1 /* 2 * LPDDR flash memory device operations. This module provides read, write, 3 * erase, lock/unlock support for LPDDR flash memories 4 * (C) 2008 Korolev Alexey <akorolev@infradead.org> 5 * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com> 6 * Many thanks to Roman Borisov for initial enabling 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 2 11 * of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 21 * 02110-1301, USA. 22 * TODO: 23 * Implement VPP management 24 * Implement XIP support 25 * Implement OTP support 26 */ 27 #include <linux/mtd/pfow.h> 28 #include <linux/mtd/qinfo.h> 29 #include <linux/slab.h> 30 #include <linux/module.h> 31 32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 33 size_t *retlen, u_char *buf); 34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, 35 size_t len, size_t *retlen, const u_char *buf); 36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 37 unsigned long count, loff_t to, size_t *retlen); 38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr); 39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 42 size_t *retlen, void **mtdbuf, resource_size_t *phys); 43 static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len); 44 static int get_chip(struct map_info *map, struct flchip *chip, int mode); 45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode); 46 static void put_chip(struct map_info *map, struct flchip *chip); 47 48 struct mtd_info *lpddr_cmdset(struct map_info *map) 49 { 50 struct lpddr_private *lpddr = map->fldrv_priv; 51 struct flchip_shared *shared; 52 struct flchip *chip; 53 struct mtd_info *mtd; 54 int numchips; 55 int i, j; 56 57 mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); 58 if (!mtd) { 59 printk(KERN_ERR "Failed to allocate memory for MTD device\n"); 60 return NULL; 61 } 62 mtd->priv = map; 63 mtd->type = MTD_NORFLASH; 64 65 /* Fill in the default mtd operations */ 66 mtd->read = lpddr_read; 67 mtd->type = MTD_NORFLASH; 68 mtd->flags = MTD_CAP_NORFLASH; 69 mtd->flags &= ~MTD_BIT_WRITEABLE; 70 mtd->erase = lpddr_erase; 71 mtd->write = lpddr_write_buffers; 72 mtd->writev = lpddr_writev; 73 mtd->read_oob = NULL; 74 mtd->write_oob = NULL; 75 mtd->sync = NULL; 76 mtd->lock = lpddr_lock; 77 mtd->unlock = lpddr_unlock; 78 mtd->suspend = NULL; 79 mtd->resume = NULL; 80 if (map_is_linear(map)) { 81 mtd->point = lpddr_point; 82 mtd->unpoint = lpddr_unpoint; 83 } 84 mtd->block_isbad = NULL; 85 mtd->block_markbad = NULL; 86 mtd->size = 1 << lpddr->qinfo->DevSizeShift; 87 mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift; 88 mtd->writesize = 1 << lpddr->qinfo->BufSizeShift; 89 90 shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips, 91 GFP_KERNEL); 92 if (!shared) { 93 kfree(lpddr); 94 kfree(mtd); 95 return NULL; 96 } 97 98 chip = &lpddr->chips[0]; 99 numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum; 100 for (i = 0; i < numchips; i++) { 101 shared[i].writing = shared[i].erasing = NULL; 102 mutex_init(&shared[i].lock); 103 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) { 104 *chip = lpddr->chips[i]; 105 chip->start += j << lpddr->chipshift; 106 chip->oldstate = chip->state = FL_READY; 107 chip->priv = &shared[i]; 108 /* those should be reset too since 109 they create memory references. */ 110 init_waitqueue_head(&chip->wq); 111 mutex_init(&chip->mutex); 112 chip++; 113 } 114 } 115 116 return mtd; 117 } 118 EXPORT_SYMBOL(lpddr_cmdset); 119 120 static int wait_for_ready(struct map_info *map, struct flchip *chip, 121 unsigned int chip_op_time) 122 { 123 unsigned int timeo, reset_timeo, sleep_time; 124 unsigned int dsr; 125 flstate_t chip_state = chip->state; 126 int ret = 0; 127 128 /* set our timeout to 8 times the expected delay */ 129 timeo = chip_op_time * 8; 130 if (!timeo) 131 timeo = 500000; 132 reset_timeo = timeo; 133 sleep_time = chip_op_time / 2; 134 135 for (;;) { 136 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR)); 137 if (dsr & DSR_READY_STATUS) 138 break; 139 if (!timeo) { 140 printk(KERN_ERR "%s: Flash timeout error state %d \n", 141 map->name, chip_state); 142 ret = -ETIME; 143 break; 144 } 145 146 /* OK Still waiting. Drop the lock, wait a while and retry. */ 147 mutex_unlock(&chip->mutex); 148 if (sleep_time >= 1000000/HZ) { 149 /* 150 * Half of the normal delay still remaining 151 * can be performed with a sleeping delay instead 152 * of busy waiting. 153 */ 154 msleep(sleep_time/1000); 155 timeo -= sleep_time; 156 sleep_time = 1000000/HZ; 157 } else { 158 udelay(1); 159 cond_resched(); 160 timeo--; 161 } 162 mutex_lock(&chip->mutex); 163 164 while (chip->state != chip_state) { 165 /* Someone's suspended the operation: sleep */ 166 DECLARE_WAITQUEUE(wait, current); 167 set_current_state(TASK_UNINTERRUPTIBLE); 168 add_wait_queue(&chip->wq, &wait); 169 mutex_unlock(&chip->mutex); 170 schedule(); 171 remove_wait_queue(&chip->wq, &wait); 172 mutex_lock(&chip->mutex); 173 } 174 if (chip->erase_suspended || chip->write_suspended) { 175 /* Suspend has occurred while sleep: reset timeout */ 176 timeo = reset_timeo; 177 chip->erase_suspended = chip->write_suspended = 0; 178 } 179 } 180 /* check status for errors */ 181 if (dsr & DSR_ERR) { 182 /* Clear DSR*/ 183 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR); 184 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n", 185 map->name, dsr); 186 print_drs_error(dsr); 187 ret = -EIO; 188 } 189 chip->state = FL_READY; 190 return ret; 191 } 192 193 static int get_chip(struct map_info *map, struct flchip *chip, int mode) 194 { 195 int ret; 196 DECLARE_WAITQUEUE(wait, current); 197 198 retry: 199 if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING) 200 && chip->state != FL_SYNCING) { 201 /* 202 * OK. We have possibility for contension on the write/erase 203 * operations which are global to the real chip and not per 204 * partition. So let's fight it over in the partition which 205 * currently has authority on the operation. 206 * 207 * The rules are as follows: 208 * 209 * - any write operation must own shared->writing. 210 * 211 * - any erase operation must own _both_ shared->writing and 212 * shared->erasing. 213 * 214 * - contension arbitration is handled in the owner's context. 215 * 216 * The 'shared' struct can be read and/or written only when 217 * its lock is taken. 218 */ 219 struct flchip_shared *shared = chip->priv; 220 struct flchip *contender; 221 mutex_lock(&shared->lock); 222 contender = shared->writing; 223 if (contender && contender != chip) { 224 /* 225 * The engine to perform desired operation on this 226 * partition is already in use by someone else. 227 * Let's fight over it in the context of the chip 228 * currently using it. If it is possible to suspend, 229 * that other partition will do just that, otherwise 230 * it'll happily send us to sleep. In any case, when 231 * get_chip returns success we're clear to go ahead. 232 */ 233 ret = mutex_trylock(&contender->mutex); 234 mutex_unlock(&shared->lock); 235 if (!ret) 236 goto retry; 237 mutex_unlock(&chip->mutex); 238 ret = chip_ready(map, contender, mode); 239 mutex_lock(&chip->mutex); 240 241 if (ret == -EAGAIN) { 242 mutex_unlock(&contender->mutex); 243 goto retry; 244 } 245 if (ret) { 246 mutex_unlock(&contender->mutex); 247 return ret; 248 } 249 mutex_lock(&shared->lock); 250 251 /* We should not own chip if it is already in FL_SYNCING 252 * state. Put contender and retry. */ 253 if (chip->state == FL_SYNCING) { 254 put_chip(map, contender); 255 mutex_unlock(&contender->mutex); 256 goto retry; 257 } 258 mutex_unlock(&contender->mutex); 259 } 260 261 /* Check if we have suspended erase on this chip. 262 Must sleep in such a case. */ 263 if (mode == FL_ERASING && shared->erasing 264 && shared->erasing->oldstate == FL_ERASING) { 265 mutex_unlock(&shared->lock); 266 set_current_state(TASK_UNINTERRUPTIBLE); 267 add_wait_queue(&chip->wq, &wait); 268 mutex_unlock(&chip->mutex); 269 schedule(); 270 remove_wait_queue(&chip->wq, &wait); 271 mutex_lock(&chip->mutex); 272 goto retry; 273 } 274 275 /* We now own it */ 276 shared->writing = chip; 277 if (mode == FL_ERASING) 278 shared->erasing = chip; 279 mutex_unlock(&shared->lock); 280 } 281 282 ret = chip_ready(map, chip, mode); 283 if (ret == -EAGAIN) 284 goto retry; 285 286 return ret; 287 } 288 289 static int chip_ready(struct map_info *map, struct flchip *chip, int mode) 290 { 291 struct lpddr_private *lpddr = map->fldrv_priv; 292 int ret = 0; 293 DECLARE_WAITQUEUE(wait, current); 294 295 /* Prevent setting state FL_SYNCING for chip in suspended state. */ 296 if (FL_SYNCING == mode && FL_READY != chip->oldstate) 297 goto sleep; 298 299 switch (chip->state) { 300 case FL_READY: 301 case FL_JEDEC_QUERY: 302 return 0; 303 304 case FL_ERASING: 305 if (!lpddr->qinfo->SuspEraseSupp || 306 !(mode == FL_READY || mode == FL_POINT)) 307 goto sleep; 308 309 map_write(map, CMD(LPDDR_SUSPEND), 310 map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND); 311 chip->oldstate = FL_ERASING; 312 chip->state = FL_ERASE_SUSPENDING; 313 ret = wait_for_ready(map, chip, 0); 314 if (ret) { 315 /* Oops. something got wrong. */ 316 /* Resume and pretend we weren't here. */ 317 put_chip(map, chip); 318 printk(KERN_ERR "%s: suspend operation failed." 319 "State may be wrong \n", map->name); 320 return -EIO; 321 } 322 chip->erase_suspended = 1; 323 chip->state = FL_READY; 324 return 0; 325 /* Erase suspend */ 326 case FL_POINT: 327 /* Only if there's no operation suspended... */ 328 if (mode == FL_READY && chip->oldstate == FL_READY) 329 return 0; 330 331 default: 332 sleep: 333 set_current_state(TASK_UNINTERRUPTIBLE); 334 add_wait_queue(&chip->wq, &wait); 335 mutex_unlock(&chip->mutex); 336 schedule(); 337 remove_wait_queue(&chip->wq, &wait); 338 mutex_lock(&chip->mutex); 339 return -EAGAIN; 340 } 341 } 342 343 static void put_chip(struct map_info *map, struct flchip *chip) 344 { 345 if (chip->priv) { 346 struct flchip_shared *shared = chip->priv; 347 mutex_lock(&shared->lock); 348 if (shared->writing == chip && chip->oldstate == FL_READY) { 349 /* We own the ability to write, but we're done */ 350 shared->writing = shared->erasing; 351 if (shared->writing && shared->writing != chip) { 352 /* give back the ownership */ 353 struct flchip *loaner = shared->writing; 354 mutex_lock(&loaner->mutex); 355 mutex_unlock(&shared->lock); 356 mutex_unlock(&chip->mutex); 357 put_chip(map, loaner); 358 mutex_lock(&chip->mutex); 359 mutex_unlock(&loaner->mutex); 360 wake_up(&chip->wq); 361 return; 362 } 363 shared->erasing = NULL; 364 shared->writing = NULL; 365 } else if (shared->erasing == chip && shared->writing != chip) { 366 /* 367 * We own the ability to erase without the ability 368 * to write, which means the erase was suspended 369 * and some other partition is currently writing. 370 * Don't let the switch below mess things up since 371 * we don't have ownership to resume anything. 372 */ 373 mutex_unlock(&shared->lock); 374 wake_up(&chip->wq); 375 return; 376 } 377 mutex_unlock(&shared->lock); 378 } 379 380 switch (chip->oldstate) { 381 case FL_ERASING: 382 map_write(map, CMD(LPDDR_RESUME), 383 map->pfow_base + PFOW_COMMAND_CODE); 384 map_write(map, CMD(LPDDR_START_EXECUTION), 385 map->pfow_base + PFOW_COMMAND_EXECUTE); 386 chip->oldstate = FL_READY; 387 chip->state = FL_ERASING; 388 break; 389 case FL_READY: 390 break; 391 default: 392 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n", 393 map->name, chip->oldstate); 394 } 395 wake_up(&chip->wq); 396 } 397 398 int do_write_buffer(struct map_info *map, struct flchip *chip, 399 unsigned long adr, const struct kvec **pvec, 400 unsigned long *pvec_seek, int len) 401 { 402 struct lpddr_private *lpddr = map->fldrv_priv; 403 map_word datum; 404 int ret, wbufsize, word_gap, words; 405 const struct kvec *vec; 406 unsigned long vec_seek; 407 unsigned long prog_buf_ofs; 408 409 wbufsize = 1 << lpddr->qinfo->BufSizeShift; 410 411 mutex_lock(&chip->mutex); 412 ret = get_chip(map, chip, FL_WRITING); 413 if (ret) { 414 mutex_unlock(&chip->mutex); 415 return ret; 416 } 417 /* Figure out the number of words to write */ 418 word_gap = (-adr & (map_bankwidth(map)-1)); 419 words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); 420 if (!word_gap) { 421 words--; 422 } else { 423 word_gap = map_bankwidth(map) - word_gap; 424 adr -= word_gap; 425 datum = map_word_ff(map); 426 } 427 /* Write data */ 428 /* Get the program buffer offset from PFOW register data first*/ 429 prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map, 430 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET)); 431 vec = *pvec; 432 vec_seek = *pvec_seek; 433 do { 434 int n = map_bankwidth(map) - word_gap; 435 436 if (n > vec->iov_len - vec_seek) 437 n = vec->iov_len - vec_seek; 438 if (n > len) 439 n = len; 440 441 if (!word_gap && (len < map_bankwidth(map))) 442 datum = map_word_ff(map); 443 444 datum = map_word_load_partial(map, datum, 445 vec->iov_base + vec_seek, word_gap, n); 446 447 len -= n; 448 word_gap += n; 449 if (!len || word_gap == map_bankwidth(map)) { 450 map_write(map, datum, prog_buf_ofs); 451 prog_buf_ofs += map_bankwidth(map); 452 word_gap = 0; 453 } 454 455 vec_seek += n; 456 if (vec_seek == vec->iov_len) { 457 vec++; 458 vec_seek = 0; 459 } 460 } while (len); 461 *pvec = vec; 462 *pvec_seek = vec_seek; 463 464 /* GO GO GO */ 465 send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL); 466 chip->state = FL_WRITING; 467 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime)); 468 if (ret) { 469 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n", 470 map->name, ret, adr); 471 goto out; 472 } 473 474 out: put_chip(map, chip); 475 mutex_unlock(&chip->mutex); 476 return ret; 477 } 478 479 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr) 480 { 481 struct map_info *map = mtd->priv; 482 struct lpddr_private *lpddr = map->fldrv_priv; 483 int chipnum = adr >> lpddr->chipshift; 484 struct flchip *chip = &lpddr->chips[chipnum]; 485 int ret; 486 487 mutex_lock(&chip->mutex); 488 ret = get_chip(map, chip, FL_ERASING); 489 if (ret) { 490 mutex_unlock(&chip->mutex); 491 return ret; 492 } 493 send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL); 494 chip->state = FL_ERASING; 495 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000); 496 if (ret) { 497 printk(KERN_WARNING"%s Erase block error %d at : %llx\n", 498 map->name, ret, adr); 499 goto out; 500 } 501 out: put_chip(map, chip); 502 mutex_unlock(&chip->mutex); 503 return ret; 504 } 505 506 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len, 507 size_t *retlen, u_char *buf) 508 { 509 struct map_info *map = mtd->priv; 510 struct lpddr_private *lpddr = map->fldrv_priv; 511 int chipnum = adr >> lpddr->chipshift; 512 struct flchip *chip = &lpddr->chips[chipnum]; 513 int ret = 0; 514 515 mutex_lock(&chip->mutex); 516 ret = get_chip(map, chip, FL_READY); 517 if (ret) { 518 mutex_unlock(&chip->mutex); 519 return ret; 520 } 521 522 map_copy_from(map, buf, adr, len); 523 *retlen = len; 524 525 put_chip(map, chip); 526 mutex_unlock(&chip->mutex); 527 return ret; 528 } 529 530 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len, 531 size_t *retlen, void **mtdbuf, resource_size_t *phys) 532 { 533 struct map_info *map = mtd->priv; 534 struct lpddr_private *lpddr = map->fldrv_priv; 535 int chipnum = adr >> lpddr->chipshift; 536 unsigned long ofs, last_end = 0; 537 struct flchip *chip = &lpddr->chips[chipnum]; 538 int ret = 0; 539 540 if (!map->virt || (adr + len > mtd->size)) 541 return -EINVAL; 542 543 /* ofs: offset within the first chip that the first read should start */ 544 ofs = adr - (chipnum << lpddr->chipshift); 545 546 *mtdbuf = (void *)map->virt + chip->start + ofs; 547 *retlen = 0; 548 549 while (len) { 550 unsigned long thislen; 551 552 if (chipnum >= lpddr->numchips) 553 break; 554 555 /* We cannot point across chips that are virtually disjoint */ 556 if (!last_end) 557 last_end = chip->start; 558 else if (chip->start != last_end) 559 break; 560 561 if ((len + ofs - 1) >> lpddr->chipshift) 562 thislen = (1<<lpddr->chipshift) - ofs; 563 else 564 thislen = len; 565 /* get the chip */ 566 mutex_lock(&chip->mutex); 567 ret = get_chip(map, chip, FL_POINT); 568 mutex_unlock(&chip->mutex); 569 if (ret) 570 break; 571 572 chip->state = FL_POINT; 573 chip->ref_point_counter++; 574 *retlen += thislen; 575 len -= thislen; 576 577 ofs = 0; 578 last_end += 1 << lpddr->chipshift; 579 chipnum++; 580 chip = &lpddr->chips[chipnum]; 581 } 582 return 0; 583 } 584 585 static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len) 586 { 587 struct map_info *map = mtd->priv; 588 struct lpddr_private *lpddr = map->fldrv_priv; 589 int chipnum = adr >> lpddr->chipshift; 590 unsigned long ofs; 591 592 /* ofs: offset within the first chip that the first read should start */ 593 ofs = adr - (chipnum << lpddr->chipshift); 594 595 while (len) { 596 unsigned long thislen; 597 struct flchip *chip; 598 599 chip = &lpddr->chips[chipnum]; 600 if (chipnum >= lpddr->numchips) 601 break; 602 603 if ((len + ofs - 1) >> lpddr->chipshift) 604 thislen = (1<<lpddr->chipshift) - ofs; 605 else 606 thislen = len; 607 608 mutex_lock(&chip->mutex); 609 if (chip->state == FL_POINT) { 610 chip->ref_point_counter--; 611 if (chip->ref_point_counter == 0) 612 chip->state = FL_READY; 613 } else 614 printk(KERN_WARNING "%s: Warning: unpoint called on non" 615 "pointed region\n", map->name); 616 617 put_chip(map, chip); 618 mutex_unlock(&chip->mutex); 619 620 len -= thislen; 621 ofs = 0; 622 chipnum++; 623 } 624 } 625 626 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, 627 size_t *retlen, const u_char *buf) 628 { 629 struct kvec vec; 630 631 vec.iov_base = (void *) buf; 632 vec.iov_len = len; 633 634 return lpddr_writev(mtd, &vec, 1, to, retlen); 635 } 636 637 638 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs, 639 unsigned long count, loff_t to, size_t *retlen) 640 { 641 struct map_info *map = mtd->priv; 642 struct lpddr_private *lpddr = map->fldrv_priv; 643 int ret = 0; 644 int chipnum; 645 unsigned long ofs, vec_seek, i; 646 int wbufsize = 1 << lpddr->qinfo->BufSizeShift; 647 648 size_t len = 0; 649 650 for (i = 0; i < count; i++) 651 len += vecs[i].iov_len; 652 653 *retlen = 0; 654 if (!len) 655 return 0; 656 657 chipnum = to >> lpddr->chipshift; 658 659 ofs = to; 660 vec_seek = 0; 661 662 do { 663 /* We must not cross write block boundaries */ 664 int size = wbufsize - (ofs & (wbufsize-1)); 665 666 if (size > len) 667 size = len; 668 669 ret = do_write_buffer(map, &lpddr->chips[chipnum], 670 ofs, &vecs, &vec_seek, size); 671 if (ret) 672 return ret; 673 674 ofs += size; 675 (*retlen) += size; 676 len -= size; 677 678 /* Be nice and reschedule with the chip in a usable 679 * state for other processes */ 680 cond_resched(); 681 682 } while (len); 683 684 return 0; 685 } 686 687 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) 688 { 689 unsigned long ofs, len; 690 int ret; 691 struct map_info *map = mtd->priv; 692 struct lpddr_private *lpddr = map->fldrv_priv; 693 int size = 1 << lpddr->qinfo->UniformBlockSizeShift; 694 695 ofs = instr->addr; 696 len = instr->len; 697 698 if (ofs > mtd->size || (len + ofs) > mtd->size) 699 return -EINVAL; 700 701 while (len > 0) { 702 ret = do_erase_oneblock(mtd, ofs); 703 if (ret) 704 return ret; 705 ofs += size; 706 len -= size; 707 } 708 instr->state = MTD_ERASE_DONE; 709 mtd_erase_callback(instr); 710 711 return 0; 712 } 713 714 #define DO_XXLOCK_LOCK 1 715 #define DO_XXLOCK_UNLOCK 2 716 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk) 717 { 718 int ret = 0; 719 struct map_info *map = mtd->priv; 720 struct lpddr_private *lpddr = map->fldrv_priv; 721 int chipnum = adr >> lpddr->chipshift; 722 struct flchip *chip = &lpddr->chips[chipnum]; 723 724 mutex_lock(&chip->mutex); 725 ret = get_chip(map, chip, FL_LOCKING); 726 if (ret) { 727 mutex_unlock(&chip->mutex); 728 return ret; 729 } 730 731 if (thunk == DO_XXLOCK_LOCK) { 732 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL); 733 chip->state = FL_LOCKING; 734 } else if (thunk == DO_XXLOCK_UNLOCK) { 735 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL); 736 chip->state = FL_UNLOCKING; 737 } else 738 BUG(); 739 740 ret = wait_for_ready(map, chip, 1); 741 if (ret) { 742 printk(KERN_ERR "%s: block unlock error status %d \n", 743 map->name, ret); 744 goto out; 745 } 746 out: put_chip(map, chip); 747 mutex_unlock(&chip->mutex); 748 return ret; 749 } 750 751 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 752 { 753 return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK); 754 } 755 756 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 757 { 758 return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK); 759 } 760 761 int word_program(struct map_info *map, loff_t adr, uint32_t curval) 762 { 763 int ret; 764 struct lpddr_private *lpddr = map->fldrv_priv; 765 int chipnum = adr >> lpddr->chipshift; 766 struct flchip *chip = &lpddr->chips[chipnum]; 767 768 mutex_lock(&chip->mutex); 769 ret = get_chip(map, chip, FL_WRITING); 770 if (ret) { 771 mutex_unlock(&chip->mutex); 772 return ret; 773 } 774 775 send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval); 776 777 ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime)); 778 if (ret) { 779 printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n", 780 map->name, adr, curval); 781 goto out; 782 } 783 784 out: put_chip(map, chip); 785 mutex_unlock(&chip->mutex); 786 return ret; 787 } 788 789 MODULE_LICENSE("GPL"); 790 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>"); 791 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips"); 792