1 /* 2 * inftlmount.c -- INFTL mount code with extensive checks. 3 * 4 * Author: Greg Ungerer (gerg@snapgear.com) 5 * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com) 6 * 7 * Based heavily on the nftlmount.c code which is: 8 * Author: Fabrice Bellard (fabrice.bellard@netgem.com) 9 * Copyright © 2000 Netgem S.A. 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 24 */ 25 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <asm/errno.h> 29 #include <asm/io.h> 30 #include <asm/uaccess.h> 31 #include <linux/delay.h> 32 #include <linux/slab.h> 33 #include <linux/mtd/mtd.h> 34 #include <linux/mtd/nftl.h> 35 #include <linux/mtd/inftl.h> 36 37 /* 38 * find_boot_record: Find the INFTL Media Header and its Spare copy which 39 * contains the various device information of the INFTL partition and 40 * Bad Unit Table. Update the PUtable[] table according to the Bad 41 * Unit Table. PUtable[] is used for management of Erase Unit in 42 * other routines in inftlcore.c and inftlmount.c. 43 */ 44 static int find_boot_record(struct INFTLrecord *inftl) 45 { 46 struct inftl_unittail h1; 47 //struct inftl_oob oob; 48 unsigned int i, block; 49 u8 buf[SECTORSIZE]; 50 struct INFTLMediaHeader *mh = &inftl->MediaHdr; 51 struct mtd_info *mtd = inftl->mbd.mtd; 52 struct INFTLPartition *ip; 53 size_t retlen; 54 55 pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl); 56 57 /* 58 * Assume logical EraseSize == physical erasesize for starting the 59 * scan. We'll sort it out later if we find a MediaHeader which says 60 * otherwise. 61 */ 62 inftl->EraseSize = inftl->mbd.mtd->erasesize; 63 inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; 64 65 inftl->MediaUnit = BLOCK_NIL; 66 67 /* Search for a valid boot record */ 68 for (block = 0; block < inftl->nb_blocks; block++) { 69 int ret; 70 71 /* 72 * Check for BNAND header first. Then whinge if it's found 73 * but later checks fail. 74 */ 75 ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE, 76 &retlen, buf); 77 /* We ignore ret in case the ECC of the MediaHeader is invalid 78 (which is apparently acceptable) */ 79 if (retlen != SECTORSIZE) { 80 static int warncount = 5; 81 82 if (warncount) { 83 printk(KERN_WARNING "INFTL: block read at 0x%x " 84 "of mtd%d failed: %d\n", 85 block * inftl->EraseSize, 86 inftl->mbd.mtd->index, ret); 87 if (!--warncount) 88 printk(KERN_WARNING "INFTL: further " 89 "failures for this block will " 90 "not be printed\n"); 91 } 92 continue; 93 } 94 95 if (retlen < 6 || memcmp(buf, "BNAND", 6)) { 96 /* BNAND\0 not found. Continue */ 97 continue; 98 } 99 100 /* To be safer with BIOS, also use erase mark as discriminant */ 101 ret = inftl_read_oob(mtd, 102 block * inftl->EraseSize + SECTORSIZE + 8, 103 8, &retlen,(char *)&h1); 104 if (ret < 0) { 105 printk(KERN_WARNING "INFTL: ANAND header found at " 106 "0x%x in mtd%d, but OOB data read failed " 107 "(err %d)\n", block * inftl->EraseSize, 108 inftl->mbd.mtd->index, ret); 109 continue; 110 } 111 112 113 /* 114 * This is the first we've seen. 115 * Copy the media header structure into place. 116 */ 117 memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); 118 119 /* Read the spare media header at offset 4096 */ 120 mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE, 121 &retlen, buf); 122 if (retlen != SECTORSIZE) { 123 printk(KERN_WARNING "INFTL: Unable to read spare " 124 "Media Header\n"); 125 return -1; 126 } 127 /* Check if this one is the same as the first one we found. */ 128 if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) { 129 printk(KERN_WARNING "INFTL: Primary and spare Media " 130 "Headers disagree.\n"); 131 return -1; 132 } 133 134 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); 135 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); 136 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); 137 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); 138 mh->FormatFlags = le32_to_cpu(mh->FormatFlags); 139 mh->PercentUsed = le32_to_cpu(mh->PercentUsed); 140 141 pr_debug("INFTL: Media Header ->\n" 142 " bootRecordID = %s\n" 143 " NoOfBootImageBlocks = %d\n" 144 " NoOfBinaryPartitions = %d\n" 145 " NoOfBDTLPartitions = %d\n" 146 " BlockMultiplerBits = %d\n" 147 " FormatFlgs = %d\n" 148 " OsakVersion = 0x%x\n" 149 " PercentUsed = %d\n", 150 mh->bootRecordID, mh->NoOfBootImageBlocks, 151 mh->NoOfBinaryPartitions, 152 mh->NoOfBDTLPartitions, 153 mh->BlockMultiplierBits, mh->FormatFlags, 154 mh->OsakVersion, mh->PercentUsed); 155 156 if (mh->NoOfBDTLPartitions == 0) { 157 printk(KERN_WARNING "INFTL: Media Header sanity check " 158 "failed: NoOfBDTLPartitions (%d) == 0, " 159 "must be at least 1\n", mh->NoOfBDTLPartitions); 160 return -1; 161 } 162 163 if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) { 164 printk(KERN_WARNING "INFTL: Media Header sanity check " 165 "failed: Total Partitions (%d) > 4, " 166 "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions + 167 mh->NoOfBinaryPartitions, 168 mh->NoOfBDTLPartitions, 169 mh->NoOfBinaryPartitions); 170 return -1; 171 } 172 173 if (mh->BlockMultiplierBits > 1) { 174 printk(KERN_WARNING "INFTL: sorry, we don't support " 175 "UnitSizeFactor 0x%02x\n", 176 mh->BlockMultiplierBits); 177 return -1; 178 } else if (mh->BlockMultiplierBits == 1) { 179 printk(KERN_WARNING "INFTL: support for INFTL with " 180 "UnitSizeFactor 0x%02x is experimental\n", 181 mh->BlockMultiplierBits); 182 inftl->EraseSize = inftl->mbd.mtd->erasesize << 183 mh->BlockMultiplierBits; 184 inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; 185 block >>= mh->BlockMultiplierBits; 186 } 187 188 /* Scan the partitions */ 189 for (i = 0; (i < 4); i++) { 190 ip = &mh->Partitions[i]; 191 ip->virtualUnits = le32_to_cpu(ip->virtualUnits); 192 ip->firstUnit = le32_to_cpu(ip->firstUnit); 193 ip->lastUnit = le32_to_cpu(ip->lastUnit); 194 ip->flags = le32_to_cpu(ip->flags); 195 ip->spareUnits = le32_to_cpu(ip->spareUnits); 196 ip->Reserved0 = le32_to_cpu(ip->Reserved0); 197 198 pr_debug(" PARTITION[%d] ->\n" 199 " virtualUnits = %d\n" 200 " firstUnit = %d\n" 201 " lastUnit = %d\n" 202 " flags = 0x%x\n" 203 " spareUnits = %d\n", 204 i, ip->virtualUnits, ip->firstUnit, 205 ip->lastUnit, ip->flags, 206 ip->spareUnits); 207 208 if (ip->Reserved0 != ip->firstUnit) { 209 struct erase_info *instr = &inftl->instr; 210 211 instr->mtd = inftl->mbd.mtd; 212 213 /* 214 * Most likely this is using the 215 * undocumented qiuck mount feature. 216 * We don't support that, we will need 217 * to erase the hidden block for full 218 * compatibility. 219 */ 220 instr->addr = ip->Reserved0 * inftl->EraseSize; 221 instr->len = inftl->EraseSize; 222 mtd_erase(mtd, instr); 223 } 224 if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { 225 printk(KERN_WARNING "INFTL: Media Header " 226 "Partition %d sanity check failed\n" 227 " firstUnit %d : lastUnit %d > " 228 "virtualUnits %d\n", i, ip->lastUnit, 229 ip->firstUnit, ip->Reserved0); 230 return -1; 231 } 232 if (ip->Reserved1 != 0) { 233 printk(KERN_WARNING "INFTL: Media Header " 234 "Partition %d sanity check failed: " 235 "Reserved1 %d != 0\n", 236 i, ip->Reserved1); 237 return -1; 238 } 239 240 if (ip->flags & INFTL_BDTL) 241 break; 242 } 243 244 if (i >= 4) { 245 printk(KERN_WARNING "INFTL: Media Header Partition " 246 "sanity check failed:\n No partition " 247 "marked as Disk Partition\n"); 248 return -1; 249 } 250 251 inftl->nb_boot_blocks = ip->firstUnit; 252 inftl->numvunits = ip->virtualUnits; 253 if (inftl->numvunits > (inftl->nb_blocks - 254 inftl->nb_boot_blocks - 2)) { 255 printk(KERN_WARNING "INFTL: Media Header sanity check " 256 "failed:\n numvunits (%d) > nb_blocks " 257 "(%d) - nb_boot_blocks(%d) - 2\n", 258 inftl->numvunits, inftl->nb_blocks, 259 inftl->nb_boot_blocks); 260 return -1; 261 } 262 263 inftl->mbd.size = inftl->numvunits * 264 (inftl->EraseSize / SECTORSIZE); 265 266 /* 267 * Block count is set to last used EUN (we won't need to keep 268 * any meta-data past that point). 269 */ 270 inftl->firstEUN = ip->firstUnit; 271 inftl->lastEUN = ip->lastUnit; 272 inftl->nb_blocks = ip->lastUnit + 1; 273 274 /* Memory alloc */ 275 inftl->PUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); 276 if (!inftl->PUtable) { 277 printk(KERN_WARNING "INFTL: allocation of PUtable " 278 "failed (%zd bytes)\n", 279 inftl->nb_blocks * sizeof(u16)); 280 return -ENOMEM; 281 } 282 283 inftl->VUtable = kmalloc(inftl->nb_blocks * sizeof(u16), GFP_KERNEL); 284 if (!inftl->VUtable) { 285 kfree(inftl->PUtable); 286 printk(KERN_WARNING "INFTL: allocation of VUtable " 287 "failed (%zd bytes)\n", 288 inftl->nb_blocks * sizeof(u16)); 289 return -ENOMEM; 290 } 291 292 /* Mark the blocks before INFTL MediaHeader as reserved */ 293 for (i = 0; i < inftl->nb_boot_blocks; i++) 294 inftl->PUtable[i] = BLOCK_RESERVED; 295 /* Mark all remaining blocks as potentially containing data */ 296 for (; i < inftl->nb_blocks; i++) 297 inftl->PUtable[i] = BLOCK_NOTEXPLORED; 298 299 /* Mark this boot record (NFTL MediaHeader) block as reserved */ 300 inftl->PUtable[block] = BLOCK_RESERVED; 301 302 /* Read Bad Erase Unit Table and modify PUtable[] accordingly */ 303 for (i = 0; i < inftl->nb_blocks; i++) { 304 int physblock; 305 /* If any of the physical eraseblocks are bad, don't 306 use the unit. */ 307 for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { 308 if (mtd_block_isbad(inftl->mbd.mtd, 309 i * inftl->EraseSize + physblock)) 310 inftl->PUtable[i] = BLOCK_RESERVED; 311 } 312 } 313 314 inftl->MediaUnit = block; 315 return 0; 316 } 317 318 /* Not found. */ 319 return -1; 320 } 321 322 static int memcmpb(void *a, int c, int n) 323 { 324 int i; 325 for (i = 0; i < n; i++) { 326 if (c != ((unsigned char *)a)[i]) 327 return 1; 328 } 329 return 0; 330 } 331 332 /* 333 * check_free_sector: check if a free sector is actually FREE, 334 * i.e. All 0xff in data and oob area. 335 */ 336 static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, 337 int len, int check_oob) 338 { 339 u8 buf[SECTORSIZE + inftl->mbd.mtd->oobsize]; 340 struct mtd_info *mtd = inftl->mbd.mtd; 341 size_t retlen; 342 int i; 343 344 for (i = 0; i < len; i += SECTORSIZE) { 345 if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) 346 return -1; 347 if (memcmpb(buf, 0xff, SECTORSIZE) != 0) 348 return -1; 349 350 if (check_oob) { 351 if(inftl_read_oob(mtd, address, mtd->oobsize, 352 &retlen, &buf[SECTORSIZE]) < 0) 353 return -1; 354 if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) 355 return -1; 356 } 357 address += SECTORSIZE; 358 } 359 360 return 0; 361 } 362 363 /* 364 * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase 365 * Unit and Update INFTL metadata. Each erase operation is 366 * checked with check_free_sectors. 367 * 368 * Return: 0 when succeed, -1 on error. 369 * 370 * ToDo: 1. Is it necessary to check_free_sector after erasing ?? 371 */ 372 int INFTL_formatblock(struct INFTLrecord *inftl, int block) 373 { 374 size_t retlen; 375 struct inftl_unittail uci; 376 struct erase_info *instr = &inftl->instr; 377 struct mtd_info *mtd = inftl->mbd.mtd; 378 int physblock; 379 380 pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block); 381 382 memset(instr, 0, sizeof(struct erase_info)); 383 384 /* FIXME: Shouldn't we be setting the 'discarded' flag to zero 385 _first_? */ 386 387 /* Use async erase interface, test return code */ 388 instr->mtd = inftl->mbd.mtd; 389 instr->addr = block * inftl->EraseSize; 390 instr->len = inftl->mbd.mtd->erasesize; 391 /* Erase one physical eraseblock at a time, even though the NAND api 392 allows us to group them. This way we if we have a failure, we can 393 mark only the failed block in the bbt. */ 394 for (physblock = 0; physblock < inftl->EraseSize; 395 physblock += instr->len, instr->addr += instr->len) { 396 mtd_erase(inftl->mbd.mtd, instr); 397 398 if (instr->state == MTD_ERASE_FAILED) { 399 printk(KERN_WARNING "INFTL: error while formatting block %d\n", 400 block); 401 goto fail; 402 } 403 404 /* 405 * Check the "freeness" of Erase Unit before updating metadata. 406 * FixMe: is this check really necessary? Since we have check 407 * the return code after the erase operation. 408 */ 409 if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0) 410 goto fail; 411 } 412 413 uci.EraseMark = cpu_to_le16(ERASE_MARK); 414 uci.EraseMark1 = cpu_to_le16(ERASE_MARK); 415 uci.Reserved[0] = 0; 416 uci.Reserved[1] = 0; 417 uci.Reserved[2] = 0; 418 uci.Reserved[3] = 0; 419 instr->addr = block * inftl->EraseSize + SECTORSIZE * 2; 420 if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0) 421 goto fail; 422 return 0; 423 fail: 424 /* could not format, update the bad block table (caller is responsible 425 for setting the PUtable to BLOCK_RESERVED on failure) */ 426 mtd_block_markbad(inftl->mbd.mtd, instr->addr); 427 return -1; 428 } 429 430 /* 431 * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase 432 * Units in a Virtual Unit Chain, i.e. all the units are disconnected. 433 * 434 * Since the chain is invalid then we will have to erase it from its 435 * head (normally for INFTL we go from the oldest). But if it has a 436 * loop then there is no oldest... 437 */ 438 static void format_chain(struct INFTLrecord *inftl, unsigned int first_block) 439 { 440 unsigned int block = first_block, block1; 441 442 printk(KERN_WARNING "INFTL: formatting chain at block %d\n", 443 first_block); 444 445 for (;;) { 446 block1 = inftl->PUtable[block]; 447 448 printk(KERN_WARNING "INFTL: formatting block %d\n", block); 449 if (INFTL_formatblock(inftl, block) < 0) { 450 /* 451 * Cannot format !!!! Mark it as Bad Unit, 452 */ 453 inftl->PUtable[block] = BLOCK_RESERVED; 454 } else { 455 inftl->PUtable[block] = BLOCK_FREE; 456 } 457 458 /* Goto next block on the chain */ 459 block = block1; 460 461 if (block == BLOCK_NIL || block >= inftl->lastEUN) 462 break; 463 } 464 } 465 466 void INFTL_dumptables(struct INFTLrecord *s) 467 { 468 int i; 469 470 pr_debug("-------------------------------------------" 471 "----------------------------------\n"); 472 473 pr_debug("VUtable[%d] ->", s->nb_blocks); 474 for (i = 0; i < s->nb_blocks; i++) { 475 if ((i % 8) == 0) 476 pr_debug("\n%04x: ", i); 477 pr_debug("%04x ", s->VUtable[i]); 478 } 479 480 pr_debug("\n-------------------------------------------" 481 "----------------------------------\n"); 482 483 pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); 484 for (i = 0; i <= s->lastEUN; i++) { 485 if ((i % 8) == 0) 486 pr_debug("\n%04x: ", i); 487 pr_debug("%04x ", s->PUtable[i]); 488 } 489 490 pr_debug("\n-------------------------------------------" 491 "----------------------------------\n"); 492 493 pr_debug("INFTL ->\n" 494 " EraseSize = %d\n" 495 " h/s/c = %d/%d/%d\n" 496 " numvunits = %d\n" 497 " firstEUN = %d\n" 498 " lastEUN = %d\n" 499 " numfreeEUNs = %d\n" 500 " LastFreeEUN = %d\n" 501 " nb_blocks = %d\n" 502 " nb_boot_blocks = %d", 503 s->EraseSize, s->heads, s->sectors, s->cylinders, 504 s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, 505 s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); 506 507 pr_debug("\n-------------------------------------------" 508 "----------------------------------\n"); 509 } 510 511 void INFTL_dumpVUchains(struct INFTLrecord *s) 512 { 513 int logical, block, i; 514 515 pr_debug("-------------------------------------------" 516 "----------------------------------\n"); 517 518 pr_debug("INFTL Virtual Unit Chains:\n"); 519 for (logical = 0; logical < s->nb_blocks; logical++) { 520 block = s->VUtable[logical]; 521 if (block >= s->nb_blocks) 522 continue; 523 pr_debug(" LOGICAL %d --> %d ", logical, block); 524 for (i = 0; i < s->nb_blocks; i++) { 525 if (s->PUtable[block] == BLOCK_NIL) 526 break; 527 block = s->PUtable[block]; 528 pr_debug("%d ", block); 529 } 530 pr_debug("\n"); 531 } 532 533 pr_debug("-------------------------------------------" 534 "----------------------------------\n"); 535 } 536 537 int INFTL_mount(struct INFTLrecord *s) 538 { 539 struct mtd_info *mtd = s->mbd.mtd; 540 unsigned int block, first_block, prev_block, last_block; 541 unsigned int first_logical_block, logical_block, erase_mark; 542 int chain_length, do_format_chain; 543 struct inftl_unithead1 h0; 544 struct inftl_unittail h1; 545 size_t retlen; 546 int i; 547 u8 *ANACtable, ANAC; 548 549 pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s); 550 551 /* Search for INFTL MediaHeader and Spare INFTL Media Header */ 552 if (find_boot_record(s) < 0) { 553 printk(KERN_WARNING "INFTL: could not find valid boot record?\n"); 554 return -ENXIO; 555 } 556 557 /* Init the logical to physical table */ 558 for (i = 0; i < s->nb_blocks; i++) 559 s->VUtable[i] = BLOCK_NIL; 560 561 logical_block = block = BLOCK_NIL; 562 563 /* Temporary buffer to store ANAC numbers. */ 564 ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL); 565 if (!ANACtable) { 566 printk(KERN_WARNING "INFTL: allocation of ANACtable " 567 "failed (%zd bytes)\n", 568 s->nb_blocks * sizeof(u8)); 569 return -ENOMEM; 570 } 571 572 /* 573 * First pass is to explore each physical unit, and construct the 574 * virtual chains that exist (newest physical unit goes into VUtable). 575 * Any block that is in any way invalid will be left in the 576 * NOTEXPLORED state. Then at the end we will try to format it and 577 * mark it as free. 578 */ 579 pr_debug("INFTL: pass 1, explore each unit\n"); 580 for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { 581 if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) 582 continue; 583 584 do_format_chain = 0; 585 first_logical_block = BLOCK_NIL; 586 last_block = BLOCK_NIL; 587 block = first_block; 588 589 for (chain_length = 0; ; chain_length++) { 590 591 if ((chain_length == 0) && 592 (s->PUtable[block] != BLOCK_NOTEXPLORED)) { 593 /* Nothing to do here, onto next block */ 594 break; 595 } 596 597 if (inftl_read_oob(mtd, block * s->EraseSize + 8, 598 8, &retlen, (char *)&h0) < 0 || 599 inftl_read_oob(mtd, block * s->EraseSize + 600 2 * SECTORSIZE + 8, 8, &retlen, 601 (char *)&h1) < 0) { 602 /* Should never happen? */ 603 do_format_chain++; 604 break; 605 } 606 607 logical_block = le16_to_cpu(h0.virtualUnitNo); 608 prev_block = le16_to_cpu(h0.prevUnitNo); 609 erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1)); 610 ANACtable[block] = h0.ANAC; 611 612 /* Previous block is relative to start of Partition */ 613 if (prev_block < s->nb_blocks) 614 prev_block += s->firstEUN; 615 616 /* Already explored partial chain? */ 617 if (s->PUtable[block] != BLOCK_NOTEXPLORED) { 618 /* Check if chain for this logical */ 619 if (logical_block == first_logical_block) { 620 if (last_block != BLOCK_NIL) 621 s->PUtable[last_block] = block; 622 } 623 break; 624 } 625 626 /* Check for invalid block */ 627 if (erase_mark != ERASE_MARK) { 628 printk(KERN_WARNING "INFTL: corrupt block %d " 629 "in chain %d, chain length %d, erase " 630 "mark 0x%x?\n", block, first_block, 631 chain_length, erase_mark); 632 /* 633 * Assume end of chain, probably incomplete 634 * fold/erase... 635 */ 636 if (chain_length == 0) 637 do_format_chain++; 638 break; 639 } 640 641 /* Check for it being free already then... */ 642 if ((logical_block == BLOCK_FREE) || 643 (logical_block == BLOCK_NIL)) { 644 s->PUtable[block] = BLOCK_FREE; 645 break; 646 } 647 648 /* Sanity checks on block numbers */ 649 if ((logical_block >= s->nb_blocks) || 650 ((prev_block >= s->nb_blocks) && 651 (prev_block != BLOCK_NIL))) { 652 if (chain_length > 0) { 653 printk(KERN_WARNING "INFTL: corrupt " 654 "block %d in chain %d?\n", 655 block, first_block); 656 do_format_chain++; 657 } 658 break; 659 } 660 661 if (first_logical_block == BLOCK_NIL) { 662 first_logical_block = logical_block; 663 } else { 664 if (first_logical_block != logical_block) { 665 /* Normal for folded chain... */ 666 break; 667 } 668 } 669 670 /* 671 * Current block is valid, so if we followed a virtual 672 * chain to get here then we can set the previous 673 * block pointer in our PUtable now. Then move onto 674 * the previous block in the chain. 675 */ 676 s->PUtable[block] = BLOCK_NIL; 677 if (last_block != BLOCK_NIL) 678 s->PUtable[last_block] = block; 679 last_block = block; 680 block = prev_block; 681 682 /* Check for end of chain */ 683 if (block == BLOCK_NIL) 684 break; 685 686 /* Validate next block before following it... */ 687 if (block > s->lastEUN) { 688 printk(KERN_WARNING "INFTL: invalid previous " 689 "block %d in chain %d?\n", block, 690 first_block); 691 do_format_chain++; 692 break; 693 } 694 } 695 696 if (do_format_chain) { 697 format_chain(s, first_block); 698 continue; 699 } 700 701 /* 702 * Looks like a valid chain then. It may not really be the 703 * newest block in the chain, but it is the newest we have 704 * found so far. We might update it in later iterations of 705 * this loop if we find something newer. 706 */ 707 s->VUtable[first_logical_block] = first_block; 708 logical_block = BLOCK_NIL; 709 } 710 711 INFTL_dumptables(s); 712 713 /* 714 * Second pass, check for infinite loops in chains. These are 715 * possible because we don't update the previous pointers when 716 * we fold chains. No big deal, just fix them up in PUtable. 717 */ 718 pr_debug("INFTL: pass 2, validate virtual chains\n"); 719 for (logical_block = 0; logical_block < s->numvunits; logical_block++) { 720 block = s->VUtable[logical_block]; 721 last_block = BLOCK_NIL; 722 723 /* Check for free/reserved/nil */ 724 if (block >= BLOCK_RESERVED) 725 continue; 726 727 ANAC = ANACtable[block]; 728 for (i = 0; i < s->numvunits; i++) { 729 if (s->PUtable[block] == BLOCK_NIL) 730 break; 731 if (s->PUtable[block] > s->lastEUN) { 732 printk(KERN_WARNING "INFTL: invalid prev %d, " 733 "in virtual chain %d\n", 734 s->PUtable[block], logical_block); 735 s->PUtable[block] = BLOCK_NIL; 736 737 } 738 if (ANACtable[block] != ANAC) { 739 /* 740 * Chain must point back to itself. This is ok, 741 * but we will need adjust the tables with this 742 * newest block and oldest block. 743 */ 744 s->VUtable[logical_block] = block; 745 s->PUtable[last_block] = BLOCK_NIL; 746 break; 747 } 748 749 ANAC--; 750 last_block = block; 751 block = s->PUtable[block]; 752 } 753 754 if (i >= s->nb_blocks) { 755 /* 756 * Uhoo, infinite chain with valid ANACS! 757 * Format whole chain... 758 */ 759 format_chain(s, first_block); 760 } 761 } 762 763 INFTL_dumptables(s); 764 INFTL_dumpVUchains(s); 765 766 /* 767 * Third pass, format unreferenced blocks and init free block count. 768 */ 769 s->numfreeEUNs = 0; 770 s->LastFreeEUN = BLOCK_NIL; 771 772 pr_debug("INFTL: pass 3, format unused blocks\n"); 773 for (block = s->firstEUN; block <= s->lastEUN; block++) { 774 if (s->PUtable[block] == BLOCK_NOTEXPLORED) { 775 printk("INFTL: unreferenced block %d, formatting it\n", 776 block); 777 if (INFTL_formatblock(s, block) < 0) 778 s->PUtable[block] = BLOCK_RESERVED; 779 else 780 s->PUtable[block] = BLOCK_FREE; 781 } 782 if (s->PUtable[block] == BLOCK_FREE) { 783 s->numfreeEUNs++; 784 if (s->LastFreeEUN == BLOCK_NIL) 785 s->LastFreeEUN = block; 786 } 787 } 788 789 kfree(ANACtable); 790 return 0; 791 } 792