1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Handles the M-Systems DiskOnChip G3 chip 4 * 5 * Copyright (C) 2011 Robert Jarzmik 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/errno.h> 11 #include <linux/of.h> 12 #include <linux/platform_device.h> 13 #include <linux/string.h> 14 #include <linux/slab.h> 15 #include <linux/io.h> 16 #include <linux/delay.h> 17 #include <linux/mtd/mtd.h> 18 #include <linux/mtd/partitions.h> 19 #include <linux/bitmap.h> 20 #include <linux/bitrev.h> 21 #include <linux/bch.h> 22 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 26 #define CREATE_TRACE_POINTS 27 #include "docg3.h" 28 29 /* 30 * This driver handles the DiskOnChip G3 flash memory. 31 * 32 * As no specification is available from M-Systems/Sandisk, this drivers lacks 33 * several functions available on the chip, as : 34 * - IPL write 35 * 36 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and 37 * the driver assumes a 16bits data bus. 38 * 39 * DocG3 relies on 2 ECC algorithms, which are handled in hardware : 40 * - a 1 byte Hamming code stored in the OOB for each page 41 * - a 7 bytes BCH code stored in the OOB for each page 42 * The BCH ECC is : 43 * - BCH is in GF(2^14) 44 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes 45 * + 1 hamming byte) 46 * - BCH can correct up to 4 bits (t = 4) 47 * - BCH syndroms are calculated in hardware, and checked in hardware as well 48 * 49 */ 50 51 static unsigned int reliable_mode; 52 module_param(reliable_mode, uint, 0); 53 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " 54 "2=reliable) : MLC normal operations are in normal mode"); 55 56 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section, 57 struct mtd_oob_region *oobregion) 58 { 59 if (section) 60 return -ERANGE; 61 62 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */ 63 oobregion->offset = 7; 64 oobregion->length = 8; 65 66 return 0; 67 } 68 69 static int docg3_ooblayout_free(struct mtd_info *mtd, int section, 70 struct mtd_oob_region *oobregion) 71 { 72 if (section > 1) 73 return -ERANGE; 74 75 /* free bytes: byte 0 until byte 6, byte 15 */ 76 if (!section) { 77 oobregion->offset = 0; 78 oobregion->length = 7; 79 } else { 80 oobregion->offset = 15; 81 oobregion->length = 1; 82 } 83 84 return 0; 85 } 86 87 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = { 88 .ecc = docg3_ooblayout_ecc, 89 .free = docg3_ooblayout_free, 90 }; 91 92 static inline u8 doc_readb(struct docg3 *docg3, u16 reg) 93 { 94 u8 val = readb(docg3->cascade->base + reg); 95 96 trace_docg3_io(0, 8, reg, (int)val); 97 return val; 98 } 99 100 static inline u16 doc_readw(struct docg3 *docg3, u16 reg) 101 { 102 u16 val = readw(docg3->cascade->base + reg); 103 104 trace_docg3_io(0, 16, reg, (int)val); 105 return val; 106 } 107 108 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) 109 { 110 writeb(val, docg3->cascade->base + reg); 111 trace_docg3_io(1, 8, reg, val); 112 } 113 114 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) 115 { 116 writew(val, docg3->cascade->base + reg); 117 trace_docg3_io(1, 16, reg, val); 118 } 119 120 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) 121 { 122 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); 123 } 124 125 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) 126 { 127 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); 128 } 129 130 static inline void doc_flash_address(struct docg3 *docg3, u8 addr) 131 { 132 doc_writeb(docg3, addr, DOC_FLASHADDRESS); 133 } 134 135 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL }; 136 137 static int doc_register_readb(struct docg3 *docg3, int reg) 138 { 139 u8 val; 140 141 doc_writew(docg3, reg, DOC_READADDRESS); 142 val = doc_readb(docg3, reg); 143 doc_vdbg("Read register %04x : %02x\n", reg, val); 144 return val; 145 } 146 147 static int doc_register_readw(struct docg3 *docg3, int reg) 148 { 149 u16 val; 150 151 doc_writew(docg3, reg, DOC_READADDRESS); 152 val = doc_readw(docg3, reg); 153 doc_vdbg("Read register %04x : %04x\n", reg, val); 154 return val; 155 } 156 157 /** 158 * doc_delay - delay docg3 operations 159 * @docg3: the device 160 * @nbNOPs: the number of NOPs to issue 161 * 162 * As no specification is available, the right timings between chip commands are 163 * unknown. The only available piece of information are the observed nops on a 164 * working docg3 chip. 165 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler 166 * friendlier msleep() functions or blocking mdelay(). 167 */ 168 static void doc_delay(struct docg3 *docg3, int nbNOPs) 169 { 170 int i; 171 172 doc_vdbg("NOP x %d\n", nbNOPs); 173 for (i = 0; i < nbNOPs; i++) 174 doc_writeb(docg3, 0, DOC_NOP); 175 } 176 177 static int is_prot_seq_error(struct docg3 *docg3) 178 { 179 int ctrl; 180 181 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 182 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); 183 } 184 185 static int doc_is_ready(struct docg3 *docg3) 186 { 187 int ctrl; 188 189 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 190 return ctrl & DOC_CTRL_FLASHREADY; 191 } 192 193 static int doc_wait_ready(struct docg3 *docg3) 194 { 195 int maxWaitCycles = 100; 196 197 do { 198 doc_delay(docg3, 4); 199 cpu_relax(); 200 } while (!doc_is_ready(docg3) && maxWaitCycles--); 201 doc_delay(docg3, 2); 202 if (maxWaitCycles > 0) 203 return 0; 204 else 205 return -EIO; 206 } 207 208 static int doc_reset_seq(struct docg3 *docg3) 209 { 210 int ret; 211 212 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); 213 doc_flash_sequence(docg3, DOC_SEQ_RESET); 214 doc_flash_command(docg3, DOC_CMD_RESET); 215 doc_delay(docg3, 2); 216 ret = doc_wait_ready(docg3); 217 218 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); 219 return ret; 220 } 221 222 /** 223 * doc_read_data_area - Read data from data area 224 * @docg3: the device 225 * @buf: the buffer to fill in (might be NULL is dummy reads) 226 * @len: the length to read 227 * @first: first time read, DOC_READADDRESS should be set 228 * 229 * Reads bytes from flash data. Handles the single byte / even bytes reads. 230 */ 231 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, 232 int first) 233 { 234 int i, cdr, len4; 235 u16 data16, *dst16; 236 u8 data8, *dst8; 237 238 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); 239 cdr = len & 0x1; 240 len4 = len - cdr; 241 242 if (first) 243 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 244 dst16 = buf; 245 for (i = 0; i < len4; i += 2) { 246 data16 = doc_readw(docg3, DOC_IOSPACE_DATA); 247 if (dst16) { 248 *dst16 = data16; 249 dst16++; 250 } 251 } 252 253 if (cdr) { 254 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 255 DOC_READADDRESS); 256 doc_delay(docg3, 1); 257 dst8 = (u8 *)dst16; 258 for (i = 0; i < cdr; i++) { 259 data8 = doc_readb(docg3, DOC_IOSPACE_DATA); 260 if (dst8) { 261 *dst8 = data8; 262 dst8++; 263 } 264 } 265 } 266 } 267 268 /** 269 * doc_write_data_area - Write data into data area 270 * @docg3: the device 271 * @buf: the buffer to get input bytes from 272 * @len: the length to write 273 * 274 * Writes bytes into flash data. Handles the single byte / even bytes writes. 275 */ 276 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) 277 { 278 int i, cdr, len4; 279 u16 *src16; 280 u8 *src8; 281 282 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); 283 cdr = len & 0x3; 284 len4 = len - cdr; 285 286 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 287 src16 = (u16 *)buf; 288 for (i = 0; i < len4; i += 2) { 289 doc_writew(docg3, *src16, DOC_IOSPACE_DATA); 290 src16++; 291 } 292 293 src8 = (u8 *)src16; 294 for (i = 0; i < cdr; i++) { 295 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 296 DOC_READADDRESS); 297 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); 298 src8++; 299 } 300 } 301 302 /** 303 * doc_set_reliable_mode - Sets the flash to normal or reliable data mode 304 * @docg3: the device 305 * 306 * The reliable data mode is a bit slower than the fast mode, but less errors 307 * occur. Entering the reliable mode cannot be done without entering the fast 308 * mode first. 309 * 310 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks 311 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading 312 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same 313 * result, which is a logical and between bytes from page 0 and page 1 (which is 314 * consistent with the fact that writing to a page is _clearing_ bits of that 315 * page). 316 */ 317 static void doc_set_reliable_mode(struct docg3 *docg3) 318 { 319 static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; 320 321 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); 322 switch (docg3->reliable) { 323 case 0: 324 break; 325 case 1: 326 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); 327 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 328 break; 329 case 2: 330 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); 331 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 332 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); 333 break; 334 default: 335 doc_err("doc_set_reliable_mode(): invalid mode\n"); 336 break; 337 } 338 doc_delay(docg3, 2); 339 } 340 341 /** 342 * doc_set_asic_mode - Set the ASIC mode 343 * @docg3: the device 344 * @mode: the mode 345 * 346 * The ASIC can work in 3 modes : 347 * - RESET: all registers are zeroed 348 * - NORMAL: receives and handles commands 349 * - POWERDOWN: minimal poweruse, flash parts shut off 350 */ 351 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) 352 { 353 int i; 354 355 for (i = 0; i < 12; i++) 356 doc_readb(docg3, DOC_IOSPACE_IPL); 357 358 mode |= DOC_ASICMODE_MDWREN; 359 doc_dbg("doc_set_asic_mode(%02x)\n", mode); 360 doc_writeb(docg3, mode, DOC_ASICMODE); 361 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); 362 doc_delay(docg3, 1); 363 } 364 365 /** 366 * doc_set_device_id - Sets the devices id for cascaded G3 chips 367 * @docg3: the device 368 * @id: the chip to select (amongst 0, 1, 2, 3) 369 * 370 * There can be 4 cascaded G3 chips. This function selects the one which will 371 * should be the active one. 372 */ 373 static void doc_set_device_id(struct docg3 *docg3, int id) 374 { 375 u8 ctrl; 376 377 doc_dbg("doc_set_device_id(%d)\n", id); 378 doc_writeb(docg3, id, DOC_DEVICESELECT); 379 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 380 381 ctrl &= ~DOC_CTRL_VIOLATION; 382 ctrl |= DOC_CTRL_CE; 383 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 384 } 385 386 /** 387 * doc_set_extra_page_mode - Change flash page layout 388 * @docg3: the device 389 * 390 * Normally, the flash page is split into the data (512 bytes) and the out of 391 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear 392 * leveling counters are stored. To access this last area of 4 bytes, a special 393 * mode must be input to the flash ASIC. 394 * 395 * Returns 0 if no error occurred, -EIO else. 396 */ 397 static int doc_set_extra_page_mode(struct docg3 *docg3) 398 { 399 int fctrl; 400 401 doc_dbg("doc_set_extra_page_mode()\n"); 402 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); 403 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); 404 doc_delay(docg3, 2); 405 406 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 407 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) 408 return -EIO; 409 else 410 return 0; 411 } 412 413 /** 414 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane 415 * @docg3: the device 416 * @sector: the sector 417 */ 418 static void doc_setup_addr_sector(struct docg3 *docg3, int sector) 419 { 420 doc_delay(docg3, 1); 421 doc_flash_address(docg3, sector & 0xff); 422 doc_flash_address(docg3, (sector >> 8) & 0xff); 423 doc_flash_address(docg3, (sector >> 16) & 0xff); 424 doc_delay(docg3, 1); 425 } 426 427 /** 428 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane 429 * @docg3: the device 430 * @sector: the sector 431 * @ofs: the offset in the page, between 0 and (512 + 16 + 512) 432 */ 433 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) 434 { 435 ofs = ofs >> 2; 436 doc_delay(docg3, 1); 437 doc_flash_address(docg3, ofs & 0xff); 438 doc_flash_address(docg3, sector & 0xff); 439 doc_flash_address(docg3, (sector >> 8) & 0xff); 440 doc_flash_address(docg3, (sector >> 16) & 0xff); 441 doc_delay(docg3, 1); 442 } 443 444 /** 445 * doc_read_seek - Set both flash planes to the specified block, page for reading 446 * @docg3: the device 447 * @block0: the first plane block index 448 * @block1: the second plane block index 449 * @page: the page index within the block 450 * @wear: if true, read will occur on the 4 extra bytes of the wear area 451 * @ofs: offset in page to read 452 * 453 * Programs the flash even and odd planes to the specific block and page. 454 * Alternatively, programs the flash to the wear area of the specified page. 455 */ 456 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, 457 int wear, int ofs) 458 { 459 int sector, ret = 0; 460 461 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", 462 block0, block1, page, ofs, wear); 463 464 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { 465 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 466 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 467 doc_delay(docg3, 2); 468 } else { 469 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 470 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 471 doc_delay(docg3, 2); 472 } 473 474 doc_set_reliable_mode(docg3); 475 if (wear) 476 ret = doc_set_extra_page_mode(docg3); 477 if (ret) 478 goto out; 479 480 doc_flash_sequence(docg3, DOC_SEQ_READ); 481 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 482 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 483 doc_setup_addr_sector(docg3, sector); 484 485 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 486 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 487 doc_setup_addr_sector(docg3, sector); 488 doc_delay(docg3, 1); 489 490 out: 491 return ret; 492 } 493 494 /** 495 * doc_write_seek - Set both flash planes to the specified block, page for writing 496 * @docg3: the device 497 * @block0: the first plane block index 498 * @block1: the second plane block index 499 * @page: the page index within the block 500 * @ofs: offset in page to write 501 * 502 * Programs the flash even and odd planes to the specific block and page. 503 * Alternatively, programs the flash to the wear area of the specified page. 504 */ 505 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, 506 int ofs) 507 { 508 int ret = 0, sector; 509 510 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", 511 block0, block1, page, ofs); 512 513 doc_set_reliable_mode(docg3); 514 515 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { 516 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 517 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 518 doc_delay(docg3, 2); 519 } else { 520 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 521 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 522 doc_delay(docg3, 2); 523 } 524 525 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); 526 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 527 528 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 529 doc_setup_writeaddr_sector(docg3, sector, ofs); 530 531 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); 532 doc_delay(docg3, 2); 533 ret = doc_wait_ready(docg3); 534 if (ret) 535 goto out; 536 537 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 538 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 539 doc_setup_writeaddr_sector(docg3, sector, ofs); 540 doc_delay(docg3, 1); 541 542 out: 543 return ret; 544 } 545 546 547 /** 548 * doc_read_page_ecc_init - Initialize hardware ECC engine 549 * @docg3: the device 550 * @len: the number of bytes covered by the ECC (BCH covered) 551 * 552 * The function does initialize the hardware ECC engine to compute the Hamming 553 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 554 * 555 * Return 0 if succeeded, -EIO on error 556 */ 557 static int doc_read_page_ecc_init(struct docg3 *docg3, int len) 558 { 559 doc_writew(docg3, DOC_ECCCONF0_READ_MODE 560 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 561 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 562 DOC_ECCCONF0); 563 doc_delay(docg3, 4); 564 doc_register_readb(docg3, DOC_FLASHCONTROL); 565 return doc_wait_ready(docg3); 566 } 567 568 /** 569 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine 570 * @docg3: the device 571 * @len: the number of bytes covered by the ECC (BCH covered) 572 * 573 * The function does initialize the hardware ECC engine to compute the Hamming 574 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 575 * 576 * Return 0 if succeeded, -EIO on error 577 */ 578 static int doc_write_page_ecc_init(struct docg3 *docg3, int len) 579 { 580 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE 581 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 582 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 583 DOC_ECCCONF0); 584 doc_delay(docg3, 4); 585 doc_register_readb(docg3, DOC_FLASHCONTROL); 586 return doc_wait_ready(docg3); 587 } 588 589 /** 590 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator 591 * @docg3: the device 592 * 593 * Disables the hardware ECC generator and checker, for unchecked reads (as when 594 * reading OOB only or write status byte). 595 */ 596 static void doc_ecc_disable(struct docg3 *docg3) 597 { 598 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); 599 doc_delay(docg3, 4); 600 } 601 602 /** 603 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine 604 * @docg3: the device 605 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) 606 * 607 * This function programs the ECC hardware to compute the hamming code on the 608 * last provided N bytes to the hardware generator. 609 */ 610 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) 611 { 612 u8 ecc_conf1; 613 614 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); 615 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; 616 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); 617 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); 618 } 619 620 /** 621 * doc_ecc_bch_fix_data - Fix if need be read data from flash 622 * @docg3: the device 623 * @buf: the buffer of read data (512 + 7 + 1 bytes) 624 * @hwecc: the hardware calculated ECC. 625 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB 626 * area data, and calc_ecc the ECC calculated by the hardware generator. 627 * 628 * Checks if the received data matches the ECC, and if an error is detected, 629 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 630 * understands the (data, ecc, syndroms) in an inverted order in comparison to 631 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, 632 * bit6 and bit 1, ...) for all ECC data. 633 * 634 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch 635 * algorithm is used to decode this. However the hw operates on page 636 * data in a bit order that is the reverse of that of the bch alg, 637 * requiring that the bits be reversed on the result. Thanks to Ivan 638 * Djelic for his analysis. 639 * 640 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit 641 * errors were detected and cannot be fixed. 642 */ 643 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) 644 { 645 u8 ecc[DOC_ECC_BCH_SIZE]; 646 int errorpos[DOC_ECC_BCH_T], i, numerrs; 647 648 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 649 ecc[i] = bitrev8(hwecc[i]); 650 numerrs = bch_decode(docg3->cascade->bch, NULL, 651 DOC_ECC_BCH_COVERED_BYTES, 652 NULL, ecc, NULL, errorpos); 653 BUG_ON(numerrs == -EINVAL); 654 if (numerrs < 0) 655 goto out; 656 657 for (i = 0; i < numerrs; i++) 658 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); 659 for (i = 0; i < numerrs; i++) 660 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) 661 /* error is located in data, correct it */ 662 change_bit(errorpos[i], buf); 663 out: 664 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); 665 return numerrs; 666 } 667 668 669 /** 670 * doc_read_page_prepare - Prepares reading data from a flash page 671 * @docg3: the device 672 * @block0: the first plane block index on flash memory 673 * @block1: the second plane block index on flash memory 674 * @page: the page index in the block 675 * @offset: the offset in the page (must be a multiple of 4) 676 * 677 * Prepares the page to be read in the flash memory : 678 * - tell ASIC to map the flash pages 679 * - tell ASIC to be in read mode 680 * 681 * After a call to this method, a call to doc_read_page_finish is mandatory, 682 * to end the read cycle of the flash. 683 * 684 * Read data from a flash page. The length to be read must be between 0 and 685 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because 686 * the extra bytes reading is not implemented). 687 * 688 * As pages are grouped by 2 (in 2 planes), reading from a page must be done 689 * in two steps: 690 * - one read of 512 bytes at offset 0 691 * - one read of 512 bytes at offset 512 + 16 692 * 693 * Returns 0 if successful, -EIO if a read error occurred. 694 */ 695 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, 696 int page, int offset) 697 { 698 int wear_area = 0, ret = 0; 699 700 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", 701 block0, block1, page, offset); 702 if (offset >= DOC_LAYOUT_WEAR_OFFSET) 703 wear_area = 1; 704 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) 705 return -EINVAL; 706 707 doc_set_device_id(docg3, docg3->device_id); 708 ret = doc_reset_seq(docg3); 709 if (ret) 710 goto err; 711 712 /* Program the flash address block and page */ 713 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); 714 if (ret) 715 goto err; 716 717 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); 718 doc_delay(docg3, 2); 719 doc_wait_ready(docg3); 720 721 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); 722 doc_delay(docg3, 1); 723 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) 724 offset -= 2 * DOC_LAYOUT_PAGE_SIZE; 725 doc_flash_address(docg3, offset >> 2); 726 doc_delay(docg3, 1); 727 doc_wait_ready(docg3); 728 729 doc_flash_command(docg3, DOC_CMD_READ_FLASH); 730 731 return 0; 732 err: 733 doc_writeb(docg3, 0, DOC_DATAEND); 734 doc_delay(docg3, 2); 735 return -EIO; 736 } 737 738 /** 739 * doc_read_page_getbytes - Reads bytes from a prepared page 740 * @docg3: the device 741 * @len: the number of bytes to be read (must be a multiple of 4) 742 * @buf: the buffer to be filled in (or NULL is forget bytes) 743 * @first: 1 if first time read, DOC_READADDRESS should be set 744 * @last_odd: 1 if last read ended up on an odd byte 745 * 746 * Reads bytes from a prepared page. There is a trickery here : if the last read 747 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2 748 * planes, the first byte must be read apart. If a word (16bit) read was used, 749 * the read would return the byte of plane 2 as low *and* high endian, which 750 * will mess the read. 751 * 752 */ 753 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, 754 int first, int last_odd) 755 { 756 if (last_odd && len > 0) { 757 doc_read_data_area(docg3, buf, 1, first); 758 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0); 759 } else { 760 doc_read_data_area(docg3, buf, len, first); 761 } 762 doc_delay(docg3, 2); 763 return len; 764 } 765 766 /** 767 * doc_write_page_putbytes - Writes bytes into a prepared page 768 * @docg3: the device 769 * @len: the number of bytes to be written 770 * @buf: the buffer of input bytes 771 * 772 */ 773 static void doc_write_page_putbytes(struct docg3 *docg3, int len, 774 const u_char *buf) 775 { 776 doc_write_data_area(docg3, buf, len); 777 doc_delay(docg3, 2); 778 } 779 780 /** 781 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC 782 * @docg3: the device 783 * @hwecc: the array of 7 integers where the hardware ecc will be stored 784 */ 785 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) 786 { 787 int i; 788 789 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 790 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); 791 } 792 793 /** 794 * doc_page_finish - Ends reading/writing of a flash page 795 * @docg3: the device 796 */ 797 static void doc_page_finish(struct docg3 *docg3) 798 { 799 doc_writeb(docg3, 0, DOC_DATAEND); 800 doc_delay(docg3, 2); 801 } 802 803 /** 804 * doc_read_page_finish - Ends reading of a flash page 805 * @docg3: the device 806 * 807 * As a side effect, resets the chip selector to 0. This ensures that after each 808 * read operation, the floor 0 is selected. Therefore, if the systems halts, the 809 * reboot will boot on floor 0, where the IPL is. 810 */ 811 static void doc_read_page_finish(struct docg3 *docg3) 812 { 813 doc_page_finish(docg3); 814 doc_set_device_id(docg3, 0); 815 } 816 817 /** 818 * calc_block_sector - Calculate blocks, pages and ofs. 819 * 820 * @from: offset in flash 821 * @block0: first plane block index calculated 822 * @block1: second plane block index calculated 823 * @page: page calculated 824 * @ofs: offset in page 825 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in 826 * reliable mode. 827 * 828 * The calculation is based on the reliable/normal mode. In normal mode, the 64 829 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are 830 * clones, only 32 pages per block are available. 831 */ 832 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, 833 int *ofs, int reliable) 834 { 835 uint sector, pages_biblock; 836 837 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; 838 if (reliable == 1 || reliable == 2) 839 pages_biblock /= 2; 840 841 sector = from / DOC_LAYOUT_PAGE_SIZE; 842 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; 843 *block1 = *block0 + 1; 844 *page = sector % pages_biblock; 845 *page /= DOC_LAYOUT_NBPLANES; 846 if (reliable == 1 || reliable == 2) 847 *page *= 2; 848 if (sector % 2) 849 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; 850 else 851 *ofs = 0; 852 } 853 854 /** 855 * doc_read_oob - Read out of band bytes from flash 856 * @mtd: the device 857 * @from: the offset from first block and first page, in bytes, aligned on page 858 * size 859 * @ops: the mtd oob structure 860 * 861 * Reads flash memory OOB area of pages. 862 * 863 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred 864 */ 865 static int doc_read_oob(struct mtd_info *mtd, loff_t from, 866 struct mtd_oob_ops *ops) 867 { 868 struct docg3 *docg3 = mtd->priv; 869 int block0, block1, page, ret, skip, ofs = 0; 870 u8 *oobbuf = ops->oobbuf; 871 u8 *buf = ops->datbuf; 872 size_t len, ooblen, nbdata, nboob; 873 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; 874 struct mtd_ecc_stats old_stats; 875 int max_bitflips = 0; 876 877 if (buf) 878 len = ops->len; 879 else 880 len = 0; 881 if (oobbuf) 882 ooblen = ops->ooblen; 883 else 884 ooblen = 0; 885 886 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 887 oobbuf += ops->ooboffs; 888 889 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 890 from, ops->mode, buf, len, oobbuf, ooblen); 891 if (ooblen % DOC_LAYOUT_OOB_SIZE) 892 return -EINVAL; 893 894 ops->oobretlen = 0; 895 ops->retlen = 0; 896 ret = 0; 897 skip = from % DOC_LAYOUT_PAGE_SIZE; 898 mutex_lock(&docg3->cascade->lock); 899 old_stats = mtd->ecc_stats; 900 while (ret >= 0 && (len > 0 || ooblen > 0)) { 901 calc_block_sector(from - skip, &block0, &block1, &page, &ofs, 902 docg3->reliable); 903 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip); 904 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); 905 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); 906 if (ret < 0) 907 goto out; 908 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 909 if (ret < 0) 910 goto err_in_read; 911 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0); 912 if (ret < skip) 913 goto err_in_read; 914 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2); 915 if (ret < nbdata) 916 goto err_in_read; 917 doc_read_page_getbytes(docg3, 918 DOC_LAYOUT_PAGE_SIZE - nbdata - skip, 919 NULL, 0, (skip + nbdata) % 2); 920 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0); 921 if (ret < nboob) 922 goto err_in_read; 923 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, 924 NULL, 0, nboob % 2); 925 926 doc_get_bch_hw_ecc(docg3, hwecc); 927 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); 928 929 if (nboob >= DOC_LAYOUT_OOB_SIZE) { 930 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf); 931 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); 932 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8); 933 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); 934 } 935 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); 936 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc); 937 938 ret = -EIO; 939 if (is_prot_seq_error(docg3)) 940 goto err_in_read; 941 ret = 0; 942 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && 943 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && 944 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && 945 (ops->mode != MTD_OPS_RAW) && 946 (nbdata == DOC_LAYOUT_PAGE_SIZE)) { 947 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); 948 if (ret < 0) { 949 mtd->ecc_stats.failed++; 950 ret = -EBADMSG; 951 } 952 if (ret > 0) { 953 mtd->ecc_stats.corrected += ret; 954 max_bitflips = max(max_bitflips, ret); 955 ret = max_bitflips; 956 } 957 } 958 959 doc_read_page_finish(docg3); 960 ops->retlen += nbdata; 961 ops->oobretlen += nboob; 962 buf += nbdata; 963 oobbuf += nboob; 964 len -= nbdata; 965 ooblen -= nboob; 966 from += DOC_LAYOUT_PAGE_SIZE; 967 skip = 0; 968 } 969 970 out: 971 if (ops->stats) { 972 ops->stats->uncorrectable_errors += 973 mtd->ecc_stats.failed - old_stats.failed; 974 ops->stats->corrected_bitflips += 975 mtd->ecc_stats.corrected - old_stats.corrected; 976 } 977 mutex_unlock(&docg3->cascade->lock); 978 return ret; 979 err_in_read: 980 doc_read_page_finish(docg3); 981 goto out; 982 } 983 984 static int doc_reload_bbt(struct docg3 *docg3) 985 { 986 int block = DOC_LAYOUT_BLOCK_BBT; 987 int ret = 0, nbpages, page; 988 u_char *buf = docg3->bbt; 989 990 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); 991 for (page = 0; !ret && (page < nbpages); page++) { 992 ret = doc_read_page_prepare(docg3, block, block + 1, 993 page + DOC_LAYOUT_PAGE_BBT, 0); 994 if (!ret) 995 ret = doc_read_page_ecc_init(docg3, 996 DOC_LAYOUT_PAGE_SIZE); 997 if (!ret) 998 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, 999 buf, 1, 0); 1000 buf += DOC_LAYOUT_PAGE_SIZE; 1001 } 1002 doc_read_page_finish(docg3); 1003 return ret; 1004 } 1005 1006 /** 1007 * doc_block_isbad - Checks whether a block is good or not 1008 * @mtd: the device 1009 * @from: the offset to find the correct block 1010 * 1011 * Returns 1 if block is bad, 0 if block is good 1012 */ 1013 static int doc_block_isbad(struct mtd_info *mtd, loff_t from) 1014 { 1015 struct docg3 *docg3 = mtd->priv; 1016 int block0, block1, page, ofs, is_good; 1017 1018 calc_block_sector(from, &block0, &block1, &page, &ofs, 1019 docg3->reliable); 1020 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", 1021 from, block0, block1, page, ofs); 1022 1023 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) 1024 return 0; 1025 if (block1 > docg3->max_block) 1026 return -EINVAL; 1027 1028 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); 1029 return !is_good; 1030 } 1031 1032 #if 0 1033 /** 1034 * doc_get_erase_count - Get block erase count 1035 * @docg3: the device 1036 * @from: the offset in which the block is. 1037 * 1038 * Get the number of times a block was erased. The number is the maximum of 1039 * erase times between first and second plane (which should be equal normally). 1040 * 1041 * Returns The number of erases, or -EINVAL or -EIO on error. 1042 */ 1043 static int doc_get_erase_count(struct docg3 *docg3, loff_t from) 1044 { 1045 u8 buf[DOC_LAYOUT_WEAR_SIZE]; 1046 int ret, plane1_erase_count, plane2_erase_count; 1047 int block0, block1, page, ofs; 1048 1049 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); 1050 if (from % DOC_LAYOUT_PAGE_SIZE) 1051 return -EINVAL; 1052 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); 1053 if (block1 > docg3->max_block) 1054 return -EINVAL; 1055 1056 ret = doc_reset_seq(docg3); 1057 if (!ret) 1058 ret = doc_read_page_prepare(docg3, block0, block1, page, 1059 ofs + DOC_LAYOUT_WEAR_OFFSET, 0); 1060 if (!ret) 1061 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, 1062 buf, 1, 0); 1063 doc_read_page_finish(docg3); 1064 1065 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) 1066 return -EIO; 1067 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) 1068 | ((u8)(~buf[5]) << 16); 1069 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) 1070 | ((u8)(~buf[7]) << 16); 1071 1072 return max(plane1_erase_count, plane2_erase_count); 1073 } 1074 #endif 1075 1076 /** 1077 * doc_get_op_status - get erase/write operation status 1078 * @docg3: the device 1079 * 1080 * Queries the status from the chip, and returns it 1081 * 1082 * Returns the status (bits DOC_PLANES_STATUS_*) 1083 */ 1084 static int doc_get_op_status(struct docg3 *docg3) 1085 { 1086 u8 status; 1087 1088 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); 1089 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); 1090 doc_delay(docg3, 5); 1091 1092 doc_ecc_disable(docg3); 1093 doc_read_data_area(docg3, &status, 1, 1); 1094 return status; 1095 } 1096 1097 /** 1098 * doc_write_erase_wait_status - wait for write or erase completion 1099 * @docg3: the device 1100 * 1101 * Wait for the chip to be ready again after erase or write operation, and check 1102 * erase/write status. 1103 * 1104 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if 1105 * timeout 1106 */ 1107 static int doc_write_erase_wait_status(struct docg3 *docg3) 1108 { 1109 int i, status, ret = 0; 1110 1111 for (i = 0; !doc_is_ready(docg3) && i < 5; i++) 1112 msleep(20); 1113 if (!doc_is_ready(docg3)) { 1114 doc_dbg("Timeout reached and the chip is still not ready\n"); 1115 ret = -EAGAIN; 1116 goto out; 1117 } 1118 1119 status = doc_get_op_status(docg3); 1120 if (status & DOC_PLANES_STATUS_FAIL) { 1121 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", 1122 status); 1123 ret = -EIO; 1124 } 1125 1126 out: 1127 doc_page_finish(docg3); 1128 return ret; 1129 } 1130 1131 /** 1132 * doc_erase_block - Erase a couple of blocks 1133 * @docg3: the device 1134 * @block0: the first block to erase (leftmost plane) 1135 * @block1: the second block to erase (rightmost plane) 1136 * 1137 * Erase both blocks, and return operation status 1138 * 1139 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not 1140 * ready for too long 1141 */ 1142 static int doc_erase_block(struct docg3 *docg3, int block0, int block1) 1143 { 1144 int ret, sector; 1145 1146 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); 1147 ret = doc_reset_seq(docg3); 1148 if (ret) 1149 return -EIO; 1150 1151 doc_set_reliable_mode(docg3); 1152 doc_flash_sequence(docg3, DOC_SEQ_ERASE); 1153 1154 sector = block0 << DOC_ADDR_BLOCK_SHIFT; 1155 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1156 doc_setup_addr_sector(docg3, sector); 1157 sector = block1 << DOC_ADDR_BLOCK_SHIFT; 1158 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1159 doc_setup_addr_sector(docg3, sector); 1160 doc_delay(docg3, 1); 1161 1162 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); 1163 doc_delay(docg3, 2); 1164 1165 if (is_prot_seq_error(docg3)) { 1166 doc_err("Erase blocks %d,%d error\n", block0, block1); 1167 return -EIO; 1168 } 1169 1170 return doc_write_erase_wait_status(docg3); 1171 } 1172 1173 /** 1174 * doc_erase - Erase a portion of the chip 1175 * @mtd: the device 1176 * @info: the erase info 1177 * 1178 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is 1179 * split into 2 pages of 512 bytes on 2 contiguous blocks. 1180 * 1181 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase 1182 * issue 1183 */ 1184 static int doc_erase(struct mtd_info *mtd, struct erase_info *info) 1185 { 1186 struct docg3 *docg3 = mtd->priv; 1187 uint64_t len; 1188 int block0, block1, page, ret = 0, ofs = 0; 1189 1190 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); 1191 1192 calc_block_sector(info->addr + info->len, &block0, &block1, &page, 1193 &ofs, docg3->reliable); 1194 if (info->addr + info->len > mtd->size || page || ofs) 1195 return -EINVAL; 1196 1197 calc_block_sector(info->addr, &block0, &block1, &page, &ofs, 1198 docg3->reliable); 1199 mutex_lock(&docg3->cascade->lock); 1200 doc_set_device_id(docg3, docg3->device_id); 1201 doc_set_reliable_mode(docg3); 1202 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { 1203 ret = doc_erase_block(docg3, block0, block1); 1204 block0 += 2; 1205 block1 += 2; 1206 } 1207 mutex_unlock(&docg3->cascade->lock); 1208 1209 return ret; 1210 } 1211 1212 /** 1213 * doc_write_page - Write a single page to the chip 1214 * @docg3: the device 1215 * @to: the offset from first block and first page, in bytes, aligned on page 1216 * size 1217 * @buf: buffer to get bytes from 1218 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be 1219 * written) 1220 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or 1221 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, 1222 * remaining ones are filled with hardware Hamming and BCH 1223 * computations. Its value is not meaningfull is oob == NULL. 1224 * 1225 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the 1226 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and 1227 * BCH generator if autoecc is not null. 1228 * 1229 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout 1230 */ 1231 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, 1232 const u_char *oob, int autoecc) 1233 { 1234 int block0, block1, page, ret, ofs = 0; 1235 u8 hwecc[DOC_ECC_BCH_SIZE], hamming; 1236 1237 doc_dbg("doc_write_page(to=%lld)\n", to); 1238 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); 1239 1240 doc_set_device_id(docg3, docg3->device_id); 1241 ret = doc_reset_seq(docg3); 1242 if (ret) 1243 goto err; 1244 1245 /* Program the flash address block and page */ 1246 ret = doc_write_seek(docg3, block0, block1, page, ofs); 1247 if (ret) 1248 goto err; 1249 1250 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 1251 doc_delay(docg3, 2); 1252 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); 1253 1254 if (oob && autoecc) { 1255 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); 1256 doc_delay(docg3, 2); 1257 oob += DOC_LAYOUT_OOB_UNUSED_OFS; 1258 1259 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); 1260 doc_delay(docg3, 2); 1261 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, 1262 &hamming); 1263 doc_delay(docg3, 2); 1264 1265 doc_get_bch_hw_ecc(docg3, hwecc); 1266 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); 1267 doc_delay(docg3, 2); 1268 1269 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); 1270 } 1271 if (oob && !autoecc) 1272 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); 1273 1274 doc_delay(docg3, 2); 1275 doc_page_finish(docg3); 1276 doc_delay(docg3, 2); 1277 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); 1278 doc_delay(docg3, 2); 1279 1280 /* 1281 * The wait status will perform another doc_page_finish() call, but that 1282 * seems to please the docg3, so leave it. 1283 */ 1284 ret = doc_write_erase_wait_status(docg3); 1285 return ret; 1286 err: 1287 doc_read_page_finish(docg3); 1288 return ret; 1289 } 1290 1291 /** 1292 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops 1293 * @ops: the oob operations 1294 * 1295 * Returns 0 or 1 if success, -EINVAL if invalid oob mode 1296 */ 1297 static int doc_guess_autoecc(struct mtd_oob_ops *ops) 1298 { 1299 int autoecc; 1300 1301 switch (ops->mode) { 1302 case MTD_OPS_PLACE_OOB: 1303 case MTD_OPS_AUTO_OOB: 1304 autoecc = 1; 1305 break; 1306 case MTD_OPS_RAW: 1307 autoecc = 0; 1308 break; 1309 default: 1310 autoecc = -EINVAL; 1311 } 1312 return autoecc; 1313 } 1314 1315 /** 1316 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes 1317 * @dst: the target 16 bytes OOB buffer 1318 * @oobsrc: the source 8 bytes non-ECC OOB buffer 1319 * 1320 */ 1321 static void doc_fill_autooob(u8 *dst, u8 *oobsrc) 1322 { 1323 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1324 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; 1325 } 1326 1327 /** 1328 * doc_backup_oob - Backup OOB into docg3 structure 1329 * @docg3: the device 1330 * @to: the page offset in the chip 1331 * @ops: the OOB size and buffer 1332 * 1333 * As the docg3 should write a page with its OOB in one pass, and some userland 1334 * applications do write_oob() to setup the OOB and then write(), store the OOB 1335 * into a temporary storage. This is very dangerous, as 2 concurrent 1336 * applications could store an OOB, and then write their pages (which will 1337 * result into one having its OOB corrupted). 1338 * 1339 * The only reliable way would be for userland to call doc_write_oob() with both 1340 * the page data _and_ the OOB area. 1341 * 1342 * Returns 0 if success, -EINVAL if ops content invalid 1343 */ 1344 static int doc_backup_oob(struct docg3 *docg3, loff_t to, 1345 struct mtd_oob_ops *ops) 1346 { 1347 int ooblen = ops->ooblen, autoecc; 1348 1349 if (ooblen != DOC_LAYOUT_OOB_SIZE) 1350 return -EINVAL; 1351 autoecc = doc_guess_autoecc(ops); 1352 if (autoecc < 0) 1353 return autoecc; 1354 1355 docg3->oob_write_ofs = to; 1356 docg3->oob_autoecc = autoecc; 1357 if (ops->mode == MTD_OPS_AUTO_OOB) { 1358 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); 1359 ops->oobretlen = 8; 1360 } else { 1361 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); 1362 ops->oobretlen = DOC_LAYOUT_OOB_SIZE; 1363 } 1364 return 0; 1365 } 1366 1367 /** 1368 * doc_write_oob - Write out of band bytes to flash 1369 * @mtd: the device 1370 * @ofs: the offset from first block and first page, in bytes, aligned on page 1371 * size 1372 * @ops: the mtd oob structure 1373 * 1374 * Either write OOB data into a temporary buffer, for the subsequent write 1375 * page. The provided OOB should be 16 bytes long. If a data buffer is provided 1376 * as well, issue the page write. 1377 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will 1378 * still be filled in if asked for). 1379 * 1380 * Returns 0 is successful, EINVAL if length is not 14 bytes 1381 */ 1382 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, 1383 struct mtd_oob_ops *ops) 1384 { 1385 struct docg3 *docg3 = mtd->priv; 1386 int ret, autoecc, oobdelta; 1387 u8 *oobbuf = ops->oobbuf; 1388 u8 *buf = ops->datbuf; 1389 size_t len, ooblen; 1390 u8 oob[DOC_LAYOUT_OOB_SIZE]; 1391 1392 if (buf) 1393 len = ops->len; 1394 else 1395 len = 0; 1396 if (oobbuf) 1397 ooblen = ops->ooblen; 1398 else 1399 ooblen = 0; 1400 1401 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 1402 oobbuf += ops->ooboffs; 1403 1404 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 1405 ofs, ops->mode, buf, len, oobbuf, ooblen); 1406 switch (ops->mode) { 1407 case MTD_OPS_PLACE_OOB: 1408 case MTD_OPS_RAW: 1409 oobdelta = mtd->oobsize; 1410 break; 1411 case MTD_OPS_AUTO_OOB: 1412 oobdelta = mtd->oobavail; 1413 break; 1414 default: 1415 return -EINVAL; 1416 } 1417 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || 1418 (ofs % DOC_LAYOUT_PAGE_SIZE)) 1419 return -EINVAL; 1420 if (len && ooblen && 1421 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) 1422 return -EINVAL; 1423 1424 ops->oobretlen = 0; 1425 ops->retlen = 0; 1426 ret = 0; 1427 if (len == 0 && ooblen == 0) 1428 return -EINVAL; 1429 if (len == 0 && ooblen > 0) 1430 return doc_backup_oob(docg3, ofs, ops); 1431 1432 autoecc = doc_guess_autoecc(ops); 1433 if (autoecc < 0) 1434 return autoecc; 1435 1436 mutex_lock(&docg3->cascade->lock); 1437 while (!ret && len > 0) { 1438 memset(oob, 0, sizeof(oob)); 1439 if (ofs == docg3->oob_write_ofs) 1440 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); 1441 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) 1442 doc_fill_autooob(oob, oobbuf); 1443 else if (ooblen > 0) 1444 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); 1445 ret = doc_write_page(docg3, ofs, buf, oob, autoecc); 1446 1447 ofs += DOC_LAYOUT_PAGE_SIZE; 1448 len -= DOC_LAYOUT_PAGE_SIZE; 1449 buf += DOC_LAYOUT_PAGE_SIZE; 1450 if (ooblen) { 1451 oobbuf += oobdelta; 1452 ooblen -= oobdelta; 1453 ops->oobretlen += oobdelta; 1454 } 1455 ops->retlen += DOC_LAYOUT_PAGE_SIZE; 1456 } 1457 1458 doc_set_device_id(docg3, 0); 1459 mutex_unlock(&docg3->cascade->lock); 1460 return ret; 1461 } 1462 1463 static struct docg3 *sysfs_dev2docg3(struct device *dev, 1464 struct device_attribute *attr) 1465 { 1466 int floor; 1467 struct mtd_info **docg3_floors = dev_get_drvdata(dev); 1468 1469 floor = attr->attr.name[1] - '0'; 1470 if (floor < 0 || floor >= DOC_MAX_NBFLOORS) 1471 return NULL; 1472 else 1473 return docg3_floors[floor]->priv; 1474 } 1475 1476 static ssize_t dps0_is_key_locked(struct device *dev, 1477 struct device_attribute *attr, char *buf) 1478 { 1479 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1480 int dps0; 1481 1482 mutex_lock(&docg3->cascade->lock); 1483 doc_set_device_id(docg3, docg3->device_id); 1484 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1485 doc_set_device_id(docg3, 0); 1486 mutex_unlock(&docg3->cascade->lock); 1487 1488 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); 1489 } 1490 1491 static ssize_t dps1_is_key_locked(struct device *dev, 1492 struct device_attribute *attr, char *buf) 1493 { 1494 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1495 int dps1; 1496 1497 mutex_lock(&docg3->cascade->lock); 1498 doc_set_device_id(docg3, docg3->device_id); 1499 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1500 doc_set_device_id(docg3, 0); 1501 mutex_unlock(&docg3->cascade->lock); 1502 1503 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); 1504 } 1505 1506 static ssize_t dps0_insert_key(struct device *dev, 1507 struct device_attribute *attr, 1508 const char *buf, size_t count) 1509 { 1510 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1511 int i; 1512 1513 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1514 return -EINVAL; 1515 1516 mutex_lock(&docg3->cascade->lock); 1517 doc_set_device_id(docg3, docg3->device_id); 1518 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1519 doc_writeb(docg3, buf[i], DOC_DPS0_KEY); 1520 doc_set_device_id(docg3, 0); 1521 mutex_unlock(&docg3->cascade->lock); 1522 return count; 1523 } 1524 1525 static ssize_t dps1_insert_key(struct device *dev, 1526 struct device_attribute *attr, 1527 const char *buf, size_t count) 1528 { 1529 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1530 int i; 1531 1532 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1533 return -EINVAL; 1534 1535 mutex_lock(&docg3->cascade->lock); 1536 doc_set_device_id(docg3, docg3->device_id); 1537 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1538 doc_writeb(docg3, buf[i], DOC_DPS1_KEY); 1539 doc_set_device_id(docg3, 0); 1540 mutex_unlock(&docg3->cascade->lock); 1541 return count; 1542 } 1543 1544 #define FLOOR_SYSFS(id) { \ 1545 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ 1546 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ 1547 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \ 1548 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \ 1549 } 1550 1551 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { 1552 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) 1553 }; 1554 1555 static int doc_register_sysfs(struct platform_device *pdev, 1556 struct docg3_cascade *cascade) 1557 { 1558 struct device *dev = &pdev->dev; 1559 int floor; 1560 int ret; 1561 int i; 1562 1563 for (floor = 0; 1564 floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; 1565 floor++) { 1566 for (i = 0; i < 4; i++) { 1567 ret = device_create_file(dev, &doc_sys_attrs[floor][i]); 1568 if (ret) 1569 goto remove_files; 1570 } 1571 } 1572 1573 return 0; 1574 1575 remove_files: 1576 do { 1577 while (--i >= 0) 1578 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1579 i = 4; 1580 } while (--floor >= 0); 1581 1582 return ret; 1583 } 1584 1585 static void doc_unregister_sysfs(struct platform_device *pdev, 1586 struct docg3_cascade *cascade) 1587 { 1588 struct device *dev = &pdev->dev; 1589 int floor, i; 1590 1591 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor]; 1592 floor++) 1593 for (i = 0; i < 4; i++) 1594 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1595 } 1596 1597 /* 1598 * Debug sysfs entries 1599 */ 1600 static int flashcontrol_show(struct seq_file *s, void *p) 1601 { 1602 struct docg3 *docg3 = (struct docg3 *)s->private; 1603 1604 u8 fctrl; 1605 1606 mutex_lock(&docg3->cascade->lock); 1607 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1608 mutex_unlock(&docg3->cascade->lock); 1609 1610 seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", 1611 fctrl, 1612 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", 1613 fctrl & DOC_CTRL_CE ? "active" : "inactive", 1614 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", 1615 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", 1616 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); 1617 1618 return 0; 1619 } 1620 DEFINE_SHOW_ATTRIBUTE(flashcontrol); 1621 1622 static int asic_mode_show(struct seq_file *s, void *p) 1623 { 1624 struct docg3 *docg3 = (struct docg3 *)s->private; 1625 1626 int pctrl, mode; 1627 1628 mutex_lock(&docg3->cascade->lock); 1629 pctrl = doc_register_readb(docg3, DOC_ASICMODE); 1630 mode = pctrl & 0x03; 1631 mutex_unlock(&docg3->cascade->lock); 1632 1633 seq_printf(s, 1634 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", 1635 pctrl, 1636 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, 1637 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, 1638 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, 1639 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, 1640 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, 1641 mode >> 1, mode & 0x1); 1642 1643 switch (mode) { 1644 case DOC_ASICMODE_RESET: 1645 seq_puts(s, "reset"); 1646 break; 1647 case DOC_ASICMODE_NORMAL: 1648 seq_puts(s, "normal"); 1649 break; 1650 case DOC_ASICMODE_POWERDOWN: 1651 seq_puts(s, "powerdown"); 1652 break; 1653 } 1654 seq_puts(s, ")\n"); 1655 return 0; 1656 } 1657 DEFINE_SHOW_ATTRIBUTE(asic_mode); 1658 1659 static int device_id_show(struct seq_file *s, void *p) 1660 { 1661 struct docg3 *docg3 = (struct docg3 *)s->private; 1662 int id; 1663 1664 mutex_lock(&docg3->cascade->lock); 1665 id = doc_register_readb(docg3, DOC_DEVICESELECT); 1666 mutex_unlock(&docg3->cascade->lock); 1667 1668 seq_printf(s, "DeviceId = %d\n", id); 1669 return 0; 1670 } 1671 DEFINE_SHOW_ATTRIBUTE(device_id); 1672 1673 static int protection_show(struct seq_file *s, void *p) 1674 { 1675 struct docg3 *docg3 = (struct docg3 *)s->private; 1676 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; 1677 1678 mutex_lock(&docg3->cascade->lock); 1679 protect = doc_register_readb(docg3, DOC_PROTECTION); 1680 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1681 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); 1682 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); 1683 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1684 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); 1685 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); 1686 mutex_unlock(&docg3->cascade->lock); 1687 1688 seq_printf(s, "Protection = 0x%02x (", protect); 1689 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) 1690 seq_puts(s, "FOUNDRY_OTP_LOCK,"); 1691 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) 1692 seq_puts(s, "CUSTOMER_OTP_LOCK,"); 1693 if (protect & DOC_PROTECT_LOCK_INPUT) 1694 seq_puts(s, "LOCK_INPUT,"); 1695 if (protect & DOC_PROTECT_STICKY_LOCK) 1696 seq_puts(s, "STICKY_LOCK,"); 1697 if (protect & DOC_PROTECT_PROTECTION_ENABLED) 1698 seq_puts(s, "PROTECTION ON,"); 1699 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) 1700 seq_puts(s, "IPL_DOWNLOAD_LOCK,"); 1701 if (protect & DOC_PROTECT_PROTECTION_ERROR) 1702 seq_puts(s, "PROTECT_ERR,"); 1703 else 1704 seq_puts(s, "NO_PROTECT_ERR"); 1705 seq_puts(s, ")\n"); 1706 1707 seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1708 dps0, dps0_low, dps0_high, 1709 !!(dps0 & DOC_DPS_OTP_PROTECTED), 1710 !!(dps0 & DOC_DPS_READ_PROTECTED), 1711 !!(dps0 & DOC_DPS_WRITE_PROTECTED), 1712 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), 1713 !!(dps0 & DOC_DPS_KEY_OK)); 1714 seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1715 dps1, dps1_low, dps1_high, 1716 !!(dps1 & DOC_DPS_OTP_PROTECTED), 1717 !!(dps1 & DOC_DPS_READ_PROTECTED), 1718 !!(dps1 & DOC_DPS_WRITE_PROTECTED), 1719 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), 1720 !!(dps1 & DOC_DPS_KEY_OK)); 1721 return 0; 1722 } 1723 DEFINE_SHOW_ATTRIBUTE(protection); 1724 1725 static void __init doc_dbg_register(struct mtd_info *floor) 1726 { 1727 struct dentry *root = floor->dbg.dfs_dir; 1728 struct docg3 *docg3 = floor->priv; 1729 1730 if (IS_ERR_OR_NULL(root)) { 1731 if (IS_ENABLED(CONFIG_DEBUG_FS) && 1732 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 1733 dev_warn(floor->dev.parent, 1734 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); 1735 return; 1736 } 1737 1738 debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3, 1739 &flashcontrol_fops); 1740 debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3, 1741 &asic_mode_fops); 1742 debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3, 1743 &device_id_fops); 1744 debugfs_create_file("docg3_protection", S_IRUSR, root, docg3, 1745 &protection_fops); 1746 } 1747 1748 /** 1749 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure 1750 * @chip_id: The chip ID of the supported chip 1751 * @mtd: The structure to fill 1752 */ 1753 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) 1754 { 1755 struct docg3 *docg3 = mtd->priv; 1756 int cfg; 1757 1758 cfg = doc_register_readb(docg3, DOC_CONFIGURATION); 1759 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); 1760 docg3->reliable = reliable_mode; 1761 1762 switch (chip_id) { 1763 case DOC_CHIPID_G3: 1764 mtd->name = devm_kasprintf(docg3->dev, GFP_KERNEL, "docg3.%d", 1765 docg3->device_id); 1766 if (!mtd->name) 1767 return -ENOMEM; 1768 docg3->max_block = 2047; 1769 break; 1770 } 1771 mtd->type = MTD_NANDFLASH; 1772 mtd->flags = MTD_CAP_NANDFLASH; 1773 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; 1774 if (docg3->reliable == 2) 1775 mtd->size /= 2; 1776 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; 1777 if (docg3->reliable == 2) 1778 mtd->erasesize /= 2; 1779 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE; 1780 mtd->oobsize = DOC_LAYOUT_OOB_SIZE; 1781 mtd->_erase = doc_erase; 1782 mtd->_read_oob = doc_read_oob; 1783 mtd->_write_oob = doc_write_oob; 1784 mtd->_block_isbad = doc_block_isbad; 1785 mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops); 1786 mtd->oobavail = 8; 1787 mtd->ecc_strength = DOC_ECC_BCH_T; 1788 1789 return 0; 1790 } 1791 1792 /** 1793 * doc_probe_device - Check if a device is available 1794 * @cascade: the cascade of chips this devices will belong to 1795 * @floor: the floor of the probed device 1796 * @dev: the device 1797 * 1798 * Checks whether a device at the specified IO range, and floor is available. 1799 * 1800 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM 1801 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is 1802 * launched. 1803 */ 1804 static struct mtd_info * __init 1805 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev) 1806 { 1807 int ret, bbt_nbpages; 1808 u16 chip_id, chip_id_inv; 1809 struct docg3 *docg3; 1810 struct mtd_info *mtd; 1811 1812 ret = -ENOMEM; 1813 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); 1814 if (!docg3) 1815 goto nomem1; 1816 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); 1817 if (!mtd) 1818 goto nomem2; 1819 mtd->priv = docg3; 1820 mtd->dev.parent = dev; 1821 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, 1822 8 * DOC_LAYOUT_PAGE_SIZE); 1823 docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL); 1824 if (!docg3->bbt) 1825 goto nomem3; 1826 1827 docg3->dev = dev; 1828 docg3->device_id = floor; 1829 docg3->cascade = cascade; 1830 doc_set_device_id(docg3, docg3->device_id); 1831 if (!floor) 1832 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); 1833 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); 1834 1835 chip_id = doc_register_readw(docg3, DOC_CHIPID); 1836 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); 1837 1838 ret = 0; 1839 if (chip_id != (u16)(~chip_id_inv)) { 1840 goto nomem4; 1841 } 1842 1843 switch (chip_id) { 1844 case DOC_CHIPID_G3: 1845 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", 1846 docg3->cascade->base, floor); 1847 break; 1848 default: 1849 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); 1850 goto nomem4; 1851 } 1852 1853 ret = doc_set_driver_info(chip_id, mtd); 1854 if (ret) 1855 goto nomem4; 1856 1857 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1858 doc_reload_bbt(docg3); 1859 return mtd; 1860 1861 nomem4: 1862 kfree(docg3->bbt); 1863 nomem3: 1864 kfree(mtd); 1865 nomem2: 1866 kfree(docg3); 1867 nomem1: 1868 return ret ? ERR_PTR(ret) : NULL; 1869 } 1870 1871 /** 1872 * doc_release_device - Release a docg3 floor 1873 * @mtd: the device 1874 */ 1875 static void doc_release_device(struct mtd_info *mtd) 1876 { 1877 struct docg3 *docg3 = mtd->priv; 1878 1879 mtd_device_unregister(mtd); 1880 kfree(docg3->bbt); 1881 kfree(docg3); 1882 kfree(mtd); 1883 } 1884 1885 /** 1886 * docg3_resume - Awakens docg3 floor 1887 * @pdev: platfrom device 1888 * 1889 * Returns 0 (always successful) 1890 */ 1891 static int docg3_resume(struct platform_device *pdev) 1892 { 1893 int i; 1894 struct docg3_cascade *cascade; 1895 struct mtd_info **docg3_floors, *mtd; 1896 struct docg3 *docg3; 1897 1898 cascade = platform_get_drvdata(pdev); 1899 docg3_floors = cascade->floors; 1900 mtd = docg3_floors[0]; 1901 docg3 = mtd->priv; 1902 1903 doc_dbg("docg3_resume()\n"); 1904 for (i = 0; i < 12; i++) 1905 doc_readb(docg3, DOC_IOSPACE_IPL); 1906 return 0; 1907 } 1908 1909 /** 1910 * docg3_suspend - Put in low power mode the docg3 floor 1911 * @pdev: platform device 1912 * @state: power state 1913 * 1914 * Shuts off most of docg3 circuitery to lower power consumption. 1915 * 1916 * Returns 0 if suspend succeeded, -EIO if chip refused suspend 1917 */ 1918 static int docg3_suspend(struct platform_device *pdev, pm_message_t state) 1919 { 1920 int floor, i; 1921 struct docg3_cascade *cascade; 1922 struct mtd_info **docg3_floors, *mtd; 1923 struct docg3 *docg3; 1924 u8 ctrl, pwr_down; 1925 1926 cascade = platform_get_drvdata(pdev); 1927 docg3_floors = cascade->floors; 1928 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 1929 mtd = docg3_floors[floor]; 1930 if (!mtd) 1931 continue; 1932 docg3 = mtd->priv; 1933 1934 doc_writeb(docg3, floor, DOC_DEVICESELECT); 1935 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1936 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; 1937 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 1938 1939 for (i = 0; i < 10; i++) { 1940 usleep_range(3000, 4000); 1941 pwr_down = doc_register_readb(docg3, DOC_POWERMODE); 1942 if (pwr_down & DOC_POWERDOWN_READY) 1943 break; 1944 } 1945 if (pwr_down & DOC_POWERDOWN_READY) { 1946 doc_dbg("docg3_suspend(): floor %d powerdown ok\n", 1947 floor); 1948 } else { 1949 doc_err("docg3_suspend(): floor %d powerdown failed\n", 1950 floor); 1951 return -EIO; 1952 } 1953 } 1954 1955 mtd = docg3_floors[0]; 1956 docg3 = mtd->priv; 1957 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); 1958 return 0; 1959 } 1960 1961 /** 1962 * docg3_probe - Probe the IO space for a DiskOnChip G3 chip 1963 * @pdev: platform device 1964 * 1965 * Probes for a G3 chip at the specified IO space in the platform data 1966 * ressources. The floor 0 must be available. 1967 * 1968 * Returns 0 on success, -ENOMEM, -ENXIO on error 1969 */ 1970 static int __init docg3_probe(struct platform_device *pdev) 1971 { 1972 struct device *dev = &pdev->dev; 1973 struct mtd_info *mtd; 1974 struct resource *ress; 1975 void __iomem *base; 1976 int ret, floor; 1977 struct docg3_cascade *cascade; 1978 1979 ret = -ENXIO; 1980 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1981 if (!ress) { 1982 dev_err(dev, "No I/O memory resource defined\n"); 1983 return ret; 1984 } 1985 1986 ret = -ENOMEM; 1987 base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE); 1988 if (!base) { 1989 dev_err(dev, "devm_ioremap dev failed\n"); 1990 return ret; 1991 } 1992 1993 cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade), 1994 GFP_KERNEL); 1995 if (!cascade) 1996 return ret; 1997 cascade->base = base; 1998 mutex_init(&cascade->lock); 1999 cascade->bch = bch_init(DOC_ECC_BCH_M, DOC_ECC_BCH_T, 2000 DOC_ECC_BCH_PRIMPOLY, false); 2001 if (!cascade->bch) 2002 return ret; 2003 2004 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 2005 mtd = doc_probe_device(cascade, floor, dev); 2006 if (IS_ERR(mtd)) { 2007 ret = PTR_ERR(mtd); 2008 goto err_probe; 2009 } 2010 if (!mtd) { 2011 if (floor == 0) 2012 goto notfound; 2013 else 2014 continue; 2015 } 2016 cascade->floors[floor] = mtd; 2017 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 2018 0); 2019 if (ret) 2020 goto err_probe; 2021 2022 doc_dbg_register(cascade->floors[floor]); 2023 } 2024 2025 ret = doc_register_sysfs(pdev, cascade); 2026 if (ret) 2027 goto err_probe; 2028 2029 platform_set_drvdata(pdev, cascade); 2030 return 0; 2031 2032 notfound: 2033 ret = -ENODEV; 2034 dev_info(dev, "No supported DiskOnChip found\n"); 2035 err_probe: 2036 bch_free(cascade->bch); 2037 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2038 if (cascade->floors[floor]) 2039 doc_release_device(cascade->floors[floor]); 2040 return ret; 2041 } 2042 2043 /** 2044 * docg3_release - Release the driver 2045 * @pdev: the platform device 2046 * 2047 * Returns 0 2048 */ 2049 static int docg3_release(struct platform_device *pdev) 2050 { 2051 struct docg3_cascade *cascade = platform_get_drvdata(pdev); 2052 struct docg3 *docg3 = cascade->floors[0]->priv; 2053 int floor; 2054 2055 doc_unregister_sysfs(pdev, cascade); 2056 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2057 if (cascade->floors[floor]) 2058 doc_release_device(cascade->floors[floor]); 2059 2060 bch_free(docg3->cascade->bch); 2061 return 0; 2062 } 2063 2064 #ifdef CONFIG_OF 2065 static const struct of_device_id docg3_dt_ids[] = { 2066 { .compatible = "m-systems,diskonchip-g3" }, 2067 {} 2068 }; 2069 MODULE_DEVICE_TABLE(of, docg3_dt_ids); 2070 #endif 2071 2072 static struct platform_driver g3_driver = { 2073 .driver = { 2074 .name = "docg3", 2075 .of_match_table = of_match_ptr(docg3_dt_ids), 2076 }, 2077 .suspend = docg3_suspend, 2078 .resume = docg3_resume, 2079 .remove = docg3_release, 2080 }; 2081 2082 module_platform_driver_probe(g3_driver, docg3_probe); 2083 2084 MODULE_LICENSE("GPL"); 2085 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); 2086 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); 2087