xref: /linux/drivers/mtd/ftl.c (revision 5e8c0fb6a95728b852d56c0a9244425d474670c0)
1 /* This version ported to the Linux-MTD system by dwmw2@infradead.org
2  *
3  * Fixes: Arnaldo Carvalho de Melo <acme@conectiva.com.br>
4  * - fixes some leaks on failure in build_maps and ftl_notify_add, cleanups
5  *
6  * Based on:
7  */
8 /*======================================================================
9 
10     A Flash Translation Layer memory card driver
11 
12     This driver implements a disk-like block device driver with an
13     apparent block size of 512 bytes for flash memory cards.
14 
15     ftl_cs.c 1.62 2000/02/01 00:59:04
16 
17     The contents of this file are subject to the Mozilla Public
18     License Version 1.1 (the "License"); you may not use this file
19     except in compliance with the License. You may obtain a copy of
20     the License at http://www.mozilla.org/MPL/
21 
22     Software distributed under the License is distributed on an "AS
23     IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
24     implied. See the License for the specific language governing
25     rights and limitations under the License.
26 
27     The initial developer of the original code is David A. Hinds
28     <dahinds@users.sourceforge.net>.  Portions created by David A. Hinds
29     are Copyright © 1999 David A. Hinds.  All Rights Reserved.
30 
31     Alternatively, the contents of this file may be used under the
32     terms of the GNU General Public License version 2 (the "GPL"), in
33     which case the provisions of the GPL are applicable instead of the
34     above.  If you wish to allow the use of your version of this file
35     only under the terms of the GPL and not to allow others to use
36     your version of this file under the MPL, indicate your decision
37     by deleting the provisions above and replace them with the notice
38     and other provisions required by the GPL.  If you do not delete
39     the provisions above, a recipient may use your version of this
40     file under either the MPL or the GPL.
41 
42     LEGAL NOTE: The FTL format is patented by M-Systems.  They have
43     granted a license for its use with PCMCIA devices:
44 
45      "M-Systems grants a royalty-free, non-exclusive license under
46       any presently existing M-Systems intellectual property rights
47       necessary for the design and development of FTL-compatible
48       drivers, file systems and utilities using the data formats with
49       PCMCIA PC Cards as described in the PCMCIA Flash Translation
50       Layer (FTL) Specification."
51 
52     Use of the FTL format for non-PCMCIA applications may be an
53     infringement of these patents.  For additional information,
54     contact M-Systems directly. M-Systems since acquired by Sandisk.
55 
56 ======================================================================*/
57 #include <linux/mtd/blktrans.h>
58 #include <linux/module.h>
59 #include <linux/mtd/mtd.h>
60 /*#define PSYCHO_DEBUG */
61 
62 #include <linux/kernel.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/major.h>
68 #include <linux/fs.h>
69 #include <linux/init.h>
70 #include <linux/hdreg.h>
71 #include <linux/vmalloc.h>
72 #include <linux/blkpg.h>
73 #include <asm/uaccess.h>
74 
75 #include <linux/mtd/ftl.h>
76 
77 /*====================================================================*/
78 
79 /* Parameters that can be set with 'insmod' */
80 static int shuffle_freq = 50;
81 module_param(shuffle_freq, int, 0);
82 
83 /*====================================================================*/
84 
85 /* Major device # for FTL device */
86 #ifndef FTL_MAJOR
87 #define FTL_MAJOR	44
88 #endif
89 
90 
91 /*====================================================================*/
92 
93 /* Maximum number of separate memory devices we'll allow */
94 #define MAX_DEV		4
95 
96 /* Maximum number of regions per device */
97 #define MAX_REGION	4
98 
99 /* Maximum number of partitions in an FTL region */
100 #define PART_BITS	4
101 
102 /* Maximum number of outstanding erase requests per socket */
103 #define MAX_ERASE	8
104 
105 /* Sector size -- shouldn't need to change */
106 #define SECTOR_SIZE	512
107 
108 
109 /* Each memory region corresponds to a minor device */
110 typedef struct partition_t {
111     struct mtd_blktrans_dev mbd;
112     uint32_t		state;
113     uint32_t		*VirtualBlockMap;
114     uint32_t		FreeTotal;
115     struct eun_info_t {
116 	uint32_t		Offset;
117 	uint32_t		EraseCount;
118 	uint32_t		Free;
119 	uint32_t		Deleted;
120     } *EUNInfo;
121     struct xfer_info_t {
122 	uint32_t		Offset;
123 	uint32_t		EraseCount;
124 	uint16_t		state;
125     } *XferInfo;
126     uint16_t		bam_index;
127     uint32_t		*bam_cache;
128     uint16_t		DataUnits;
129     uint32_t		BlocksPerUnit;
130     erase_unit_header_t	header;
131 } partition_t;
132 
133 /* Partition state flags */
134 #define FTL_FORMATTED	0x01
135 
136 /* Transfer unit states */
137 #define XFER_UNKNOWN	0x00
138 #define XFER_ERASING	0x01
139 #define XFER_ERASED	0x02
140 #define XFER_PREPARED	0x03
141 #define XFER_FAILED	0x04
142 
143 /*====================================================================*/
144 
145 
146 static void ftl_erase_callback(struct erase_info *done);
147 
148 
149 /*======================================================================
150 
151     Scan_header() checks to see if a memory region contains an FTL
152     partition.  build_maps() reads all the erase unit headers, builds
153     the erase unit map, and then builds the virtual page map.
154 
155 ======================================================================*/
156 
157 static int scan_header(partition_t *part)
158 {
159     erase_unit_header_t header;
160     loff_t offset, max_offset;
161     size_t ret;
162     int err;
163     part->header.FormattedSize = 0;
164     max_offset = (0x100000<part->mbd.mtd->size)?0x100000:part->mbd.mtd->size;
165     /* Search first megabyte for a valid FTL header */
166     for (offset = 0;
167 	 (offset + sizeof(header)) < max_offset;
168 	 offset += part->mbd.mtd->erasesize ? : 0x2000) {
169 
170 	err = mtd_read(part->mbd.mtd, offset, sizeof(header), &ret,
171                        (unsigned char *)&header);
172 
173 	if (err)
174 	    return err;
175 
176 	if (strcmp(header.DataOrgTuple+3, "FTL100") == 0) break;
177     }
178 
179     if (offset == max_offset) {
180 	printk(KERN_NOTICE "ftl_cs: FTL header not found.\n");
181 	return -ENOENT;
182     }
183     if (header.BlockSize != 9 ||
184 	(header.EraseUnitSize < 10) || (header.EraseUnitSize > 31) ||
185 	(header.NumTransferUnits >= le16_to_cpu(header.NumEraseUnits))) {
186 	printk(KERN_NOTICE "ftl_cs: FTL header corrupt!\n");
187 	return -1;
188     }
189     if ((1 << header.EraseUnitSize) != part->mbd.mtd->erasesize) {
190 	printk(KERN_NOTICE "ftl: FTL EraseUnitSize %x != MTD erasesize %x\n",
191 	       1 << header.EraseUnitSize,part->mbd.mtd->erasesize);
192 	return -1;
193     }
194     part->header = header;
195     return 0;
196 }
197 
198 static int build_maps(partition_t *part)
199 {
200     erase_unit_header_t header;
201     uint16_t xvalid, xtrans, i;
202     unsigned blocks, j;
203     int hdr_ok, ret = -1;
204     ssize_t retval;
205     loff_t offset;
206 
207     /* Set up erase unit maps */
208     part->DataUnits = le16_to_cpu(part->header.NumEraseUnits) -
209 	part->header.NumTransferUnits;
210     part->EUNInfo = kmalloc(part->DataUnits * sizeof(struct eun_info_t),
211 			    GFP_KERNEL);
212     if (!part->EUNInfo)
213 	    goto out;
214     for (i = 0; i < part->DataUnits; i++)
215 	part->EUNInfo[i].Offset = 0xffffffff;
216     part->XferInfo =
217 	kmalloc(part->header.NumTransferUnits * sizeof(struct xfer_info_t),
218 		GFP_KERNEL);
219     if (!part->XferInfo)
220 	    goto out_EUNInfo;
221 
222     xvalid = xtrans = 0;
223     for (i = 0; i < le16_to_cpu(part->header.NumEraseUnits); i++) {
224 	offset = ((i + le16_to_cpu(part->header.FirstPhysicalEUN))
225 		      << part->header.EraseUnitSize);
226 	ret = mtd_read(part->mbd.mtd, offset, sizeof(header), &retval,
227                        (unsigned char *)&header);
228 
229 	if (ret)
230 	    goto out_XferInfo;
231 
232 	ret = -1;
233 	/* Is this a transfer partition? */
234 	hdr_ok = (strcmp(header.DataOrgTuple+3, "FTL100") == 0);
235 	if (hdr_ok && (le16_to_cpu(header.LogicalEUN) < part->DataUnits) &&
236 	    (part->EUNInfo[le16_to_cpu(header.LogicalEUN)].Offset == 0xffffffff)) {
237 	    part->EUNInfo[le16_to_cpu(header.LogicalEUN)].Offset = offset;
238 	    part->EUNInfo[le16_to_cpu(header.LogicalEUN)].EraseCount =
239 		le32_to_cpu(header.EraseCount);
240 	    xvalid++;
241 	} else {
242 	    if (xtrans == part->header.NumTransferUnits) {
243 		printk(KERN_NOTICE "ftl_cs: format error: too many "
244 		       "transfer units!\n");
245 		goto out_XferInfo;
246 	    }
247 	    if (hdr_ok && (le16_to_cpu(header.LogicalEUN) == 0xffff)) {
248 		part->XferInfo[xtrans].state = XFER_PREPARED;
249 		part->XferInfo[xtrans].EraseCount = le32_to_cpu(header.EraseCount);
250 	    } else {
251 		part->XferInfo[xtrans].state = XFER_UNKNOWN;
252 		/* Pick anything reasonable for the erase count */
253 		part->XferInfo[xtrans].EraseCount =
254 		    le32_to_cpu(part->header.EraseCount);
255 	    }
256 	    part->XferInfo[xtrans].Offset = offset;
257 	    xtrans++;
258 	}
259     }
260     /* Check for format trouble */
261     header = part->header;
262     if ((xtrans != header.NumTransferUnits) ||
263 	(xvalid+xtrans != le16_to_cpu(header.NumEraseUnits))) {
264 	printk(KERN_NOTICE "ftl_cs: format error: erase units "
265 	       "don't add up!\n");
266 	goto out_XferInfo;
267     }
268 
269     /* Set up virtual page map */
270     blocks = le32_to_cpu(header.FormattedSize) >> header.BlockSize;
271     part->VirtualBlockMap = vmalloc(blocks * sizeof(uint32_t));
272     if (!part->VirtualBlockMap)
273 	    goto out_XferInfo;
274 
275     memset(part->VirtualBlockMap, 0xff, blocks * sizeof(uint32_t));
276     part->BlocksPerUnit = (1 << header.EraseUnitSize) >> header.BlockSize;
277 
278     part->bam_cache = kmalloc(part->BlocksPerUnit * sizeof(uint32_t),
279 			      GFP_KERNEL);
280     if (!part->bam_cache)
281 	    goto out_VirtualBlockMap;
282 
283     part->bam_index = 0xffff;
284     part->FreeTotal = 0;
285 
286     for (i = 0; i < part->DataUnits; i++) {
287 	part->EUNInfo[i].Free = 0;
288 	part->EUNInfo[i].Deleted = 0;
289 	offset = part->EUNInfo[i].Offset + le32_to_cpu(header.BAMOffset);
290 
291 	ret = mtd_read(part->mbd.mtd, offset,
292                        part->BlocksPerUnit * sizeof(uint32_t), &retval,
293                        (unsigned char *)part->bam_cache);
294 
295 	if (ret)
296 		goto out_bam_cache;
297 
298 	for (j = 0; j < part->BlocksPerUnit; j++) {
299 	    if (BLOCK_FREE(le32_to_cpu(part->bam_cache[j]))) {
300 		part->EUNInfo[i].Free++;
301 		part->FreeTotal++;
302 	    } else if ((BLOCK_TYPE(le32_to_cpu(part->bam_cache[j])) == BLOCK_DATA) &&
303 		     (BLOCK_NUMBER(le32_to_cpu(part->bam_cache[j])) < blocks))
304 		part->VirtualBlockMap[BLOCK_NUMBER(le32_to_cpu(part->bam_cache[j]))] =
305 		    (i << header.EraseUnitSize) + (j << header.BlockSize);
306 	    else if (BLOCK_DELETED(le32_to_cpu(part->bam_cache[j])))
307 		part->EUNInfo[i].Deleted++;
308 	}
309     }
310 
311     ret = 0;
312     goto out;
313 
314 out_bam_cache:
315     kfree(part->bam_cache);
316 out_VirtualBlockMap:
317     vfree(part->VirtualBlockMap);
318 out_XferInfo:
319     kfree(part->XferInfo);
320 out_EUNInfo:
321     kfree(part->EUNInfo);
322 out:
323     return ret;
324 } /* build_maps */
325 
326 /*======================================================================
327 
328     Erase_xfer() schedules an asynchronous erase operation for a
329     transfer unit.
330 
331 ======================================================================*/
332 
333 static int erase_xfer(partition_t *part,
334 		      uint16_t xfernum)
335 {
336     int ret;
337     struct xfer_info_t *xfer;
338     struct erase_info *erase;
339 
340     xfer = &part->XferInfo[xfernum];
341     pr_debug("ftl_cs: erasing xfer unit at 0x%x\n", xfer->Offset);
342     xfer->state = XFER_ERASING;
343 
344     /* Is there a free erase slot? Always in MTD. */
345 
346 
347     erase=kmalloc(sizeof(struct erase_info), GFP_KERNEL);
348     if (!erase)
349             return -ENOMEM;
350 
351     erase->mtd = part->mbd.mtd;
352     erase->callback = ftl_erase_callback;
353     erase->addr = xfer->Offset;
354     erase->len = 1 << part->header.EraseUnitSize;
355     erase->priv = (u_long)part;
356 
357     ret = mtd_erase(part->mbd.mtd, erase);
358 
359     if (!ret)
360 	    xfer->EraseCount++;
361     else
362 	    kfree(erase);
363 
364     return ret;
365 } /* erase_xfer */
366 
367 /*======================================================================
368 
369     Prepare_xfer() takes a freshly erased transfer unit and gives
370     it an appropriate header.
371 
372 ======================================================================*/
373 
374 static void ftl_erase_callback(struct erase_info *erase)
375 {
376     partition_t *part;
377     struct xfer_info_t *xfer;
378     int i;
379 
380     /* Look up the transfer unit */
381     part = (partition_t *)(erase->priv);
382 
383     for (i = 0; i < part->header.NumTransferUnits; i++)
384 	if (part->XferInfo[i].Offset == erase->addr) break;
385 
386     if (i == part->header.NumTransferUnits) {
387 	printk(KERN_NOTICE "ftl_cs: internal error: "
388 	       "erase lookup failed!\n");
389 	return;
390     }
391 
392     xfer = &part->XferInfo[i];
393     if (erase->state == MTD_ERASE_DONE)
394 	xfer->state = XFER_ERASED;
395     else {
396 	xfer->state = XFER_FAILED;
397 	printk(KERN_NOTICE "ftl_cs: erase failed: state = %d\n",
398 	       erase->state);
399     }
400 
401     kfree(erase);
402 
403 } /* ftl_erase_callback */
404 
405 static int prepare_xfer(partition_t *part, int i)
406 {
407     erase_unit_header_t header;
408     struct xfer_info_t *xfer;
409     int nbam, ret;
410     uint32_t ctl;
411     ssize_t retlen;
412     loff_t offset;
413 
414     xfer = &part->XferInfo[i];
415     xfer->state = XFER_FAILED;
416 
417     pr_debug("ftl_cs: preparing xfer unit at 0x%x\n", xfer->Offset);
418 
419     /* Write the transfer unit header */
420     header = part->header;
421     header.LogicalEUN = cpu_to_le16(0xffff);
422     header.EraseCount = cpu_to_le32(xfer->EraseCount);
423 
424     ret = mtd_write(part->mbd.mtd, xfer->Offset, sizeof(header), &retlen,
425                     (u_char *)&header);
426 
427     if (ret) {
428 	return ret;
429     }
430 
431     /* Write the BAM stub */
432     nbam = (part->BlocksPerUnit * sizeof(uint32_t) +
433 	    le32_to_cpu(part->header.BAMOffset) + SECTOR_SIZE - 1) / SECTOR_SIZE;
434 
435     offset = xfer->Offset + le32_to_cpu(part->header.BAMOffset);
436     ctl = cpu_to_le32(BLOCK_CONTROL);
437 
438     for (i = 0; i < nbam; i++, offset += sizeof(uint32_t)) {
439 
440 	ret = mtd_write(part->mbd.mtd, offset, sizeof(uint32_t), &retlen,
441                         (u_char *)&ctl);
442 
443 	if (ret)
444 	    return ret;
445     }
446     xfer->state = XFER_PREPARED;
447     return 0;
448 
449 } /* prepare_xfer */
450 
451 /*======================================================================
452 
453     Copy_erase_unit() takes a full erase block and a transfer unit,
454     copies everything to the transfer unit, then swaps the block
455     pointers.
456 
457     All data blocks are copied to the corresponding blocks in the
458     target unit, so the virtual block map does not need to be
459     updated.
460 
461 ======================================================================*/
462 
463 static int copy_erase_unit(partition_t *part, uint16_t srcunit,
464 			   uint16_t xferunit)
465 {
466     u_char buf[SECTOR_SIZE];
467     struct eun_info_t *eun;
468     struct xfer_info_t *xfer;
469     uint32_t src, dest, free, i;
470     uint16_t unit;
471     int ret;
472     ssize_t retlen;
473     loff_t offset;
474     uint16_t srcunitswap = cpu_to_le16(srcunit);
475 
476     eun = &part->EUNInfo[srcunit];
477     xfer = &part->XferInfo[xferunit];
478     pr_debug("ftl_cs: copying block 0x%x to 0x%x\n",
479 	  eun->Offset, xfer->Offset);
480 
481 
482     /* Read current BAM */
483     if (part->bam_index != srcunit) {
484 
485 	offset = eun->Offset + le32_to_cpu(part->header.BAMOffset);
486 
487 	ret = mtd_read(part->mbd.mtd, offset,
488                        part->BlocksPerUnit * sizeof(uint32_t), &retlen,
489                        (u_char *)(part->bam_cache));
490 
491 	/* mark the cache bad, in case we get an error later */
492 	part->bam_index = 0xffff;
493 
494 	if (ret) {
495 	    printk( KERN_WARNING "ftl: Failed to read BAM cache in copy_erase_unit()!\n");
496 	    return ret;
497 	}
498     }
499 
500     /* Write the LogicalEUN for the transfer unit */
501     xfer->state = XFER_UNKNOWN;
502     offset = xfer->Offset + 20; /* Bad! */
503     unit = cpu_to_le16(0x7fff);
504 
505     ret = mtd_write(part->mbd.mtd, offset, sizeof(uint16_t), &retlen,
506                     (u_char *)&unit);
507 
508     if (ret) {
509 	printk( KERN_WARNING "ftl: Failed to write back to BAM cache in copy_erase_unit()!\n");
510 	return ret;
511     }
512 
513     /* Copy all data blocks from source unit to transfer unit */
514     src = eun->Offset; dest = xfer->Offset;
515 
516     free = 0;
517     ret = 0;
518     for (i = 0; i < part->BlocksPerUnit; i++) {
519 	switch (BLOCK_TYPE(le32_to_cpu(part->bam_cache[i]))) {
520 	case BLOCK_CONTROL:
521 	    /* This gets updated later */
522 	    break;
523 	case BLOCK_DATA:
524 	case BLOCK_REPLACEMENT:
525 	    ret = mtd_read(part->mbd.mtd, src, SECTOR_SIZE, &retlen,
526                            (u_char *)buf);
527 	    if (ret) {
528 		printk(KERN_WARNING "ftl: Error reading old xfer unit in copy_erase_unit\n");
529 		return ret;
530             }
531 
532 
533 	    ret = mtd_write(part->mbd.mtd, dest, SECTOR_SIZE, &retlen,
534                             (u_char *)buf);
535 	    if (ret)  {
536 		printk(KERN_WARNING "ftl: Error writing new xfer unit in copy_erase_unit\n");
537 		return ret;
538             }
539 
540 	    break;
541 	default:
542 	    /* All other blocks must be free */
543 	    part->bam_cache[i] = cpu_to_le32(0xffffffff);
544 	    free++;
545 	    break;
546 	}
547 	src += SECTOR_SIZE;
548 	dest += SECTOR_SIZE;
549     }
550 
551     /* Write the BAM to the transfer unit */
552     ret = mtd_write(part->mbd.mtd,
553                     xfer->Offset + le32_to_cpu(part->header.BAMOffset),
554                     part->BlocksPerUnit * sizeof(int32_t),
555                     &retlen,
556                     (u_char *)part->bam_cache);
557     if (ret) {
558 	printk( KERN_WARNING "ftl: Error writing BAM in copy_erase_unit\n");
559 	return ret;
560     }
561 
562 
563     /* All clear? Then update the LogicalEUN again */
564     ret = mtd_write(part->mbd.mtd, xfer->Offset + 20, sizeof(uint16_t),
565                     &retlen, (u_char *)&srcunitswap);
566 
567     if (ret) {
568 	printk(KERN_WARNING "ftl: Error writing new LogicalEUN in copy_erase_unit\n");
569 	return ret;
570     }
571 
572 
573     /* Update the maps and usage stats*/
574     i = xfer->EraseCount;
575     xfer->EraseCount = eun->EraseCount;
576     eun->EraseCount = i;
577     i = xfer->Offset;
578     xfer->Offset = eun->Offset;
579     eun->Offset = i;
580     part->FreeTotal -= eun->Free;
581     part->FreeTotal += free;
582     eun->Free = free;
583     eun->Deleted = 0;
584 
585     /* Now, the cache should be valid for the new block */
586     part->bam_index = srcunit;
587 
588     return 0;
589 } /* copy_erase_unit */
590 
591 /*======================================================================
592 
593     reclaim_block() picks a full erase unit and a transfer unit and
594     then calls copy_erase_unit() to copy one to the other.  Then, it
595     schedules an erase on the expired block.
596 
597     What's a good way to decide which transfer unit and which erase
598     unit to use?  Beats me.  My way is to always pick the transfer
599     unit with the fewest erases, and usually pick the data unit with
600     the most deleted blocks.  But with a small probability, pick the
601     oldest data unit instead.  This means that we generally postpone
602     the next reclamation as long as possible, but shuffle static
603     stuff around a bit for wear leveling.
604 
605 ======================================================================*/
606 
607 static int reclaim_block(partition_t *part)
608 {
609     uint16_t i, eun, xfer;
610     uint32_t best;
611     int queued, ret;
612 
613     pr_debug("ftl_cs: reclaiming space...\n");
614     pr_debug("NumTransferUnits == %x\n", part->header.NumTransferUnits);
615     /* Pick the least erased transfer unit */
616     best = 0xffffffff; xfer = 0xffff;
617     do {
618 	queued = 0;
619 	for (i = 0; i < part->header.NumTransferUnits; i++) {
620 	    int n=0;
621 	    if (part->XferInfo[i].state == XFER_UNKNOWN) {
622 		pr_debug("XferInfo[%d].state == XFER_UNKNOWN\n",i);
623 		n=1;
624 		erase_xfer(part, i);
625 	    }
626 	    if (part->XferInfo[i].state == XFER_ERASING) {
627 		pr_debug("XferInfo[%d].state == XFER_ERASING\n",i);
628 		n=1;
629 		queued = 1;
630 	    }
631 	    else if (part->XferInfo[i].state == XFER_ERASED) {
632 		pr_debug("XferInfo[%d].state == XFER_ERASED\n",i);
633 		n=1;
634 		prepare_xfer(part, i);
635 	    }
636 	    if (part->XferInfo[i].state == XFER_PREPARED) {
637 		pr_debug("XferInfo[%d].state == XFER_PREPARED\n",i);
638 		n=1;
639 		if (part->XferInfo[i].EraseCount <= best) {
640 		    best = part->XferInfo[i].EraseCount;
641 		    xfer = i;
642 		}
643 	    }
644 		if (!n)
645 		    pr_debug("XferInfo[%d].state == %x\n",i, part->XferInfo[i].state);
646 
647 	}
648 	if (xfer == 0xffff) {
649 	    if (queued) {
650 		pr_debug("ftl_cs: waiting for transfer "
651 		      "unit to be prepared...\n");
652 		mtd_sync(part->mbd.mtd);
653 	    } else {
654 		static int ne = 0;
655 		if (++ne < 5)
656 		    printk(KERN_NOTICE "ftl_cs: reclaim failed: no "
657 			   "suitable transfer units!\n");
658 		else
659 		    pr_debug("ftl_cs: reclaim failed: no "
660 			  "suitable transfer units!\n");
661 
662 		return -EIO;
663 	    }
664 	}
665     } while (xfer == 0xffff);
666 
667     eun = 0;
668     if ((jiffies % shuffle_freq) == 0) {
669 	pr_debug("ftl_cs: recycling freshest block...\n");
670 	best = 0xffffffff;
671 	for (i = 0; i < part->DataUnits; i++)
672 	    if (part->EUNInfo[i].EraseCount <= best) {
673 		best = part->EUNInfo[i].EraseCount;
674 		eun = i;
675 	    }
676     } else {
677 	best = 0;
678 	for (i = 0; i < part->DataUnits; i++)
679 	    if (part->EUNInfo[i].Deleted >= best) {
680 		best = part->EUNInfo[i].Deleted;
681 		eun = i;
682 	    }
683 	if (best == 0) {
684 	    static int ne = 0;
685 	    if (++ne < 5)
686 		printk(KERN_NOTICE "ftl_cs: reclaim failed: "
687 		       "no free blocks!\n");
688 	    else
689 		pr_debug("ftl_cs: reclaim failed: "
690 		       "no free blocks!\n");
691 
692 	    return -EIO;
693 	}
694     }
695     ret = copy_erase_unit(part, eun, xfer);
696     if (!ret)
697 	erase_xfer(part, xfer);
698     else
699 	printk(KERN_NOTICE "ftl_cs: copy_erase_unit failed!\n");
700     return ret;
701 } /* reclaim_block */
702 
703 /*======================================================================
704 
705     Find_free() searches for a free block.  If necessary, it updates
706     the BAM cache for the erase unit containing the free block.  It
707     returns the block index -- the erase unit is just the currently
708     cached unit.  If there are no free blocks, it returns 0 -- this
709     is never a valid data block because it contains the header.
710 
711 ======================================================================*/
712 
713 #ifdef PSYCHO_DEBUG
714 static void dump_lists(partition_t *part)
715 {
716     int i;
717     printk(KERN_DEBUG "ftl_cs: Free total = %d\n", part->FreeTotal);
718     for (i = 0; i < part->DataUnits; i++)
719 	printk(KERN_DEBUG "ftl_cs:   unit %d: %d phys, %d free, "
720 	       "%d deleted\n", i,
721 	       part->EUNInfo[i].Offset >> part->header.EraseUnitSize,
722 	       part->EUNInfo[i].Free, part->EUNInfo[i].Deleted);
723 }
724 #endif
725 
726 static uint32_t find_free(partition_t *part)
727 {
728     uint16_t stop, eun;
729     uint32_t blk;
730     size_t retlen;
731     int ret;
732 
733     /* Find an erase unit with some free space */
734     stop = (part->bam_index == 0xffff) ? 0 : part->bam_index;
735     eun = stop;
736     do {
737 	if (part->EUNInfo[eun].Free != 0) break;
738 	/* Wrap around at end of table */
739 	if (++eun == part->DataUnits) eun = 0;
740     } while (eun != stop);
741 
742     if (part->EUNInfo[eun].Free == 0)
743 	return 0;
744 
745     /* Is this unit's BAM cached? */
746     if (eun != part->bam_index) {
747 	/* Invalidate cache */
748 	part->bam_index = 0xffff;
749 
750 	ret = mtd_read(part->mbd.mtd,
751                        part->EUNInfo[eun].Offset + le32_to_cpu(part->header.BAMOffset),
752                        part->BlocksPerUnit * sizeof(uint32_t),
753                        &retlen,
754                        (u_char *)(part->bam_cache));
755 
756 	if (ret) {
757 	    printk(KERN_WARNING"ftl: Error reading BAM in find_free\n");
758 	    return 0;
759 	}
760 	part->bam_index = eun;
761     }
762 
763     /* Find a free block */
764     for (blk = 0; blk < part->BlocksPerUnit; blk++)
765 	if (BLOCK_FREE(le32_to_cpu(part->bam_cache[blk]))) break;
766     if (blk == part->BlocksPerUnit) {
767 #ifdef PSYCHO_DEBUG
768 	static int ne = 0;
769 	if (++ne == 1)
770 	    dump_lists(part);
771 #endif
772 	printk(KERN_NOTICE "ftl_cs: bad free list!\n");
773 	return 0;
774     }
775     pr_debug("ftl_cs: found free block at %d in %d\n", blk, eun);
776     return blk;
777 
778 } /* find_free */
779 
780 
781 /*======================================================================
782 
783     Read a series of sectors from an FTL partition.
784 
785 ======================================================================*/
786 
787 static int ftl_read(partition_t *part, caddr_t buffer,
788 		    u_long sector, u_long nblocks)
789 {
790     uint32_t log_addr, bsize;
791     u_long i;
792     int ret;
793     size_t offset, retlen;
794 
795     pr_debug("ftl_cs: ftl_read(0x%p, 0x%lx, %ld)\n",
796 	  part, sector, nblocks);
797     if (!(part->state & FTL_FORMATTED)) {
798 	printk(KERN_NOTICE "ftl_cs: bad partition\n");
799 	return -EIO;
800     }
801     bsize = 1 << part->header.EraseUnitSize;
802 
803     for (i = 0; i < nblocks; i++) {
804 	if (((sector+i) * SECTOR_SIZE) >= le32_to_cpu(part->header.FormattedSize)) {
805 	    printk(KERN_NOTICE "ftl_cs: bad read offset\n");
806 	    return -EIO;
807 	}
808 	log_addr = part->VirtualBlockMap[sector+i];
809 	if (log_addr == 0xffffffff)
810 	    memset(buffer, 0, SECTOR_SIZE);
811 	else {
812 	    offset = (part->EUNInfo[log_addr / bsize].Offset
813 			  + (log_addr % bsize));
814 	    ret = mtd_read(part->mbd.mtd, offset, SECTOR_SIZE, &retlen,
815                            (u_char *)buffer);
816 
817 	    if (ret) {
818 		printk(KERN_WARNING "Error reading MTD device in ftl_read()\n");
819 		return ret;
820 	    }
821 	}
822 	buffer += SECTOR_SIZE;
823     }
824     return 0;
825 } /* ftl_read */
826 
827 /*======================================================================
828 
829     Write a series of sectors to an FTL partition
830 
831 ======================================================================*/
832 
833 static int set_bam_entry(partition_t *part, uint32_t log_addr,
834 			 uint32_t virt_addr)
835 {
836     uint32_t bsize, blk, le_virt_addr;
837 #ifdef PSYCHO_DEBUG
838     uint32_t old_addr;
839 #endif
840     uint16_t eun;
841     int ret;
842     size_t retlen, offset;
843 
844     pr_debug("ftl_cs: set_bam_entry(0x%p, 0x%x, 0x%x)\n",
845 	  part, log_addr, virt_addr);
846     bsize = 1 << part->header.EraseUnitSize;
847     eun = log_addr / bsize;
848     blk = (log_addr % bsize) / SECTOR_SIZE;
849     offset = (part->EUNInfo[eun].Offset + blk * sizeof(uint32_t) +
850 		  le32_to_cpu(part->header.BAMOffset));
851 
852 #ifdef PSYCHO_DEBUG
853     ret = mtd_read(part->mbd.mtd, offset, sizeof(uint32_t), &retlen,
854                    (u_char *)&old_addr);
855     if (ret) {
856 	printk(KERN_WARNING"ftl: Error reading old_addr in set_bam_entry: %d\n",ret);
857 	return ret;
858     }
859     old_addr = le32_to_cpu(old_addr);
860 
861     if (((virt_addr == 0xfffffffe) && !BLOCK_FREE(old_addr)) ||
862 	((virt_addr == 0) && (BLOCK_TYPE(old_addr) != BLOCK_DATA)) ||
863 	(!BLOCK_DELETED(virt_addr) && (old_addr != 0xfffffffe))) {
864 	static int ne = 0;
865 	if (++ne < 5) {
866 	    printk(KERN_NOTICE "ftl_cs: set_bam_entry() inconsistency!\n");
867 	    printk(KERN_NOTICE "ftl_cs:   log_addr = 0x%x, old = 0x%x"
868 		   ", new = 0x%x\n", log_addr, old_addr, virt_addr);
869 	}
870 	return -EIO;
871     }
872 #endif
873     le_virt_addr = cpu_to_le32(virt_addr);
874     if (part->bam_index == eun) {
875 #ifdef PSYCHO_DEBUG
876 	if (le32_to_cpu(part->bam_cache[blk]) != old_addr) {
877 	    static int ne = 0;
878 	    if (++ne < 5) {
879 		printk(KERN_NOTICE "ftl_cs: set_bam_entry() "
880 		       "inconsistency!\n");
881 		printk(KERN_NOTICE "ftl_cs:   log_addr = 0x%x, cache"
882 		       " = 0x%x\n",
883 		       le32_to_cpu(part->bam_cache[blk]), old_addr);
884 	    }
885 	    return -EIO;
886 	}
887 #endif
888 	part->bam_cache[blk] = le_virt_addr;
889     }
890     ret = mtd_write(part->mbd.mtd, offset, sizeof(uint32_t), &retlen,
891                     (u_char *)&le_virt_addr);
892 
893     if (ret) {
894 	printk(KERN_NOTICE "ftl_cs: set_bam_entry() failed!\n");
895 	printk(KERN_NOTICE "ftl_cs:   log_addr = 0x%x, new = 0x%x\n",
896 	       log_addr, virt_addr);
897     }
898     return ret;
899 } /* set_bam_entry */
900 
901 static int ftl_write(partition_t *part, caddr_t buffer,
902 		     u_long sector, u_long nblocks)
903 {
904     uint32_t bsize, log_addr, virt_addr, old_addr, blk;
905     u_long i;
906     int ret;
907     size_t retlen, offset;
908 
909     pr_debug("ftl_cs: ftl_write(0x%p, %ld, %ld)\n",
910 	  part, sector, nblocks);
911     if (!(part->state & FTL_FORMATTED)) {
912 	printk(KERN_NOTICE "ftl_cs: bad partition\n");
913 	return -EIO;
914     }
915     /* See if we need to reclaim space, before we start */
916     while (part->FreeTotal < nblocks) {
917 	ret = reclaim_block(part);
918 	if (ret)
919 	    return ret;
920     }
921 
922     bsize = 1 << part->header.EraseUnitSize;
923 
924     virt_addr = sector * SECTOR_SIZE | BLOCK_DATA;
925     for (i = 0; i < nblocks; i++) {
926 	if (virt_addr >= le32_to_cpu(part->header.FormattedSize)) {
927 	    printk(KERN_NOTICE "ftl_cs: bad write offset\n");
928 	    return -EIO;
929 	}
930 
931 	/* Grab a free block */
932 	blk = find_free(part);
933 	if (blk == 0) {
934 	    static int ne = 0;
935 	    if (++ne < 5)
936 		printk(KERN_NOTICE "ftl_cs: internal error: "
937 		       "no free blocks!\n");
938 	    return -ENOSPC;
939 	}
940 
941 	/* Tag the BAM entry, and write the new block */
942 	log_addr = part->bam_index * bsize + blk * SECTOR_SIZE;
943 	part->EUNInfo[part->bam_index].Free--;
944 	part->FreeTotal--;
945 	if (set_bam_entry(part, log_addr, 0xfffffffe))
946 	    return -EIO;
947 	part->EUNInfo[part->bam_index].Deleted++;
948 	offset = (part->EUNInfo[part->bam_index].Offset +
949 		      blk * SECTOR_SIZE);
950 	ret = mtd_write(part->mbd.mtd, offset, SECTOR_SIZE, &retlen, buffer);
951 
952 	if (ret) {
953 	    printk(KERN_NOTICE "ftl_cs: block write failed!\n");
954 	    printk(KERN_NOTICE "ftl_cs:   log_addr = 0x%x, virt_addr"
955 		   " = 0x%x, Offset = 0x%zx\n", log_addr, virt_addr,
956 		   offset);
957 	    return -EIO;
958 	}
959 
960 	/* Only delete the old entry when the new entry is ready */
961 	old_addr = part->VirtualBlockMap[sector+i];
962 	if (old_addr != 0xffffffff) {
963 	    part->VirtualBlockMap[sector+i] = 0xffffffff;
964 	    part->EUNInfo[old_addr/bsize].Deleted++;
965 	    if (set_bam_entry(part, old_addr, 0))
966 		return -EIO;
967 	}
968 
969 	/* Finally, set up the new pointers */
970 	if (set_bam_entry(part, log_addr, virt_addr))
971 	    return -EIO;
972 	part->VirtualBlockMap[sector+i] = log_addr;
973 	part->EUNInfo[part->bam_index].Deleted--;
974 
975 	buffer += SECTOR_SIZE;
976 	virt_addr += SECTOR_SIZE;
977     }
978     return 0;
979 } /* ftl_write */
980 
981 static int ftl_getgeo(struct mtd_blktrans_dev *dev, struct hd_geometry *geo)
982 {
983 	partition_t *part = (void *)dev;
984 	u_long sect;
985 
986 	/* Sort of arbitrary: round size down to 4KiB boundary */
987 	sect = le32_to_cpu(part->header.FormattedSize)/SECTOR_SIZE;
988 
989 	geo->heads = 1;
990 	geo->sectors = 8;
991 	geo->cylinders = sect >> 3;
992 
993 	return 0;
994 }
995 
996 static int ftl_readsect(struct mtd_blktrans_dev *dev,
997 			      unsigned long block, char *buf)
998 {
999 	return ftl_read((void *)dev, buf, block, 1);
1000 }
1001 
1002 static int ftl_writesect(struct mtd_blktrans_dev *dev,
1003 			      unsigned long block, char *buf)
1004 {
1005 	return ftl_write((void *)dev, buf, block, 1);
1006 }
1007 
1008 static int ftl_discardsect(struct mtd_blktrans_dev *dev,
1009 			   unsigned long sector, unsigned nr_sects)
1010 {
1011 	partition_t *part = (void *)dev;
1012 	uint32_t bsize = 1 << part->header.EraseUnitSize;
1013 
1014 	pr_debug("FTL erase sector %ld for %d sectors\n",
1015 	      sector, nr_sects);
1016 
1017 	while (nr_sects) {
1018 		uint32_t old_addr = part->VirtualBlockMap[sector];
1019 		if (old_addr != 0xffffffff) {
1020 			part->VirtualBlockMap[sector] = 0xffffffff;
1021 			part->EUNInfo[old_addr/bsize].Deleted++;
1022 			if (set_bam_entry(part, old_addr, 0))
1023 				return -EIO;
1024 		}
1025 		nr_sects--;
1026 		sector++;
1027 	}
1028 
1029 	return 0;
1030 }
1031 /*====================================================================*/
1032 
1033 static void ftl_freepart(partition_t *part)
1034 {
1035 	vfree(part->VirtualBlockMap);
1036 	part->VirtualBlockMap = NULL;
1037 	kfree(part->EUNInfo);
1038 	part->EUNInfo = NULL;
1039 	kfree(part->XferInfo);
1040 	part->XferInfo = NULL;
1041 	kfree(part->bam_cache);
1042 	part->bam_cache = NULL;
1043 } /* ftl_freepart */
1044 
1045 static void ftl_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
1046 {
1047 	partition_t *partition;
1048 
1049 	partition = kzalloc(sizeof(partition_t), GFP_KERNEL);
1050 
1051 	if (!partition) {
1052 		printk(KERN_WARNING "No memory to scan for FTL on %s\n",
1053 		       mtd->name);
1054 		return;
1055 	}
1056 
1057 	partition->mbd.mtd = mtd;
1058 
1059 	if ((scan_header(partition) == 0) &&
1060 	    (build_maps(partition) == 0)) {
1061 
1062 		partition->state = FTL_FORMATTED;
1063 #ifdef PCMCIA_DEBUG
1064 		printk(KERN_INFO "ftl_cs: opening %d KiB FTL partition\n",
1065 		       le32_to_cpu(partition->header.FormattedSize) >> 10);
1066 #endif
1067 		partition->mbd.size = le32_to_cpu(partition->header.FormattedSize) >> 9;
1068 
1069 		partition->mbd.tr = tr;
1070 		partition->mbd.devnum = -1;
1071 		if (!add_mtd_blktrans_dev((void *)partition))
1072 			return;
1073 	}
1074 
1075 	kfree(partition);
1076 }
1077 
1078 static void ftl_remove_dev(struct mtd_blktrans_dev *dev)
1079 {
1080 	del_mtd_blktrans_dev(dev);
1081 	ftl_freepart((partition_t *)dev);
1082 }
1083 
1084 static struct mtd_blktrans_ops ftl_tr = {
1085 	.name		= "ftl",
1086 	.major		= FTL_MAJOR,
1087 	.part_bits	= PART_BITS,
1088 	.blksize 	= SECTOR_SIZE,
1089 	.readsect	= ftl_readsect,
1090 	.writesect	= ftl_writesect,
1091 	.discard	= ftl_discardsect,
1092 	.getgeo		= ftl_getgeo,
1093 	.add_mtd	= ftl_add_mtd,
1094 	.remove_dev	= ftl_remove_dev,
1095 	.owner		= THIS_MODULE,
1096 };
1097 
1098 static int __init init_ftl(void)
1099 {
1100 	return register_mtd_blktrans(&ftl_tr);
1101 }
1102 
1103 static void __exit cleanup_ftl(void)
1104 {
1105 	deregister_mtd_blktrans(&ftl_tr);
1106 }
1107 
1108 module_init(init_ftl);
1109 module_exit(cleanup_ftl);
1110 
1111 
1112 MODULE_LICENSE("Dual MPL/GPL");
1113 MODULE_AUTHOR("David Hinds <dahinds@users.sourceforge.net>");
1114 MODULE_DESCRIPTION("Support code for Flash Translation Layer, used on PCMCIA devices");
1115