xref: /linux/drivers/mtd/mtdblock.c (revision 2f82af08fcc7dc01a7e98a49a5995a77e32a2925)
1 /*
2  * Direct MTD block device access
3  *
4  * (C) 2000-2003 Nicolas Pitre <nico@fluxnic.net>
5  * (C) 1999-2003 David Woodhouse <dwmw2@infradead.org>
6  */
7 
8 #include <linux/fs.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/types.h>
15 #include <linux/vmalloc.h>
16 
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/blktrans.h>
19 #include <linux/mutex.h>
20 
21 
22 static struct mtdblk_dev {
23 	struct mtd_info *mtd;
24 	int count;
25 	struct mutex cache_mutex;
26 	unsigned char *cache_data;
27 	unsigned long cache_offset;
28 	unsigned int cache_size;
29 	enum { STATE_EMPTY, STATE_CLEAN, STATE_DIRTY } cache_state;
30 } *mtdblks[MAX_MTD_DEVICES];
31 
32 static struct mutex mtdblks_lock;
33 
34 /*
35  * Cache stuff...
36  *
37  * Since typical flash erasable sectors are much larger than what Linux's
38  * buffer cache can handle, we must implement read-modify-write on flash
39  * sectors for each block write requests.  To avoid over-erasing flash sectors
40  * and to speed things up, we locally cache a whole flash sector while it is
41  * being written to until a different sector is required.
42  */
43 
44 static void erase_callback(struct erase_info *done)
45 {
46 	wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
47 	wake_up(wait_q);
48 }
49 
50 static int erase_write (struct mtd_info *mtd, unsigned long pos,
51 			int len, const char *buf)
52 {
53 	struct erase_info erase;
54 	DECLARE_WAITQUEUE(wait, current);
55 	wait_queue_head_t wait_q;
56 	size_t retlen;
57 	int ret;
58 
59 	/*
60 	 * First, let's erase the flash block.
61 	 */
62 
63 	init_waitqueue_head(&wait_q);
64 	erase.mtd = mtd;
65 	erase.callback = erase_callback;
66 	erase.addr = pos;
67 	erase.len = len;
68 	erase.priv = (u_long)&wait_q;
69 
70 	set_current_state(TASK_INTERRUPTIBLE);
71 	add_wait_queue(&wait_q, &wait);
72 
73 	ret = mtd->erase(mtd, &erase);
74 	if (ret) {
75 		set_current_state(TASK_RUNNING);
76 		remove_wait_queue(&wait_q, &wait);
77 		printk (KERN_WARNING "mtdblock: erase of region [0x%lx, 0x%x] "
78 				     "on \"%s\" failed\n",
79 			pos, len, mtd->name);
80 		return ret;
81 	}
82 
83 	schedule();  /* Wait for erase to finish. */
84 	remove_wait_queue(&wait_q, &wait);
85 
86 	/*
87 	 * Next, writhe data to flash.
88 	 */
89 
90 	ret = mtd->write(mtd, pos, len, &retlen, buf);
91 	if (ret)
92 		return ret;
93 	if (retlen != len)
94 		return -EIO;
95 	return 0;
96 }
97 
98 
99 static int write_cached_data (struct mtdblk_dev *mtdblk)
100 {
101 	struct mtd_info *mtd = mtdblk->mtd;
102 	int ret;
103 
104 	if (mtdblk->cache_state != STATE_DIRTY)
105 		return 0;
106 
107 	DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: writing cached data for \"%s\" "
108 			"at 0x%lx, size 0x%x\n", mtd->name,
109 			mtdblk->cache_offset, mtdblk->cache_size);
110 
111 	ret = erase_write (mtd, mtdblk->cache_offset,
112 			   mtdblk->cache_size, mtdblk->cache_data);
113 	if (ret)
114 		return ret;
115 
116 	/*
117 	 * Here we could argubly set the cache state to STATE_CLEAN.
118 	 * However this could lead to inconsistency since we will not
119 	 * be notified if this content is altered on the flash by other
120 	 * means.  Let's declare it empty and leave buffering tasks to
121 	 * the buffer cache instead.
122 	 */
123 	mtdblk->cache_state = STATE_EMPTY;
124 	return 0;
125 }
126 
127 
128 static int do_cached_write (struct mtdblk_dev *mtdblk, unsigned long pos,
129 			    int len, const char *buf)
130 {
131 	struct mtd_info *mtd = mtdblk->mtd;
132 	unsigned int sect_size = mtdblk->cache_size;
133 	size_t retlen;
134 	int ret;
135 
136 	DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: write on \"%s\" at 0x%lx, size 0x%x\n",
137 		mtd->name, pos, len);
138 
139 	if (!sect_size)
140 		return mtd->write(mtd, pos, len, &retlen, buf);
141 
142 	while (len > 0) {
143 		unsigned long sect_start = (pos/sect_size)*sect_size;
144 		unsigned int offset = pos - sect_start;
145 		unsigned int size = sect_size - offset;
146 		if( size > len )
147 			size = len;
148 
149 		if (size == sect_size) {
150 			/*
151 			 * We are covering a whole sector.  Thus there is no
152 			 * need to bother with the cache while it may still be
153 			 * useful for other partial writes.
154 			 */
155 			ret = erase_write (mtd, pos, size, buf);
156 			if (ret)
157 				return ret;
158 		} else {
159 			/* Partial sector: need to use the cache */
160 
161 			if (mtdblk->cache_state == STATE_DIRTY &&
162 			    mtdblk->cache_offset != sect_start) {
163 				ret = write_cached_data(mtdblk);
164 				if (ret)
165 					return ret;
166 			}
167 
168 			if (mtdblk->cache_state == STATE_EMPTY ||
169 			    mtdblk->cache_offset != sect_start) {
170 				/* fill the cache with the current sector */
171 				mtdblk->cache_state = STATE_EMPTY;
172 				ret = mtd->read(mtd, sect_start, sect_size,
173 						&retlen, mtdblk->cache_data);
174 				if (ret)
175 					return ret;
176 				if (retlen != sect_size)
177 					return -EIO;
178 
179 				mtdblk->cache_offset = sect_start;
180 				mtdblk->cache_size = sect_size;
181 				mtdblk->cache_state = STATE_CLEAN;
182 			}
183 
184 			/* write data to our local cache */
185 			memcpy (mtdblk->cache_data + offset, buf, size);
186 			mtdblk->cache_state = STATE_DIRTY;
187 		}
188 
189 		buf += size;
190 		pos += size;
191 		len -= size;
192 	}
193 
194 	return 0;
195 }
196 
197 
198 static int do_cached_read (struct mtdblk_dev *mtdblk, unsigned long pos,
199 			   int len, char *buf)
200 {
201 	struct mtd_info *mtd = mtdblk->mtd;
202 	unsigned int sect_size = mtdblk->cache_size;
203 	size_t retlen;
204 	int ret;
205 
206 	DEBUG(MTD_DEBUG_LEVEL2, "mtdblock: read on \"%s\" at 0x%lx, size 0x%x\n",
207 			mtd->name, pos, len);
208 
209 	if (!sect_size)
210 		return mtd->read(mtd, pos, len, &retlen, buf);
211 
212 	while (len > 0) {
213 		unsigned long sect_start = (pos/sect_size)*sect_size;
214 		unsigned int offset = pos - sect_start;
215 		unsigned int size = sect_size - offset;
216 		if (size > len)
217 			size = len;
218 
219 		/*
220 		 * Check if the requested data is already cached
221 		 * Read the requested amount of data from our internal cache if it
222 		 * contains what we want, otherwise we read the data directly
223 		 * from flash.
224 		 */
225 		if (mtdblk->cache_state != STATE_EMPTY &&
226 		    mtdblk->cache_offset == sect_start) {
227 			memcpy (buf, mtdblk->cache_data + offset, size);
228 		} else {
229 			ret = mtd->read(mtd, pos, size, &retlen, buf);
230 			if (ret)
231 				return ret;
232 			if (retlen != size)
233 				return -EIO;
234 		}
235 
236 		buf += size;
237 		pos += size;
238 		len -= size;
239 	}
240 
241 	return 0;
242 }
243 
244 static int mtdblock_readsect(struct mtd_blktrans_dev *dev,
245 			      unsigned long block, char *buf)
246 {
247 	struct mtdblk_dev *mtdblk = mtdblks[dev->devnum];
248 	return do_cached_read(mtdblk, block<<9, 512, buf);
249 }
250 
251 static int mtdblock_writesect(struct mtd_blktrans_dev *dev,
252 			      unsigned long block, char *buf)
253 {
254 	struct mtdblk_dev *mtdblk = mtdblks[dev->devnum];
255 	if (unlikely(!mtdblk->cache_data && mtdblk->cache_size)) {
256 		mtdblk->cache_data = vmalloc(mtdblk->mtd->erasesize);
257 		if (!mtdblk->cache_data)
258 			return -EINTR;
259 		/* -EINTR is not really correct, but it is the best match
260 		 * documented in man 2 write for all cases.  We could also
261 		 * return -EAGAIN sometimes, but why bother?
262 		 */
263 	}
264 	return do_cached_write(mtdblk, block<<9, 512, buf);
265 }
266 
267 static int mtdblock_open(struct mtd_blktrans_dev *mbd)
268 {
269 	struct mtdblk_dev *mtdblk;
270 	struct mtd_info *mtd = mbd->mtd;
271 	int dev = mbd->devnum;
272 
273 	DEBUG(MTD_DEBUG_LEVEL1,"mtdblock_open\n");
274 
275 	mutex_lock(&mtdblks_lock);
276 	if (mtdblks[dev]) {
277 		mtdblks[dev]->count++;
278 		mutex_unlock(&mtdblks_lock);
279 		return 0;
280 	}
281 
282 	/* OK, it's not open. Create cache info for it */
283 	mtdblk = kzalloc(sizeof(struct mtdblk_dev), GFP_KERNEL);
284 	if (!mtdblk) {
285 		mutex_unlock(&mtdblks_lock);
286 		return -ENOMEM;
287 	}
288 
289 	mtdblk->count = 1;
290 	mtdblk->mtd = mtd;
291 
292 	mutex_init(&mtdblk->cache_mutex);
293 	mtdblk->cache_state = STATE_EMPTY;
294 	if ( !(mtdblk->mtd->flags & MTD_NO_ERASE) && mtdblk->mtd->erasesize) {
295 		mtdblk->cache_size = mtdblk->mtd->erasesize;
296 		mtdblk->cache_data = NULL;
297 	}
298 
299 	mtdblks[dev] = mtdblk;
300 	mutex_unlock(&mtdblks_lock);
301 
302 	DEBUG(MTD_DEBUG_LEVEL1, "ok\n");
303 
304 	return 0;
305 }
306 
307 static int mtdblock_release(struct mtd_blktrans_dev *mbd)
308 {
309 	int dev = mbd->devnum;
310 	struct mtdblk_dev *mtdblk = mtdblks[dev];
311 
312    	DEBUG(MTD_DEBUG_LEVEL1, "mtdblock_release\n");
313 
314 	mutex_lock(&mtdblks_lock);
315 
316 	mutex_lock(&mtdblk->cache_mutex);
317 	write_cached_data(mtdblk);
318 	mutex_unlock(&mtdblk->cache_mutex);
319 
320 	if (!--mtdblk->count) {
321 		/* It was the last usage. Free the device */
322 		mtdblks[dev] = NULL;
323 		if (mtdblk->mtd->sync)
324 			mtdblk->mtd->sync(mtdblk->mtd);
325 		vfree(mtdblk->cache_data);
326 		kfree(mtdblk);
327 	}
328 
329 	mutex_unlock(&mtdblks_lock);
330 
331 	DEBUG(MTD_DEBUG_LEVEL1, "ok\n");
332 
333 	return 0;
334 }
335 
336 static int mtdblock_flush(struct mtd_blktrans_dev *dev)
337 {
338 	struct mtdblk_dev *mtdblk = mtdblks[dev->devnum];
339 
340 	mutex_lock(&mtdblk->cache_mutex);
341 	write_cached_data(mtdblk);
342 	mutex_unlock(&mtdblk->cache_mutex);
343 
344 	if (mtdblk->mtd->sync)
345 		mtdblk->mtd->sync(mtdblk->mtd);
346 	return 0;
347 }
348 
349 static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
350 {
351 	struct mtd_blktrans_dev *dev = kzalloc(sizeof(*dev), GFP_KERNEL);
352 
353 	if (!dev)
354 		return;
355 
356 	dev->mtd = mtd;
357 	dev->devnum = mtd->index;
358 
359 	dev->size = mtd->size >> 9;
360 	dev->tr = tr;
361 
362 	if (!(mtd->flags & MTD_WRITEABLE))
363 		dev->readonly = 1;
364 
365 	add_mtd_blktrans_dev(dev);
366 }
367 
368 static void mtdblock_remove_dev(struct mtd_blktrans_dev *dev)
369 {
370 	del_mtd_blktrans_dev(dev);
371 	kfree(dev);
372 }
373 
374 static struct mtd_blktrans_ops mtdblock_tr = {
375 	.name		= "mtdblock",
376 	.major		= 31,
377 	.part_bits	= 0,
378 	.blksize 	= 512,
379 	.open		= mtdblock_open,
380 	.flush		= mtdblock_flush,
381 	.release	= mtdblock_release,
382 	.readsect	= mtdblock_readsect,
383 	.writesect	= mtdblock_writesect,
384 	.add_mtd	= mtdblock_add_mtd,
385 	.remove_dev	= mtdblock_remove_dev,
386 	.owner		= THIS_MODULE,
387 };
388 
389 static int __init init_mtdblock(void)
390 {
391 	mutex_init(&mtdblks_lock);
392 
393 	return register_mtd_blktrans(&mtdblock_tr);
394 }
395 
396 static void __exit cleanup_mtdblock(void)
397 {
398 	deregister_mtd_blktrans(&mtdblock_tr);
399 }
400 
401 module_init(init_mtdblock);
402 module_exit(cleanup_mtdblock);
403 
404 
405 MODULE_LICENSE("GPL");
406 MODULE_AUTHOR("Nicolas Pitre <nico@fluxnic.net> et al.");
407 MODULE_DESCRIPTION("Caching read/erase/writeback block device emulation access to MTD devices");
408