309 
310 		if (to >= subdev->size) {
311 			to -= subdev->size;
312 			continue;
313 		}
314 
315 		/* partial write ? */
316 		if (to + devops.len > subdev->size)
317 			devops.len = subdev->size - to;
318 
319 		err = subdev->write_oob(subdev, to, &devops);
320 		ops->retlen += devops.retlen;
321 		if (err)
322 			return err;
323 
324 		devops.len = ops->len - ops->retlen;
325 		if (!devops.len)
326 			return 0;
327 
328 		if (devops.datbuf)
329 			devops.datbuf += devops.retlen;
330 		if (devops.oobbuf)
331 			devops.oobbuf += devops.ooblen;
332 		to = 0;
333 	}
334 	return -EINVAL;
335 }
336 
337 static void concat_erase_callback(struct erase_info *instr)
338 {
339 	wake_up((wait_queue_head_t *) instr->priv);
340 }
341 
342 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
343 {
344 	int err;
345 	wait_queue_head_t waitq;
346 	DECLARE_WAITQUEUE(wait, current);
347 
348 	/*
349 	 * This code was stol^H^H^H^Hinspired by mtdchar.c
350 	 */
351 	init_waitqueue_head(&waitq);
352 
353 	erase->mtd = mtd;
354 	erase->callback = concat_erase_callback;
355 	erase->priv = (unsigned long) &waitq;
356 
357 	/*
358 	 * FIXME: Allow INTERRUPTIBLE. Which means
359 	 * not having the wait_queue head on the stack.
360 	 */
361 	err = mtd->erase(mtd, erase);
362 	if (!err) {
363 		set_current_state(TASK_UNINTERRUPTIBLE);
364 		add_wait_queue(&waitq, &wait);
365 		if (erase->state != MTD_ERASE_DONE
366 		    && erase->state != MTD_ERASE_FAILED)
367 			schedule();
368 		remove_wait_queue(&waitq, &wait);
369 		set_current_state(TASK_RUNNING);
370 
371 		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
372 	}
373 	return err;
374 }
375 
376 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
377 {
378 	struct mtd_concat *concat = CONCAT(mtd);
379 	struct mtd_info *subdev;
380 	int i, err;
381 	u_int32_t length, offset = 0;
382 	struct erase_info *erase;
383 
384 	if (!(mtd->flags & MTD_WRITEABLE))
385 		return -EROFS;
386 
387 	if (instr->addr > concat->mtd.size)
388 		return -EINVAL;
389 
390 	if (instr->len + instr->addr > concat->mtd.size)
391 		return -EINVAL;
392 
393 	/*
394 	 * Check for proper erase block alignment of the to-be-erased area.
395 	 * It is easier to do this based on the super device's erase
396 	 * region info rather than looking at each particular sub-device
397 	 * in turn.
398 	 */
399 	if (!concat->mtd.numeraseregions) {
400 		/* the easy case: device has uniform erase block size */
401 		if (instr->addr & (concat->mtd.erasesize - 1))
402 			return -EINVAL;
403 		if (instr->len & (concat->mtd.erasesize - 1))
404 			return -EINVAL;
405 	} else {
406 		/* device has variable erase size */
407 		struct mtd_erase_region_info *erase_regions =
408 		    concat->mtd.eraseregions;
409 
410 		/*
411 		 * Find the erase region where the to-be-erased area begins:
412 		 */
413 		for (i = 0; i < concat->mtd.numeraseregions &&
414 		     instr->addr >= erase_regions[i].offset; i++) ;
415 		--i;
416 
417 		/*
418 		 * Now erase_regions[i] is the region in which the
419 		 * to-be-erased area begins. Verify that the starting
420 		 * offset is aligned to this region's erase size:
421 		 */
422 		if (instr->addr & (erase_regions[i].erasesize - 1))
423 			return -EINVAL;
424 
425 		/*
426 		 * now find the erase region where the to-be-erased area ends:
427 		 */
428 		for (; i < concat->mtd.numeraseregions &&
429 		     (instr->addr + instr->len) >= erase_regions[i].offset;
430 		     ++i) ;
431 		--i;
432 		/*
433 		 * check if the ending offset is aligned to this region's erase size
434 		 */
435 		if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
436 						  1))
437 			return -EINVAL;
438 	}
439 
440 	instr->fail_addr = 0xffffffff;
441 
442 	/* make a local copy of instr to avoid modifying the caller's struct */
443 	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
444 
445 	if (!erase)
446 		return -ENOMEM;
447 
448 	*erase = *instr;
449 	length = instr->len;
450 
451 	/*
452 	 * find the subdevice where the to-be-erased area begins, adjust
453 	 * starting offset to be relative to the subdevice start
454 	 */
455 	for (i = 0; i < concat->num_subdev; i++) {
456 		subdev = concat->subdev[i];
457 		if (subdev->size <= erase->addr) {
458 			erase->addr -= subdev->size;
459 			offset += subdev->size;
460 		} else {
461 			break;
462 		}
463 	}
464 
465 	/* must never happen since size limit has been verified above */
466 	BUG_ON(i >= concat->num_subdev);
467 
468 	/* now do the erase: */
469 	err = 0;
470 	for (; length > 0; i++) {
471 		/* loop for all subdevices affected by this request */
472 		subdev = concat->subdev[i];	/* get current subdevice */
473 
474 		/* limit length to subdevice's size: */
475 		if (erase->addr + length > subdev->size)
476 			erase->len = subdev->size - erase->addr;
477 		else
478 			erase->len = length;
479 
480 		if (!(subdev->flags & MTD_WRITEABLE)) {
481 			err = -EROFS;
482 			break;
483 		}
484 		length -= erase->len;
485 		if ((err = concat_dev_erase(subdev, erase))) {
486 			/* sanity check: should never happen since
487 			 * block alignment has been checked above */
488 			BUG_ON(err == -EINVAL);
489 			if (erase->fail_addr != 0xffffffff)
490 				instr->fail_addr = erase->fail_addr + offset;
491 			break;
492 		}
493 		/*
494 		 * erase->addr specifies the offset of the area to be
495 		 * erased *within the current subdevice*. It can be
496 		 * non-zero only the first time through this loop, i.e.
497 		 * for the first subdevice where blocks need to be erased.
498 		 * All the following erases must begin at the start of the
499 		 * current subdevice, i.e. at offset zero.
500 		 */
501 		erase->addr = 0;
502 		offset += subdev->size;
503 	}
504 	instr->state = erase->state;
505 	kfree(erase);
506 	if (err)
507 		return err;
508 
509 	if (instr->callback)
510 		instr->callback(instr);
511 	return 0;
512 }
513 
514 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
515 {
516 	struct mtd_concat *concat = CONCAT(mtd);
517 	int i, err = -EINVAL;
518 
519 	if ((len + ofs) > mtd->size)
520 		return -EINVAL;
521 
522 	for (i = 0; i < concat->num_subdev; i++) {
523 		struct mtd_info *subdev = concat->subdev[i];
524 		size_t size;
525 
526 		if (ofs >= subdev->size) {
527 			size = 0;
528 			ofs -= subdev->size;
529 			continue;
530 		}
531 		if (ofs + len > subdev->size)
532 			size = subdev->size - ofs;
533 		else
534 			size = len;
535 
536 		err = subdev->lock(subdev, ofs, size);
537 
538 		if (err)
539 			break;
540 
541 		len -= size;
542 		if (len == 0)
543 			break;
544 
545 		err = -EINVAL;
546 		ofs = 0;
547 	}
548 
549 	return err;
550 }
551 
552 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
553 {
554 	struct mtd_concat *concat = CONCAT(mtd);
555 	int i, err = 0;
556 
557 	if ((len + ofs) > mtd->size)
558 		return -EINVAL;
559 
560 	for (i = 0; i < concat->num_subdev; i++) {
561 		struct mtd_info *subdev = concat->subdev[i];
562 		size_t size;
563 
564 		if (ofs >= subdev->size) {
565 			size = 0;
566 			ofs -= subdev->size;
567 			continue;
568 		}
569 		if (ofs + len > subdev->size)
570 			size = subdev->size - ofs;
571 		else
572 			size = len;
573 
574 		err = subdev->unlock(subdev, ofs, size);
575 
576 		if (err)
577 			break;
578 
579 		len -= size;
580 		if (len == 0)
581 			break;
582 
583 		err = -EINVAL;
584 		ofs = 0;
585 	}
586 
587 	return err;
588 }
589 
590 static void concat_sync(struct mtd_info *mtd)
591 {
592 	struct mtd_concat *concat = CONCAT(mtd);
593 	int i;
594 
595 	for (i = 0; i < concat->num_subdev; i++) {
596 		struct mtd_info *subdev = concat->subdev[i];
597 		subdev->sync(subdev);
598 	}
599 }
600 
601 static int concat_suspend(struct mtd_info *mtd)
602 {
603 	struct mtd_concat *concat = CONCAT(mtd);
604 	int i, rc = 0;
605 
606 	for (i = 0; i < concat->num_subdev; i++) {
607 		struct mtd_info *subdev = concat->subdev[i];
608 		if ((rc = subdev->suspend(subdev)) < 0)
609 			return rc;
610 	}
611 	return rc;
612 }
613 
614 static void concat_resume(struct mtd_info *mtd)
615 {
616 	struct mtd_concat *concat = CONCAT(mtd);
617 	int i;
618 
619 	for (i = 0; i < concat->num_subdev; i++) {
620 		struct mtd_info *subdev = concat->subdev[i];
621 		subdev->resume(subdev);
622 	}
623 }
624 
625 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
626 {
627 	struct mtd_concat *concat = CONCAT(mtd);
628 	int i, res = 0;
629 
630 	if (!concat->subdev[0]->block_isbad)
631 		return res;
632 
633 	if (ofs > mtd->size)
634 		return -EINVAL;
635 
636 	for (i = 0; i < concat->num_subdev; i++) {
637 		struct mtd_info *subdev = concat->subdev[i];
638 
639 		if (ofs >= subdev->size) {
640 			ofs -= subdev->size;
641 			continue;
642 		}
643 
644 		res = subdev->block_isbad(subdev, ofs);
645 		break;
646 	}
647 
648 	return res;
649 }
650 
651 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
652 {
653 	struct mtd_concat *concat = CONCAT(mtd);
654 	int i, err = -EINVAL;
655 
656 	if (!concat->subdev[0]->block_markbad)
657 		return 0;
658 
659 	if (ofs > mtd->size)
660 		return -EINVAL;
661 
662 	for (i = 0; i < concat->num_subdev; i++) {
663 		struct mtd_info *subdev = concat->subdev[i];
664 
665 		if (ofs >= subdev->size) {
666 			ofs -= subdev->size;
667 			continue;
668 		}
669 
670 		err = subdev->block_markbad(subdev, ofs);
671 		if (!err)
672 			mtd->ecc_stats.badblocks++;
673 		break;
674 	}
675 
676 	return err;
677 }
678 
679 /*
680  * This function constructs a virtual MTD device by concatenating
681  * num_devs MTD devices. A pointer to the new device object is
682  * stored to *new_dev upon success. This function does _not_
683  * register any devices: this is the caller's responsibility.
684  */
685 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
686 				   int num_devs,	/* number of subdevices      */
687 				   char *name)
688 {				/* name for the new device   */
689 	int i;
690 	size_t size;
691 	struct mtd_concat *concat;
692 	u_int32_t max_erasesize, curr_erasesize;
693 	int num_erase_region;
694 
695 	printk(KERN_NOTICE "Concatenating MTD devices:\n");
696 	for (i = 0; i < num_devs; i++)
697 		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
698 	printk(KERN_NOTICE "into device \"%s\"\n", name);
699 
700 	/* allocate the device structure */
701 	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
702 	concat = kmalloc(size, GFP_KERNEL);
703 	if (!concat) {
704 		printk
705 		    ("memory allocation error while creating concatenated device \"%s\"\n",
706 		     name);
707 		return NULL;
708 	}
709 	memset(concat, 0, size);
710 	concat->subdev = (struct mtd_info **) (concat + 1);
711 
712 	/*
713 	 * Set up the new "super" device's MTD object structure, check for
714 	 * incompatibilites between the subdevices.
715 	 */
716 	concat->mtd.type = subdev[0]->type;
717 	concat->mtd.flags = subdev[0]->flags;
718 	concat->mtd.size = subdev[0]->size;
719 	concat->mtd.erasesize = subdev[0]->erasesize;
720 	concat->mtd.writesize = subdev[0]->writesize;
721 	concat->mtd.oobsize = subdev[0]->oobsize;
722 	concat->mtd.ecctype = subdev[0]->ecctype;
723 	concat->mtd.eccsize = subdev[0]->eccsize;
724 	if (subdev[0]->writev)
725 		concat->mtd.writev = concat_writev;
726 	if (subdev[0]->read_oob)
727 		concat->mtd.read_oob = concat_read_oob;
728 	if (subdev[0]->write_oob)
729 		concat->mtd.write_oob = concat_write_oob;
730 	if (subdev[0]->block_isbad)
731 		concat->mtd.block_isbad = concat_block_isbad;
732 	if (subdev[0]->block_markbad)
733 		concat->mtd.block_markbad = concat_block_markbad;
734 
735 	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
736 
737 	concat->subdev[0] = subdev[0];
738 
739 	for (i = 1; i < num_devs; i++) {
740 		if (concat->mtd.type != subdev[i]->type) {
741 			kfree(concat);
742 			printk("Incompatible device type on \"%s\"\n",
743 			       subdev[i]->name);
744 			return NULL;
745 		}
746 		if (concat->mtd.flags != subdev[i]->flags) {
747 			/*
748 			 * Expect all flags except MTD_WRITEABLE to be
749 			 * equal on all subdevices.
750 			 */
751 			if ((concat->mtd.flags ^ subdev[i]->
752 			     flags) & ~MTD_WRITEABLE) {
753 				kfree(concat);
754 				printk("Incompatible device flags on \"%s\"\n",
755 				       subdev[i]->name);
756 				return NULL;
757 			} else
758 				/* if writeable attribute differs,
759 				   make super device writeable */
760 				concat->mtd.flags |=
761 				    subdev[i]->flags & MTD_WRITEABLE;
762 		}
763 		concat->mtd.size += subdev[i]->size;
764 		concat->mtd.ecc_stats.badblocks +=
765 			subdev[i]->ecc_stats.badblocks;
766 		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
767 		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
768 		    concat->mtd.ecctype    !=  subdev[i]->ecctype ||
769 		    concat->mtd.eccsize    !=  subdev[i]->eccsize ||
770 		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
771 		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
772 			kfree(concat);
773 			printk("Incompatible OOB or ECC data on \"%s\"\n",
774 			       subdev[i]->name);
775 			return NULL;
776 		}
777 		concat->subdev[i] = subdev[i];
778 
779 	}
780 
781 	concat->mtd.ecclayout = subdev[0]->ecclayout;
782 
783 	concat->num_subdev = num_devs;
784 	concat->mtd.name = name;
785 
786 	concat->mtd.erase = concat_erase;
787 	concat->mtd.read = concat_read;
788 	concat->mtd.write = concat_write;
789 	concat->mtd.sync = concat_sync;
790 	concat->mtd.lock = concat_lock;
791 	concat->mtd.unlock = concat_unlock;
792 	concat->mtd.suspend = concat_suspend;
793 	concat->mtd.resume = concat_resume;
794 
795 	/*
796 	 * Combine the erase block size info of the subdevices:
797 	 *
798 	 * first, walk the map of the new device and see how
799 	 * many changes in erase size we have
800 	 */
801 	max_erasesize = curr_erasesize = subdev[0]->erasesize;
802 	num_erase_region = 1;
803 	for (i = 0; i < num_devs; i++) {
804 		if (subdev[i]->numeraseregions == 0) {
805 			/* current subdevice has uniform erase size */
806 			if (subdev[i]->erasesize != curr_erasesize) {
807 				/* if it differs from the last subdevice's erase size, count it */
808 				++num_erase_region;
809 				curr_erasesize = subdev[i]->erasesize;
810 				if (curr_erasesize > max_erasesize)
811 					max_erasesize = curr_erasesize;
812 			}
813 		} else {
814 			/* current subdevice has variable erase size */
815 			int j;
816 			for (j = 0; j < subdev[i]->numeraseregions; j++) {
817 
818 				/* walk the list of erase regions, count any changes */
819 				if (subdev[i]->eraseregions[j].erasesize !=
820 				    curr_erasesize) {
821 					++num_erase_region;
822 					curr_erasesize =
823 					    subdev[i]->eraseregions[j].
824 					    erasesize;
825 					if (curr_erasesize > max_erasesize)
826 						max_erasesize = curr_erasesize;
827 				}
828 			}
829 		}
830 	}
831 
832 	if (num_erase_region == 1) {
833 		/*
834 		 * All subdevices have the same uniform erase size.
835 		 * This is easy:
836 		 */
837 		concat->mtd.erasesize = curr_erasesize;
838 		concat->mtd.numeraseregions = 0;
839 	} else {
840 		/*
841 		 * erase block size varies across the subdevices: allocate
842 		 * space to store the data describing the variable erase regions
843 		 */
844 		struct mtd_erase_region_info *erase_region_p;
845 		u_int32_t begin, position;
846 
847 		concat->mtd.erasesize = max_erasesize;
848 		concat->mtd.numeraseregions = num_erase_region;
849 		concat->mtd.eraseregions = erase_region_p =
850 		    kmalloc(num_erase_region *
851 			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
852 		if (!erase_region_p) {
853 			kfree(concat);
854 			printk
855 			    ("memory allocation error while creating erase region list"
856 			     " for device \"%s\"\n", name);
857 			return NULL;
858 		}
859 
860 		/*
861 		 * walk the map of the new device once more and fill in
862 		 * in erase region info:
863 		 */
864 		curr_erasesize = subdev[0]->erasesize;
865 		begin = position = 0;
866 		for (i = 0; i < num_devs; i++) {
867 			if (subdev[i]->numeraseregions == 0) {
868 				/* current subdevice has uniform erase size */
869 				if (subdev[i]->erasesize != curr_erasesize) {
870 					/*
871 					 *  fill in an mtd_erase_region_info structure for the area
872 					 *  we have walked so far:
873 					 */
874 					erase_region_p->offset = begin;
875 					erase_region_p->erasesize =
876 					    curr_erasesize;
877 					erase_region_p->numblocks =
878 					    (position - begin) / curr_erasesize;
879 					begin = position;
880 
881 					curr_erasesize = subdev[i]->erasesize;
882 					++erase_region_p;
883 				}
884 				position += subdev[i]->size;
885 			} else {
886 				/* current subdevice has variable erase size */
887 				int j;
888 				for (j = 0; j < subdev[i]->numeraseregions; j++) {
889 					/* walk the list of erase regions, count any changes */
890 					if (subdev[i]->eraseregions[j].
891 					    erasesize != curr_erasesize) {
892 						erase_region_p->offset = begin;
893 						erase_region_p->erasesize =
894 						    curr_erasesize;
895 						erase_region_p->numblocks =
896 						    (position -
897 						     begin) / curr_erasesize;
898 						begin = position;
899 
900 						curr_erasesize =
901 						    subdev[i]->eraseregions[j].
902 						    erasesize;
903 						++erase_region_p;
904 					}
905 					position +=
906 					    subdev[i]->eraseregions[j].
907 					    numblocks * curr_erasesize;
908 				}
909 			}
910 		}
911 		/* Now write the final entry */
912 		erase_region_p->offset = begin;
913 		erase_region_p->erasesize = curr_erasesize;
914 		erase_region_p->numblocks = (position - begin) / curr_erasesize;
915 	}
916 
917 	return &concat->mtd;
918 }
919 
920 /*
921  * This function destroys an MTD object obtained from concat_mtd_devs()
922  */
923 
924 void mtd_concat_destroy(struct mtd_info *mtd)
925 {
926 	struct mtd_concat *concat = CONCAT(mtd);
927 	if (concat->mtd.numeraseregions)
928 		kfree(concat->mtd.eraseregions);
929 	kfree(concat);
930 }
931 
932 EXPORT_SYMBOL(mtd_concat_create);
933 EXPORT_SYMBOL(mtd_concat_destroy);
934 
935 MODULE_LICENSE("GPL");
936 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
937 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
938