xref: /linux/drivers/mtd/devices/mtd_dataflash.c (revision 54f5a57e266318d72f84fda95805099986a7e201)
1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/math64.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 
22 #include <linux/spi/spi.h>
23 #include <linux/spi/flash.h>
24 
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/partitions.h>
27 
28 /*
29  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
30  * each chip, which may be used for double buffered I/O; but this driver
31  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
32  *
33  * Sometimes DataFlash is packaged in MMC-format cards, although the
34  * MMC stack can't (yet?) distinguish between MMC and DataFlash
35  * protocols during enumeration.
36  */
37 
38 /* reads can bypass the buffers */
39 #define OP_READ_CONTINUOUS	0xE8
40 #define OP_READ_PAGE		0xD2
41 
42 /* group B requests can run even while status reports "busy" */
43 #define OP_READ_STATUS		0xD7	/* group B */
44 
45 /* move data between host and buffer */
46 #define OP_READ_BUFFER1		0xD4	/* group B */
47 #define OP_READ_BUFFER2		0xD6	/* group B */
48 #define OP_WRITE_BUFFER1	0x84	/* group B */
49 #define OP_WRITE_BUFFER2	0x87	/* group B */
50 
51 /* erasing flash */
52 #define OP_ERASE_PAGE		0x81
53 #define OP_ERASE_BLOCK		0x50
54 
55 /* move data between buffer and flash */
56 #define OP_TRANSFER_BUF1	0x53
57 #define OP_TRANSFER_BUF2	0x55
58 #define OP_MREAD_BUFFER1	0xD4
59 #define OP_MREAD_BUFFER2	0xD6
60 #define OP_MWERASE_BUFFER1	0x83
61 #define OP_MWERASE_BUFFER2	0x86
62 #define OP_MWRITE_BUFFER1	0x88	/* sector must be pre-erased */
63 #define OP_MWRITE_BUFFER2	0x89	/* sector must be pre-erased */
64 
65 /* write to buffer, then write-erase to flash */
66 #define OP_PROGRAM_VIA_BUF1	0x82
67 #define OP_PROGRAM_VIA_BUF2	0x85
68 
69 /* compare buffer to flash */
70 #define OP_COMPARE_BUF1		0x60
71 #define OP_COMPARE_BUF2		0x61
72 
73 /* read flash to buffer, then write-erase to flash */
74 #define OP_REWRITE_VIA_BUF1	0x58
75 #define OP_REWRITE_VIA_BUF2	0x59
76 
77 /* newer chips report JEDEC manufacturer and device IDs; chip
78  * serial number and OTP bits; and per-sector writeprotect.
79  */
80 #define OP_READ_ID		0x9F
81 #define OP_READ_SECURITY	0x77
82 #define OP_WRITE_SECURITY_REVC	0x9A
83 #define OP_WRITE_SECURITY	0x9B	/* revision D */
84 
85 
86 struct dataflash {
87 	uint8_t			command[4];
88 	char			name[24];
89 
90 	unsigned short		page_offset;	/* offset in flash address */
91 	unsigned int		page_size;	/* of bytes per page */
92 
93 	struct mutex		lock;
94 	struct spi_device	*spi;
95 
96 	struct mtd_info		mtd;
97 };
98 
99 #ifdef CONFIG_OF
100 static const struct of_device_id dataflash_dt_ids[] = {
101 	{ .compatible = "atmel,at45", },
102 	{ .compatible = "atmel,dataflash", },
103 	{ /* sentinel */ }
104 };
105 #endif
106 
107 /* ......................................................................... */
108 
109 /*
110  * Return the status of the DataFlash device.
111  */
112 static inline int dataflash_status(struct spi_device *spi)
113 {
114 	/* NOTE:  at45db321c over 25 MHz wants to write
115 	 * a dummy byte after the opcode...
116 	 */
117 	return spi_w8r8(spi, OP_READ_STATUS);
118 }
119 
120 /*
121  * Poll the DataFlash device until it is READY.
122  * This usually takes 5-20 msec or so; more for sector erase.
123  */
124 static int dataflash_waitready(struct spi_device *spi)
125 {
126 	int	status;
127 
128 	for (;;) {
129 		status = dataflash_status(spi);
130 		if (status < 0) {
131 			pr_debug("%s: status %d?\n",
132 					dev_name(&spi->dev), status);
133 			status = 0;
134 		}
135 
136 		if (status & (1 << 7))	/* RDY/nBSY */
137 			return status;
138 
139 		msleep(3);
140 	}
141 }
142 
143 /* ......................................................................... */
144 
145 /*
146  * Erase pages of flash.
147  */
148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
149 {
150 	struct dataflash	*priv = mtd->priv;
151 	struct spi_device	*spi = priv->spi;
152 	struct spi_transfer	x = { .tx_dma = 0, };
153 	struct spi_message	msg;
154 	unsigned		blocksize = priv->page_size << 3;
155 	uint8_t			*command;
156 	uint32_t		rem;
157 
158 	pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
159 	      dev_name(&spi->dev), (long long)instr->addr,
160 	      (long long)instr->len);
161 
162 	div_u64_rem(instr->len, priv->page_size, &rem);
163 	if (rem)
164 		return -EINVAL;
165 	div_u64_rem(instr->addr, priv->page_size, &rem);
166 	if (rem)
167 		return -EINVAL;
168 
169 	spi_message_init(&msg);
170 
171 	x.tx_buf = command = priv->command;
172 	x.len = 4;
173 	spi_message_add_tail(&x, &msg);
174 
175 	mutex_lock(&priv->lock);
176 	while (instr->len > 0) {
177 		unsigned int	pageaddr;
178 		int		status;
179 		int		do_block;
180 
181 		/* Calculate flash page address; use block erase (for speed) if
182 		 * we're at a block boundary and need to erase the whole block.
183 		 */
184 		pageaddr = div_u64(instr->addr, priv->page_size);
185 		do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
186 		pageaddr = pageaddr << priv->page_offset;
187 
188 		command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
189 		command[1] = (uint8_t)(pageaddr >> 16);
190 		command[2] = (uint8_t)(pageaddr >> 8);
191 		command[3] = 0;
192 
193 		pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
194 			do_block ? "block" : "page",
195 			command[0], command[1], command[2], command[3],
196 			pageaddr);
197 
198 		status = spi_sync(spi, &msg);
199 		(void) dataflash_waitready(spi);
200 
201 		if (status < 0) {
202 			printk(KERN_ERR "%s: erase %x, err %d\n",
203 				dev_name(&spi->dev), pageaddr, status);
204 			/* REVISIT:  can retry instr->retries times; or
205 			 * giveup and instr->fail_addr = instr->addr;
206 			 */
207 			continue;
208 		}
209 
210 		if (do_block) {
211 			instr->addr += blocksize;
212 			instr->len -= blocksize;
213 		} else {
214 			instr->addr += priv->page_size;
215 			instr->len -= priv->page_size;
216 		}
217 	}
218 	mutex_unlock(&priv->lock);
219 
220 	/* Inform MTD subsystem that erase is complete */
221 	instr->state = MTD_ERASE_DONE;
222 	mtd_erase_callback(instr);
223 
224 	return 0;
225 }
226 
227 /*
228  * Read from the DataFlash device.
229  *   from   : Start offset in flash device
230  *   len    : Amount to read
231  *   retlen : About of data actually read
232  *   buf    : Buffer containing the data
233  */
234 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
235 			       size_t *retlen, u_char *buf)
236 {
237 	struct dataflash	*priv = mtd->priv;
238 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
239 	struct spi_message	msg;
240 	unsigned int		addr;
241 	uint8_t			*command;
242 	int			status;
243 
244 	pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
245 			(unsigned)from, (unsigned)(from + len));
246 
247 	/* Calculate flash page/byte address */
248 	addr = (((unsigned)from / priv->page_size) << priv->page_offset)
249 		+ ((unsigned)from % priv->page_size);
250 
251 	command = priv->command;
252 
253 	pr_debug("READ: (%x) %x %x %x\n",
254 		command[0], command[1], command[2], command[3]);
255 
256 	spi_message_init(&msg);
257 
258 	x[0].tx_buf = command;
259 	x[0].len = 8;
260 	spi_message_add_tail(&x[0], &msg);
261 
262 	x[1].rx_buf = buf;
263 	x[1].len = len;
264 	spi_message_add_tail(&x[1], &msg);
265 
266 	mutex_lock(&priv->lock);
267 
268 	/* Continuous read, max clock = f(car) which may be less than
269 	 * the peak rate available.  Some chips support commands with
270 	 * fewer "don't care" bytes.  Both buffers stay unchanged.
271 	 */
272 	command[0] = OP_READ_CONTINUOUS;
273 	command[1] = (uint8_t)(addr >> 16);
274 	command[2] = (uint8_t)(addr >> 8);
275 	command[3] = (uint8_t)(addr >> 0);
276 	/* plus 4 "don't care" bytes */
277 
278 	status = spi_sync(priv->spi, &msg);
279 	mutex_unlock(&priv->lock);
280 
281 	if (status >= 0) {
282 		*retlen = msg.actual_length - 8;
283 		status = 0;
284 	} else
285 		pr_debug("%s: read %x..%x --> %d\n",
286 			dev_name(&priv->spi->dev),
287 			(unsigned)from, (unsigned)(from + len),
288 			status);
289 	return status;
290 }
291 
292 /*
293  * Write to the DataFlash device.
294  *   to     : Start offset in flash device
295  *   len    : Amount to write
296  *   retlen : Amount of data actually written
297  *   buf    : Buffer containing the data
298  */
299 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
300 				size_t * retlen, const u_char * buf)
301 {
302 	struct dataflash	*priv = mtd->priv;
303 	struct spi_device	*spi = priv->spi;
304 	struct spi_transfer	x[2] = { { .tx_dma = 0, }, };
305 	struct spi_message	msg;
306 	unsigned int		pageaddr, addr, offset, writelen;
307 	size_t			remaining = len;
308 	u_char			*writebuf = (u_char *) buf;
309 	int			status = -EINVAL;
310 	uint8_t			*command;
311 
312 	pr_debug("%s: write 0x%x..0x%x\n",
313 		dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
314 
315 	spi_message_init(&msg);
316 
317 	x[0].tx_buf = command = priv->command;
318 	x[0].len = 4;
319 	spi_message_add_tail(&x[0], &msg);
320 
321 	pageaddr = ((unsigned)to / priv->page_size);
322 	offset = ((unsigned)to % priv->page_size);
323 	if (offset + len > priv->page_size)
324 		writelen = priv->page_size - offset;
325 	else
326 		writelen = len;
327 
328 	mutex_lock(&priv->lock);
329 	while (remaining > 0) {
330 		pr_debug("write @ %i:%i len=%i\n",
331 			pageaddr, offset, writelen);
332 
333 		/* REVISIT:
334 		 * (a) each page in a sector must be rewritten at least
335 		 *     once every 10K sibling erase/program operations.
336 		 * (b) for pages that are already erased, we could
337 		 *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
338 		 * (c) WRITE to buffer could be done while waiting for
339 		 *     a previous MWRITE/MWERASE to complete ...
340 		 * (d) error handling here seems to be mostly missing.
341 		 *
342 		 * Two persistent bits per page, plus a per-sector counter,
343 		 * could support (a) and (b) ... we might consider using
344 		 * the second half of sector zero, which is just one block,
345 		 * to track that state.  (On AT91, that sector should also
346 		 * support boot-from-DataFlash.)
347 		 */
348 
349 		addr = pageaddr << priv->page_offset;
350 
351 		/* (1) Maybe transfer partial page to Buffer1 */
352 		if (writelen != priv->page_size) {
353 			command[0] = OP_TRANSFER_BUF1;
354 			command[1] = (addr & 0x00FF0000) >> 16;
355 			command[2] = (addr & 0x0000FF00) >> 8;
356 			command[3] = 0;
357 
358 			pr_debug("TRANSFER: (%x) %x %x %x\n",
359 				command[0], command[1], command[2], command[3]);
360 
361 			status = spi_sync(spi, &msg);
362 			if (status < 0)
363 				pr_debug("%s: xfer %u -> %d\n",
364 					dev_name(&spi->dev), addr, status);
365 
366 			(void) dataflash_waitready(priv->spi);
367 		}
368 
369 		/* (2) Program full page via Buffer1 */
370 		addr += offset;
371 		command[0] = OP_PROGRAM_VIA_BUF1;
372 		command[1] = (addr & 0x00FF0000) >> 16;
373 		command[2] = (addr & 0x0000FF00) >> 8;
374 		command[3] = (addr & 0x000000FF);
375 
376 		pr_debug("PROGRAM: (%x) %x %x %x\n",
377 			command[0], command[1], command[2], command[3]);
378 
379 		x[1].tx_buf = writebuf;
380 		x[1].len = writelen;
381 		spi_message_add_tail(x + 1, &msg);
382 		status = spi_sync(spi, &msg);
383 		spi_transfer_del(x + 1);
384 		if (status < 0)
385 			pr_debug("%s: pgm %u/%u -> %d\n",
386 				dev_name(&spi->dev), addr, writelen, status);
387 
388 		(void) dataflash_waitready(priv->spi);
389 
390 
391 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
392 
393 		/* (3) Compare to Buffer1 */
394 		addr = pageaddr << priv->page_offset;
395 		command[0] = OP_COMPARE_BUF1;
396 		command[1] = (addr & 0x00FF0000) >> 16;
397 		command[2] = (addr & 0x0000FF00) >> 8;
398 		command[3] = 0;
399 
400 		pr_debug("COMPARE: (%x) %x %x %x\n",
401 			command[0], command[1], command[2], command[3]);
402 
403 		status = spi_sync(spi, &msg);
404 		if (status < 0)
405 			pr_debug("%s: compare %u -> %d\n",
406 				dev_name(&spi->dev), addr, status);
407 
408 		status = dataflash_waitready(priv->spi);
409 
410 		/* Check result of the compare operation */
411 		if (status & (1 << 6)) {
412 			printk(KERN_ERR "%s: compare page %u, err %d\n",
413 				dev_name(&spi->dev), pageaddr, status);
414 			remaining = 0;
415 			status = -EIO;
416 			break;
417 		} else
418 			status = 0;
419 
420 #endif	/* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
421 
422 		remaining = remaining - writelen;
423 		pageaddr++;
424 		offset = 0;
425 		writebuf += writelen;
426 		*retlen += writelen;
427 
428 		if (remaining > priv->page_size)
429 			writelen = priv->page_size;
430 		else
431 			writelen = remaining;
432 	}
433 	mutex_unlock(&priv->lock);
434 
435 	return status;
436 }
437 
438 /* ......................................................................... */
439 
440 #ifdef CONFIG_MTD_DATAFLASH_OTP
441 
442 static int dataflash_get_otp_info(struct mtd_info *mtd,
443 		struct otp_info *info, size_t len)
444 {
445 	/* Report both blocks as identical:  bytes 0..64, locked.
446 	 * Unless the user block changed from all-ones, we can't
447 	 * tell whether it's still writable; so we assume it isn't.
448 	 */
449 	info->start = 0;
450 	info->length = 64;
451 	info->locked = 1;
452 	return sizeof(*info);
453 }
454 
455 static ssize_t otp_read(struct spi_device *spi, unsigned base,
456 		uint8_t *buf, loff_t off, size_t len)
457 {
458 	struct spi_message	m;
459 	size_t			l;
460 	uint8_t			*scratch;
461 	struct spi_transfer	t;
462 	int			status;
463 
464 	if (off > 64)
465 		return -EINVAL;
466 
467 	if ((off + len) > 64)
468 		len = 64 - off;
469 
470 	spi_message_init(&m);
471 
472 	l = 4 + base + off + len;
473 	scratch = kzalloc(l, GFP_KERNEL);
474 	if (!scratch)
475 		return -ENOMEM;
476 
477 	/* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
478 	 * IN:  ignore 4 bytes, data bytes 0..N (max 127)
479 	 */
480 	scratch[0] = OP_READ_SECURITY;
481 
482 	memset(&t, 0, sizeof t);
483 	t.tx_buf = scratch;
484 	t.rx_buf = scratch;
485 	t.len = l;
486 	spi_message_add_tail(&t, &m);
487 
488 	dataflash_waitready(spi);
489 
490 	status = spi_sync(spi, &m);
491 	if (status >= 0) {
492 		memcpy(buf, scratch + 4 + base + off, len);
493 		status = len;
494 	}
495 
496 	kfree(scratch);
497 	return status;
498 }
499 
500 static int dataflash_read_fact_otp(struct mtd_info *mtd,
501 		loff_t from, size_t len, size_t *retlen, u_char *buf)
502 {
503 	struct dataflash	*priv = mtd->priv;
504 	int			status;
505 
506 	/* 64 bytes, from 0..63 ... start at 64 on-chip */
507 	mutex_lock(&priv->lock);
508 	status = otp_read(priv->spi, 64, buf, from, len);
509 	mutex_unlock(&priv->lock);
510 
511 	if (status < 0)
512 		return status;
513 	*retlen = status;
514 	return 0;
515 }
516 
517 static int dataflash_read_user_otp(struct mtd_info *mtd,
518 		loff_t from, size_t len, size_t *retlen, u_char *buf)
519 {
520 	struct dataflash	*priv = mtd->priv;
521 	int			status;
522 
523 	/* 64 bytes, from 0..63 ... start at 0 on-chip */
524 	mutex_lock(&priv->lock);
525 	status = otp_read(priv->spi, 0, buf, from, len);
526 	mutex_unlock(&priv->lock);
527 
528 	if (status < 0)
529 		return status;
530 	*retlen = status;
531 	return 0;
532 }
533 
534 static int dataflash_write_user_otp(struct mtd_info *mtd,
535 		loff_t from, size_t len, size_t *retlen, u_char *buf)
536 {
537 	struct spi_message	m;
538 	const size_t		l = 4 + 64;
539 	uint8_t			*scratch;
540 	struct spi_transfer	t;
541 	struct dataflash	*priv = mtd->priv;
542 	int			status;
543 
544 	if (len > 64)
545 		return -EINVAL;
546 
547 	/* Strictly speaking, we *could* truncate the write ... but
548 	 * let's not do that for the only write that's ever possible.
549 	 */
550 	if ((from + len) > 64)
551 		return -EINVAL;
552 
553 	/* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
554 	 * IN:  ignore all
555 	 */
556 	scratch = kzalloc(l, GFP_KERNEL);
557 	if (!scratch)
558 		return -ENOMEM;
559 	scratch[0] = OP_WRITE_SECURITY;
560 	memcpy(scratch + 4 + from, buf, len);
561 
562 	spi_message_init(&m);
563 
564 	memset(&t, 0, sizeof t);
565 	t.tx_buf = scratch;
566 	t.len = l;
567 	spi_message_add_tail(&t, &m);
568 
569 	/* Write the OTP bits, if they've not yet been written.
570 	 * This modifies SRAM buffer1.
571 	 */
572 	mutex_lock(&priv->lock);
573 	dataflash_waitready(priv->spi);
574 	status = spi_sync(priv->spi, &m);
575 	mutex_unlock(&priv->lock);
576 
577 	kfree(scratch);
578 
579 	if (status >= 0) {
580 		status = 0;
581 		*retlen = len;
582 	}
583 	return status;
584 }
585 
586 static char *otp_setup(struct mtd_info *device, char revision)
587 {
588 	device->_get_fact_prot_info = dataflash_get_otp_info;
589 	device->_read_fact_prot_reg = dataflash_read_fact_otp;
590 	device->_get_user_prot_info = dataflash_get_otp_info;
591 	device->_read_user_prot_reg = dataflash_read_user_otp;
592 
593 	/* rev c parts (at45db321c and at45db1281 only!) use a
594 	 * different write procedure; not (yet?) implemented.
595 	 */
596 	if (revision > 'c')
597 		device->_write_user_prot_reg = dataflash_write_user_otp;
598 
599 	return ", OTP";
600 }
601 
602 #else
603 
604 static char *otp_setup(struct mtd_info *device, char revision)
605 {
606 	return " (OTP)";
607 }
608 
609 #endif
610 
611 /* ......................................................................... */
612 
613 /*
614  * Register DataFlash device with MTD subsystem.
615  */
616 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
617 			     int pagesize, int pageoffset, char revision)
618 {
619 	struct dataflash		*priv;
620 	struct mtd_info			*device;
621 	struct mtd_part_parser_data	ppdata;
622 	struct flash_platform_data	*pdata = dev_get_platdata(&spi->dev);
623 	char				*otp_tag = "";
624 	int				err = 0;
625 
626 	priv = kzalloc(sizeof *priv, GFP_KERNEL);
627 	if (!priv)
628 		return -ENOMEM;
629 
630 	mutex_init(&priv->lock);
631 	priv->spi = spi;
632 	priv->page_size = pagesize;
633 	priv->page_offset = pageoffset;
634 
635 	/* name must be usable with cmdlinepart */
636 	sprintf(priv->name, "spi%d.%d-%s",
637 			spi->master->bus_num, spi->chip_select,
638 			name);
639 
640 	device = &priv->mtd;
641 	device->name = (pdata && pdata->name) ? pdata->name : priv->name;
642 	device->size = nr_pages * pagesize;
643 	device->erasesize = pagesize;
644 	device->writesize = pagesize;
645 	device->owner = THIS_MODULE;
646 	device->type = MTD_DATAFLASH;
647 	device->flags = MTD_WRITEABLE;
648 	device->_erase = dataflash_erase;
649 	device->_read = dataflash_read;
650 	device->_write = dataflash_write;
651 	device->priv = priv;
652 
653 	device->dev.parent = &spi->dev;
654 
655 	if (revision >= 'c')
656 		otp_tag = otp_setup(device, revision);
657 
658 	dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
659 			name, (long long)((device->size + 1023) >> 10),
660 			pagesize, otp_tag);
661 	spi_set_drvdata(spi, priv);
662 
663 	ppdata.of_node = spi->dev.of_node;
664 	err = mtd_device_parse_register(device, NULL, &ppdata,
665 			pdata ? pdata->parts : NULL,
666 			pdata ? pdata->nr_parts : 0);
667 
668 	if (!err)
669 		return 0;
670 
671 	kfree(priv);
672 	return err;
673 }
674 
675 static inline int add_dataflash(struct spi_device *spi, char *name,
676 				int nr_pages, int pagesize, int pageoffset)
677 {
678 	return add_dataflash_otp(spi, name, nr_pages, pagesize,
679 			pageoffset, 0);
680 }
681 
682 struct flash_info {
683 	char		*name;
684 
685 	/* JEDEC id has a high byte of zero plus three data bytes:
686 	 * the manufacturer id, then a two byte device id.
687 	 */
688 	uint32_t	jedec_id;
689 
690 	/* The size listed here is what works with OP_ERASE_PAGE. */
691 	unsigned	nr_pages;
692 	uint16_t	pagesize;
693 	uint16_t	pageoffset;
694 
695 	uint16_t	flags;
696 #define SUP_POW2PS	0x0002		/* supports 2^N byte pages */
697 #define IS_POW2PS	0x0001		/* uses 2^N byte pages */
698 };
699 
700 static struct flash_info dataflash_data[] = {
701 
702 	/*
703 	 * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
704 	 * one with IS_POW2PS and the other without.  The entry with the
705 	 * non-2^N byte page size can't name exact chip revisions without
706 	 * losing backwards compatibility for cmdlinepart.
707 	 *
708 	 * These newer chips also support 128-byte security registers (with
709 	 * 64 bytes one-time-programmable) and software write-protection.
710 	 */
711 	{ "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
712 	{ "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
713 
714 	{ "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
715 	{ "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
716 
717 	{ "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
718 	{ "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
719 
720 	{ "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
721 	{ "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
722 
723 	{ "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
724 	{ "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
725 
726 	{ "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},		/* rev C */
727 
728 	{ "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
729 	{ "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
730 
731 	{ "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
732 	{ "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
733 };
734 
735 static struct flash_info *jedec_probe(struct spi_device *spi)
736 {
737 	int			tmp;
738 	uint8_t			code = OP_READ_ID;
739 	uint8_t			id[3];
740 	uint32_t		jedec;
741 	struct flash_info	*info;
742 	int status;
743 
744 	/* JEDEC also defines an optional "extended device information"
745 	 * string for after vendor-specific data, after the three bytes
746 	 * we use here.  Supporting some chips might require using it.
747 	 *
748 	 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
749 	 * That's not an error; only rev C and newer chips handle it, and
750 	 * only Atmel sells these chips.
751 	 */
752 	tmp = spi_write_then_read(spi, &code, 1, id, 3);
753 	if (tmp < 0) {
754 		pr_debug("%s: error %d reading JEDEC ID\n",
755 			dev_name(&spi->dev), tmp);
756 		return ERR_PTR(tmp);
757 	}
758 	if (id[0] != 0x1f)
759 		return NULL;
760 
761 	jedec = id[0];
762 	jedec = jedec << 8;
763 	jedec |= id[1];
764 	jedec = jedec << 8;
765 	jedec |= id[2];
766 
767 	for (tmp = 0, info = dataflash_data;
768 			tmp < ARRAY_SIZE(dataflash_data);
769 			tmp++, info++) {
770 		if (info->jedec_id == jedec) {
771 			pr_debug("%s: OTP, sector protect%s\n",
772 				dev_name(&spi->dev),
773 				(info->flags & SUP_POW2PS)
774 					? ", binary pagesize" : ""
775 				);
776 			if (info->flags & SUP_POW2PS) {
777 				status = dataflash_status(spi);
778 				if (status < 0) {
779 					pr_debug("%s: status error %d\n",
780 						dev_name(&spi->dev), status);
781 					return ERR_PTR(status);
782 				}
783 				if (status & 0x1) {
784 					if (info->flags & IS_POW2PS)
785 						return info;
786 				} else {
787 					if (!(info->flags & IS_POW2PS))
788 						return info;
789 				}
790 			} else
791 				return info;
792 		}
793 	}
794 
795 	/*
796 	 * Treat other chips as errors ... we won't know the right page
797 	 * size (it might be binary) even when we can tell which density
798 	 * class is involved (legacy chip id scheme).
799 	 */
800 	dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
801 	return ERR_PTR(-ENODEV);
802 }
803 
804 /*
805  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
806  * or else the ID code embedded in the status bits:
807  *
808  *   Device      Density         ID code          #Pages PageSize  Offset
809  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
810  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
811  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
812  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
813  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
814  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
815  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
816  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
817  */
818 static int dataflash_probe(struct spi_device *spi)
819 {
820 	int status;
821 	struct flash_info	*info;
822 
823 	/*
824 	 * Try to detect dataflash by JEDEC ID.
825 	 * If it succeeds we know we have either a C or D part.
826 	 * D will support power of 2 pagesize option.
827 	 * Both support the security register, though with different
828 	 * write procedures.
829 	 */
830 	info = jedec_probe(spi);
831 	if (IS_ERR(info))
832 		return PTR_ERR(info);
833 	if (info != NULL)
834 		return add_dataflash_otp(spi, info->name, info->nr_pages,
835 				info->pagesize, info->pageoffset,
836 				(info->flags & SUP_POW2PS) ? 'd' : 'c');
837 
838 	/*
839 	 * Older chips support only legacy commands, identifing
840 	 * capacity using bits in the status byte.
841 	 */
842 	status = dataflash_status(spi);
843 	if (status <= 0 || status == 0xff) {
844 		pr_debug("%s: status error %d\n",
845 				dev_name(&spi->dev), status);
846 		if (status == 0 || status == 0xff)
847 			status = -ENODEV;
848 		return status;
849 	}
850 
851 	/* if there's a device there, assume it's dataflash.
852 	 * board setup should have set spi->max_speed_max to
853 	 * match f(car) for continuous reads, mode 0 or 3.
854 	 */
855 	switch (status & 0x3c) {
856 	case 0x0c:	/* 0 0 1 1 x x */
857 		status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
858 		break;
859 	case 0x14:	/* 0 1 0 1 x x */
860 		status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
861 		break;
862 	case 0x1c:	/* 0 1 1 1 x x */
863 		status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
864 		break;
865 	case 0x24:	/* 1 0 0 1 x x */
866 		status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
867 		break;
868 	case 0x2c:	/* 1 0 1 1 x x */
869 		status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
870 		break;
871 	case 0x34:	/* 1 1 0 1 x x */
872 		status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
873 		break;
874 	case 0x38:	/* 1 1 1 x x x */
875 	case 0x3c:
876 		status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
877 		break;
878 	/* obsolete AT45DB1282 not (yet?) supported */
879 	default:
880 		dev_info(&spi->dev, "unsupported device (%x)\n",
881 				status & 0x3c);
882 		status = -ENODEV;
883 	}
884 
885 	if (status < 0)
886 		pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
887 				status);
888 
889 	return status;
890 }
891 
892 static int dataflash_remove(struct spi_device *spi)
893 {
894 	struct dataflash	*flash = spi_get_drvdata(spi);
895 	int			status;
896 
897 	pr_debug("%s: remove\n", dev_name(&spi->dev));
898 
899 	status = mtd_device_unregister(&flash->mtd);
900 	if (status == 0)
901 		kfree(flash);
902 	return status;
903 }
904 
905 static struct spi_driver dataflash_driver = {
906 	.driver = {
907 		.name		= "mtd_dataflash",
908 		.owner		= THIS_MODULE,
909 		.of_match_table = of_match_ptr(dataflash_dt_ids),
910 	},
911 
912 	.probe		= dataflash_probe,
913 	.remove		= dataflash_remove,
914 
915 	/* FIXME:  investigate suspend and resume... */
916 };
917 
918 module_spi_driver(dataflash_driver);
919 
920 MODULE_LICENSE("GPL");
921 MODULE_AUTHOR("Andrew Victor, David Brownell");
922 MODULE_DESCRIPTION("MTD DataFlash driver");
923 MODULE_ALIAS("spi:mtd_dataflash");
924