xref: /linux/drivers/mtd/lpddr/lpddr_cmds.c (revision be3de80dc2e671d9ee15e69fe9cd84d2b71e2225)
1 /*
2  * LPDDR flash memory device operations. This module provides read, write,
3  * erase, lock/unlock support for LPDDR flash memories
4  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
5  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
6  * Many thanks to Roman Borisov for initial enabling
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  * 02110-1301, USA.
22  * TODO:
23  * Implement VPP management
24  * Implement XIP support
25  * Implement OTP support
26  */
27 #include <linux/mtd/pfow.h>
28 #include <linux/mtd/qinfo.h>
29 #include <linux/slab.h>
30 #include <linux/module.h>
31 
32 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
33 					size_t *retlen, u_char *buf);
34 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
35 				size_t len, size_t *retlen, const u_char *buf);
36 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
37 				unsigned long count, loff_t to, size_t *retlen);
38 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
39 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
40 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
41 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
42 			size_t *retlen, void **mtdbuf, resource_size_t *phys);
43 static void lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
44 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
45 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
46 static void put_chip(struct map_info *map, struct flchip *chip);
47 
48 struct mtd_info *lpddr_cmdset(struct map_info *map)
49 {
50 	struct lpddr_private *lpddr = map->fldrv_priv;
51 	struct flchip_shared *shared;
52 	struct flchip *chip;
53 	struct mtd_info *mtd;
54 	int numchips;
55 	int i, j;
56 
57 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
58 	if (!mtd) {
59 		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
60 		return NULL;
61 	}
62 	mtd->priv = map;
63 	mtd->type = MTD_NORFLASH;
64 
65 	/* Fill in the default mtd operations */
66 	mtd->read = lpddr_read;
67 	mtd->type = MTD_NORFLASH;
68 	mtd->flags = MTD_CAP_NORFLASH;
69 	mtd->flags &= ~MTD_BIT_WRITEABLE;
70 	mtd->erase = lpddr_erase;
71 	mtd->write = lpddr_write_buffers;
72 	mtd->writev = lpddr_writev;
73 	mtd->read_oob = NULL;
74 	mtd->write_oob = NULL;
75 	mtd->sync = NULL;
76 	mtd->lock = lpddr_lock;
77 	mtd->unlock = lpddr_unlock;
78 	mtd->suspend = NULL;
79 	mtd->resume = NULL;
80 	if (map_is_linear(map)) {
81 		mtd->point = lpddr_point;
82 		mtd->unpoint = lpddr_unpoint;
83 	}
84 	mtd->block_isbad = NULL;
85 	mtd->block_markbad = NULL;
86 	mtd->size = 1 << lpddr->qinfo->DevSizeShift;
87 	mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
88 	mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
89 
90 	shared = kmalloc(sizeof(struct flchip_shared) * lpddr->numchips,
91 						GFP_KERNEL);
92 	if (!shared) {
93 		kfree(lpddr);
94 		kfree(mtd);
95 		return NULL;
96 	}
97 
98 	chip = &lpddr->chips[0];
99 	numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
100 	for (i = 0; i < numchips; i++) {
101 		shared[i].writing = shared[i].erasing = NULL;
102 		mutex_init(&shared[i].lock);
103 		for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
104 			*chip = lpddr->chips[i];
105 			chip->start += j << lpddr->chipshift;
106 			chip->oldstate = chip->state = FL_READY;
107 			chip->priv = &shared[i];
108 			/* those should be reset too since
109 			   they create memory references. */
110 			init_waitqueue_head(&chip->wq);
111 			mutex_init(&chip->mutex);
112 			chip++;
113 		}
114 	}
115 
116 	return mtd;
117 }
118 EXPORT_SYMBOL(lpddr_cmdset);
119 
120 static int wait_for_ready(struct map_info *map, struct flchip *chip,
121 		unsigned int chip_op_time)
122 {
123 	unsigned int timeo, reset_timeo, sleep_time;
124 	unsigned int dsr;
125 	flstate_t chip_state = chip->state;
126 	int ret = 0;
127 
128 	/* set our timeout to 8 times the expected delay */
129 	timeo = chip_op_time * 8;
130 	if (!timeo)
131 		timeo = 500000;
132 	reset_timeo = timeo;
133 	sleep_time = chip_op_time / 2;
134 
135 	for (;;) {
136 		dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
137 		if (dsr & DSR_READY_STATUS)
138 			break;
139 		if (!timeo) {
140 			printk(KERN_ERR "%s: Flash timeout error state %d \n",
141 							map->name, chip_state);
142 			ret = -ETIME;
143 			break;
144 		}
145 
146 		/* OK Still waiting. Drop the lock, wait a while and retry. */
147 		mutex_unlock(&chip->mutex);
148 		if (sleep_time >= 1000000/HZ) {
149 			/*
150 			 * Half of the normal delay still remaining
151 			 * can be performed with a sleeping delay instead
152 			 * of busy waiting.
153 			 */
154 			msleep(sleep_time/1000);
155 			timeo -= sleep_time;
156 			sleep_time = 1000000/HZ;
157 		} else {
158 			udelay(1);
159 			cond_resched();
160 			timeo--;
161 		}
162 		mutex_lock(&chip->mutex);
163 
164 		while (chip->state != chip_state) {
165 			/* Someone's suspended the operation: sleep */
166 			DECLARE_WAITQUEUE(wait, current);
167 			set_current_state(TASK_UNINTERRUPTIBLE);
168 			add_wait_queue(&chip->wq, &wait);
169 			mutex_unlock(&chip->mutex);
170 			schedule();
171 			remove_wait_queue(&chip->wq, &wait);
172 			mutex_lock(&chip->mutex);
173 		}
174 		if (chip->erase_suspended || chip->write_suspended)  {
175 			/* Suspend has occurred while sleep: reset timeout */
176 			timeo = reset_timeo;
177 			chip->erase_suspended = chip->write_suspended = 0;
178 		}
179 	}
180 	/* check status for errors */
181 	if (dsr & DSR_ERR) {
182 		/* Clear DSR*/
183 		map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
184 		printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
185 				map->name, dsr);
186 		print_drs_error(dsr);
187 		ret = -EIO;
188 	}
189 	chip->state = FL_READY;
190 	return ret;
191 }
192 
193 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
194 {
195 	int ret;
196 	DECLARE_WAITQUEUE(wait, current);
197 
198  retry:
199 	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
200 		&& chip->state != FL_SYNCING) {
201 		/*
202 		 * OK. We have possibility for contension on the write/erase
203 		 * operations which are global to the real chip and not per
204 		 * partition.  So let's fight it over in the partition which
205 		 * currently has authority on the operation.
206 		 *
207 		 * The rules are as follows:
208 		 *
209 		 * - any write operation must own shared->writing.
210 		 *
211 		 * - any erase operation must own _both_ shared->writing and
212 		 *   shared->erasing.
213 		 *
214 		 * - contension arbitration is handled in the owner's context.
215 		 *
216 		 * The 'shared' struct can be read and/or written only when
217 		 * its lock is taken.
218 		 */
219 		struct flchip_shared *shared = chip->priv;
220 		struct flchip *contender;
221 		mutex_lock(&shared->lock);
222 		contender = shared->writing;
223 		if (contender && contender != chip) {
224 			/*
225 			 * The engine to perform desired operation on this
226 			 * partition is already in use by someone else.
227 			 * Let's fight over it in the context of the chip
228 			 * currently using it.  If it is possible to suspend,
229 			 * that other partition will do just that, otherwise
230 			 * it'll happily send us to sleep.  In any case, when
231 			 * get_chip returns success we're clear to go ahead.
232 			 */
233 			ret = mutex_trylock(&contender->mutex);
234 			mutex_unlock(&shared->lock);
235 			if (!ret)
236 				goto retry;
237 			mutex_unlock(&chip->mutex);
238 			ret = chip_ready(map, contender, mode);
239 			mutex_lock(&chip->mutex);
240 
241 			if (ret == -EAGAIN) {
242 				mutex_unlock(&contender->mutex);
243 				goto retry;
244 			}
245 			if (ret) {
246 				mutex_unlock(&contender->mutex);
247 				return ret;
248 			}
249 			mutex_lock(&shared->lock);
250 
251 			/* We should not own chip if it is already in FL_SYNCING
252 			 * state. Put contender and retry. */
253 			if (chip->state == FL_SYNCING) {
254 				put_chip(map, contender);
255 				mutex_unlock(&contender->mutex);
256 				goto retry;
257 			}
258 			mutex_unlock(&contender->mutex);
259 		}
260 
261 		/* Check if we have suspended erase on this chip.
262 		   Must sleep in such a case. */
263 		if (mode == FL_ERASING && shared->erasing
264 		    && shared->erasing->oldstate == FL_ERASING) {
265 			mutex_unlock(&shared->lock);
266 			set_current_state(TASK_UNINTERRUPTIBLE);
267 			add_wait_queue(&chip->wq, &wait);
268 			mutex_unlock(&chip->mutex);
269 			schedule();
270 			remove_wait_queue(&chip->wq, &wait);
271 			mutex_lock(&chip->mutex);
272 			goto retry;
273 		}
274 
275 		/* We now own it */
276 		shared->writing = chip;
277 		if (mode == FL_ERASING)
278 			shared->erasing = chip;
279 		mutex_unlock(&shared->lock);
280 	}
281 
282 	ret = chip_ready(map, chip, mode);
283 	if (ret == -EAGAIN)
284 		goto retry;
285 
286 	return ret;
287 }
288 
289 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
290 {
291 	struct lpddr_private *lpddr = map->fldrv_priv;
292 	int ret = 0;
293 	DECLARE_WAITQUEUE(wait, current);
294 
295 	/* Prevent setting state FL_SYNCING for chip in suspended state. */
296 	if (FL_SYNCING == mode && FL_READY != chip->oldstate)
297 		goto sleep;
298 
299 	switch (chip->state) {
300 	case FL_READY:
301 	case FL_JEDEC_QUERY:
302 		return 0;
303 
304 	case FL_ERASING:
305 		if (!lpddr->qinfo->SuspEraseSupp ||
306 			!(mode == FL_READY || mode == FL_POINT))
307 			goto sleep;
308 
309 		map_write(map, CMD(LPDDR_SUSPEND),
310 			map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
311 		chip->oldstate = FL_ERASING;
312 		chip->state = FL_ERASE_SUSPENDING;
313 		ret = wait_for_ready(map, chip, 0);
314 		if (ret) {
315 			/* Oops. something got wrong. */
316 			/* Resume and pretend we weren't here.  */
317 			put_chip(map, chip);
318 			printk(KERN_ERR "%s: suspend operation failed."
319 					"State may be wrong \n", map->name);
320 			return -EIO;
321 		}
322 		chip->erase_suspended = 1;
323 		chip->state = FL_READY;
324 		return 0;
325 		/* Erase suspend */
326 	case FL_POINT:
327 		/* Only if there's no operation suspended... */
328 		if (mode == FL_READY && chip->oldstate == FL_READY)
329 			return 0;
330 
331 	default:
332 sleep:
333 		set_current_state(TASK_UNINTERRUPTIBLE);
334 		add_wait_queue(&chip->wq, &wait);
335 		mutex_unlock(&chip->mutex);
336 		schedule();
337 		remove_wait_queue(&chip->wq, &wait);
338 		mutex_lock(&chip->mutex);
339 		return -EAGAIN;
340 	}
341 }
342 
343 static void put_chip(struct map_info *map, struct flchip *chip)
344 {
345 	if (chip->priv) {
346 		struct flchip_shared *shared = chip->priv;
347 		mutex_lock(&shared->lock);
348 		if (shared->writing == chip && chip->oldstate == FL_READY) {
349 			/* We own the ability to write, but we're done */
350 			shared->writing = shared->erasing;
351 			if (shared->writing && shared->writing != chip) {
352 				/* give back the ownership */
353 				struct flchip *loaner = shared->writing;
354 				mutex_lock(&loaner->mutex);
355 				mutex_unlock(&shared->lock);
356 				mutex_unlock(&chip->mutex);
357 				put_chip(map, loaner);
358 				mutex_lock(&chip->mutex);
359 				mutex_unlock(&loaner->mutex);
360 				wake_up(&chip->wq);
361 				return;
362 			}
363 			shared->erasing = NULL;
364 			shared->writing = NULL;
365 		} else if (shared->erasing == chip && shared->writing != chip) {
366 			/*
367 			 * We own the ability to erase without the ability
368 			 * to write, which means the erase was suspended
369 			 * and some other partition is currently writing.
370 			 * Don't let the switch below mess things up since
371 			 * we don't have ownership to resume anything.
372 			 */
373 			mutex_unlock(&shared->lock);
374 			wake_up(&chip->wq);
375 			return;
376 		}
377 		mutex_unlock(&shared->lock);
378 	}
379 
380 	switch (chip->oldstate) {
381 	case FL_ERASING:
382 		map_write(map, CMD(LPDDR_RESUME),
383 				map->pfow_base + PFOW_COMMAND_CODE);
384 		map_write(map, CMD(LPDDR_START_EXECUTION),
385 				map->pfow_base + PFOW_COMMAND_EXECUTE);
386 		chip->oldstate = FL_READY;
387 		chip->state = FL_ERASING;
388 		break;
389 	case FL_READY:
390 		break;
391 	default:
392 		printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
393 				map->name, chip->oldstate);
394 	}
395 	wake_up(&chip->wq);
396 }
397 
398 int do_write_buffer(struct map_info *map, struct flchip *chip,
399 			unsigned long adr, const struct kvec **pvec,
400 			unsigned long *pvec_seek, int len)
401 {
402 	struct lpddr_private *lpddr = map->fldrv_priv;
403 	map_word datum;
404 	int ret, wbufsize, word_gap, words;
405 	const struct kvec *vec;
406 	unsigned long vec_seek;
407 	unsigned long prog_buf_ofs;
408 
409 	wbufsize = 1 << lpddr->qinfo->BufSizeShift;
410 
411 	mutex_lock(&chip->mutex);
412 	ret = get_chip(map, chip, FL_WRITING);
413 	if (ret) {
414 		mutex_unlock(&chip->mutex);
415 		return ret;
416 	}
417 	/* Figure out the number of words to write */
418 	word_gap = (-adr & (map_bankwidth(map)-1));
419 	words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
420 	if (!word_gap) {
421 		words--;
422 	} else {
423 		word_gap = map_bankwidth(map) - word_gap;
424 		adr -= word_gap;
425 		datum = map_word_ff(map);
426 	}
427 	/* Write data */
428 	/* Get the program buffer offset from PFOW register data first*/
429 	prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
430 				map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
431 	vec = *pvec;
432 	vec_seek = *pvec_seek;
433 	do {
434 		int n = map_bankwidth(map) - word_gap;
435 
436 		if (n > vec->iov_len - vec_seek)
437 			n = vec->iov_len - vec_seek;
438 		if (n > len)
439 			n = len;
440 
441 		if (!word_gap && (len < map_bankwidth(map)))
442 			datum = map_word_ff(map);
443 
444 		datum = map_word_load_partial(map, datum,
445 				vec->iov_base + vec_seek, word_gap, n);
446 
447 		len -= n;
448 		word_gap += n;
449 		if (!len || word_gap == map_bankwidth(map)) {
450 			map_write(map, datum, prog_buf_ofs);
451 			prog_buf_ofs += map_bankwidth(map);
452 			word_gap = 0;
453 		}
454 
455 		vec_seek += n;
456 		if (vec_seek == vec->iov_len) {
457 			vec++;
458 			vec_seek = 0;
459 		}
460 	} while (len);
461 	*pvec = vec;
462 	*pvec_seek = vec_seek;
463 
464 	/* GO GO GO */
465 	send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
466 	chip->state = FL_WRITING;
467 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
468 	if (ret)	{
469 		printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
470 			map->name, ret, adr);
471 		goto out;
472 	}
473 
474  out:	put_chip(map, chip);
475 	mutex_unlock(&chip->mutex);
476 	return ret;
477 }
478 
479 int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
480 {
481 	struct map_info *map = mtd->priv;
482 	struct lpddr_private *lpddr = map->fldrv_priv;
483 	int chipnum = adr >> lpddr->chipshift;
484 	struct flchip *chip = &lpddr->chips[chipnum];
485 	int ret;
486 
487 	mutex_lock(&chip->mutex);
488 	ret = get_chip(map, chip, FL_ERASING);
489 	if (ret) {
490 		mutex_unlock(&chip->mutex);
491 		return ret;
492 	}
493 	send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
494 	chip->state = FL_ERASING;
495 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
496 	if (ret) {
497 		printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
498 			map->name, ret, adr);
499 		goto out;
500 	}
501  out:	put_chip(map, chip);
502 	mutex_unlock(&chip->mutex);
503 	return ret;
504 }
505 
506 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
507 			size_t *retlen, u_char *buf)
508 {
509 	struct map_info *map = mtd->priv;
510 	struct lpddr_private *lpddr = map->fldrv_priv;
511 	int chipnum = adr >> lpddr->chipshift;
512 	struct flchip *chip = &lpddr->chips[chipnum];
513 	int ret = 0;
514 
515 	mutex_lock(&chip->mutex);
516 	ret = get_chip(map, chip, FL_READY);
517 	if (ret) {
518 		mutex_unlock(&chip->mutex);
519 		return ret;
520 	}
521 
522 	map_copy_from(map, buf, adr, len);
523 	*retlen = len;
524 
525 	put_chip(map, chip);
526 	mutex_unlock(&chip->mutex);
527 	return ret;
528 }
529 
530 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
531 			size_t *retlen, void **mtdbuf, resource_size_t *phys)
532 {
533 	struct map_info *map = mtd->priv;
534 	struct lpddr_private *lpddr = map->fldrv_priv;
535 	int chipnum = adr >> lpddr->chipshift;
536 	unsigned long ofs, last_end = 0;
537 	struct flchip *chip = &lpddr->chips[chipnum];
538 	int ret = 0;
539 
540 	if (!map->virt || (adr + len > mtd->size))
541 		return -EINVAL;
542 
543 	/* ofs: offset within the first chip that the first read should start */
544 	ofs = adr - (chipnum << lpddr->chipshift);
545 
546 	*mtdbuf = (void *)map->virt + chip->start + ofs;
547 	*retlen = 0;
548 
549 	while (len) {
550 		unsigned long thislen;
551 
552 		if (chipnum >= lpddr->numchips)
553 			break;
554 
555 		/* We cannot point across chips that are virtually disjoint */
556 		if (!last_end)
557 			last_end = chip->start;
558 		else if (chip->start != last_end)
559 			break;
560 
561 		if ((len + ofs - 1) >> lpddr->chipshift)
562 			thislen = (1<<lpddr->chipshift) - ofs;
563 		else
564 			thislen = len;
565 		/* get the chip */
566 		mutex_lock(&chip->mutex);
567 		ret = get_chip(map, chip, FL_POINT);
568 		mutex_unlock(&chip->mutex);
569 		if (ret)
570 			break;
571 
572 		chip->state = FL_POINT;
573 		chip->ref_point_counter++;
574 		*retlen += thislen;
575 		len -= thislen;
576 
577 		ofs = 0;
578 		last_end += 1 << lpddr->chipshift;
579 		chipnum++;
580 		chip = &lpddr->chips[chipnum];
581 	}
582 	return 0;
583 }
584 
585 static void lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
586 {
587 	struct map_info *map = mtd->priv;
588 	struct lpddr_private *lpddr = map->fldrv_priv;
589 	int chipnum = adr >> lpddr->chipshift;
590 	unsigned long ofs;
591 
592 	/* ofs: offset within the first chip that the first read should start */
593 	ofs = adr - (chipnum << lpddr->chipshift);
594 
595 	while (len) {
596 		unsigned long thislen;
597 		struct flchip *chip;
598 
599 		chip = &lpddr->chips[chipnum];
600 		if (chipnum >= lpddr->numchips)
601 			break;
602 
603 		if ((len + ofs - 1) >> lpddr->chipshift)
604 			thislen = (1<<lpddr->chipshift) - ofs;
605 		else
606 			thislen = len;
607 
608 		mutex_lock(&chip->mutex);
609 		if (chip->state == FL_POINT) {
610 			chip->ref_point_counter--;
611 			if (chip->ref_point_counter == 0)
612 				chip->state = FL_READY;
613 		} else
614 			printk(KERN_WARNING "%s: Warning: unpoint called on non"
615 					"pointed region\n", map->name);
616 
617 		put_chip(map, chip);
618 		mutex_unlock(&chip->mutex);
619 
620 		len -= thislen;
621 		ofs = 0;
622 		chipnum++;
623 	}
624 }
625 
626 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
627 				size_t *retlen, const u_char *buf)
628 {
629 	struct kvec vec;
630 
631 	vec.iov_base = (void *) buf;
632 	vec.iov_len = len;
633 
634 	return lpddr_writev(mtd, &vec, 1, to, retlen);
635 }
636 
637 
638 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
639 				unsigned long count, loff_t to, size_t *retlen)
640 {
641 	struct map_info *map = mtd->priv;
642 	struct lpddr_private *lpddr = map->fldrv_priv;
643 	int ret = 0;
644 	int chipnum;
645 	unsigned long ofs, vec_seek, i;
646 	int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
647 
648 	size_t len = 0;
649 
650 	for (i = 0; i < count; i++)
651 		len += vecs[i].iov_len;
652 
653 	*retlen = 0;
654 	if (!len)
655 		return 0;
656 
657 	chipnum = to >> lpddr->chipshift;
658 
659 	ofs = to;
660 	vec_seek = 0;
661 
662 	do {
663 		/* We must not cross write block boundaries */
664 		int size = wbufsize - (ofs & (wbufsize-1));
665 
666 		if (size > len)
667 			size = len;
668 
669 		ret = do_write_buffer(map, &lpddr->chips[chipnum],
670 					  ofs, &vecs, &vec_seek, size);
671 		if (ret)
672 			return ret;
673 
674 		ofs += size;
675 		(*retlen) += size;
676 		len -= size;
677 
678 		/* Be nice and reschedule with the chip in a usable
679 		 * state for other processes */
680 		cond_resched();
681 
682 	} while (len);
683 
684 	return 0;
685 }
686 
687 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
688 {
689 	unsigned long ofs, len;
690 	int ret;
691 	struct map_info *map = mtd->priv;
692 	struct lpddr_private *lpddr = map->fldrv_priv;
693 	int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
694 
695 	ofs = instr->addr;
696 	len = instr->len;
697 
698 	if (ofs > mtd->size || (len + ofs) > mtd->size)
699 		return -EINVAL;
700 
701 	while (len > 0) {
702 		ret = do_erase_oneblock(mtd, ofs);
703 		if (ret)
704 			return ret;
705 		ofs += size;
706 		len -= size;
707 	}
708 	instr->state = MTD_ERASE_DONE;
709 	mtd_erase_callback(instr);
710 
711 	return 0;
712 }
713 
714 #define DO_XXLOCK_LOCK		1
715 #define DO_XXLOCK_UNLOCK	2
716 int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
717 {
718 	int ret = 0;
719 	struct map_info *map = mtd->priv;
720 	struct lpddr_private *lpddr = map->fldrv_priv;
721 	int chipnum = adr >> lpddr->chipshift;
722 	struct flchip *chip = &lpddr->chips[chipnum];
723 
724 	mutex_lock(&chip->mutex);
725 	ret = get_chip(map, chip, FL_LOCKING);
726 	if (ret) {
727 		mutex_unlock(&chip->mutex);
728 		return ret;
729 	}
730 
731 	if (thunk == DO_XXLOCK_LOCK) {
732 		send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
733 		chip->state = FL_LOCKING;
734 	} else if (thunk == DO_XXLOCK_UNLOCK) {
735 		send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
736 		chip->state = FL_UNLOCKING;
737 	} else
738 		BUG();
739 
740 	ret = wait_for_ready(map, chip, 1);
741 	if (ret)	{
742 		printk(KERN_ERR "%s: block unlock error status %d \n",
743 				map->name, ret);
744 		goto out;
745 	}
746 out:	put_chip(map, chip);
747 	mutex_unlock(&chip->mutex);
748 	return ret;
749 }
750 
751 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
752 {
753 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
754 }
755 
756 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
757 {
758 	return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
759 }
760 
761 int word_program(struct map_info *map, loff_t adr, uint32_t curval)
762 {
763     int ret;
764 	struct lpddr_private *lpddr = map->fldrv_priv;
765 	int chipnum = adr >> lpddr->chipshift;
766 	struct flchip *chip = &lpddr->chips[chipnum];
767 
768 	mutex_lock(&chip->mutex);
769 	ret = get_chip(map, chip, FL_WRITING);
770 	if (ret) {
771 		mutex_unlock(&chip->mutex);
772 		return ret;
773 	}
774 
775 	send_pfow_command(map, LPDDR_WORD_PROGRAM, adr, 0x00, (map_word *)&curval);
776 
777 	ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->SingleWordProgTime));
778 	if (ret)	{
779 		printk(KERN_WARNING"%s word_program error at: %llx; val: %x\n",
780 			map->name, adr, curval);
781 		goto out;
782 	}
783 
784 out:	put_chip(map, chip);
785 	mutex_unlock(&chip->mutex);
786 	return ret;
787 }
788 
789 MODULE_LICENSE("GPL");
790 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
791 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");
792