xref: /linux/drivers/mtd/lpddr/lpddr_cmds.c (revision c4ee0af3fa0dc65f690fc908f02b8355f9576ea0)
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33 					size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35 				size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37 				unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 			size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47 
48 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 {
50 	struct lpddr_private *lpddr = map->fldrv_priv;
51 	struct flchip_shared *shared;
52 	struct flchip *chip;
53 	struct mtd_info *mtd;
54 	int numchips;
55 	int i, j;
56 
57 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58 	if (!mtd) {
59 		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
60 		return NULL;
61 	}
62 	mtd->priv = map;
63 	mtd->type = MTD_NORFLASH;
64 
65 	/* Fill in the default mtd operations */
66 	mtd->_read = lpddr_read;
67 	mtd->type = MTD_NORFLASH;
68 	mtd->flags = MTD_CAP_NORFLASH;
69 	mtd->flags &= ~MTD_BIT_WRITEABLE;
70 	mtd->_erase = lpddr_erase;
71 	mtd->_write = lpddr_write_buffers;
72 	mtd->_writev = lpddr_writev;
73 	mtd->_lock = lpddr_lock;
74 	mtd->_unlock = lpddr_unlock;
75 	if (map_is_linear(map)) {
76 		mtd->_point = lpddr_point;
77 		mtd->_unpoint = lpddr_unpoint;
78 	}
79 	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
80 	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
81 	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
82 
83 	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
84 						GFP_KERNEL);
85 	if (!shared) {
86 		kfree(lpddr);
87 		kfree(mtd);
88 		return NULL;
89 	}
90 
91 	chip = &lpddr->chips[0];
92 	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
93 	for (i = 0; i < numchips; i++) {
94 		shared[i].writing = shared[i].erasing = NULL;
95 		mutex_init(&shared[i].lock);
96 		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
97 			*chip = lpddr->chips[i];
98 			chip->start += j << lpddr->chipshift;
99 			chip->oldstate = chip->state = FL_READY;
100 			chip->priv = &shared[i];
101 			/* those should be reset too since
102 			   they create memory references. */
103 			init_waitqueue_head(&chip->wq);
104 			mutex_init(&chip->mutex);
105 			chip++;
106 		}
107 	}
108 
109 	return mtd;
110 }
111 EXPORT_SYMBOL(lpddr_cmdset);
112 
113 static int wait_for_ready(struct map_info *map, struct flchip *chip,
114 		unsigned int chip_op_time)
115 {
116 	unsigned int timeo, reset_timeo, sleep_time;
117 	unsigned int dsr;
118 	flstate_t chip_state = chip->state;
119 	int ret = 0;
120 
121 	/* set our timeout to 8 times the expected delay */
122 	timeo = chip_op_time * 8;
123 	if (!timeo)
124 		timeo = 500000;
125 	reset_timeo = timeo;
126 	sleep_time = chip_op_time / 2;
127 
128 	for (;;) {
129 		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
130 		if (dsr & DSR_READY_STATUS)
131 			break;
132 		if (!timeo) {
133 			printk(KERN_ERR "%s: Flash timeout error state %d \n",
134 							map->name, chip_state);
135 			ret = -ETIME;
136 			break;
137 		}
138 
139 		/* OK Still waiting. Drop the lock, wait a while and retry. */
140 		mutex_unlock(&chip->mutex);
141 		if (sleep_time >= 1000000/HZ) {
142 			/*
143 			 * Half of the normal delay still remaining
144 			 * can be performed with a sleeping delay instead
145 			 * of busy waiting.
146 			 */
147 			msleep(sleep_time/1000);
148 			timeo -= sleep_time;
149 			sleep_time = 1000000/HZ;
150 		} else {
151 			udelay(1);
152 			cond_resched();
153 			timeo--;
154 		}
155 		mutex_lock(&chip->mutex);
156 
157 		while (chip->state != chip_state) {
158 			/* Someone's suspended the operation: sleep */
159 			DECLARE_WAITQUEUE(wait, current);
160 			set_current_state(TASK_UNINTERRUPTIBLE);
161 			add_wait_queue(&chip->wq, &wait);
162 			mutex_unlock(&chip->mutex);
163 			schedule();
164 			remove_wait_queue(&chip->wq, &wait);
165 			mutex_lock(&chip->mutex);
166 		}
167 		if (chip->erase_suspended || chip->write_suspended)  {
168 			/* Suspend has occurred while sleep: reset timeout */
169 			timeo = reset_timeo;
170 			chip->erase_suspended = chip->write_suspended = 0;
171 		}
172 	}
173 	/* check status for errors */
174 	if (dsr & DSR_ERR) {
175 		/* Clear DSR*/
176 		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
177 		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
178 				map->name, dsr);
179 		print_drs_error(dsr);
180 		ret = -EIO;
181 	}
182 	chip->state = FL_READY;
183 	return ret;
184 }
185 
186 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
187 {
188 	int ret;
189 	DECLARE_WAITQUEUE(wait, current);
190 
191  retry:
192 	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
193 		&& chip->state != FL_SYNCING) {
194 		/*
195 		 * OK. We have possibility for contension on the write/erase
196 		 * operations which are global to the real chip and not per
197 		 * partition.  So let's fight it over in the partition which
198 		 * currently has authority on the operation.
199 		 *
200 		 * The rules are as follows:
201 		 *
202 		 * - any write operation must own shared->writing.
203 		 *
204 		 * - any erase operation must own _both_ shared->writing and
205 		 *   shared->erasing.
206 		 *
207 		 * - contension arbitration is handled in the owner's context.
208 		 *
209 		 * The 'shared' struct can be read and/or written only when
210 		 * its lock is taken.
211 		 */
212 		struct flchip_shared *shared = chip->priv;
213 		struct flchip *contender;
214 		mutex_lock(&shared->lock);
215 		contender = shared->writing;
216 		if (contender && contender != chip) {
217 			/*
218 			 * The engine to perform desired operation on this
219 			 * partition is already in use by someone else.
220 			 * Let's fight over it in the context of the chip
221 			 * currently using it.  If it is possible to suspend,
222 			 * that other partition will do just that, otherwise
223 			 * it'll happily send us to sleep.  In any case, when
224 			 * get_chip returns success we're clear to go ahead.
225 			 */
226 			ret = mutex_trylock(&contender->mutex);
227 			mutex_unlock(&shared->lock);
228 			if (!ret)
229 				goto retry;
230 			mutex_unlock(&chip->mutex);
231 			ret = chip_ready(map, contender, mode);
232 			mutex_lock(&chip->mutex);
233 
234 			if (ret == -EAGAIN) {
235 				mutex_unlock(&contender->mutex);
236 				goto retry;
237 			}
238 			if (ret) {
239 				mutex_unlock(&contender->mutex);
240 				return ret;
241 			}
242 			mutex_lock(&shared->lock);
243 
244 			/* We should not own chip if it is already in FL_SYNCING
245 			 * state. Put contender and retry. */
246 			if (chip->state == FL_SYNCING) {
247 				put_chip(map, contender);
248 				mutex_unlock(&contender->mutex);
249 				goto retry;
250 			}
251 			mutex_unlock(&contender->mutex);
252 		}
253 
254 		/* Check if we have suspended erase on this chip.
255 		   Must sleep in such a case. */
256 		if (mode == FL_ERASING && shared->erasing
257 		    && shared->erasing->oldstate == FL_ERASING) {
258 			mutex_unlock(&shared->lock);
259 			set_current_state(TASK_UNINTERRUPTIBLE);
260 			add_wait_queue(&chip->wq, &wait);
261 			mutex_unlock(&chip->mutex);
262 			schedule();
263 			remove_wait_queue(&chip->wq, &wait);
264 			mutex_lock(&chip->mutex);
265 			goto retry;
266 		}
267 
268 		/* We now own it */
269 		shared->writing = chip;
270 		if (mode == FL_ERASING)
271 			shared->erasing = chip;
272 		mutex_unlock(&shared->lock);
273 	}
274 
275 	ret = chip_ready(map, chip, mode);
276 	if (ret == -EAGAIN)
277 		goto retry;
278 
279 	return ret;
280 }
281 
282 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
283 {
284 	struct lpddr_private *lpddr = map->fldrv_priv;
285 	int ret = 0;
286 	DECLARE_WAITQUEUE(wait, current);
287 
288 	/* Prevent setting state FL_SYNCING for chip in suspended state. */
289 	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
290 		goto sleep;
291 
292 	switch (chip->state) {
293 	case FL_READY:
294 	case FL_JEDEC_QUERY:
295 		return 0;
296 
297 	case FL_ERASING:
298 		if (!lpddr->qinfo->SuspEraseSupp ||
299 			!(mode == FL_READY || mode == FL_POINT))
300 			goto sleep;
301 
302 		map_write(map, CMD(LPDDR_SUSPEND),
303 			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
304 		chip->oldstate = FL_ERASING;
305 		chip->state = FL_ERASE_SUSPENDING;
306 		ret = wait_for_ready(map, chip, 0);
307 		if (ret) {
308 			/* Oops. something got wrong. */
309 			/* Resume and pretend we weren't here.  */
310 			put_chip(map, chip);
311 			printk(KERN_ERR "%s: suspend operation failed."
312 					"State may be wrong \n", map->name);
313 			return -EIO;
314 		}
315 		chip->erase_suspended = 1;
316 		chip->state = FL_READY;
317 		return 0;
318 		/* Erase suspend */
319 	case FL_POINT:
320 		/* Only if there's no operation suspended... */
321 		if (mode == FL_READY && chip->oldstate == FL_READY)
322 			return 0;
323 
324 	default:
325 sleep:
326 		set_current_state(TASK_UNINTERRUPTIBLE);
327 		add_wait_queue(&chip->wq, &wait);
328 		mutex_unlock(&chip->mutex);
329 		schedule();
330 		remove_wait_queue(&chip->wq, &wait);
331 		mutex_lock(&chip->mutex);
332 		return -EAGAIN;
333 	}
334 }
335 
336 static void put_chip(struct map_info *map, struct flchip *chip)
337 {
338 	if (chip->priv) {
339 		struct flchip_shared *shared = chip->priv;
340 		mutex_lock(&shared->lock);
341 		if (shared->writing == chip && chip->oldstate == FL_READY) {
342 			/* We own the ability to write, but we're done */
343 			shared->writing = shared->erasing;
344 			if (shared->writing && shared->writing != chip) {
345 				/* give back the ownership */
346 				struct flchip *loaner = shared->writing;
347 				mutex_lock(&loaner->mutex);
348 				mutex_unlock(&shared->lock);
349 				mutex_unlock(&chip->mutex);
350 				put_chip(map, loaner);
351 				mutex_lock(&chip->mutex);
352 				mutex_unlock(&loaner->mutex);
353 				wake_up(&chip->wq);
354 				return;
355 			}
356 			shared->erasing = NULL;
357 			shared->writing = NULL;
358 		} else if (shared->erasing == chip && shared->writing != chip) {
359 			/*
360 			 * We own the ability to erase without the ability
361 			 * to write, which means the erase was suspended
362 			 * and some other partition is currently writing.
363 			 * Don't let the switch below mess things up since
364 			 * we don't have ownership to resume anything.
365 			 */
366 			mutex_unlock(&shared->lock);
367 			wake_up(&chip->wq);
368 			return;
369 		}
370 		mutex_unlock(&shared->lock);
371 	}
372 
373 	switch (chip->oldstate) {
374 	case FL_ERASING:
375 		map_write(map, CMD(LPDDR_RESUME),
376 				map->pfow_base + PFOW_COMMAND_CODE);
377 		map_write(map, CMD(LPDDR_START_EXECUTION),
378 				map->pfow_base + PFOW_COMMAND_EXECUTE);
379 		chip->oldstate = FL_READY;
380 		chip->state = FL_ERASING;
381 		break;
382 	case FL_READY:
383 		break;
384 	default:
385 		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
386 				map->name, chip->oldstate);
387 	}
388 	wake_up(&chip->wq);
389 }
390 
391 int do_write_buffer(struct map_info *map, struct flchip *chip,
392 			unsigned long adr, const struct kvec **pvec,
393 			unsigned long *pvec_seek, int len)
394 {
395 	struct lpddr_private *lpddr = map->fldrv_priv;
396 	map_word datum;
397 	int ret, wbufsize, word_gap, words;
398 	const struct kvec *vec;
399 	unsigned long vec_seek;
400 	unsigned long prog_buf_ofs;
401 
402 	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
403 
404 	mutex_lock(&chip->mutex);
405 	ret = get_chip(map, chip, FL_WRITING);
406 	if (ret) {
407 		mutex_unlock(&chip->mutex);
408 		return ret;
409 	}
410 	/* Figure out the number of words to write */
411 	word_gap = (-adr & (map_bankwidth(map)-1));
412 	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
413 	if (!word_gap) {
414 		words--;
415 	} else {
416 		word_gap = map_bankwidth(map) - word_gap;
417 		adr -= word_gap;
418 		datum = map_word_ff(map);
419 	}
420 	/* Write data */
421 	/* Get the program buffer offset from PFOW register data first*/
422 	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
423 				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
424 	vec = *pvec;
425 	vec_seek = *pvec_seek;
426 	do {
427 		int n = map_bankwidth(map) - word_gap;
428 
429 		if (n > vec->iov_len - vec_seek)
430 			n = vec->iov_len - vec_seek;
431 		if (n > len)
432 			n = len;
433 
434 		if (!word_gap && (len < map_bankwidth(map)))
435 			datum = map_word_ff(map);
436 
437 		datum = map_word_load_partial(map, datum,
438 				vec->iov_base + vec_seek, word_gap, n);
439 
440 		len -= n;
441 		word_gap += n;
442 		if (!len || word_gap == map_bankwidth(map)) {
443 			map_write(map, datum, prog_buf_ofs);
444 			prog_buf_ofs += map_bankwidth(map);
445 			word_gap = 0;
446 		}
447 
448 		vec_seek += n;
449 		if (vec_seek == vec->iov_len) {
450 			vec++;
451 			vec_seek = 0;
452 		}
453 	} while (len);
454 	*pvec = vec;
455 	*pvec_seek = vec_seek;
456 
457 	/* GO GO GO */
458 	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
459 	chip->state = FL_WRITING;
460 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
461 	if (ret)	{
462 		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
463 			map->name, ret, adr);
464 		goto out;
465 	}
466 
467  out:	put_chip(map, chip);
468 	mutex_unlock(&chip->mutex);
469 	return ret;
470 }
471 
472 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
473 {
474 	struct map_info *map = mtd->priv;
475 	struct lpddr_private *lpddr = map->fldrv_priv;
476 	int chipnum = adr >> lpddr->chipshift;
477 	struct flchip *chip = &lpddr->chips[chipnum];
478 	int ret;
479 
480 	mutex_lock(&chip->mutex);
481 	ret = get_chip(map, chip, FL_ERASING);
482 	if (ret) {
483 		mutex_unlock(&chip->mutex);
484 		return ret;
485 	}
486 	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
487 	chip->state = FL_ERASING;
488 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
489 	if (ret) {
490 		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
491 			map->name, ret, adr);
492 		goto out;
493 	}
494  out:	put_chip(map, chip);
495 	mutex_unlock(&chip->mutex);
496 	return ret;
497 }
498 
499 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
500 			size_t *retlen, u_char *buf)
501 {
502 	struct map_info *map = mtd->priv;
503 	struct lpddr_private *lpddr = map->fldrv_priv;
504 	int chipnum = adr >> lpddr->chipshift;
505 	struct flchip *chip = &lpddr->chips[chipnum];
506 	int ret = 0;
507 
508 	mutex_lock(&chip->mutex);
509 	ret = get_chip(map, chip, FL_READY);
510 	if (ret) {
511 		mutex_unlock(&chip->mutex);
512 		return ret;
513 	}
514 
515 	map_copy_from(map, buf, adr, len);
516 	*retlen = len;
517 
518 	put_chip(map, chip);
519 	mutex_unlock(&chip->mutex);
520 	return ret;
521 }
522 
523 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
524 			size_t *retlen, void **mtdbuf, resource_size_t *phys)
525 {
526 	struct map_info *map = mtd->priv;
527 	struct lpddr_private *lpddr = map->fldrv_priv;
528 	int chipnum = adr >> lpddr->chipshift;
529 	unsigned long ofs, last_end = 0;
530 	struct flchip *chip = &lpddr->chips[chipnum];
531 	int ret = 0;
532 
533 	if (!map->virt)
534 		return -EINVAL;
535 
536 	/* ofs: offset within the first chip that the first read should start */
537 	ofs = adr - (chipnum << lpddr->chipshift);
538 	*mtdbuf = (void *)map->virt + chip->start + ofs;
539 
540 	while (len) {
541 		unsigned long thislen;
542 
543 		if (chipnum >= lpddr->numchips)
544 			break;
545 
546 		/* We cannot point across chips that are virtually disjoint */
547 		if (!last_end)
548 			last_end = chip->start;
549 		else if (chip->start != last_end)
550 			break;
551 
552 		if ((len + ofs - 1) >> lpddr->chipshift)
553 			thislen = (1<<lpddr->chipshift) - ofs;
554 		else
555 			thislen = len;
556 		/* get the chip */
557 		mutex_lock(&chip->mutex);
558 		ret = get_chip(map, chip, FL_POINT);
559 		mutex_unlock(&chip->mutex);
560 		if (ret)
561 			break;
562 
563 		chip->state = FL_POINT;
564 		chip->ref_point_counter++;
565 		*retlen += thislen;
566 		len -= thislen;
567 
568 		ofs = 0;
569 		last_end += 1 << lpddr->chipshift;
570 		chipnum++;
571 		chip = &lpddr->chips[chipnum];
572 	}
573 	return 0;
574 }
575 
576 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
577 {
578 	struct map_info *map = mtd->priv;
579 	struct lpddr_private *lpddr = map->fldrv_priv;
580 	int chipnum = adr >> lpddr->chipshift, err = 0;
581 	unsigned long ofs;
582 
583 	/* ofs: offset within the first chip that the first read should start */
584 	ofs = adr - (chipnum << lpddr->chipshift);
585 
586 	while (len) {
587 		unsigned long thislen;
588 		struct flchip *chip;
589 
590 		chip = &lpddr->chips[chipnum];
591 		if (chipnum >= lpddr->numchips)
592 			break;
593 
594 		if ((len + ofs - 1) >> lpddr->chipshift)
595 			thislen = (1<<lpddr->chipshift) - ofs;
596 		else
597 			thislen = len;
598 
599 		mutex_lock(&chip->mutex);
600 		if (chip->state == FL_POINT) {
601 			chip->ref_point_counter--;
602 			if (chip->ref_point_counter == 0)
603 				chip->state = FL_READY;
604 		} else {
605 			printk(KERN_WARNING "%s: Warning: unpoint called on non"
606 					"pointed region\n", map->name);
607 			err = -EINVAL;
608 		}
609 
610 		put_chip(map, chip);
611 		mutex_unlock(&chip->mutex);
612 
613 		len -= thislen;
614 		ofs = 0;
615 		chipnum++;
616 	}
617 
618 	return err;
619 }
620 
621 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
622 				size_t *retlen, const u_char *buf)
623 {
624 	struct kvec vec;
625 
626 	vec.iov_base = (void *) buf;
627 	vec.iov_len = len;
628 
629 	return lpddr_writev(mtd, &vec, 1, to, retlen);
630 }
631 
632 
633 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
634 				unsigned long count, loff_t to, size_t *retlen)
635 {
636 	struct map_info *map = mtd->priv;
637 	struct lpddr_private *lpddr = map->fldrv_priv;
638 	int ret = 0;
639 	int chipnum;
640 	unsigned long ofs, vec_seek, i;
641 	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
642 	size_t len = 0;
643 
644 	for (i = 0; i < count; i++)
645 		len += vecs[i].iov_len;
646 
647 	if (!len)
648 		return 0;
649 
650 	chipnum = to >> lpddr->chipshift;
651 
652 	ofs = to;
653 	vec_seek = 0;
654 
655 	do {
656 		/* We must not cross write block boundaries */
657 		int size = wbufsize - (ofs & (wbufsize-1));
658 
659 		if (size > len)
660 			size = len;
661 
662 		ret = do_write_buffer(map, &lpddr->chips[chipnum],
663 					  ofs, &vecs, &vec_seek, size);
664 		if (ret)
665 			return ret;
666 
667 		ofs += size;
668 		(*retlen) += size;
669 		len -= size;
670 
671 		/* Be nice and reschedule with the chip in a usable
672 		 * state for other processes */
673 		cond_resched();
674 
675 	} while (len);
676 
677 	return 0;
678 }
679 
680 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
681 {
682 	unsigned long ofs, len;
683 	int ret;
684 	struct map_info *map = mtd->priv;
685 	struct lpddr_private *lpddr = map->fldrv_priv;
686 	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
687 
688 	ofs = instr->addr;
689 	len = instr->len;
690 
691 	while (len > 0) {
692 		ret = do_erase_oneblock(mtd, ofs);
693 		if (ret)
694 			return ret;
695 		ofs += size;
696 		len -= size;
697 	}
698 	instr->state = MTD_ERASE_DONE;
699 	mtd_erase_callback(instr);
700 
701 	return 0;
702 }
703 
704 #define DO_XXLOCK_LOCK		1
705 #define DO_XXLOCK_UNLOCK	2
706 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
707 {
708 	int ret = 0;
709 	struct map_info *map = mtd->priv;
710 	struct lpddr_private *lpddr = map->fldrv_priv;
711 	int chipnum = adr >> lpddr->chipshift;
712 	struct flchip *chip = &lpddr->chips[chipnum];
713 
714 	mutex_lock(&chip->mutex);
715 	ret = get_chip(map, chip, FL_LOCKING);
716 	if (ret) {
717 		mutex_unlock(&chip->mutex);
718 		return ret;
719 	}
720 
721 	if (thunk == DO_XXLOCK_LOCK) {
722 		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
723 		chip->state = FL_LOCKING;
724 	} else if (thunk == DO_XXLOCK_UNLOCK) {
725 		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
726 		chip->state = FL_UNLOCKING;
727 	} else
728 		BUG();
729 
730 	ret = wait_for_ready(map, chip, 1);
731 	if (ret)	{
732 		printk(KERN_ERR "%s: block unlock error status %d \n",
733 				map->name, ret);
734 		goto out;
735 	}
736 out:	put_chip(map, chip);
737 	mutex_unlock(&chip->mutex);
738 	return ret;
739 }
740 
741 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
742 {
743 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
744 }
745 
746 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
747 {
748 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
749 }
750 
751 int word_program(struct map_info *map, loff_t adr, uint32_t curval)
752 {
753     int ret;
754 	struct lpddr_private *lpddr = map->fldrv_priv;
755 	int chipnum = adr >> lpddr->chipshift;
756 	struct flchip *chip = &lpddr->chips[chipnum];
757 
758 	mutex_lock(&chip->mutex);
759 	ret = get_chip(map, chip, FL_WRITING);
760 	if (ret) {
761 		mutex_unlock(&chip->mutex);
762 		return ret;
763 	}
764 
765 	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
766 
767 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
768 	if (ret)	{
769 		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
770 			map->name, adr, curval);
771 		goto out;
772 	}
773 
774 out:	put_chip(map, chip);
775 	mutex_unlock(&chip->mutex);
776 	return ret;
777 }
778 
779 MODULE_LICENSE("GPL");
780 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
781 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
782