xref: /linux/drivers/mtd/lpddr/lpddr2_nvm.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * LPDDR2-NVM MTD driver. This module provides read, write, erase, lock/unlock
3  * support for LPDDR2-NVM PCM memories
4  *
5  * Copyright © 2012 Micron Technology, Inc.
6  *
7  * Vincenzo Aliberti <vincenzo.aliberti@gmail.com>
8  * Domenico Manna <domenico.manna@gmail.com>
9  * Many thanks to Andrea Vigilante for initial enabling
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": %s: " fmt, __func__
23 
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/mtd/map.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/partitions.h>
31 #include <linux/slab.h>
32 #include <linux/platform_device.h>
33 #include <linux/ioport.h>
34 #include <linux/err.h>
35 
36 /* Parameters */
37 #define ERASE_BLOCKSIZE			(0x00020000/2)	/* in Word */
38 #define WRITE_BUFFSIZE			(0x00000400/2)	/* in Word */
39 #define OW_BASE_ADDRESS			0x00000000	/* OW offset */
40 #define BUS_WIDTH			0x00000020	/* x32 devices */
41 
42 /* PFOW symbols address offset */
43 #define PFOW_QUERY_STRING_P		(0x0000/2)	/* in Word */
44 #define PFOW_QUERY_STRING_F		(0x0002/2)	/* in Word */
45 #define PFOW_QUERY_STRING_O		(0x0004/2)	/* in Word */
46 #define PFOW_QUERY_STRING_W		(0x0006/2)	/* in Word */
47 
48 /* OW registers address */
49 #define CMD_CODE_OFS			(0x0080/2)	/* in Word */
50 #define CMD_DATA_OFS			(0x0084/2)	/* in Word */
51 #define CMD_ADD_L_OFS			(0x0088/2)	/* in Word */
52 #define CMD_ADD_H_OFS			(0x008A/2)	/* in Word */
53 #define MPR_L_OFS			(0x0090/2)	/* in Word */
54 #define MPR_H_OFS			(0x0092/2)	/* in Word */
55 #define CMD_EXEC_OFS			(0x00C0/2)	/* in Word */
56 #define STATUS_REG_OFS			(0x00CC/2)	/* in Word */
57 #define PRG_BUFFER_OFS			(0x0010/2)	/* in Word */
58 
59 /* Datamask */
60 #define MR_CFGMASK			0x8000
61 #define SR_OK_DATAMASK			0x0080
62 
63 /* LPDDR2-NVM Commands */
64 #define LPDDR2_NVM_LOCK			0x0061
65 #define LPDDR2_NVM_UNLOCK		0x0062
66 #define LPDDR2_NVM_SW_PROGRAM		0x0041
67 #define LPDDR2_NVM_SW_OVERWRITE		0x0042
68 #define LPDDR2_NVM_BUF_PROGRAM		0x00E9
69 #define LPDDR2_NVM_BUF_OVERWRITE	0x00EA
70 #define LPDDR2_NVM_ERASE		0x0020
71 
72 /* LPDDR2-NVM Registers offset */
73 #define LPDDR2_MODE_REG_DATA		0x0040
74 #define LPDDR2_MODE_REG_CFG		0x0050
75 
76 /*
77  * Internal Type Definitions
78  * pcm_int_data contains memory controller details:
79  * @reg_data : LPDDR2_MODE_REG_DATA register address after remapping
80  * @reg_cfg  : LPDDR2_MODE_REG_CFG register address after remapping
81  * &bus_width: memory bus-width (eg: x16 2 Bytes, x32 4 Bytes)
82  */
83 struct pcm_int_data {
84 	void __iomem *ctl_regs;
85 	int bus_width;
86 };
87 
88 static DEFINE_MUTEX(lpdd2_nvm_mutex);
89 
90 /*
91  * Build a map_word starting from an u_long
92  */
93 static inline map_word build_map_word(u_long myword)
94 {
95 	map_word val = { {0} };
96 	val.x[0] = myword;
97 	return val;
98 }
99 
100 /*
101  * Build Mode Register Configuration DataMask based on device bus-width
102  */
103 static inline u_int build_mr_cfgmask(u_int bus_width)
104 {
105 	u_int val = MR_CFGMASK;
106 
107 	if (bus_width == 0x0004)		/* x32 device */
108 		val = val << 16;
109 
110 	return val;
111 }
112 
113 /*
114  * Build Status Register OK DataMask based on device bus-width
115  */
116 static inline u_int build_sr_ok_datamask(u_int bus_width)
117 {
118 	u_int val = SR_OK_DATAMASK;
119 
120 	if (bus_width == 0x0004)		/* x32 device */
121 		val = (val << 16)+val;
122 
123 	return val;
124 }
125 
126 /*
127  * Evaluates Overlay Window Control Registers address
128  */
129 static inline u_long ow_reg_add(struct map_info *map, u_long offset)
130 {
131 	u_long val = 0;
132 	struct pcm_int_data *pcm_data = map->fldrv_priv;
133 
134 	val = map->pfow_base + offset*pcm_data->bus_width;
135 
136 	return val;
137 }
138 
139 /*
140  * Enable lpddr2-nvm Overlay Window
141  * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers
142  * used by device commands as well as uservisible resources like Device Status
143  * Register, Device ID, etc
144  */
145 static inline void ow_enable(struct map_info *map)
146 {
147 	struct pcm_int_data *pcm_data = map->fldrv_priv;
148 
149 	writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18,
150 		pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG);
151 	writel_relaxed(0x01, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA);
152 }
153 
154 /*
155  * Disable lpddr2-nvm Overlay Window
156  * Overlay Window is a memory mapped area containing all LPDDR2-NVM registers
157  * used by device commands as well as uservisible resources like Device Status
158  * Register, Device ID, etc
159  */
160 static inline void ow_disable(struct map_info *map)
161 {
162 	struct pcm_int_data *pcm_data = map->fldrv_priv;
163 
164 	writel_relaxed(build_mr_cfgmask(pcm_data->bus_width) | 0x18,
165 		pcm_data->ctl_regs + LPDDR2_MODE_REG_CFG);
166 	writel_relaxed(0x02, pcm_data->ctl_regs + LPDDR2_MODE_REG_DATA);
167 }
168 
169 /*
170  * Execute lpddr2-nvm operations
171  */
172 static int lpddr2_nvm_do_op(struct map_info *map, u_long cmd_code,
173 	u_long cmd_data, u_long cmd_add, u_long cmd_mpr, u_char *buf)
174 {
175 	map_word add_l = { {0} }, add_h = { {0} }, mpr_l = { {0} },
176 		mpr_h = { {0} }, data_l = { {0} }, cmd = { {0} },
177 		exec_cmd = { {0} }, sr;
178 	map_word data_h = { {0} };	/* only for 2x x16 devices stacked */
179 	u_long i, status_reg, prg_buff_ofs;
180 	struct pcm_int_data *pcm_data = map->fldrv_priv;
181 	u_int sr_ok_datamask = build_sr_ok_datamask(pcm_data->bus_width);
182 
183 	/* Builds low and high words for OW Control Registers */
184 	add_l.x[0]	= cmd_add & 0x0000FFFF;
185 	add_h.x[0]	= (cmd_add >> 16) & 0x0000FFFF;
186 	mpr_l.x[0]	= cmd_mpr & 0x0000FFFF;
187 	mpr_h.x[0]	= (cmd_mpr >> 16) & 0x0000FFFF;
188 	cmd.x[0]	= cmd_code & 0x0000FFFF;
189 	exec_cmd.x[0]	= 0x0001;
190 	data_l.x[0]	= cmd_data & 0x0000FFFF;
191 	data_h.x[0]	= (cmd_data >> 16) & 0x0000FFFF; /* only for 2x x16 */
192 
193 	/* Set Overlay Window Control Registers */
194 	map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS));
195 	map_write(map, data_l, ow_reg_add(map, CMD_DATA_OFS));
196 	map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS));
197 	map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS));
198 	map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS));
199 	map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS));
200 	if (pcm_data->bus_width == 0x0004) {	/* 2x16 devices stacked */
201 		map_write(map, cmd, ow_reg_add(map, CMD_CODE_OFS) + 2);
202 		map_write(map, data_h, ow_reg_add(map, CMD_DATA_OFS) + 2);
203 		map_write(map, add_l, ow_reg_add(map, CMD_ADD_L_OFS) + 2);
204 		map_write(map, add_h, ow_reg_add(map, CMD_ADD_H_OFS) + 2);
205 		map_write(map, mpr_l, ow_reg_add(map, MPR_L_OFS) + 2);
206 		map_write(map, mpr_h, ow_reg_add(map, MPR_H_OFS) + 2);
207 	}
208 
209 	/* Fill Program Buffer */
210 	if ((cmd_code == LPDDR2_NVM_BUF_PROGRAM) ||
211 		(cmd_code == LPDDR2_NVM_BUF_OVERWRITE)) {
212 		prg_buff_ofs = (map_read(map,
213 			ow_reg_add(map, PRG_BUFFER_OFS))).x[0];
214 		for (i = 0; i < cmd_mpr; i++) {
215 			map_write(map, build_map_word(buf[i]), map->pfow_base +
216 			prg_buff_ofs + i);
217 		}
218 	}
219 
220 	/* Command Execute */
221 	map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS));
222 	if (pcm_data->bus_width == 0x0004)	/* 2x16 devices stacked */
223 		map_write(map, exec_cmd, ow_reg_add(map, CMD_EXEC_OFS) + 2);
224 
225 	/* Status Register Check */
226 	do {
227 		sr = map_read(map, ow_reg_add(map, STATUS_REG_OFS));
228 		status_reg = sr.x[0];
229 		if (pcm_data->bus_width == 0x0004) {/* 2x16 devices stacked */
230 			sr = map_read(map, ow_reg_add(map,
231 				STATUS_REG_OFS) + 2);
232 			status_reg += sr.x[0] << 16;
233 		}
234 	} while ((status_reg & sr_ok_datamask) != sr_ok_datamask);
235 
236 	return (((status_reg & sr_ok_datamask) == sr_ok_datamask) ? 0 : -EIO);
237 }
238 
239 /*
240  * Execute lpddr2-nvm operations @ block level
241  */
242 static int lpddr2_nvm_do_block_op(struct mtd_info *mtd, loff_t start_add,
243 	uint64_t len, u_char block_op)
244 {
245 	struct map_info *map = mtd->priv;
246 	u_long add, end_add;
247 	int ret = 0;
248 
249 	mutex_lock(&lpdd2_nvm_mutex);
250 
251 	ow_enable(map);
252 
253 	add = start_add;
254 	end_add = add + len;
255 
256 	do {
257 		ret = lpddr2_nvm_do_op(map, block_op, 0x00, add, add, NULL);
258 		if (ret)
259 			goto out;
260 		add += mtd->erasesize;
261 	} while (add < end_add);
262 
263 out:
264 	ow_disable(map);
265 	mutex_unlock(&lpdd2_nvm_mutex);
266 	return ret;
267 }
268 
269 /*
270  * verify presence of PFOW string
271  */
272 static int lpddr2_nvm_pfow_present(struct map_info *map)
273 {
274 	map_word pfow_val[4];
275 	unsigned int found = 1;
276 
277 	mutex_lock(&lpdd2_nvm_mutex);
278 
279 	ow_enable(map);
280 
281 	/* Load string from array */
282 	pfow_val[0] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_P));
283 	pfow_val[1] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_F));
284 	pfow_val[2] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_O));
285 	pfow_val[3] = map_read(map, ow_reg_add(map, PFOW_QUERY_STRING_W));
286 
287 	/* Verify the string loaded vs expected */
288 	if (!map_word_equal(map, build_map_word('P'), pfow_val[0]))
289 		found = 0;
290 	if (!map_word_equal(map, build_map_word('F'), pfow_val[1]))
291 		found = 0;
292 	if (!map_word_equal(map, build_map_word('O'), pfow_val[2]))
293 		found = 0;
294 	if (!map_word_equal(map, build_map_word('W'), pfow_val[3]))
295 		found = 0;
296 
297 	ow_disable(map);
298 
299 	mutex_unlock(&lpdd2_nvm_mutex);
300 
301 	return found;
302 }
303 
304 /*
305  * lpddr2_nvm driver read method
306  */
307 static int lpddr2_nvm_read(struct mtd_info *mtd, loff_t start_add,
308 				size_t len, size_t *retlen, u_char *buf)
309 {
310 	struct map_info *map = mtd->priv;
311 
312 	mutex_lock(&lpdd2_nvm_mutex);
313 
314 	*retlen = len;
315 
316 	map_copy_from(map, buf, start_add, *retlen);
317 
318 	mutex_unlock(&lpdd2_nvm_mutex);
319 	return 0;
320 }
321 
322 /*
323  * lpddr2_nvm driver write method
324  */
325 static int lpddr2_nvm_write(struct mtd_info *mtd, loff_t start_add,
326 				size_t len, size_t *retlen, const u_char *buf)
327 {
328 	struct map_info *map = mtd->priv;
329 	struct pcm_int_data *pcm_data = map->fldrv_priv;
330 	u_long add, current_len, tot_len, target_len, my_data;
331 	u_char *write_buf = (u_char *)buf;
332 	int ret = 0;
333 
334 	mutex_lock(&lpdd2_nvm_mutex);
335 
336 	ow_enable(map);
337 
338 	/* Set start value for the variables */
339 	add = start_add;
340 	target_len = len;
341 	tot_len = 0;
342 
343 	while (tot_len < target_len) {
344 		if (!(IS_ALIGNED(add, mtd->writesize))) { /* do sw program */
345 			my_data = write_buf[tot_len];
346 			my_data += (write_buf[tot_len+1]) << 8;
347 			if (pcm_data->bus_width == 0x0004) {/* 2x16 devices */
348 				my_data += (write_buf[tot_len+2]) << 16;
349 				my_data += (write_buf[tot_len+3]) << 24;
350 			}
351 			ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_SW_OVERWRITE,
352 				my_data, add, 0x00, NULL);
353 			if (ret)
354 				goto out;
355 
356 			add += pcm_data->bus_width;
357 			tot_len += pcm_data->bus_width;
358 		} else {		/* do buffer program */
359 			current_len = min(target_len - tot_len,
360 				(u_long) mtd->writesize);
361 			ret = lpddr2_nvm_do_op(map, LPDDR2_NVM_BUF_OVERWRITE,
362 				0x00, add, current_len, write_buf + tot_len);
363 			if (ret)
364 				goto out;
365 
366 			add += current_len;
367 			tot_len += current_len;
368 		}
369 	}
370 
371 out:
372 	*retlen = tot_len;
373 	ow_disable(map);
374 	mutex_unlock(&lpdd2_nvm_mutex);
375 	return ret;
376 }
377 
378 /*
379  * lpddr2_nvm driver erase method
380  */
381 static int lpddr2_nvm_erase(struct mtd_info *mtd, struct erase_info *instr)
382 {
383 	int ret = lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len,
384 		LPDDR2_NVM_ERASE);
385 	if (!ret) {
386 		instr->state = MTD_ERASE_DONE;
387 		mtd_erase_callback(instr);
388 	}
389 
390 	return ret;
391 }
392 
393 /*
394  * lpddr2_nvm driver unlock method
395  */
396 static int lpddr2_nvm_unlock(struct mtd_info *mtd, loff_t start_add,
397 	uint64_t len)
398 {
399 	return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_UNLOCK);
400 }
401 
402 /*
403  * lpddr2_nvm driver lock method
404  */
405 static int lpddr2_nvm_lock(struct mtd_info *mtd, loff_t start_add,
406 	uint64_t len)
407 {
408 	return lpddr2_nvm_do_block_op(mtd, start_add, len, LPDDR2_NVM_LOCK);
409 }
410 
411 /*
412  * lpddr2_nvm driver probe method
413  */
414 static int lpddr2_nvm_probe(struct platform_device *pdev)
415 {
416 	struct map_info *map;
417 	struct mtd_info *mtd;
418 	struct resource *add_range;
419 	struct resource *control_regs;
420 	struct pcm_int_data *pcm_data;
421 
422 	/* Allocate memory control_regs data structures */
423 	pcm_data = devm_kzalloc(&pdev->dev, sizeof(*pcm_data), GFP_KERNEL);
424 	if (!pcm_data)
425 		return -ENOMEM;
426 
427 	pcm_data->bus_width = BUS_WIDTH;
428 
429 	/* Allocate memory for map_info & mtd_info data structures */
430 	map = devm_kzalloc(&pdev->dev, sizeof(*map), GFP_KERNEL);
431 	if (!map)
432 		return -ENOMEM;
433 
434 	mtd = devm_kzalloc(&pdev->dev, sizeof(*mtd), GFP_KERNEL);
435 	if (!mtd)
436 		return -ENOMEM;
437 
438 	/* lpddr2_nvm address range */
439 	add_range = platform_get_resource(pdev, IORESOURCE_MEM, 0);
440 
441 	/* Populate map_info data structure */
442 	*map = (struct map_info) {
443 		.virt		= devm_ioremap_resource(&pdev->dev, add_range),
444 		.name		= pdev->dev.init_name,
445 		.phys		= add_range->start,
446 		.size		= resource_size(add_range),
447 		.bankwidth	= pcm_data->bus_width / 2,
448 		.pfow_base	= OW_BASE_ADDRESS,
449 		.fldrv_priv	= pcm_data,
450 	};
451 	if (IS_ERR(map->virt))
452 		return PTR_ERR(map->virt);
453 
454 	simple_map_init(map);	/* fill with default methods */
455 
456 	control_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
457 	pcm_data->ctl_regs = devm_ioremap_resource(&pdev->dev, control_regs);
458 	if (IS_ERR(pcm_data->ctl_regs))
459 		return PTR_ERR(pcm_data->ctl_regs);
460 
461 	/* Populate mtd_info data structure */
462 	*mtd = (struct mtd_info) {
463 		.dev		= { .parent = &pdev->dev },
464 		.name		= pdev->dev.init_name,
465 		.type		= MTD_RAM,
466 		.priv		= map,
467 		.size		= resource_size(add_range),
468 		.erasesize	= ERASE_BLOCKSIZE * pcm_data->bus_width,
469 		.writesize	= 1,
470 		.writebufsize	= WRITE_BUFFSIZE * pcm_data->bus_width,
471 		.flags		= (MTD_CAP_NVRAM | MTD_POWERUP_LOCK),
472 		._read		= lpddr2_nvm_read,
473 		._write		= lpddr2_nvm_write,
474 		._erase		= lpddr2_nvm_erase,
475 		._unlock	= lpddr2_nvm_unlock,
476 		._lock		= lpddr2_nvm_lock,
477 	};
478 
479 	/* Verify the presence of the device looking for PFOW string */
480 	if (!lpddr2_nvm_pfow_present(map)) {
481 		pr_err("device not recognized\n");
482 		return -EINVAL;
483 	}
484 	/* Parse partitions and register the MTD device */
485 	return mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
486 }
487 
488 /*
489  * lpddr2_nvm driver remove method
490  */
491 static int lpddr2_nvm_remove(struct platform_device *pdev)
492 {
493 	return mtd_device_unregister(dev_get_drvdata(&pdev->dev));
494 }
495 
496 /* Initialize platform_driver data structure for lpddr2_nvm */
497 static struct platform_driver lpddr2_nvm_drv = {
498 	.driver		= {
499 		.name	= "lpddr2_nvm",
500 	},
501 	.probe		= lpddr2_nvm_probe,
502 	.remove		= lpddr2_nvm_remove,
503 };
504 
505 module_platform_driver(lpddr2_nvm_drv);
506 MODULE_LICENSE("GPL");
507 MODULE_AUTHOR("Vincenzo Aliberti <vincenzo.aliberti@gmail.com>");
508 MODULE_DESCRIPTION("MTD driver for LPDDR2-NVM PCM memories");
509