xref: /linux/drivers/mtd/devices/mtd_dataflash.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
4  *
5  * Largely derived from at91_dataflash.c:
6  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
7 */
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/math64.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17 
18 #include <linux/spi/spi.h>
19 #include <linux/spi/flash.h>
20 
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 
24 /*
25  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
26  * each chip, which may be used for double buffered I/O; but this driver
27  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
28  *
29  * Sometimes DataFlash is packaged in MMC-format cards, although the
30  * MMC stack can't (yet?) distinguish between MMC and DataFlash
31  * protocols during enumeration.
32  */
33 
34 /* reads can bypass the buffers */
35 #define OP_READ_CONTINUOUS	0xE8
36 #define OP_READ_PAGE		0xD2
37 
38 /* group B requests can run even while status reports "busy" */
39 #define OP_READ_STATUS		0xD7	/* group B */
40 
41 /* move data between host and buffer */
42 #define OP_READ_BUFFER1		0xD4	/* group B */
43 #define OP_READ_BUFFER2		0xD6	/* group B */
44 #define OP_WRITE_BUFFER1	0x84	/* group B */
45 #define OP_WRITE_BUFFER2	0x87	/* group B */
46 
47 /* erasing flash */
48 #define OP_ERASE_PAGE		0x81
49 #define OP_ERASE_BLOCK		0x50
50 
51 /* move data between buffer and flash */
52 #define OP_TRANSFER_BUF1	0x53
53 #define OP_TRANSFER_BUF2	0x55
54 #define OP_MREAD_BUFFER1	0xD4
55 #define OP_MREAD_BUFFER2	0xD6
56 #define OP_MWERASE_BUFFER1	0x83
57 #define OP_MWERASE_BUFFER2	0x86
58 #define OP_MWRITE_BUFFER1	0x88	/* sector must be pre-erased */
59 #define OP_MWRITE_BUFFER2	0x89	/* sector must be pre-erased */
60 
61 /* write to buffer, then write-erase to flash */
62 #define OP_PROGRAM_VIA_BUF1	0x82
63 #define OP_PROGRAM_VIA_BUF2	0x85
64 
65 /* compare buffer to flash */
66 #define OP_COMPARE_BUF1		0x60
67 #define OP_COMPARE_BUF2		0x61
68 
69 /* read flash to buffer, then write-erase to flash */
70 #define OP_REWRITE_VIA_BUF1	0x58
71 #define OP_REWRITE_VIA_BUF2	0x59
72 
73 /* newer chips report JEDEC manufacturer and device IDs; chip
74  * serial number and OTP bits; and per-sector writeprotect.
75  */
76 #define OP_READ_ID		0x9F
77 #define OP_READ_SECURITY	0x77
78 #define OP_WRITE_SECURITY_REVC	0x9A
79 #define OP_WRITE_SECURITY	0x9B	/* revision D */
80 
81 #define CFI_MFR_ATMEL		0x1F
82 
83 #define DATAFLASH_SHIFT_EXTID	24
84 #define DATAFLASH_SHIFT_ID	40
85 
86 struct dataflash {
87 	u8			command[4];
88 	char			name[24];
89 
90 	unsigned short		page_offset;	/* offset in flash address */
91 	unsigned int		page_size;	/* of bytes per page */
92 
93 	struct mutex		lock;
94 	struct spi_device	*spi;
95 
96 	struct mtd_info		mtd;
97 };
98 
99 #ifdef CONFIG_OF
100 static const struct of_device_id dataflash_dt_ids[] = {
101 	{ .compatible = "atmel,at45", },
102 	{ .compatible = "atmel,dataflash", },
103 	{ /* sentinel */ }
104 };
105 MODULE_DEVICE_TABLE(of, dataflash_dt_ids);
106 #endif
107 
108 /* ......................................................................... */
109 
110 /*
111  * Return the status of the DataFlash device.
112  */
113 static inline int dataflash_status(struct spi_device *spi)
114 {
115 	/* NOTE:  at45db321c over 25 MHz wants to write
116 	 * a dummy byte after the opcode...
117 	 */
118 	return spi_w8r8(spi, OP_READ_STATUS);
119 }
120 
121 /*
122  * Poll the DataFlash device until it is READY.
123  * This usually takes 5-20 msec or so; more for sector erase.
124  */
125 static int dataflash_waitready(struct spi_device *spi)
126 {
127 	int	status;
128 
129 	for (;;) {
130 		status = dataflash_status(spi);
131 		if (status < 0) {
132 			dev_dbg(&spi->dev, "status %d?\n", status);
133 			status = 0;
134 		}
135 
136 		if (status & (1 << 7))	/* RDY/nBSY */
137 			return status;
138 
139 		usleep_range(3000, 4000);
140 	}
141 }
142 
143 /* ......................................................................... */
144 
145 /*
146  * Erase pages of flash.
147  */
148 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
149 {
150 	struct dataflash	*priv = mtd->priv;
151 	struct spi_device	*spi = priv->spi;
152 	struct spi_transfer	x = { };
153 	struct spi_message	msg;
154 	unsigned		blocksize = priv->page_size << 3;
155 	u8			*command;
156 	u32			rem;
157 
158 	dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n",
159 		(long long)instr->addr, (long long)instr->len);
160 
161 	div_u64_rem(instr->len, priv->page_size, &rem);
162 	if (rem)
163 		return -EINVAL;
164 	div_u64_rem(instr->addr, priv->page_size, &rem);
165 	if (rem)
166 		return -EINVAL;
167 
168 	spi_message_init(&msg);
169 
170 	x.tx_buf = command = priv->command;
171 	x.len = 4;
172 	spi_message_add_tail(&x, &msg);
173 
174 	mutex_lock(&priv->lock);
175 	while (instr->len > 0) {
176 		unsigned int	pageaddr;
177 		int		status;
178 		int		do_block;
179 
180 		/* Calculate flash page address; use block erase (for speed) if
181 		 * we're at a block boundary and need to erase the whole block.
182 		 */
183 		pageaddr = div_u64(instr->addr, priv->page_size);
184 		do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
185 		pageaddr = pageaddr << priv->page_offset;
186 
187 		command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
188 		command[1] = (u8)(pageaddr >> 16);
189 		command[2] = (u8)(pageaddr >> 8);
190 		command[3] = 0;
191 
192 		dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n",
193 			do_block ? "block" : "page",
194 			command[0], command[1], command[2], command[3],
195 			pageaddr);
196 
197 		status = spi_sync(spi, &msg);
198 		(void) dataflash_waitready(spi);
199 
200 		if (status < 0) {
201 			dev_err(&spi->dev, "erase %x, err %d\n",
202 				pageaddr, status);
203 			/* REVISIT:  can retry instr->retries times; or
204 			 * giveup and instr->fail_addr = instr->addr;
205 			 */
206 			continue;
207 		}
208 
209 		if (do_block) {
210 			instr->addr += blocksize;
211 			instr->len -= blocksize;
212 		} else {
213 			instr->addr += priv->page_size;
214 			instr->len -= priv->page_size;
215 		}
216 	}
217 	mutex_unlock(&priv->lock);
218 
219 	return 0;
220 }
221 
222 /*
223  * Read from the DataFlash device.
224  *   from   : Start offset in flash device
225  *   len    : Amount to read
226  *   retlen : About of data actually read
227  *   buf    : Buffer containing the data
228  */
229 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
230 			       size_t *retlen, u_char *buf)
231 {
232 	struct dataflash	*priv = mtd->priv;
233 	struct spi_transfer	x[2] = { };
234 	struct spi_message	msg;
235 	unsigned int		addr;
236 	u8			*command;
237 	int			status;
238 
239 	dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n",
240 		  (unsigned int)from, (unsigned int)(from + len));
241 
242 	/* Calculate flash page/byte address */
243 	addr = (((unsigned)from / priv->page_size) << priv->page_offset)
244 		+ ((unsigned)from % priv->page_size);
245 
246 	command = priv->command;
247 
248 	dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n",
249 		command[0], command[1], command[2], command[3]);
250 
251 	spi_message_init(&msg);
252 
253 	x[0].tx_buf = command;
254 	x[0].len = 8;
255 	spi_message_add_tail(&x[0], &msg);
256 
257 	x[1].rx_buf = buf;
258 	x[1].len = len;
259 	spi_message_add_tail(&x[1], &msg);
260 
261 	mutex_lock(&priv->lock);
262 
263 	/* Continuous read, max clock = f(car) which may be less than
264 	 * the peak rate available.  Some chips support commands with
265 	 * fewer "don't care" bytes.  Both buffers stay unchanged.
266 	 */
267 	command[0] = OP_READ_CONTINUOUS;
268 	command[1] = (u8)(addr >> 16);
269 	command[2] = (u8)(addr >> 8);
270 	command[3] = (u8)(addr >> 0);
271 	/* plus 4 "don't care" bytes */
272 
273 	status = spi_sync(priv->spi, &msg);
274 	mutex_unlock(&priv->lock);
275 
276 	if (status >= 0) {
277 		*retlen = msg.actual_length - 8;
278 		status = 0;
279 	} else
280 		dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n",
281 			(unsigned)from, (unsigned)(from + len),
282 			status);
283 	return status;
284 }
285 
286 /*
287  * Write to the DataFlash device.
288  *   to     : Start offset in flash device
289  *   len    : Amount to write
290  *   retlen : Amount of data actually written
291  *   buf    : Buffer containing the data
292  */
293 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
294 				size_t * retlen, const u_char * buf)
295 {
296 	struct dataflash	*priv = mtd->priv;
297 	struct spi_device	*spi = priv->spi;
298 	struct spi_transfer	x[2] = { };
299 	struct spi_message	msg;
300 	unsigned int		pageaddr, addr, offset, writelen;
301 	size_t			remaining = len;
302 	u_char			*writebuf = (u_char *) buf;
303 	int			status = -EINVAL;
304 	u8			*command;
305 
306 	dev_dbg(&spi->dev, "write 0x%x..0x%x\n",
307 		(unsigned int)to, (unsigned int)(to + len));
308 
309 	spi_message_init(&msg);
310 
311 	x[0].tx_buf = command = priv->command;
312 	x[0].len = 4;
313 	spi_message_add_tail(&x[0], &msg);
314 
315 	pageaddr = ((unsigned)to / priv->page_size);
316 	offset = ((unsigned)to % priv->page_size);
317 	if (offset + len > priv->page_size)
318 		writelen = priv->page_size - offset;
319 	else
320 		writelen = len;
321 
322 	mutex_lock(&priv->lock);
323 	while (remaining > 0) {
324 		dev_dbg(&spi->dev, "write @ %i:%i len=%i\n",
325 			pageaddr, offset, writelen);
326 
327 		/* REVISIT:
328 		 * (a) each page in a sector must be rewritten at least
329 		 *     once every 10K sibling erase/program operations.
330 		 * (b) for pages that are already erased, we could
331 		 *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
332 		 * (c) WRITE to buffer could be done while waiting for
333 		 *     a previous MWRITE/MWERASE to complete ...
334 		 * (d) error handling here seems to be mostly missing.
335 		 *
336 		 * Two persistent bits per page, plus a per-sector counter,
337 		 * could support (a) and (b) ... we might consider using
338 		 * the second half of sector zero, which is just one block,
339 		 * to track that state.  (On AT91, that sector should also
340 		 * support boot-from-DataFlash.)
341 		 */
342 
343 		addr = pageaddr << priv->page_offset;
344 
345 		/* (1) Maybe transfer partial page to Buffer1 */
346 		if (writelen != priv->page_size) {
347 			command[0] = OP_TRANSFER_BUF1;
348 			command[1] = (addr & 0x00FF0000) >> 16;
349 			command[2] = (addr & 0x0000FF00) >> 8;
350 			command[3] = 0;
351 
352 			dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n",
353 				command[0], command[1], command[2], command[3]);
354 
355 			status = spi_sync(spi, &msg);
356 			if (status < 0)
357 				dev_dbg(&spi->dev, "xfer %u -> %d\n",
358 					addr, status);
359 
360 			(void) dataflash_waitready(priv->spi);
361 		}
362 
363 		/* (2) Program full page via Buffer1 */
364 		addr += offset;
365 		command[0] = OP_PROGRAM_VIA_BUF1;
366 		command[1] = (addr & 0x00FF0000) >> 16;
367 		command[2] = (addr & 0x0000FF00) >> 8;
368 		command[3] = (addr & 0x000000FF);
369 
370 		dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n",
371 			command[0], command[1], command[2], command[3]);
372 
373 		x[1].tx_buf = writebuf;
374 		x[1].len = writelen;
375 		spi_message_add_tail(x + 1, &msg);
376 		status = spi_sync(spi, &msg);
377 		spi_transfer_del(x + 1);
378 		if (status < 0)
379 			dev_dbg(&spi->dev, "pgm %u/%u -> %d\n",
380 				addr, writelen, status);
381 
382 		(void) dataflash_waitready(priv->spi);
383 
384 
385 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
386 
387 		/* (3) Compare to Buffer1 */
388 		addr = pageaddr << priv->page_offset;
389 		command[0] = OP_COMPARE_BUF1;
390 		command[1] = (addr & 0x00FF0000) >> 16;
391 		command[2] = (addr & 0x0000FF00) >> 8;
392 		command[3] = 0;
393 
394 		dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n",
395 			command[0], command[1], command[2], command[3]);
396 
397 		status = spi_sync(spi, &msg);
398 		if (status < 0)
399 			dev_dbg(&spi->dev, "compare %u -> %d\n",
400 				addr, status);
401 
402 		status = dataflash_waitready(priv->spi);
403 
404 		/* Check result of the compare operation */
405 		if (status & (1 << 6)) {
406 			dev_err(&spi->dev, "compare page %u, err %d\n",
407 				pageaddr, status);
408 			remaining = 0;
409 			status = -EIO;
410 			break;
411 		} else
412 			status = 0;
413 
414 #endif	/* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
415 
416 		remaining = remaining - writelen;
417 		pageaddr++;
418 		offset = 0;
419 		writebuf += writelen;
420 		*retlen += writelen;
421 
422 		if (remaining > priv->page_size)
423 			writelen = priv->page_size;
424 		else
425 			writelen = remaining;
426 	}
427 	mutex_unlock(&priv->lock);
428 
429 	return status;
430 }
431 
432 /* ......................................................................... */
433 
434 #ifdef CONFIG_MTD_DATAFLASH_OTP
435 
436 static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
437 				  size_t *retlen, struct otp_info *info)
438 {
439 	/* Report both blocks as identical:  bytes 0..64, locked.
440 	 * Unless the user block changed from all-ones, we can't
441 	 * tell whether it's still writable; so we assume it isn't.
442 	 */
443 	info->start = 0;
444 	info->length = 64;
445 	info->locked = 1;
446 	*retlen = sizeof(*info);
447 	return 0;
448 }
449 
450 static ssize_t otp_read(struct spi_device *spi, unsigned base,
451 		u8 *buf, loff_t off, size_t len)
452 {
453 	struct spi_message	m;
454 	size_t			l;
455 	u8			*scratch;
456 	struct spi_transfer	t;
457 	int			status;
458 
459 	if (off > 64)
460 		return -EINVAL;
461 
462 	if ((off + len) > 64)
463 		len = 64 - off;
464 
465 	spi_message_init(&m);
466 
467 	l = 4 + base + off + len;
468 	scratch = kzalloc(l, GFP_KERNEL);
469 	if (!scratch)
470 		return -ENOMEM;
471 
472 	/* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
473 	 * IN:  ignore 4 bytes, data bytes 0..N (max 127)
474 	 */
475 	scratch[0] = OP_READ_SECURITY;
476 
477 	memset(&t, 0, sizeof t);
478 	t.tx_buf = scratch;
479 	t.rx_buf = scratch;
480 	t.len = l;
481 	spi_message_add_tail(&t, &m);
482 
483 	dataflash_waitready(spi);
484 
485 	status = spi_sync(spi, &m);
486 	if (status >= 0) {
487 		memcpy(buf, scratch + 4 + base + off, len);
488 		status = len;
489 	}
490 
491 	kfree(scratch);
492 	return status;
493 }
494 
495 static int dataflash_read_fact_otp(struct mtd_info *mtd,
496 		loff_t from, size_t len, size_t *retlen, u_char *buf)
497 {
498 	struct dataflash	*priv = mtd->priv;
499 	int			status;
500 
501 	/* 64 bytes, from 0..63 ... start at 64 on-chip */
502 	mutex_lock(&priv->lock);
503 	status = otp_read(priv->spi, 64, buf, from, len);
504 	mutex_unlock(&priv->lock);
505 
506 	if (status < 0)
507 		return status;
508 	*retlen = status;
509 	return 0;
510 }
511 
512 static int dataflash_read_user_otp(struct mtd_info *mtd,
513 		loff_t from, size_t len, size_t *retlen, u_char *buf)
514 {
515 	struct dataflash	*priv = mtd->priv;
516 	int			status;
517 
518 	/* 64 bytes, from 0..63 ... start at 0 on-chip */
519 	mutex_lock(&priv->lock);
520 	status = otp_read(priv->spi, 0, buf, from, len);
521 	mutex_unlock(&priv->lock);
522 
523 	if (status < 0)
524 		return status;
525 	*retlen = status;
526 	return 0;
527 }
528 
529 static int dataflash_write_user_otp(struct mtd_info *mtd,
530 		loff_t from, size_t len, size_t *retlen, const u_char *buf)
531 {
532 	struct spi_message	m;
533 	const size_t		l = 4 + 64;
534 	u8			*scratch;
535 	struct spi_transfer	t;
536 	struct dataflash	*priv = mtd->priv;
537 	int			status;
538 
539 	if (from >= 64) {
540 		/*
541 		 * Attempting to write beyond the end of OTP memory,
542 		 * no data can be written.
543 		 */
544 		*retlen = 0;
545 		return 0;
546 	}
547 
548 	/* Truncate the write to fit into OTP memory. */
549 	if ((from + len) > 64)
550 		len = 64 - from;
551 
552 	/* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
553 	 * IN:  ignore all
554 	 */
555 	scratch = kzalloc(l, GFP_KERNEL);
556 	if (!scratch)
557 		return -ENOMEM;
558 	scratch[0] = OP_WRITE_SECURITY;
559 	memcpy(scratch + 4 + from, buf, len);
560 
561 	spi_message_init(&m);
562 
563 	memset(&t, 0, sizeof t);
564 	t.tx_buf = scratch;
565 	t.len = l;
566 	spi_message_add_tail(&t, &m);
567 
568 	/* Write the OTP bits, if they've not yet been written.
569 	 * This modifies SRAM buffer1.
570 	 */
571 	mutex_lock(&priv->lock);
572 	dataflash_waitready(priv->spi);
573 	status = spi_sync(priv->spi, &m);
574 	mutex_unlock(&priv->lock);
575 
576 	kfree(scratch);
577 
578 	if (status >= 0) {
579 		status = 0;
580 		*retlen = len;
581 	}
582 	return status;
583 }
584 
585 static char *otp_setup(struct mtd_info *device, char revision)
586 {
587 	device->_get_fact_prot_info = dataflash_get_otp_info;
588 	device->_read_fact_prot_reg = dataflash_read_fact_otp;
589 	device->_get_user_prot_info = dataflash_get_otp_info;
590 	device->_read_user_prot_reg = dataflash_read_user_otp;
591 
592 	/* rev c parts (at45db321c and at45db1281 only!) use a
593 	 * different write procedure; not (yet?) implemented.
594 	 */
595 	if (revision > 'c')
596 		device->_write_user_prot_reg = dataflash_write_user_otp;
597 
598 	return ", OTP";
599 }
600 
601 #else
602 
603 static char *otp_setup(struct mtd_info *device, char revision)
604 {
605 	return " (OTP)";
606 }
607 
608 #endif
609 
610 /* ......................................................................... */
611 
612 /*
613  * Register DataFlash device with MTD subsystem.
614  */
615 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
616 			     int pagesize, int pageoffset, char revision)
617 {
618 	struct dataflash		*priv;
619 	struct mtd_info			*device;
620 	struct flash_platform_data	*pdata = dev_get_platdata(&spi->dev);
621 	char				*otp_tag = "";
622 	int				err = 0;
623 
624 	priv = kzalloc(sizeof *priv, GFP_KERNEL);
625 	if (!priv)
626 		return -ENOMEM;
627 
628 	mutex_init(&priv->lock);
629 	priv->spi = spi;
630 	priv->page_size = pagesize;
631 	priv->page_offset = pageoffset;
632 
633 	/* name must be usable with cmdlinepart */
634 	sprintf(priv->name, "spi%d.%d-%s",
635 			spi->master->bus_num, spi->chip_select,
636 			name);
637 
638 	device = &priv->mtd;
639 	device->name = (pdata && pdata->name) ? pdata->name : priv->name;
640 	device->size = nr_pages * pagesize;
641 	device->erasesize = pagesize;
642 	device->writesize = pagesize;
643 	device->type = MTD_DATAFLASH;
644 	device->flags = MTD_WRITEABLE;
645 	device->_erase = dataflash_erase;
646 	device->_read = dataflash_read;
647 	device->_write = dataflash_write;
648 	device->priv = priv;
649 
650 	device->dev.parent = &spi->dev;
651 	mtd_set_of_node(device, spi->dev.of_node);
652 
653 	if (revision >= 'c')
654 		otp_tag = otp_setup(device, revision);
655 
656 	dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
657 			name, (long long)((device->size + 1023) >> 10),
658 			pagesize, otp_tag);
659 	spi_set_drvdata(spi, priv);
660 
661 	err = mtd_device_register(device,
662 			pdata ? pdata->parts : NULL,
663 			pdata ? pdata->nr_parts : 0);
664 
665 	if (!err)
666 		return 0;
667 
668 	kfree(priv);
669 	return err;
670 }
671 
672 static inline int add_dataflash(struct spi_device *spi, char *name,
673 				int nr_pages, int pagesize, int pageoffset)
674 {
675 	return add_dataflash_otp(spi, name, nr_pages, pagesize,
676 			pageoffset, 0);
677 }
678 
679 struct flash_info {
680 	char		*name;
681 
682 	/* JEDEC id has a high byte of zero plus three data bytes:
683 	 * the manufacturer id, then a two byte device id.
684 	 */
685 	u64		jedec_id;
686 
687 	/* The size listed here is what works with OP_ERASE_PAGE. */
688 	unsigned	nr_pages;
689 	u16		pagesize;
690 	u16		pageoffset;
691 
692 	u16		flags;
693 #define SUP_EXTID	0x0004		/* supports extended ID data */
694 #define SUP_POW2PS	0x0002		/* supports 2^N byte pages */
695 #define IS_POW2PS	0x0001		/* uses 2^N byte pages */
696 };
697 
698 static struct flash_info dataflash_data[] = {
699 
700 	/*
701 	 * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
702 	 * one with IS_POW2PS and the other without.  The entry with the
703 	 * non-2^N byte page size can't name exact chip revisions without
704 	 * losing backwards compatibility for cmdlinepart.
705 	 *
706 	 * These newer chips also support 128-byte security registers (with
707 	 * 64 bytes one-time-programmable) and software write-protection.
708 	 */
709 	{ "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
710 	{ "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
711 
712 	{ "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
713 	{ "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
714 
715 	{ "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
716 	{ "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
717 
718 	{ "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
719 	{ "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
720 
721 	{ "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
722 	{ "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
723 
724 	{ "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},		/* rev C */
725 
726 	{ "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
727 	{ "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
728 
729 	{ "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
730 	{ "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
731 
732 	{ "AT45DB641E",  0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS},
733 	{ "at45db641e",  0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS},
734 };
735 
736 static struct flash_info *jedec_lookup(struct spi_device *spi,
737 				       u64 jedec, bool use_extid)
738 {
739 	struct flash_info *info;
740 	int status;
741 
742 	for (info = dataflash_data;
743 	     info < dataflash_data + ARRAY_SIZE(dataflash_data);
744 	     info++) {
745 		if (use_extid && !(info->flags & SUP_EXTID))
746 			continue;
747 
748 		if (info->jedec_id == jedec) {
749 			dev_dbg(&spi->dev, "OTP, sector protect%s\n",
750 				(info->flags & SUP_POW2PS) ?
751 				", binary pagesize" : "");
752 			if (info->flags & SUP_POW2PS) {
753 				status = dataflash_status(spi);
754 				if (status < 0) {
755 					dev_dbg(&spi->dev, "status error %d\n",
756 						status);
757 					return ERR_PTR(status);
758 				}
759 				if (status & 0x1) {
760 					if (info->flags & IS_POW2PS)
761 						return info;
762 				} else {
763 					if (!(info->flags & IS_POW2PS))
764 						return info;
765 				}
766 			} else
767 				return info;
768 		}
769 	}
770 
771 	return ERR_PTR(-ENODEV);
772 }
773 
774 static struct flash_info *jedec_probe(struct spi_device *spi)
775 {
776 	int ret;
777 	u8 code = OP_READ_ID;
778 	u64 jedec;
779 	u8 id[sizeof(jedec)] = {0};
780 	const unsigned int id_size = 5;
781 	struct flash_info *info;
782 
783 	/*
784 	 * JEDEC also defines an optional "extended device information"
785 	 * string for after vendor-specific data, after the three bytes
786 	 * we use here.  Supporting some chips might require using it.
787 	 *
788 	 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
789 	 * That's not an error; only rev C and newer chips handle it, and
790 	 * only Atmel sells these chips.
791 	 */
792 	ret = spi_write_then_read(spi, &code, 1, id, id_size);
793 	if (ret < 0) {
794 		dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret);
795 		return ERR_PTR(ret);
796 	}
797 
798 	if (id[0] != CFI_MFR_ATMEL)
799 		return NULL;
800 
801 	jedec = be64_to_cpup((__be64 *)id);
802 
803 	/*
804 	 * First, try to match device using extended device
805 	 * information
806 	 */
807 	info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true);
808 	if (!IS_ERR(info))
809 		return info;
810 	/*
811 	 * If that fails, make another pass using regular ID
812 	 * information
813 	 */
814 	info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false);
815 	if (!IS_ERR(info))
816 		return info;
817 	/*
818 	 * Treat other chips as errors ... we won't know the right page
819 	 * size (it might be binary) even when we can tell which density
820 	 * class is involved (legacy chip id scheme).
821 	 */
822 	dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec);
823 	return ERR_PTR(-ENODEV);
824 }
825 
826 /*
827  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
828  * or else the ID code embedded in the status bits:
829  *
830  *   Device      Density         ID code          #Pages PageSize  Offset
831  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
832  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
833  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
834  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
835  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
836  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
837  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
838  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
839  */
840 static int dataflash_probe(struct spi_device *spi)
841 {
842 	int status;
843 	struct flash_info	*info;
844 
845 	/*
846 	 * Try to detect dataflash by JEDEC ID.
847 	 * If it succeeds we know we have either a C or D part.
848 	 * D will support power of 2 pagesize option.
849 	 * Both support the security register, though with different
850 	 * write procedures.
851 	 */
852 	info = jedec_probe(spi);
853 	if (IS_ERR(info))
854 		return PTR_ERR(info);
855 	if (info != NULL)
856 		return add_dataflash_otp(spi, info->name, info->nr_pages,
857 				info->pagesize, info->pageoffset,
858 				(info->flags & SUP_POW2PS) ? 'd' : 'c');
859 
860 	/*
861 	 * Older chips support only legacy commands, identifing
862 	 * capacity using bits in the status byte.
863 	 */
864 	status = dataflash_status(spi);
865 	if (status <= 0 || status == 0xff) {
866 		dev_dbg(&spi->dev, "status error %d\n", status);
867 		if (status == 0 || status == 0xff)
868 			status = -ENODEV;
869 		return status;
870 	}
871 
872 	/* if there's a device there, assume it's dataflash.
873 	 * board setup should have set spi->max_speed_max to
874 	 * match f(car) for continuous reads, mode 0 or 3.
875 	 */
876 	switch (status & 0x3c) {
877 	case 0x0c:	/* 0 0 1 1 x x */
878 		status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
879 		break;
880 	case 0x14:	/* 0 1 0 1 x x */
881 		status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
882 		break;
883 	case 0x1c:	/* 0 1 1 1 x x */
884 		status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
885 		break;
886 	case 0x24:	/* 1 0 0 1 x x */
887 		status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
888 		break;
889 	case 0x2c:	/* 1 0 1 1 x x */
890 		status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
891 		break;
892 	case 0x34:	/* 1 1 0 1 x x */
893 		status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
894 		break;
895 	case 0x38:	/* 1 1 1 x x x */
896 	case 0x3c:
897 		status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
898 		break;
899 	/* obsolete AT45DB1282 not (yet?) supported */
900 	default:
901 		dev_info(&spi->dev, "unsupported device (%x)\n",
902 				status & 0x3c);
903 		status = -ENODEV;
904 	}
905 
906 	if (status < 0)
907 		dev_dbg(&spi->dev, "add_dataflash --> %d\n", status);
908 
909 	return status;
910 }
911 
912 static int dataflash_remove(struct spi_device *spi)
913 {
914 	struct dataflash	*flash = spi_get_drvdata(spi);
915 	int			status;
916 
917 	dev_dbg(&spi->dev, "remove\n");
918 
919 	status = mtd_device_unregister(&flash->mtd);
920 	if (status == 0)
921 		kfree(flash);
922 	return status;
923 }
924 
925 static struct spi_driver dataflash_driver = {
926 	.driver = {
927 		.name		= "mtd_dataflash",
928 		.of_match_table = of_match_ptr(dataflash_dt_ids),
929 	},
930 
931 	.probe		= dataflash_probe,
932 	.remove		= dataflash_remove,
933 
934 	/* FIXME:  investigate suspend and resume... */
935 };
936 
937 module_spi_driver(dataflash_driver);
938 
939 MODULE_LICENSE("GPL");
940 MODULE_AUTHOR("Andrew Victor, David Brownell");
941 MODULE_DESCRIPTION("MTD DataFlash driver");
942 MODULE_ALIAS("spi:mtd_dataflash");
943