1 /* 2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework 3 * 4 * Largely derived from at91_dataflash.c: 5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/delay.h> 15 #include <linux/device.h> 16 #include <linux/mutex.h> 17 #include <linux/err.h> 18 #include <linux/math64.h> 19 #include <linux/of.h> 20 #include <linux/of_device.h> 21 22 #include <linux/spi/spi.h> 23 #include <linux/spi/flash.h> 24 25 #include <linux/mtd/mtd.h> 26 #include <linux/mtd/partitions.h> 27 28 /* 29 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in 30 * each chip, which may be used for double buffered I/O; but this driver 31 * doesn't (yet) use these for any kind of i/o overlap or prefetching. 32 * 33 * Sometimes DataFlash is packaged in MMC-format cards, although the 34 * MMC stack can't (yet?) distinguish between MMC and DataFlash 35 * protocols during enumeration. 36 */ 37 38 /* reads can bypass the buffers */ 39 #define OP_READ_CONTINUOUS 0xE8 40 #define OP_READ_PAGE 0xD2 41 42 /* group B requests can run even while status reports "busy" */ 43 #define OP_READ_STATUS 0xD7 /* group B */ 44 45 /* move data between host and buffer */ 46 #define OP_READ_BUFFER1 0xD4 /* group B */ 47 #define OP_READ_BUFFER2 0xD6 /* group B */ 48 #define OP_WRITE_BUFFER1 0x84 /* group B */ 49 #define OP_WRITE_BUFFER2 0x87 /* group B */ 50 51 /* erasing flash */ 52 #define OP_ERASE_PAGE 0x81 53 #define OP_ERASE_BLOCK 0x50 54 55 /* move data between buffer and flash */ 56 #define OP_TRANSFER_BUF1 0x53 57 #define OP_TRANSFER_BUF2 0x55 58 #define OP_MREAD_BUFFER1 0xD4 59 #define OP_MREAD_BUFFER2 0xD6 60 #define OP_MWERASE_BUFFER1 0x83 61 #define OP_MWERASE_BUFFER2 0x86 62 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ 63 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ 64 65 /* write to buffer, then write-erase to flash */ 66 #define OP_PROGRAM_VIA_BUF1 0x82 67 #define OP_PROGRAM_VIA_BUF2 0x85 68 69 /* compare buffer to flash */ 70 #define OP_COMPARE_BUF1 0x60 71 #define OP_COMPARE_BUF2 0x61 72 73 /* read flash to buffer, then write-erase to flash */ 74 #define OP_REWRITE_VIA_BUF1 0x58 75 #define OP_REWRITE_VIA_BUF2 0x59 76 77 /* newer chips report JEDEC manufacturer and device IDs; chip 78 * serial number and OTP bits; and per-sector writeprotect. 79 */ 80 #define OP_READ_ID 0x9F 81 #define OP_READ_SECURITY 0x77 82 #define OP_WRITE_SECURITY_REVC 0x9A 83 #define OP_WRITE_SECURITY 0x9B /* revision D */ 84 85 86 struct dataflash { 87 uint8_t command[4]; 88 char name[24]; 89 90 unsigned short page_offset; /* offset in flash address */ 91 unsigned int page_size; /* of bytes per page */ 92 93 struct mutex lock; 94 struct spi_device *spi; 95 96 struct mtd_info mtd; 97 }; 98 99 #ifdef CONFIG_OF 100 static const struct of_device_id dataflash_dt_ids[] = { 101 { .compatible = "atmel,at45", }, 102 { .compatible = "atmel,dataflash", }, 103 { /* sentinel */ } 104 }; 105 #endif 106 107 /* ......................................................................... */ 108 109 /* 110 * Return the status of the DataFlash device. 111 */ 112 static inline int dataflash_status(struct spi_device *spi) 113 { 114 /* NOTE: at45db321c over 25 MHz wants to write 115 * a dummy byte after the opcode... 116 */ 117 return spi_w8r8(spi, OP_READ_STATUS); 118 } 119 120 /* 121 * Poll the DataFlash device until it is READY. 122 * This usually takes 5-20 msec or so; more for sector erase. 123 */ 124 static int dataflash_waitready(struct spi_device *spi) 125 { 126 int status; 127 128 for (;;) { 129 status = dataflash_status(spi); 130 if (status < 0) { 131 pr_debug("%s: status %d?\n", 132 dev_name(&spi->dev), status); 133 status = 0; 134 } 135 136 if (status & (1 << 7)) /* RDY/nBSY */ 137 return status; 138 139 msleep(3); 140 } 141 } 142 143 /* ......................................................................... */ 144 145 /* 146 * Erase pages of flash. 147 */ 148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) 149 { 150 struct dataflash *priv = mtd->priv; 151 struct spi_device *spi = priv->spi; 152 struct spi_transfer x = { .tx_dma = 0, }; 153 struct spi_message msg; 154 unsigned blocksize = priv->page_size << 3; 155 uint8_t *command; 156 uint32_t rem; 157 158 pr_debug("%s: erase addr=0x%llx len 0x%llx\n", 159 dev_name(&spi->dev), (long long)instr->addr, 160 (long long)instr->len); 161 162 div_u64_rem(instr->len, priv->page_size, &rem); 163 if (rem) 164 return -EINVAL; 165 div_u64_rem(instr->addr, priv->page_size, &rem); 166 if (rem) 167 return -EINVAL; 168 169 spi_message_init(&msg); 170 171 x.tx_buf = command = priv->command; 172 x.len = 4; 173 spi_message_add_tail(&x, &msg); 174 175 mutex_lock(&priv->lock); 176 while (instr->len > 0) { 177 unsigned int pageaddr; 178 int status; 179 int do_block; 180 181 /* Calculate flash page address; use block erase (for speed) if 182 * we're at a block boundary and need to erase the whole block. 183 */ 184 pageaddr = div_u64(instr->addr, priv->page_size); 185 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; 186 pageaddr = pageaddr << priv->page_offset; 187 188 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; 189 command[1] = (uint8_t)(pageaddr >> 16); 190 command[2] = (uint8_t)(pageaddr >> 8); 191 command[3] = 0; 192 193 pr_debug("ERASE %s: (%x) %x %x %x [%i]\n", 194 do_block ? "block" : "page", 195 command[0], command[1], command[2], command[3], 196 pageaddr); 197 198 status = spi_sync(spi, &msg); 199 (void) dataflash_waitready(spi); 200 201 if (status < 0) { 202 printk(KERN_ERR "%s: erase %x, err %d\n", 203 dev_name(&spi->dev), pageaddr, status); 204 /* REVISIT: can retry instr->retries times; or 205 * giveup and instr->fail_addr = instr->addr; 206 */ 207 continue; 208 } 209 210 if (do_block) { 211 instr->addr += blocksize; 212 instr->len -= blocksize; 213 } else { 214 instr->addr += priv->page_size; 215 instr->len -= priv->page_size; 216 } 217 } 218 mutex_unlock(&priv->lock); 219 220 /* Inform MTD subsystem that erase is complete */ 221 instr->state = MTD_ERASE_DONE; 222 mtd_erase_callback(instr); 223 224 return 0; 225 } 226 227 /* 228 * Read from the DataFlash device. 229 * from : Start offset in flash device 230 * len : Amount to read 231 * retlen : About of data actually read 232 * buf : Buffer containing the data 233 */ 234 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, 235 size_t *retlen, u_char *buf) 236 { 237 struct dataflash *priv = mtd->priv; 238 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 239 struct spi_message msg; 240 unsigned int addr; 241 uint8_t *command; 242 int status; 243 244 pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev), 245 (unsigned)from, (unsigned)(from + len)); 246 247 /* Calculate flash page/byte address */ 248 addr = (((unsigned)from / priv->page_size) << priv->page_offset) 249 + ((unsigned)from % priv->page_size); 250 251 command = priv->command; 252 253 pr_debug("READ: (%x) %x %x %x\n", 254 command[0], command[1], command[2], command[3]); 255 256 spi_message_init(&msg); 257 258 x[0].tx_buf = command; 259 x[0].len = 8; 260 spi_message_add_tail(&x[0], &msg); 261 262 x[1].rx_buf = buf; 263 x[1].len = len; 264 spi_message_add_tail(&x[1], &msg); 265 266 mutex_lock(&priv->lock); 267 268 /* Continuous read, max clock = f(car) which may be less than 269 * the peak rate available. Some chips support commands with 270 * fewer "don't care" bytes. Both buffers stay unchanged. 271 */ 272 command[0] = OP_READ_CONTINUOUS; 273 command[1] = (uint8_t)(addr >> 16); 274 command[2] = (uint8_t)(addr >> 8); 275 command[3] = (uint8_t)(addr >> 0); 276 /* plus 4 "don't care" bytes */ 277 278 status = spi_sync(priv->spi, &msg); 279 mutex_unlock(&priv->lock); 280 281 if (status >= 0) { 282 *retlen = msg.actual_length - 8; 283 status = 0; 284 } else 285 pr_debug("%s: read %x..%x --> %d\n", 286 dev_name(&priv->spi->dev), 287 (unsigned)from, (unsigned)(from + len), 288 status); 289 return status; 290 } 291 292 /* 293 * Write to the DataFlash device. 294 * to : Start offset in flash device 295 * len : Amount to write 296 * retlen : Amount of data actually written 297 * buf : Buffer containing the data 298 */ 299 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, 300 size_t * retlen, const u_char * buf) 301 { 302 struct dataflash *priv = mtd->priv; 303 struct spi_device *spi = priv->spi; 304 struct spi_transfer x[2] = { { .tx_dma = 0, }, }; 305 struct spi_message msg; 306 unsigned int pageaddr, addr, offset, writelen; 307 size_t remaining = len; 308 u_char *writebuf = (u_char *) buf; 309 int status = -EINVAL; 310 uint8_t *command; 311 312 pr_debug("%s: write 0x%x..0x%x\n", 313 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len)); 314 315 spi_message_init(&msg); 316 317 x[0].tx_buf = command = priv->command; 318 x[0].len = 4; 319 spi_message_add_tail(&x[0], &msg); 320 321 pageaddr = ((unsigned)to / priv->page_size); 322 offset = ((unsigned)to % priv->page_size); 323 if (offset + len > priv->page_size) 324 writelen = priv->page_size - offset; 325 else 326 writelen = len; 327 328 mutex_lock(&priv->lock); 329 while (remaining > 0) { 330 pr_debug("write @ %i:%i len=%i\n", 331 pageaddr, offset, writelen); 332 333 /* REVISIT: 334 * (a) each page in a sector must be rewritten at least 335 * once every 10K sibling erase/program operations. 336 * (b) for pages that are already erased, we could 337 * use WRITE+MWRITE not PROGRAM for ~30% speedup. 338 * (c) WRITE to buffer could be done while waiting for 339 * a previous MWRITE/MWERASE to complete ... 340 * (d) error handling here seems to be mostly missing. 341 * 342 * Two persistent bits per page, plus a per-sector counter, 343 * could support (a) and (b) ... we might consider using 344 * the second half of sector zero, which is just one block, 345 * to track that state. (On AT91, that sector should also 346 * support boot-from-DataFlash.) 347 */ 348 349 addr = pageaddr << priv->page_offset; 350 351 /* (1) Maybe transfer partial page to Buffer1 */ 352 if (writelen != priv->page_size) { 353 command[0] = OP_TRANSFER_BUF1; 354 command[1] = (addr & 0x00FF0000) >> 16; 355 command[2] = (addr & 0x0000FF00) >> 8; 356 command[3] = 0; 357 358 pr_debug("TRANSFER: (%x) %x %x %x\n", 359 command[0], command[1], command[2], command[3]); 360 361 status = spi_sync(spi, &msg); 362 if (status < 0) 363 pr_debug("%s: xfer %u -> %d\n", 364 dev_name(&spi->dev), addr, status); 365 366 (void) dataflash_waitready(priv->spi); 367 } 368 369 /* (2) Program full page via Buffer1 */ 370 addr += offset; 371 command[0] = OP_PROGRAM_VIA_BUF1; 372 command[1] = (addr & 0x00FF0000) >> 16; 373 command[2] = (addr & 0x0000FF00) >> 8; 374 command[3] = (addr & 0x000000FF); 375 376 pr_debug("PROGRAM: (%x) %x %x %x\n", 377 command[0], command[1], command[2], command[3]); 378 379 x[1].tx_buf = writebuf; 380 x[1].len = writelen; 381 spi_message_add_tail(x + 1, &msg); 382 status = spi_sync(spi, &msg); 383 spi_transfer_del(x + 1); 384 if (status < 0) 385 pr_debug("%s: pgm %u/%u -> %d\n", 386 dev_name(&spi->dev), addr, writelen, status); 387 388 (void) dataflash_waitready(priv->spi); 389 390 391 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY 392 393 /* (3) Compare to Buffer1 */ 394 addr = pageaddr << priv->page_offset; 395 command[0] = OP_COMPARE_BUF1; 396 command[1] = (addr & 0x00FF0000) >> 16; 397 command[2] = (addr & 0x0000FF00) >> 8; 398 command[3] = 0; 399 400 pr_debug("COMPARE: (%x) %x %x %x\n", 401 command[0], command[1], command[2], command[3]); 402 403 status = spi_sync(spi, &msg); 404 if (status < 0) 405 pr_debug("%s: compare %u -> %d\n", 406 dev_name(&spi->dev), addr, status); 407 408 status = dataflash_waitready(priv->spi); 409 410 /* Check result of the compare operation */ 411 if (status & (1 << 6)) { 412 printk(KERN_ERR "%s: compare page %u, err %d\n", 413 dev_name(&spi->dev), pageaddr, status); 414 remaining = 0; 415 status = -EIO; 416 break; 417 } else 418 status = 0; 419 420 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */ 421 422 remaining = remaining - writelen; 423 pageaddr++; 424 offset = 0; 425 writebuf += writelen; 426 *retlen += writelen; 427 428 if (remaining > priv->page_size) 429 writelen = priv->page_size; 430 else 431 writelen = remaining; 432 } 433 mutex_unlock(&priv->lock); 434 435 return status; 436 } 437 438 /* ......................................................................... */ 439 440 #ifdef CONFIG_MTD_DATAFLASH_OTP 441 442 static int dataflash_get_otp_info(struct mtd_info *mtd, 443 struct otp_info *info, size_t len) 444 { 445 /* Report both blocks as identical: bytes 0..64, locked. 446 * Unless the user block changed from all-ones, we can't 447 * tell whether it's still writable; so we assume it isn't. 448 */ 449 info->start = 0; 450 info->length = 64; 451 info->locked = 1; 452 return sizeof(*info); 453 } 454 455 static ssize_t otp_read(struct spi_device *spi, unsigned base, 456 uint8_t *buf, loff_t off, size_t len) 457 { 458 struct spi_message m; 459 size_t l; 460 uint8_t *scratch; 461 struct spi_transfer t; 462 int status; 463 464 if (off > 64) 465 return -EINVAL; 466 467 if ((off + len) > 64) 468 len = 64 - off; 469 470 spi_message_init(&m); 471 472 l = 4 + base + off + len; 473 scratch = kzalloc(l, GFP_KERNEL); 474 if (!scratch) 475 return -ENOMEM; 476 477 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes 478 * IN: ignore 4 bytes, data bytes 0..N (max 127) 479 */ 480 scratch[0] = OP_READ_SECURITY; 481 482 memset(&t, 0, sizeof t); 483 t.tx_buf = scratch; 484 t.rx_buf = scratch; 485 t.len = l; 486 spi_message_add_tail(&t, &m); 487 488 dataflash_waitready(spi); 489 490 status = spi_sync(spi, &m); 491 if (status >= 0) { 492 memcpy(buf, scratch + 4 + base + off, len); 493 status = len; 494 } 495 496 kfree(scratch); 497 return status; 498 } 499 500 static int dataflash_read_fact_otp(struct mtd_info *mtd, 501 loff_t from, size_t len, size_t *retlen, u_char *buf) 502 { 503 struct dataflash *priv = mtd->priv; 504 int status; 505 506 /* 64 bytes, from 0..63 ... start at 64 on-chip */ 507 mutex_lock(&priv->lock); 508 status = otp_read(priv->spi, 64, buf, from, len); 509 mutex_unlock(&priv->lock); 510 511 if (status < 0) 512 return status; 513 *retlen = status; 514 return 0; 515 } 516 517 static int dataflash_read_user_otp(struct mtd_info *mtd, 518 loff_t from, size_t len, size_t *retlen, u_char *buf) 519 { 520 struct dataflash *priv = mtd->priv; 521 int status; 522 523 /* 64 bytes, from 0..63 ... start at 0 on-chip */ 524 mutex_lock(&priv->lock); 525 status = otp_read(priv->spi, 0, buf, from, len); 526 mutex_unlock(&priv->lock); 527 528 if (status < 0) 529 return status; 530 *retlen = status; 531 return 0; 532 } 533 534 static int dataflash_write_user_otp(struct mtd_info *mtd, 535 loff_t from, size_t len, size_t *retlen, u_char *buf) 536 { 537 struct spi_message m; 538 const size_t l = 4 + 64; 539 uint8_t *scratch; 540 struct spi_transfer t; 541 struct dataflash *priv = mtd->priv; 542 int status; 543 544 if (len > 64) 545 return -EINVAL; 546 547 /* Strictly speaking, we *could* truncate the write ... but 548 * let's not do that for the only write that's ever possible. 549 */ 550 if ((from + len) > 64) 551 return -EINVAL; 552 553 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes 554 * IN: ignore all 555 */ 556 scratch = kzalloc(l, GFP_KERNEL); 557 if (!scratch) 558 return -ENOMEM; 559 scratch[0] = OP_WRITE_SECURITY; 560 memcpy(scratch + 4 + from, buf, len); 561 562 spi_message_init(&m); 563 564 memset(&t, 0, sizeof t); 565 t.tx_buf = scratch; 566 t.len = l; 567 spi_message_add_tail(&t, &m); 568 569 /* Write the OTP bits, if they've not yet been written. 570 * This modifies SRAM buffer1. 571 */ 572 mutex_lock(&priv->lock); 573 dataflash_waitready(priv->spi); 574 status = spi_sync(priv->spi, &m); 575 mutex_unlock(&priv->lock); 576 577 kfree(scratch); 578 579 if (status >= 0) { 580 status = 0; 581 *retlen = len; 582 } 583 return status; 584 } 585 586 static char *otp_setup(struct mtd_info *device, char revision) 587 { 588 device->_get_fact_prot_info = dataflash_get_otp_info; 589 device->_read_fact_prot_reg = dataflash_read_fact_otp; 590 device->_get_user_prot_info = dataflash_get_otp_info; 591 device->_read_user_prot_reg = dataflash_read_user_otp; 592 593 /* rev c parts (at45db321c and at45db1281 only!) use a 594 * different write procedure; not (yet?) implemented. 595 */ 596 if (revision > 'c') 597 device->_write_user_prot_reg = dataflash_write_user_otp; 598 599 return ", OTP"; 600 } 601 602 #else 603 604 static char *otp_setup(struct mtd_info *device, char revision) 605 { 606 return " (OTP)"; 607 } 608 609 #endif 610 611 /* ......................................................................... */ 612 613 /* 614 * Register DataFlash device with MTD subsystem. 615 */ 616 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages, 617 int pagesize, int pageoffset, char revision) 618 { 619 struct dataflash *priv; 620 struct mtd_info *device; 621 struct mtd_part_parser_data ppdata; 622 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev); 623 char *otp_tag = ""; 624 int err = 0; 625 626 priv = kzalloc(sizeof *priv, GFP_KERNEL); 627 if (!priv) 628 return -ENOMEM; 629 630 mutex_init(&priv->lock); 631 priv->spi = spi; 632 priv->page_size = pagesize; 633 priv->page_offset = pageoffset; 634 635 /* name must be usable with cmdlinepart */ 636 sprintf(priv->name, "spi%d.%d-%s", 637 spi->master->bus_num, spi->chip_select, 638 name); 639 640 device = &priv->mtd; 641 device->name = (pdata && pdata->name) ? pdata->name : priv->name; 642 device->size = nr_pages * pagesize; 643 device->erasesize = pagesize; 644 device->writesize = pagesize; 645 device->owner = THIS_MODULE; 646 device->type = MTD_DATAFLASH; 647 device->flags = MTD_WRITEABLE; 648 device->_erase = dataflash_erase; 649 device->_read = dataflash_read; 650 device->_write = dataflash_write; 651 device->priv = priv; 652 653 device->dev.parent = &spi->dev; 654 655 if (revision >= 'c') 656 otp_tag = otp_setup(device, revision); 657 658 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n", 659 name, (long long)((device->size + 1023) >> 10), 660 pagesize, otp_tag); 661 spi_set_drvdata(spi, priv); 662 663 ppdata.of_node = spi->dev.of_node; 664 err = mtd_device_parse_register(device, NULL, &ppdata, 665 pdata ? pdata->parts : NULL, 666 pdata ? pdata->nr_parts : 0); 667 668 if (!err) 669 return 0; 670 671 kfree(priv); 672 return err; 673 } 674 675 static inline int add_dataflash(struct spi_device *spi, char *name, 676 int nr_pages, int pagesize, int pageoffset) 677 { 678 return add_dataflash_otp(spi, name, nr_pages, pagesize, 679 pageoffset, 0); 680 } 681 682 struct flash_info { 683 char *name; 684 685 /* JEDEC id has a high byte of zero plus three data bytes: 686 * the manufacturer id, then a two byte device id. 687 */ 688 uint32_t jedec_id; 689 690 /* The size listed here is what works with OP_ERASE_PAGE. */ 691 unsigned nr_pages; 692 uint16_t pagesize; 693 uint16_t pageoffset; 694 695 uint16_t flags; 696 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ 697 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ 698 }; 699 700 static struct flash_info dataflash_data[] = { 701 702 /* 703 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, 704 * one with IS_POW2PS and the other without. The entry with the 705 * non-2^N byte page size can't name exact chip revisions without 706 * losing backwards compatibility for cmdlinepart. 707 * 708 * These newer chips also support 128-byte security registers (with 709 * 64 bytes one-time-programmable) and software write-protection. 710 */ 711 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, 712 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, 713 714 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, 715 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, 716 717 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, 718 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, 719 720 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, 721 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, 722 723 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, 724 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, 725 726 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ 727 728 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, 729 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, 730 731 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, 732 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, 733 }; 734 735 static struct flash_info *jedec_probe(struct spi_device *spi) 736 { 737 int tmp; 738 uint8_t code = OP_READ_ID; 739 uint8_t id[3]; 740 uint32_t jedec; 741 struct flash_info *info; 742 int status; 743 744 /* JEDEC also defines an optional "extended device information" 745 * string for after vendor-specific data, after the three bytes 746 * we use here. Supporting some chips might require using it. 747 * 748 * If the vendor ID isn't Atmel's (0x1f), assume this call failed. 749 * That's not an error; only rev C and newer chips handle it, and 750 * only Atmel sells these chips. 751 */ 752 tmp = spi_write_then_read(spi, &code, 1, id, 3); 753 if (tmp < 0) { 754 pr_debug("%s: error %d reading JEDEC ID\n", 755 dev_name(&spi->dev), tmp); 756 return ERR_PTR(tmp); 757 } 758 if (id[0] != 0x1f) 759 return NULL; 760 761 jedec = id[0]; 762 jedec = jedec << 8; 763 jedec |= id[1]; 764 jedec = jedec << 8; 765 jedec |= id[2]; 766 767 for (tmp = 0, info = dataflash_data; 768 tmp < ARRAY_SIZE(dataflash_data); 769 tmp++, info++) { 770 if (info->jedec_id == jedec) { 771 pr_debug("%s: OTP, sector protect%s\n", 772 dev_name(&spi->dev), 773 (info->flags & SUP_POW2PS) 774 ? ", binary pagesize" : "" 775 ); 776 if (info->flags & SUP_POW2PS) { 777 status = dataflash_status(spi); 778 if (status < 0) { 779 pr_debug("%s: status error %d\n", 780 dev_name(&spi->dev), status); 781 return ERR_PTR(status); 782 } 783 if (status & 0x1) { 784 if (info->flags & IS_POW2PS) 785 return info; 786 } else { 787 if (!(info->flags & IS_POW2PS)) 788 return info; 789 } 790 } else 791 return info; 792 } 793 } 794 795 /* 796 * Treat other chips as errors ... we won't know the right page 797 * size (it might be binary) even when we can tell which density 798 * class is involved (legacy chip id scheme). 799 */ 800 dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec); 801 return ERR_PTR(-ENODEV); 802 } 803 804 /* 805 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips 806 * or else the ID code embedded in the status bits: 807 * 808 * Device Density ID code #Pages PageSize Offset 809 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 810 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 811 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 812 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 813 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 814 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 815 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 816 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 817 */ 818 static int dataflash_probe(struct spi_device *spi) 819 { 820 int status; 821 struct flash_info *info; 822 823 /* 824 * Try to detect dataflash by JEDEC ID. 825 * If it succeeds we know we have either a C or D part. 826 * D will support power of 2 pagesize option. 827 * Both support the security register, though with different 828 * write procedures. 829 */ 830 info = jedec_probe(spi); 831 if (IS_ERR(info)) 832 return PTR_ERR(info); 833 if (info != NULL) 834 return add_dataflash_otp(spi, info->name, info->nr_pages, 835 info->pagesize, info->pageoffset, 836 (info->flags & SUP_POW2PS) ? 'd' : 'c'); 837 838 /* 839 * Older chips support only legacy commands, identifing 840 * capacity using bits in the status byte. 841 */ 842 status = dataflash_status(spi); 843 if (status <= 0 || status == 0xff) { 844 pr_debug("%s: status error %d\n", 845 dev_name(&spi->dev), status); 846 if (status == 0 || status == 0xff) 847 status = -ENODEV; 848 return status; 849 } 850 851 /* if there's a device there, assume it's dataflash. 852 * board setup should have set spi->max_speed_max to 853 * match f(car) for continuous reads, mode 0 or 3. 854 */ 855 switch (status & 0x3c) { 856 case 0x0c: /* 0 0 1 1 x x */ 857 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9); 858 break; 859 case 0x14: /* 0 1 0 1 x x */ 860 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9); 861 break; 862 case 0x1c: /* 0 1 1 1 x x */ 863 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9); 864 break; 865 case 0x24: /* 1 0 0 1 x x */ 866 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9); 867 break; 868 case 0x2c: /* 1 0 1 1 x x */ 869 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10); 870 break; 871 case 0x34: /* 1 1 0 1 x x */ 872 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10); 873 break; 874 case 0x38: /* 1 1 1 x x x */ 875 case 0x3c: 876 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11); 877 break; 878 /* obsolete AT45DB1282 not (yet?) supported */ 879 default: 880 dev_info(&spi->dev, "unsupported device (%x)\n", 881 status & 0x3c); 882 status = -ENODEV; 883 } 884 885 if (status < 0) 886 pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev), 887 status); 888 889 return status; 890 } 891 892 static int dataflash_remove(struct spi_device *spi) 893 { 894 struct dataflash *flash = spi_get_drvdata(spi); 895 int status; 896 897 pr_debug("%s: remove\n", dev_name(&spi->dev)); 898 899 status = mtd_device_unregister(&flash->mtd); 900 if (status == 0) 901 kfree(flash); 902 return status; 903 } 904 905 static struct spi_driver dataflash_driver = { 906 .driver = { 907 .name = "mtd_dataflash", 908 .owner = THIS_MODULE, 909 .of_match_table = of_match_ptr(dataflash_dt_ids), 910 }, 911 912 .probe = dataflash_probe, 913 .remove = dataflash_remove, 914 915 /* FIXME: investigate suspend and resume... */ 916 }; 917 918 module_spi_driver(dataflash_driver); 919 920 MODULE_LICENSE("GPL"); 921 MODULE_AUTHOR("Andrew Victor, David Brownell"); 922 MODULE_DESCRIPTION("MTD DataFlash driver"); 923 MODULE_ALIAS("spi:mtd_dataflash"); 924