1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * LPDDR flash memory device operations. This module provides read, write, 4 * erase, lock/unlock support for LPDDR flash memories 5 * (C) 2008 Korolev Alexey <akorolev@infradead.org> 6 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> 7 * Many thanks to Roman Borisov for initial enabling 8 * 9 * TODO: 10 * Implement VPP management 11 * Implement XIP support 12 * Implement OTP support 13 */ 14 #include <linux/mtd/pfow.h> 15 #include <linux/mtd/qinfo.h> 16 #include <linux/slab.h> 17 #include <linux/module.h> 18 19 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 20 size_t *retlen, u_char *buf); 21 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, 22 size_t len, size_t *retlen, const u_char *buf); 23 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 24 unsigned long count, loff_t to, size_t *retlen); 25 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); 26 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 27 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 28 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 29 size_t *retlen, void **mtdbuf, resource_size_t *phys); 30 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); 31 static int get_chip(struct map_info *map, struct flchip *chip, int mode); 32 static int chip_ready(struct map_info *map, struct flchip *chip, int mode); 33 static void put_chip(struct map_info *map, struct flchip *chip); 34 35 struct mtd_info *lpddr_cmdset(struct map_info *map) 36 { 37 struct lpddr_private *lpddr = map->fldrv_priv; 38 struct flchip_shared *shared; 39 struct flchip *chip; 40 struct mtd_info *mtd; 41 int numchips; 42 int i, j; 43 44 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 45 if (!mtd) 46 return NULL; 47 mtd->priv = map; 48 mtd->type = MTD_NORFLASH; 49 50 /* Fill in the default mtd operations */ 51 mtd->_read = lpddr_read; 52 mtd->type = MTD_NORFLASH; 53 mtd->flags = MTD_CAP_NORFLASH; 54 mtd->flags &= ~MTD_BIT_WRITEABLE; 55 mtd->_erase = lpddr_erase; 56 mtd->_write = lpddr_write_buffers; 57 mtd->_writev = lpddr_writev; 58 mtd->_lock = lpddr_lock; 59 mtd->_unlock = lpddr_unlock; 60 if (map_is_linear(map)) { 61 mtd->_point = lpddr_point; 62 mtd->_unpoint = lpddr_unpoint; 63 } 64 mtd->size = 1ULL << lpddr->qinfo->DevSizeShift; 65 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; 66 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; 67 68 shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared), 69 GFP_KERNEL); 70 if (!shared) { 71 kfree(mtd); 72 return NULL; 73 } 74 75 chip = &lpddr->chips[0]; 76 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; 77 for (i = 0; i < numchips; i++) { 78 shared[i].writing = shared[i].erasing = NULL; 79 mutex_init(&shared[i].lock); 80 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { 81 *chip = lpddr->chips[i]; 82 chip->start += j << lpddr->chipshift; 83 chip->oldstate = chip->state = FL_READY; 84 chip->priv = &shared[i]; 85 /* those should be reset too since 86 they create memory references. */ 87 init_waitqueue_head(&chip->wq); 88 mutex_init(&chip->mutex); 89 chip++; 90 } 91 } 92 93 return mtd; 94 } 95 EXPORT_SYMBOL(lpddr_cmdset); 96 97 static void print_drs_error(unsigned int dsr) 98 { 99 int prog_status = (dsr & DSR_RPS) >> 8; 100 101 if (!(dsr & DSR_AVAILABLE)) 102 pr_notice("DSR.15: (0) Device not Available\n"); 103 if ((prog_status & 0x03) == 0x03) 104 pr_notice("DSR.9,8: (11) Attempt to program invalid half with 41h command\n"); 105 else if (prog_status & 0x02) 106 pr_notice("DSR.9,8: (10) Object Mode Program attempt in region with Control Mode data\n"); 107 else if (prog_status & 0x01) 108 pr_notice("DSR.9,8: (01) Program attempt in region with Object Mode data\n"); 109 if (!(dsr & DSR_READY_STATUS)) 110 pr_notice("DSR.7: (0) Device is Busy\n"); 111 if (dsr & DSR_ESS) 112 pr_notice("DSR.6: (1) Erase Suspended\n"); 113 if (dsr & DSR_ERASE_STATUS) 114 pr_notice("DSR.5: (1) Erase/Blank check error\n"); 115 if (dsr & DSR_PROGRAM_STATUS) 116 pr_notice("DSR.4: (1) Program Error\n"); 117 if (dsr & DSR_VPPS) 118 pr_notice("DSR.3: (1) Vpp low detect, operation aborted\n"); 119 if (dsr & DSR_PSS) 120 pr_notice("DSR.2: (1) Program suspended\n"); 121 if (dsr & DSR_DPS) 122 pr_notice("DSR.1: (1) Aborted Erase/Program attempt on locked block\n"); 123 } 124 125 static int wait_for_ready(struct map_info *map, struct flchip *chip, 126 unsigned int chip_op_time) 127 { 128 unsigned int timeo, reset_timeo, sleep_time; 129 unsigned int dsr; 130 flstate_t chip_state = chip->state; 131 int ret = 0; 132 133 /* set our timeout to 8 times the expected delay */ 134 timeo = chip_op_time * 8; 135 if (!timeo) 136 timeo = 500000; 137 reset_timeo = timeo; 138 sleep_time = chip_op_time / 2; 139 140 for (;;) { 141 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); 142 if (dsr & DSR_READY_STATUS) 143 break; 144 if (!timeo) { 145 printk(KERN_ERR "%s: Flash timeout error state %d \n", 146 map->name, chip_state); 147 ret = -ETIME; 148 break; 149 } 150 151 /* OK Still waiting. Drop the lock, wait a while and retry. */ 152 mutex_unlock(&chip->mutex); 153 if (sleep_time >= 1000000/HZ) { 154 /* 155 * Half of the normal delay still remaining 156 * can be performed with a sleeping delay instead 157 * of busy waiting. 158 */ 159 msleep(sleep_time/1000); 160 timeo -= sleep_time; 161 sleep_time = 1000000/HZ; 162 } else { 163 udelay(1); 164 cond_resched(); 165 timeo--; 166 } 167 mutex_lock(&chip->mutex); 168 169 while (chip->state != chip_state) { 170 /* Someone's suspended the operation: sleep */ 171 DECLARE_WAITQUEUE(wait, current); 172 set_current_state(TASK_UNINTERRUPTIBLE); 173 add_wait_queue(&chip->wq, &wait); 174 mutex_unlock(&chip->mutex); 175 schedule(); 176 remove_wait_queue(&chip->wq, &wait); 177 mutex_lock(&chip->mutex); 178 } 179 if (chip->erase_suspended || chip->write_suspended) { 180 /* Suspend has occurred while sleep: reset timeout */ 181 timeo = reset_timeo; 182 chip->erase_suspended = chip->write_suspended = 0; 183 } 184 } 185 /* check status for errors */ 186 if (dsr & DSR_ERR) { 187 /* Clear DSR*/ 188 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); 189 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", 190 map->name, dsr); 191 print_drs_error(dsr); 192 ret = -EIO; 193 } 194 chip->state = FL_READY; 195 return ret; 196 } 197 198 static int get_chip(struct map_info *map, struct flchip *chip, int mode) 199 { 200 int ret; 201 DECLARE_WAITQUEUE(wait, current); 202 203 retry: 204 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) 205 && chip->state != FL_SYNCING) { 206 /* 207 * OK. We have possibility for contension on the write/erase 208 * operations which are global to the real chip and not per 209 * partition. So let's fight it over in the partition which 210 * currently has authority on the operation. 211 * 212 * The rules are as follows: 213 * 214 * - any write operation must own shared->writing. 215 * 216 * - any erase operation must own _both_ shared->writing and 217 * shared->erasing. 218 * 219 * - contension arbitration is handled in the owner's context. 220 * 221 * The 'shared' struct can be read and/or written only when 222 * its lock is taken. 223 */ 224 struct flchip_shared *shared = chip->priv; 225 struct flchip *contender; 226 mutex_lock(&shared->lock); 227 contender = shared->writing; 228 if (contender && contender != chip) { 229 /* 230 * The engine to perform desired operation on this 231 * partition is already in use by someone else. 232 * Let's fight over it in the context of the chip 233 * currently using it. If it is possible to suspend, 234 * that other partition will do just that, otherwise 235 * it'll happily send us to sleep. In any case, when 236 * get_chip returns success we're clear to go ahead. 237 */ 238 ret = mutex_trylock(&contender->mutex); 239 mutex_unlock(&shared->lock); 240 if (!ret) 241 goto retry; 242 mutex_unlock(&chip->mutex); 243 ret = chip_ready(map, contender, mode); 244 mutex_lock(&chip->mutex); 245 246 if (ret == -EAGAIN) { 247 mutex_unlock(&contender->mutex); 248 goto retry; 249 } 250 if (ret) { 251 mutex_unlock(&contender->mutex); 252 return ret; 253 } 254 mutex_lock(&shared->lock); 255 256 /* We should not own chip if it is already in FL_SYNCING 257 * state. Put contender and retry. */ 258 if (chip->state == FL_SYNCING) { 259 put_chip(map, contender); 260 mutex_unlock(&contender->mutex); 261 goto retry; 262 } 263 mutex_unlock(&contender->mutex); 264 } 265 266 /* Check if we have suspended erase on this chip. 267 Must sleep in such a case. */ 268 if (mode == FL_ERASING && shared->erasing 269 && shared->erasing->oldstate == FL_ERASING) { 270 mutex_unlock(&shared->lock); 271 set_current_state(TASK_UNINTERRUPTIBLE); 272 add_wait_queue(&chip->wq, &wait); 273 mutex_unlock(&chip->mutex); 274 schedule(); 275 remove_wait_queue(&chip->wq, &wait); 276 mutex_lock(&chip->mutex); 277 goto retry; 278 } 279 280 /* We now own it */ 281 shared->writing = chip; 282 if (mode == FL_ERASING) 283 shared->erasing = chip; 284 mutex_unlock(&shared->lock); 285 } 286 287 ret = chip_ready(map, chip, mode); 288 if (ret == -EAGAIN) 289 goto retry; 290 291 return ret; 292 } 293 294 static int chip_ready(struct map_info *map, struct flchip *chip, int mode) 295 { 296 struct lpddr_private *lpddr = map->fldrv_priv; 297 int ret = 0; 298 DECLARE_WAITQUEUE(wait, current); 299 300 /* Prevent setting state FL_SYNCING for chip in suspended state. */ 301 if (FL_SYNCING == mode && FL_READY != chip->oldstate) 302 goto sleep; 303 304 switch (chip->state) { 305 case FL_READY: 306 case FL_JEDEC_QUERY: 307 return 0; 308 309 case FL_ERASING: 310 if (!lpddr->qinfo->SuspEraseSupp || 311 !(mode == FL_READY || mode == FL_POINT)) 312 goto sleep; 313 314 map_write(map, CMD(LPDDR_SUSPEND), 315 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); 316 chip->oldstate = FL_ERASING; 317 chip->state = FL_ERASE_SUSPENDING; 318 ret = wait_for_ready(map, chip, 0); 319 if (ret) { 320 /* Oops. something got wrong. */ 321 /* Resume and pretend we weren't here. */ 322 put_chip(map, chip); 323 printk(KERN_ERR "%s: suspend operation failed." 324 "State may be wrong \n", map->name); 325 return -EIO; 326 } 327 chip->erase_suspended = 1; 328 chip->state = FL_READY; 329 return 0; 330 /* Erase suspend */ 331 case FL_POINT: 332 /* Only if there's no operation suspended... */ 333 if (mode == FL_READY && chip->oldstate == FL_READY) 334 return 0; 335 fallthrough; 336 default: 337 sleep: 338 set_current_state(TASK_UNINTERRUPTIBLE); 339 add_wait_queue(&chip->wq, &wait); 340 mutex_unlock(&chip->mutex); 341 schedule(); 342 remove_wait_queue(&chip->wq, &wait); 343 mutex_lock(&chip->mutex); 344 return -EAGAIN; 345 } 346 } 347 348 static void put_chip(struct map_info *map, struct flchip *chip) 349 { 350 if (chip->priv) { 351 struct flchip_shared *shared = chip->priv; 352 mutex_lock(&shared->lock); 353 if (shared->writing == chip && chip->oldstate == FL_READY) { 354 /* We own the ability to write, but we're done */ 355 shared->writing = shared->erasing; 356 if (shared->writing && shared->writing != chip) { 357 /* give back the ownership */ 358 struct flchip *loaner = shared->writing; 359 mutex_lock(&loaner->mutex); 360 mutex_unlock(&shared->lock); 361 mutex_unlock(&chip->mutex); 362 put_chip(map, loaner); 363 mutex_lock(&chip->mutex); 364 mutex_unlock(&loaner->mutex); 365 wake_up(&chip->wq); 366 return; 367 } 368 shared->erasing = NULL; 369 shared->writing = NULL; 370 } else if (shared->erasing == chip && shared->writing != chip) { 371 /* 372 * We own the ability to erase without the ability 373 * to write, which means the erase was suspended 374 * and some other partition is currently writing. 375 * Don't let the switch below mess things up since 376 * we don't have ownership to resume anything. 377 */ 378 mutex_unlock(&shared->lock); 379 wake_up(&chip->wq); 380 return; 381 } 382 mutex_unlock(&shared->lock); 383 } 384 385 switch (chip->oldstate) { 386 case FL_ERASING: 387 map_write(map, CMD(LPDDR_RESUME), 388 map->pfow_base + PFOW_COMMAND_CODE); 389 map_write(map, CMD(LPDDR_START_EXECUTION), 390 map->pfow_base + PFOW_COMMAND_EXECUTE); 391 chip->oldstate = FL_READY; 392 chip->state = FL_ERASING; 393 break; 394 case FL_READY: 395 break; 396 default: 397 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", 398 map->name, chip->oldstate); 399 } 400 wake_up(&chip->wq); 401 } 402 403 static int do_write_buffer(struct map_info *map, struct flchip *chip, 404 unsigned long adr, const struct kvec **pvec, 405 unsigned long *pvec_seek, int len) 406 { 407 struct lpddr_private *lpddr = map->fldrv_priv; 408 map_word datum; 409 int ret, wbufsize, word_gap; 410 const struct kvec *vec; 411 unsigned long vec_seek; 412 unsigned long prog_buf_ofs; 413 414 wbufsize = 1 << lpddr->qinfo->BufSizeShift; 415 416 mutex_lock(&chip->mutex); 417 ret = get_chip(map, chip, FL_WRITING); 418 if (ret) { 419 mutex_unlock(&chip->mutex); 420 return ret; 421 } 422 /* Figure out the number of words to write */ 423 word_gap = (-adr & (map_bankwidth(map)-1)); 424 if (word_gap) { 425 word_gap = map_bankwidth(map) - word_gap; 426 adr -= word_gap; 427 datum = map_word_ff(map); 428 } 429 /* Write data */ 430 /* Get the program buffer offset from PFOW register data first*/ 431 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, 432 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); 433 vec = *pvec; 434 vec_seek = *pvec_seek; 435 do { 436 int n = map_bankwidth(map) - word_gap; 437 438 if (n > vec->iov_len - vec_seek) 439 n = vec->iov_len - vec_seek; 440 if (n > len) 441 n = len; 442 443 if (!word_gap && (len < map_bankwidth(map))) 444 datum = map_word_ff(map); 445 446 datum = map_word_load_partial(map, datum, 447 vec->iov_base + vec_seek, word_gap, n); 448 449 len -= n; 450 word_gap += n; 451 if (!len || word_gap == map_bankwidth(map)) { 452 map_write(map, datum, prog_buf_ofs); 453 prog_buf_ofs += map_bankwidth(map); 454 word_gap = 0; 455 } 456 457 vec_seek += n; 458 if (vec_seek == vec->iov_len) { 459 vec++; 460 vec_seek = 0; 461 } 462 } while (len); 463 *pvec = vec; 464 *pvec_seek = vec_seek; 465 466 /* GO GO GO */ 467 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); 468 chip->state = FL_WRITING; 469 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); 470 if (ret) { 471 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", 472 map->name, ret, adr); 473 goto out; 474 } 475 476 out: put_chip(map, chip); 477 mutex_unlock(&chip->mutex); 478 return ret; 479 } 480 481 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) 482 { 483 struct map_info *map = mtd->priv; 484 struct lpddr_private *lpddr = map->fldrv_priv; 485 int chipnum = adr >> lpddr->chipshift; 486 struct flchip *chip = &lpddr->chips[chipnum]; 487 int ret; 488 489 mutex_lock(&chip->mutex); 490 ret = get_chip(map, chip, FL_ERASING); 491 if (ret) { 492 mutex_unlock(&chip->mutex); 493 return ret; 494 } 495 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); 496 chip->state = FL_ERASING; 497 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); 498 if (ret) { 499 printk(KERN_WARNING"%s Erase block error %d at : %llx\n", 500 map->name, ret, adr); 501 goto out; 502 } 503 out: put_chip(map, chip); 504 mutex_unlock(&chip->mutex); 505 return ret; 506 } 507 508 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 509 size_t *retlen, u_char *buf) 510 { 511 struct map_info *map = mtd->priv; 512 struct lpddr_private *lpddr = map->fldrv_priv; 513 int chipnum = adr >> lpddr->chipshift; 514 struct flchip *chip = &lpddr->chips[chipnum]; 515 int ret = 0; 516 517 mutex_lock(&chip->mutex); 518 ret = get_chip(map, chip, FL_READY); 519 if (ret) { 520 mutex_unlock(&chip->mutex); 521 return ret; 522 } 523 524 map_copy_from(map, buf, adr, len); 525 *retlen = len; 526 527 put_chip(map, chip); 528 mutex_unlock(&chip->mutex); 529 return ret; 530 } 531 532 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 533 size_t *retlen, void **mtdbuf, resource_size_t *phys) 534 { 535 struct map_info *map = mtd->priv; 536 struct lpddr_private *lpddr = map->fldrv_priv; 537 int chipnum = adr >> lpddr->chipshift; 538 unsigned long ofs, last_end = 0; 539 struct flchip *chip = &lpddr->chips[chipnum]; 540 int ret = 0; 541 542 if (!map->virt) 543 return -EINVAL; 544 545 /* ofs: offset within the first chip that the first read should start */ 546 ofs = adr - (chipnum << lpddr->chipshift); 547 *mtdbuf = (void *)map->virt + chip->start + ofs; 548 549 while (len) { 550 unsigned long thislen; 551 552 if (chipnum >= lpddr->numchips) 553 break; 554 555 /* We cannot point across chips that are virtually disjoint */ 556 if (!last_end) 557 last_end = chip->start; 558 else if (chip->start != last_end) 559 break; 560 561 if ((len + ofs - 1) >> lpddr->chipshift) 562 thislen = (1<<lpddr->chipshift) - ofs; 563 else 564 thislen = len; 565 /* get the chip */ 566 mutex_lock(&chip->mutex); 567 ret = get_chip(map, chip, FL_POINT); 568 mutex_unlock(&chip->mutex); 569 if (ret) 570 break; 571 572 chip->state = FL_POINT; 573 chip->ref_point_counter++; 574 *retlen += thislen; 575 len -= thislen; 576 577 ofs = 0; 578 last_end += 1 << lpddr->chipshift; 579 chipnum++; 580 chip = &lpddr->chips[chipnum]; 581 } 582 return 0; 583 } 584 585 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) 586 { 587 struct map_info *map = mtd->priv; 588 struct lpddr_private *lpddr = map->fldrv_priv; 589 int chipnum = adr >> lpddr->chipshift, err = 0; 590 unsigned long ofs; 591 592 /* ofs: offset within the first chip that the first read should start */ 593 ofs = adr - (chipnum << lpddr->chipshift); 594 595 while (len) { 596 unsigned long thislen; 597 struct flchip *chip; 598 599 chip = &lpddr->chips[chipnum]; 600 if (chipnum >= lpddr->numchips) 601 break; 602 603 if ((len + ofs - 1) >> lpddr->chipshift) 604 thislen = (1<<lpddr->chipshift) - ofs; 605 else 606 thislen = len; 607 608 mutex_lock(&chip->mutex); 609 if (chip->state == FL_POINT) { 610 chip->ref_point_counter--; 611 if (chip->ref_point_counter == 0) 612 chip->state = FL_READY; 613 } else { 614 printk(KERN_WARNING "%s: Warning: unpoint called on non" 615 "pointed region\n", map->name); 616 err = -EINVAL; 617 } 618 619 put_chip(map, chip); 620 mutex_unlock(&chip->mutex); 621 622 len -= thislen; 623 ofs = 0; 624 chipnum++; 625 } 626 627 return err; 628 } 629 630 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, 631 size_t *retlen, const u_char *buf) 632 { 633 struct kvec vec; 634 635 vec.iov_base = (void *) buf; 636 vec.iov_len = len; 637 638 return lpddr_writev(mtd, &vec, 1, to, retlen); 639 } 640 641 642 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 643 unsigned long count, loff_t to, size_t *retlen) 644 { 645 struct map_info *map = mtd->priv; 646 struct lpddr_private *lpddr = map->fldrv_priv; 647 int ret = 0; 648 int chipnum; 649 unsigned long ofs, vec_seek, i; 650 int wbufsize = 1 << lpddr->qinfo->BufSizeShift; 651 size_t len = 0; 652 653 for (i = 0; i < count; i++) 654 len += vecs[i].iov_len; 655 656 if (!len) 657 return 0; 658 659 chipnum = to >> lpddr->chipshift; 660 661 ofs = to; 662 vec_seek = 0; 663 664 do { 665 /* We must not cross write block boundaries */ 666 int size = wbufsize - (ofs & (wbufsize-1)); 667 668 if (size > len) 669 size = len; 670 671 ret = do_write_buffer(map, &lpddr->chips[chipnum], 672 ofs, &vecs, &vec_seek, size); 673 if (ret) 674 return ret; 675 676 ofs += size; 677 (*retlen) += size; 678 len -= size; 679 680 /* Be nice and reschedule with the chip in a usable 681 * state for other processes */ 682 cond_resched(); 683 684 } while (len); 685 686 return 0; 687 } 688 689 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) 690 { 691 unsigned long ofs, len; 692 int ret; 693 struct map_info *map = mtd->priv; 694 struct lpddr_private *lpddr = map->fldrv_priv; 695 int size = 1 << lpddr->qinfo->UniformBlockSizeShift; 696 697 ofs = instr->addr; 698 len = instr->len; 699 700 while (len > 0) { 701 ret = do_erase_oneblock(mtd, ofs); 702 if (ret) 703 return ret; 704 ofs += size; 705 len -= size; 706 } 707 708 return 0; 709 } 710 711 #define DO_XXLOCK_LOCK 1 712 #define DO_XXLOCK_UNLOCK 2 713 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) 714 { 715 int ret = 0; 716 struct map_info *map = mtd->priv; 717 struct lpddr_private *lpddr = map->fldrv_priv; 718 int chipnum = adr >> lpddr->chipshift; 719 struct flchip *chip = &lpddr->chips[chipnum]; 720 721 mutex_lock(&chip->mutex); 722 ret = get_chip(map, chip, FL_LOCKING); 723 if (ret) { 724 mutex_unlock(&chip->mutex); 725 return ret; 726 } 727 728 if (thunk == DO_XXLOCK_LOCK) { 729 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); 730 chip->state = FL_LOCKING; 731 } else if (thunk == DO_XXLOCK_UNLOCK) { 732 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); 733 chip->state = FL_UNLOCKING; 734 } else 735 BUG(); 736 737 ret = wait_for_ready(map, chip, 1); 738 if (ret) { 739 printk(KERN_ERR "%s: block unlock error status %d \n", 740 map->name, ret); 741 goto out; 742 } 743 out: put_chip(map, chip); 744 mutex_unlock(&chip->mutex); 745 return ret; 746 } 747 748 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 749 { 750 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); 751 } 752 753 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 754 { 755 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); 756 } 757 758 MODULE_LICENSE("GPL"); 759 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); 760 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); 761