1 /* 2 * Handles the M-Systems DiskOnChip G3 chip 3 * 4 * Copyright (C) 2011 Robert Jarzmik 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/platform_device.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/io.h> 29 #include <linux/delay.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 #include <linux/bitmap.h> 33 #include <linux/bitrev.h> 34 #include <linux/bch.h> 35 36 #include <linux/debugfs.h> 37 #include <linux/seq_file.h> 38 39 #define CREATE_TRACE_POINTS 40 #include "docg3.h" 41 42 /* 43 * This driver handles the DiskOnChip G3 flash memory. 44 * 45 * As no specification is available from M-Systems/Sandisk, this drivers lacks 46 * several functions available on the chip, as : 47 * - IPL write 48 * 49 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and 50 * the driver assumes a 16bits data bus. 51 * 52 * DocG3 relies on 2 ECC algorithms, which are handled in hardware : 53 * - a 1 byte Hamming code stored in the OOB for each page 54 * - a 7 bytes BCH code stored in the OOB for each page 55 * The BCH ECC is : 56 * - BCH is in GF(2^14) 57 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes 58 * + 1 hamming byte) 59 * - BCH can correct up to 4 bits (t = 4) 60 * - BCH syndroms are calculated in hardware, and checked in hardware as well 61 * 62 */ 63 64 static unsigned int reliable_mode; 65 module_param(reliable_mode, uint, 0); 66 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, " 67 "2=reliable) : MLC normal operations are in normal mode"); 68 69 /** 70 * struct docg3_oobinfo - DiskOnChip G3 OOB layout 71 * @eccbytes: 8 bytes are used (1 for Hamming ECC, 7 for BCH ECC) 72 * @eccpos: ecc positions (byte 7 is Hamming ECC, byte 8-14 are BCH ECC) 73 * @oobfree: free pageinfo bytes (byte 0 until byte 6, byte 15 74 * @oobavail: 8 available bytes remaining after ECC toll 75 */ 76 static struct nand_ecclayout docg3_oobinfo = { 77 .eccbytes = 8, 78 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14}, 79 .oobfree = {{0, 7}, {15, 1} }, 80 .oobavail = 8, 81 }; 82 83 /** 84 * struct docg3_bch - BCH engine 85 */ 86 static struct bch_control *docg3_bch; 87 88 static inline u8 doc_readb(struct docg3 *docg3, u16 reg) 89 { 90 u8 val = readb(docg3->base + reg); 91 92 trace_docg3_io(0, 8, reg, (int)val); 93 return val; 94 } 95 96 static inline u16 doc_readw(struct docg3 *docg3, u16 reg) 97 { 98 u16 val = readw(docg3->base + reg); 99 100 trace_docg3_io(0, 16, reg, (int)val); 101 return val; 102 } 103 104 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) 105 { 106 writeb(val, docg3->base + reg); 107 trace_docg3_io(1, 8, reg, val); 108 } 109 110 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) 111 { 112 writew(val, docg3->base + reg); 113 trace_docg3_io(1, 16, reg, val); 114 } 115 116 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) 117 { 118 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); 119 } 120 121 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) 122 { 123 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); 124 } 125 126 static inline void doc_flash_address(struct docg3 *docg3, u8 addr) 127 { 128 doc_writeb(docg3, addr, DOC_FLASHADDRESS); 129 } 130 131 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; 132 133 static int doc_register_readb(struct docg3 *docg3, int reg) 134 { 135 u8 val; 136 137 doc_writew(docg3, reg, DOC_READADDRESS); 138 val = doc_readb(docg3, reg); 139 doc_vdbg("Read register %04x : %02x\n", reg, val); 140 return val; 141 } 142 143 static int doc_register_readw(struct docg3 *docg3, int reg) 144 { 145 u16 val; 146 147 doc_writew(docg3, reg, DOC_READADDRESS); 148 val = doc_readw(docg3, reg); 149 doc_vdbg("Read register %04x : %04x\n", reg, val); 150 return val; 151 } 152 153 /** 154 * doc_delay - delay docg3 operations 155 * @docg3: the device 156 * @nbNOPs: the number of NOPs to issue 157 * 158 * As no specification is available, the right timings between chip commands are 159 * unknown. The only available piece of information are the observed nops on a 160 * working docg3 chip. 161 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler 162 * friendlier msleep() functions or blocking mdelay(). 163 */ 164 static void doc_delay(struct docg3 *docg3, int nbNOPs) 165 { 166 int i; 167 168 doc_vdbg("NOP x %d\n", nbNOPs); 169 for (i = 0; i < nbNOPs; i++) 170 doc_writeb(docg3, 0, DOC_NOP); 171 } 172 173 static int is_prot_seq_error(struct docg3 *docg3) 174 { 175 int ctrl; 176 177 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 178 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); 179 } 180 181 static int doc_is_ready(struct docg3 *docg3) 182 { 183 int ctrl; 184 185 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 186 return ctrl & DOC_CTRL_FLASHREADY; 187 } 188 189 static int doc_wait_ready(struct docg3 *docg3) 190 { 191 int maxWaitCycles = 100; 192 193 do { 194 doc_delay(docg3, 4); 195 cpu_relax(); 196 } while (!doc_is_ready(docg3) && maxWaitCycles--); 197 doc_delay(docg3, 2); 198 if (maxWaitCycles > 0) 199 return 0; 200 else 201 return -EIO; 202 } 203 204 static int doc_reset_seq(struct docg3 *docg3) 205 { 206 int ret; 207 208 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); 209 doc_flash_sequence(docg3, DOC_SEQ_RESET); 210 doc_flash_command(docg3, DOC_CMD_RESET); 211 doc_delay(docg3, 2); 212 ret = doc_wait_ready(docg3); 213 214 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); 215 return ret; 216 } 217 218 /** 219 * doc_read_data_area - Read data from data area 220 * @docg3: the device 221 * @buf: the buffer to fill in (might be NULL is dummy reads) 222 * @len: the length to read 223 * @first: first time read, DOC_READADDRESS should be set 224 * 225 * Reads bytes from flash data. Handles the single byte / even bytes reads. 226 */ 227 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, 228 int first) 229 { 230 int i, cdr, len4; 231 u16 data16, *dst16; 232 u8 data8, *dst8; 233 234 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); 235 cdr = len & 0x3; 236 len4 = len - cdr; 237 238 if (first) 239 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 240 dst16 = buf; 241 for (i = 0; i < len4; i += 2) { 242 data16 = doc_readw(docg3, DOC_IOSPACE_DATA); 243 if (dst16) { 244 *dst16 = data16; 245 dst16++; 246 } 247 } 248 249 if (cdr) { 250 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 251 DOC_READADDRESS); 252 doc_delay(docg3, 1); 253 dst8 = (u8 *)dst16; 254 for (i = 0; i < cdr; i++) { 255 data8 = doc_readb(docg3, DOC_IOSPACE_DATA); 256 if (dst8) { 257 *dst8 = data8; 258 dst8++; 259 } 260 } 261 } 262 } 263 264 /** 265 * doc_write_data_area - Write data into data area 266 * @docg3: the device 267 * @buf: the buffer to get input bytes from 268 * @len: the length to write 269 * 270 * Writes bytes into flash data. Handles the single byte / even bytes writes. 271 */ 272 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len) 273 { 274 int i, cdr, len4; 275 u16 *src16; 276 u8 *src8; 277 278 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len); 279 cdr = len & 0x3; 280 len4 = len - cdr; 281 282 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 283 src16 = (u16 *)buf; 284 for (i = 0; i < len4; i += 2) { 285 doc_writew(docg3, *src16, DOC_IOSPACE_DATA); 286 src16++; 287 } 288 289 src8 = (u8 *)src16; 290 for (i = 0; i < cdr; i++) { 291 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 292 DOC_READADDRESS); 293 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA); 294 src8++; 295 } 296 } 297 298 /** 299 * doc_set_data_mode - Sets the flash to normal or reliable data mode 300 * @docg3: the device 301 * 302 * The reliable data mode is a bit slower than the fast mode, but less errors 303 * occur. Entering the reliable mode cannot be done without entering the fast 304 * mode first. 305 * 306 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks 307 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading 308 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same 309 * result, which is a logical and between bytes from page 0 and page 1 (which is 310 * consistent with the fact that writing to a page is _clearing_ bits of that 311 * page). 312 */ 313 static void doc_set_reliable_mode(struct docg3 *docg3) 314 { 315 static char *strmode[] = { "normal", "fast", "reliable", "invalid" }; 316 317 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]); 318 switch (docg3->reliable) { 319 case 0: 320 break; 321 case 1: 322 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE); 323 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 324 break; 325 case 2: 326 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE); 327 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 328 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); 329 break; 330 default: 331 doc_err("doc_set_reliable_mode(): invalid mode\n"); 332 break; 333 } 334 doc_delay(docg3, 2); 335 } 336 337 /** 338 * doc_set_asic_mode - Set the ASIC mode 339 * @docg3: the device 340 * @mode: the mode 341 * 342 * The ASIC can work in 3 modes : 343 * - RESET: all registers are zeroed 344 * - NORMAL: receives and handles commands 345 * - POWERDOWN: minimal poweruse, flash parts shut off 346 */ 347 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) 348 { 349 int i; 350 351 for (i = 0; i < 12; i++) 352 doc_readb(docg3, DOC_IOSPACE_IPL); 353 354 mode |= DOC_ASICMODE_MDWREN; 355 doc_dbg("doc_set_asic_mode(%02x)\n", mode); 356 doc_writeb(docg3, mode, DOC_ASICMODE); 357 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); 358 doc_delay(docg3, 1); 359 } 360 361 /** 362 * doc_set_device_id - Sets the devices id for cascaded G3 chips 363 * @docg3: the device 364 * @id: the chip to select (amongst 0, 1, 2, 3) 365 * 366 * There can be 4 cascaded G3 chips. This function selects the one which will 367 * should be the active one. 368 */ 369 static void doc_set_device_id(struct docg3 *docg3, int id) 370 { 371 u8 ctrl; 372 373 doc_dbg("doc_set_device_id(%d)\n", id); 374 doc_writeb(docg3, id, DOC_DEVICESELECT); 375 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 376 377 ctrl &= ~DOC_CTRL_VIOLATION; 378 ctrl |= DOC_CTRL_CE; 379 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 380 } 381 382 /** 383 * doc_set_extra_page_mode - Change flash page layout 384 * @docg3: the device 385 * 386 * Normally, the flash page is split into the data (512 bytes) and the out of 387 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear 388 * leveling counters are stored. To access this last area of 4 bytes, a special 389 * mode must be input to the flash ASIC. 390 * 391 * Returns 0 if no error occured, -EIO else. 392 */ 393 static int doc_set_extra_page_mode(struct docg3 *docg3) 394 { 395 int fctrl; 396 397 doc_dbg("doc_set_extra_page_mode()\n"); 398 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); 399 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); 400 doc_delay(docg3, 2); 401 402 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 403 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) 404 return -EIO; 405 else 406 return 0; 407 } 408 409 /** 410 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane 411 * @docg3: the device 412 * @sector: the sector 413 */ 414 static void doc_setup_addr_sector(struct docg3 *docg3, int sector) 415 { 416 doc_delay(docg3, 1); 417 doc_flash_address(docg3, sector & 0xff); 418 doc_flash_address(docg3, (sector >> 8) & 0xff); 419 doc_flash_address(docg3, (sector >> 16) & 0xff); 420 doc_delay(docg3, 1); 421 } 422 423 /** 424 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane 425 * @docg3: the device 426 * @sector: the sector 427 * @ofs: the offset in the page, between 0 and (512 + 16 + 512) 428 */ 429 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs) 430 { 431 ofs = ofs >> 2; 432 doc_delay(docg3, 1); 433 doc_flash_address(docg3, ofs & 0xff); 434 doc_flash_address(docg3, sector & 0xff); 435 doc_flash_address(docg3, (sector >> 8) & 0xff); 436 doc_flash_address(docg3, (sector >> 16) & 0xff); 437 doc_delay(docg3, 1); 438 } 439 440 /** 441 * doc_seek - Set both flash planes to the specified block, page for reading 442 * @docg3: the device 443 * @block0: the first plane block index 444 * @block1: the second plane block index 445 * @page: the page index within the block 446 * @wear: if true, read will occur on the 4 extra bytes of the wear area 447 * @ofs: offset in page to read 448 * 449 * Programs the flash even and odd planes to the specific block and page. 450 * Alternatively, programs the flash to the wear area of the specified page. 451 */ 452 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, 453 int wear, int ofs) 454 { 455 int sector, ret = 0; 456 457 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", 458 block0, block1, page, ofs, wear); 459 460 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { 461 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 462 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 463 doc_delay(docg3, 2); 464 } else { 465 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 466 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 467 doc_delay(docg3, 2); 468 } 469 470 doc_set_reliable_mode(docg3); 471 if (wear) 472 ret = doc_set_extra_page_mode(docg3); 473 if (ret) 474 goto out; 475 476 doc_flash_sequence(docg3, DOC_SEQ_READ); 477 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 478 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 479 doc_setup_addr_sector(docg3, sector); 480 481 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 482 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 483 doc_setup_addr_sector(docg3, sector); 484 doc_delay(docg3, 1); 485 486 out: 487 return ret; 488 } 489 490 /** 491 * doc_write_seek - Set both flash planes to the specified block, page for writing 492 * @docg3: the device 493 * @block0: the first plane block index 494 * @block1: the second plane block index 495 * @page: the page index within the block 496 * @ofs: offset in page to write 497 * 498 * Programs the flash even and odd planes to the specific block and page. 499 * Alternatively, programs the flash to the wear area of the specified page. 500 */ 501 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page, 502 int ofs) 503 { 504 int ret = 0, sector; 505 506 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n", 507 block0, block1, page, ofs); 508 509 doc_set_reliable_mode(docg3); 510 511 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) { 512 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 513 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 514 doc_delay(docg3, 2); 515 } else { 516 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 517 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 518 doc_delay(docg3, 2); 519 } 520 521 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP); 522 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 523 524 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 525 doc_setup_writeaddr_sector(docg3, sector, ofs); 526 527 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3); 528 doc_delay(docg3, 2); 529 ret = doc_wait_ready(docg3); 530 if (ret) 531 goto out; 532 533 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1); 534 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 535 doc_setup_writeaddr_sector(docg3, sector, ofs); 536 doc_delay(docg3, 1); 537 538 out: 539 return ret; 540 } 541 542 543 /** 544 * doc_read_page_ecc_init - Initialize hardware ECC engine 545 * @docg3: the device 546 * @len: the number of bytes covered by the ECC (BCH covered) 547 * 548 * The function does initialize the hardware ECC engine to compute the Hamming 549 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 550 * 551 * Return 0 if succeeded, -EIO on error 552 */ 553 static int doc_read_page_ecc_init(struct docg3 *docg3, int len) 554 { 555 doc_writew(docg3, DOC_ECCCONF0_READ_MODE 556 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 557 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 558 DOC_ECCCONF0); 559 doc_delay(docg3, 4); 560 doc_register_readb(docg3, DOC_FLASHCONTROL); 561 return doc_wait_ready(docg3); 562 } 563 564 /** 565 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine 566 * @docg3: the device 567 * @len: the number of bytes covered by the ECC (BCH covered) 568 * 569 * The function does initialize the hardware ECC engine to compute the Hamming 570 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes). 571 * 572 * Return 0 if succeeded, -EIO on error 573 */ 574 static int doc_write_page_ecc_init(struct docg3 *docg3, int len) 575 { 576 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE 577 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 578 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 579 DOC_ECCCONF0); 580 doc_delay(docg3, 4); 581 doc_register_readb(docg3, DOC_FLASHCONTROL); 582 return doc_wait_ready(docg3); 583 } 584 585 /** 586 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator 587 * @docg3: the device 588 * 589 * Disables the hardware ECC generator and checker, for unchecked reads (as when 590 * reading OOB only or write status byte). 591 */ 592 static void doc_ecc_disable(struct docg3 *docg3) 593 { 594 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0); 595 doc_delay(docg3, 4); 596 } 597 598 /** 599 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine 600 * @docg3: the device 601 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered) 602 * 603 * This function programs the ECC hardware to compute the hamming code on the 604 * last provided N bytes to the hardware generator. 605 */ 606 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes) 607 { 608 u8 ecc_conf1; 609 610 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1); 611 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK; 612 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK); 613 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1); 614 } 615 616 /** 617 * doc_ecc_bch_fix_data - Fix if need be read data from flash 618 * @docg3: the device 619 * @buf: the buffer of read data (512 + 7 + 1 bytes) 620 * @hwecc: the hardware calculated ECC. 621 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB 622 * area data, and calc_ecc the ECC calculated by the hardware generator. 623 * 624 * Checks if the received data matches the ECC, and if an error is detected, 625 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3 626 * understands the (data, ecc, syndroms) in an inverted order in comparison to 627 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0, 628 * bit6 and bit 1, ...) for all ECC data. 629 * 630 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch 631 * algorithm is used to decode this. However the hw operates on page 632 * data in a bit order that is the reverse of that of the bch alg, 633 * requiring that the bits be reversed on the result. Thanks to Ivan 634 * Djelic for his analysis. 635 * 636 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit 637 * errors were detected and cannot be fixed. 638 */ 639 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc) 640 { 641 u8 ecc[DOC_ECC_BCH_SIZE]; 642 int errorpos[DOC_ECC_BCH_T], i, numerrs; 643 644 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 645 ecc[i] = bitrev8(hwecc[i]); 646 numerrs = decode_bch(docg3_bch, NULL, DOC_ECC_BCH_COVERED_BYTES, 647 NULL, ecc, NULL, errorpos); 648 BUG_ON(numerrs == -EINVAL); 649 if (numerrs < 0) 650 goto out; 651 652 for (i = 0; i < numerrs; i++) 653 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7)); 654 for (i = 0; i < numerrs; i++) 655 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8) 656 /* error is located in data, correct it */ 657 change_bit(errorpos[i], buf); 658 out: 659 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs); 660 return numerrs; 661 } 662 663 664 /** 665 * doc_read_page_prepare - Prepares reading data from a flash page 666 * @docg3: the device 667 * @block0: the first plane block index on flash memory 668 * @block1: the second plane block index on flash memory 669 * @page: the page index in the block 670 * @offset: the offset in the page (must be a multiple of 4) 671 * 672 * Prepares the page to be read in the flash memory : 673 * - tell ASIC to map the flash pages 674 * - tell ASIC to be in read mode 675 * 676 * After a call to this method, a call to doc_read_page_finish is mandatory, 677 * to end the read cycle of the flash. 678 * 679 * Read data from a flash page. The length to be read must be between 0 and 680 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because 681 * the extra bytes reading is not implemented). 682 * 683 * As pages are grouped by 2 (in 2 planes), reading from a page must be done 684 * in two steps: 685 * - one read of 512 bytes at offset 0 686 * - one read of 512 bytes at offset 512 + 16 687 * 688 * Returns 0 if successful, -EIO if a read error occured. 689 */ 690 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, 691 int page, int offset) 692 { 693 int wear_area = 0, ret = 0; 694 695 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", 696 block0, block1, page, offset); 697 if (offset >= DOC_LAYOUT_WEAR_OFFSET) 698 wear_area = 1; 699 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) 700 return -EINVAL; 701 702 doc_set_device_id(docg3, docg3->device_id); 703 ret = doc_reset_seq(docg3); 704 if (ret) 705 goto err; 706 707 /* Program the flash address block and page */ 708 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); 709 if (ret) 710 goto err; 711 712 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); 713 doc_delay(docg3, 2); 714 doc_wait_ready(docg3); 715 716 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); 717 doc_delay(docg3, 1); 718 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) 719 offset -= 2 * DOC_LAYOUT_PAGE_SIZE; 720 doc_flash_address(docg3, offset >> 2); 721 doc_delay(docg3, 1); 722 doc_wait_ready(docg3); 723 724 doc_flash_command(docg3, DOC_CMD_READ_FLASH); 725 726 return 0; 727 err: 728 doc_writeb(docg3, 0, DOC_DATAEND); 729 doc_delay(docg3, 2); 730 return -EIO; 731 } 732 733 /** 734 * doc_read_page_getbytes - Reads bytes from a prepared page 735 * @docg3: the device 736 * @len: the number of bytes to be read (must be a multiple of 4) 737 * @buf: the buffer to be filled in 738 * @first: 1 if first time read, DOC_READADDRESS should be set 739 * 740 */ 741 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, 742 int first) 743 { 744 doc_read_data_area(docg3, buf, len, first); 745 doc_delay(docg3, 2); 746 return len; 747 } 748 749 /** 750 * doc_write_page_putbytes - Writes bytes into a prepared page 751 * @docg3: the device 752 * @len: the number of bytes to be written 753 * @buf: the buffer of input bytes 754 * 755 */ 756 static void doc_write_page_putbytes(struct docg3 *docg3, int len, 757 const u_char *buf) 758 { 759 doc_write_data_area(docg3, buf, len); 760 doc_delay(docg3, 2); 761 } 762 763 /** 764 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC 765 * @docg3: the device 766 * @hwecc: the array of 7 integers where the hardware ecc will be stored 767 */ 768 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc) 769 { 770 int i; 771 772 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 773 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i)); 774 } 775 776 /** 777 * doc_page_finish - Ends reading/writing of a flash page 778 * @docg3: the device 779 */ 780 static void doc_page_finish(struct docg3 *docg3) 781 { 782 doc_writeb(docg3, 0, DOC_DATAEND); 783 doc_delay(docg3, 2); 784 } 785 786 /** 787 * doc_read_page_finish - Ends reading of a flash page 788 * @docg3: the device 789 * 790 * As a side effect, resets the chip selector to 0. This ensures that after each 791 * read operation, the floor 0 is selected. Therefore, if the systems halts, the 792 * reboot will boot on floor 0, where the IPL is. 793 */ 794 static void doc_read_page_finish(struct docg3 *docg3) 795 { 796 doc_page_finish(docg3); 797 doc_set_device_id(docg3, 0); 798 } 799 800 /** 801 * calc_block_sector - Calculate blocks, pages and ofs. 802 803 * @from: offset in flash 804 * @block0: first plane block index calculated 805 * @block1: second plane block index calculated 806 * @page: page calculated 807 * @ofs: offset in page 808 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in 809 * reliable mode. 810 * 811 * The calculation is based on the reliable/normal mode. In normal mode, the 64 812 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are 813 * clones, only 32 pages per block are available. 814 */ 815 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, 816 int *ofs, int reliable) 817 { 818 uint sector, pages_biblock; 819 820 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES; 821 if (reliable == 1 || reliable == 2) 822 pages_biblock /= 2; 823 824 sector = from / DOC_LAYOUT_PAGE_SIZE; 825 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES; 826 *block1 = *block0 + 1; 827 *page = sector % pages_biblock; 828 *page /= DOC_LAYOUT_NBPLANES; 829 if (reliable == 1 || reliable == 2) 830 *page *= 2; 831 if (sector % 2) 832 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; 833 else 834 *ofs = 0; 835 } 836 837 /** 838 * doc_read_oob - Read out of band bytes from flash 839 * @mtd: the device 840 * @from: the offset from first block and first page, in bytes, aligned on page 841 * size 842 * @ops: the mtd oob structure 843 * 844 * Reads flash memory OOB area of pages. 845 * 846 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured 847 */ 848 static int doc_read_oob(struct mtd_info *mtd, loff_t from, 849 struct mtd_oob_ops *ops) 850 { 851 struct docg3 *docg3 = mtd->priv; 852 int block0, block1, page, ret, ofs = 0; 853 u8 *oobbuf = ops->oobbuf; 854 u8 *buf = ops->datbuf; 855 size_t len, ooblen, nbdata, nboob; 856 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1; 857 858 if (buf) 859 len = ops->len; 860 else 861 len = 0; 862 if (oobbuf) 863 ooblen = ops->ooblen; 864 else 865 ooblen = 0; 866 867 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 868 oobbuf += ops->ooboffs; 869 870 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 871 from, ops->mode, buf, len, oobbuf, ooblen); 872 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % DOC_LAYOUT_OOB_SIZE) || 873 (from % DOC_LAYOUT_PAGE_SIZE)) 874 return -EINVAL; 875 876 ret = -EINVAL; 877 calc_block_sector(from + len, &block0, &block1, &page, &ofs, 878 docg3->reliable); 879 if (block1 > docg3->max_block) 880 goto err; 881 882 ops->oobretlen = 0; 883 ops->retlen = 0; 884 ret = 0; 885 while (!ret && (len > 0 || ooblen > 0)) { 886 calc_block_sector(from, &block0, &block1, &page, &ofs, 887 docg3->reliable); 888 nbdata = min_t(size_t, len, (size_t)DOC_LAYOUT_PAGE_SIZE); 889 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE); 890 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); 891 if (ret < 0) 892 goto err; 893 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 894 if (ret < 0) 895 goto err_in_read; 896 ret = doc_read_page_getbytes(docg3, nbdata, buf, 1); 897 if (ret < nbdata) 898 goto err_in_read; 899 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE - nbdata, 900 NULL, 0); 901 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0); 902 if (ret < nboob) 903 goto err_in_read; 904 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob, 905 NULL, 0); 906 907 doc_get_bch_hw_ecc(docg3, hwecc); 908 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); 909 910 if (nboob >= DOC_LAYOUT_OOB_SIZE) { 911 doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", 912 oobbuf[0], oobbuf[1], oobbuf[2], oobbuf[3], 913 oobbuf[4], oobbuf[5], oobbuf[6]); 914 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]); 915 doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", 916 oobbuf[8], oobbuf[9], oobbuf[10], oobbuf[11], 917 oobbuf[12], oobbuf[13], oobbuf[14]); 918 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]); 919 } 920 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); 921 doc_dbg("ECC HW_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", 922 hwecc[0], hwecc[1], hwecc[2], hwecc[3], hwecc[4], 923 hwecc[5], hwecc[6]); 924 925 ret = -EIO; 926 if (is_prot_seq_error(docg3)) 927 goto err_in_read; 928 ret = 0; 929 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) && 930 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) && 931 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) && 932 (ops->mode != MTD_OPS_RAW) && 933 (nbdata == DOC_LAYOUT_PAGE_SIZE)) { 934 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc); 935 if (ret < 0) { 936 mtd->ecc_stats.failed++; 937 ret = -EBADMSG; 938 } 939 if (ret > 0) { 940 mtd->ecc_stats.corrected += ret; 941 ret = -EUCLEAN; 942 } 943 } 944 945 doc_read_page_finish(docg3); 946 ops->retlen += nbdata; 947 ops->oobretlen += nboob; 948 buf += nbdata; 949 oobbuf += nboob; 950 len -= nbdata; 951 ooblen -= nboob; 952 from += DOC_LAYOUT_PAGE_SIZE; 953 } 954 955 return ret; 956 err_in_read: 957 doc_read_page_finish(docg3); 958 err: 959 return ret; 960 } 961 962 /** 963 * doc_read - Read bytes from flash 964 * @mtd: the device 965 * @from: the offset from first block and first page, in bytes, aligned on page 966 * size 967 * @len: the number of bytes to read (must be a multiple of 4) 968 * @retlen: the number of bytes actually read 969 * @buf: the filled in buffer 970 * 971 * Reads flash memory pages. This function does not read the OOB chunk, but only 972 * the page data. 973 * 974 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured 975 */ 976 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, 977 size_t *retlen, u_char *buf) 978 { 979 struct mtd_oob_ops ops; 980 size_t ret; 981 982 memset(&ops, 0, sizeof(ops)); 983 ops.datbuf = buf; 984 ops.len = len; 985 ops.mode = MTD_OPS_AUTO_OOB; 986 987 ret = doc_read_oob(mtd, from, &ops); 988 *retlen = ops.retlen; 989 return ret; 990 } 991 992 static int doc_reload_bbt(struct docg3 *docg3) 993 { 994 int block = DOC_LAYOUT_BLOCK_BBT; 995 int ret = 0, nbpages, page; 996 u_char *buf = docg3->bbt; 997 998 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); 999 for (page = 0; !ret && (page < nbpages); page++) { 1000 ret = doc_read_page_prepare(docg3, block, block + 1, 1001 page + DOC_LAYOUT_PAGE_BBT, 0); 1002 if (!ret) 1003 ret = doc_read_page_ecc_init(docg3, 1004 DOC_LAYOUT_PAGE_SIZE); 1005 if (!ret) 1006 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, 1007 buf, 1); 1008 buf += DOC_LAYOUT_PAGE_SIZE; 1009 } 1010 doc_read_page_finish(docg3); 1011 return ret; 1012 } 1013 1014 /** 1015 * doc_block_isbad - Checks whether a block is good or not 1016 * @mtd: the device 1017 * @from: the offset to find the correct block 1018 * 1019 * Returns 1 if block is bad, 0 if block is good 1020 */ 1021 static int doc_block_isbad(struct mtd_info *mtd, loff_t from) 1022 { 1023 struct docg3 *docg3 = mtd->priv; 1024 int block0, block1, page, ofs, is_good; 1025 1026 calc_block_sector(from, &block0, &block1, &page, &ofs, 1027 docg3->reliable); 1028 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", 1029 from, block0, block1, page, ofs); 1030 1031 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) 1032 return 0; 1033 if (block1 > docg3->max_block) 1034 return -EINVAL; 1035 1036 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); 1037 return !is_good; 1038 } 1039 1040 #if 0 1041 /** 1042 * doc_get_erase_count - Get block erase count 1043 * @docg3: the device 1044 * @from: the offset in which the block is. 1045 * 1046 * Get the number of times a block was erased. The number is the maximum of 1047 * erase times between first and second plane (which should be equal normally). 1048 * 1049 * Returns The number of erases, or -EINVAL or -EIO on error. 1050 */ 1051 static int doc_get_erase_count(struct docg3 *docg3, loff_t from) 1052 { 1053 u8 buf[DOC_LAYOUT_WEAR_SIZE]; 1054 int ret, plane1_erase_count, plane2_erase_count; 1055 int block0, block1, page, ofs; 1056 1057 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); 1058 if (from % DOC_LAYOUT_PAGE_SIZE) 1059 return -EINVAL; 1060 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable); 1061 if (block1 > docg3->max_block) 1062 return -EINVAL; 1063 1064 ret = doc_reset_seq(docg3); 1065 if (!ret) 1066 ret = doc_read_page_prepare(docg3, block0, block1, page, 1067 ofs + DOC_LAYOUT_WEAR_OFFSET); 1068 if (!ret) 1069 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, 1070 buf, 1); 1071 doc_read_page_finish(docg3); 1072 1073 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) 1074 return -EIO; 1075 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) 1076 | ((u8)(~buf[5]) << 16); 1077 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) 1078 | ((u8)(~buf[7]) << 16); 1079 1080 return max(plane1_erase_count, plane2_erase_count); 1081 } 1082 #endif 1083 1084 /** 1085 * doc_get_op_status - get erase/write operation status 1086 * @docg3: the device 1087 * 1088 * Queries the status from the chip, and returns it 1089 * 1090 * Returns the status (bits DOC_PLANES_STATUS_*) 1091 */ 1092 static int doc_get_op_status(struct docg3 *docg3) 1093 { 1094 u8 status; 1095 1096 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS); 1097 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS); 1098 doc_delay(docg3, 5); 1099 1100 doc_ecc_disable(docg3); 1101 doc_read_data_area(docg3, &status, 1, 1); 1102 return status; 1103 } 1104 1105 /** 1106 * doc_write_erase_wait_status - wait for write or erase completion 1107 * @docg3: the device 1108 * 1109 * Wait for the chip to be ready again after erase or write operation, and check 1110 * erase/write status. 1111 * 1112 * Returns 0 if erase successfull, -EIO if erase/write issue, -ETIMEOUT if 1113 * timeout 1114 */ 1115 static int doc_write_erase_wait_status(struct docg3 *docg3) 1116 { 1117 int status, ret = 0; 1118 1119 if (!doc_is_ready(docg3)) 1120 usleep_range(3000, 3000); 1121 if (!doc_is_ready(docg3)) { 1122 doc_dbg("Timeout reached and the chip is still not ready\n"); 1123 ret = -EAGAIN; 1124 goto out; 1125 } 1126 1127 status = doc_get_op_status(docg3); 1128 if (status & DOC_PLANES_STATUS_FAIL) { 1129 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n", 1130 status); 1131 ret = -EIO; 1132 } 1133 1134 out: 1135 doc_page_finish(docg3); 1136 return ret; 1137 } 1138 1139 /** 1140 * doc_erase_block - Erase a couple of blocks 1141 * @docg3: the device 1142 * @block0: the first block to erase (leftmost plane) 1143 * @block1: the second block to erase (rightmost plane) 1144 * 1145 * Erase both blocks, and return operation status 1146 * 1147 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not 1148 * ready for too long 1149 */ 1150 static int doc_erase_block(struct docg3 *docg3, int block0, int block1) 1151 { 1152 int ret, sector; 1153 1154 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1); 1155 ret = doc_reset_seq(docg3); 1156 if (ret) 1157 return -EIO; 1158 1159 doc_set_reliable_mode(docg3); 1160 doc_flash_sequence(docg3, DOC_SEQ_ERASE); 1161 1162 sector = block0 << DOC_ADDR_BLOCK_SHIFT; 1163 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1164 doc_setup_addr_sector(docg3, sector); 1165 sector = block1 << DOC_ADDR_BLOCK_SHIFT; 1166 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 1167 doc_setup_addr_sector(docg3, sector); 1168 doc_delay(docg3, 1); 1169 1170 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2); 1171 doc_delay(docg3, 2); 1172 1173 if (is_prot_seq_error(docg3)) { 1174 doc_err("Erase blocks %d,%d error\n", block0, block1); 1175 return -EIO; 1176 } 1177 1178 return doc_write_erase_wait_status(docg3); 1179 } 1180 1181 /** 1182 * doc_erase - Erase a portion of the chip 1183 * @mtd: the device 1184 * @info: the erase info 1185 * 1186 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is 1187 * split into 2 pages of 512 bytes on 2 contiguous blocks. 1188 * 1189 * Returns 0 if erase successful, -EINVAL if adressing error, -EIO if erase 1190 * issue 1191 */ 1192 static int doc_erase(struct mtd_info *mtd, struct erase_info *info) 1193 { 1194 struct docg3 *docg3 = mtd->priv; 1195 uint64_t len; 1196 int block0, block1, page, ret, ofs = 0; 1197 1198 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); 1199 doc_set_device_id(docg3, docg3->device_id); 1200 1201 info->state = MTD_ERASE_PENDING; 1202 calc_block_sector(info->addr + info->len, &block0, &block1, &page, 1203 &ofs, docg3->reliable); 1204 ret = -EINVAL; 1205 if (block1 > docg3->max_block || page || ofs) 1206 goto reset_err; 1207 1208 ret = 0; 1209 calc_block_sector(info->addr, &block0, &block1, &page, &ofs, 1210 docg3->reliable); 1211 doc_set_reliable_mode(docg3); 1212 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { 1213 info->state = MTD_ERASING; 1214 ret = doc_erase_block(docg3, block0, block1); 1215 block0 += 2; 1216 block1 += 2; 1217 } 1218 1219 if (ret) 1220 goto reset_err; 1221 1222 info->state = MTD_ERASE_DONE; 1223 return 0; 1224 1225 reset_err: 1226 info->state = MTD_ERASE_FAILED; 1227 return ret; 1228 } 1229 1230 /** 1231 * doc_write_page - Write a single page to the chip 1232 * @docg3: the device 1233 * @to: the offset from first block and first page, in bytes, aligned on page 1234 * size 1235 * @buf: buffer to get bytes from 1236 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be 1237 * written) 1238 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or 1239 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken, 1240 * remaining ones are filled with hardware Hamming and BCH 1241 * computations. Its value is not meaningfull is oob == NULL. 1242 * 1243 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the 1244 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and 1245 * BCH generator if autoecc is not null. 1246 * 1247 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout 1248 */ 1249 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf, 1250 const u_char *oob, int autoecc) 1251 { 1252 int block0, block1, page, ret, ofs = 0; 1253 u8 hwecc[DOC_ECC_BCH_SIZE], hamming; 1254 1255 doc_dbg("doc_write_page(to=%lld)\n", to); 1256 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable); 1257 1258 doc_set_device_id(docg3, docg3->device_id); 1259 ret = doc_reset_seq(docg3); 1260 if (ret) 1261 goto err; 1262 1263 /* Program the flash address block and page */ 1264 ret = doc_write_seek(docg3, block0, block1, page, ofs); 1265 if (ret) 1266 goto err; 1267 1268 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES); 1269 doc_delay(docg3, 2); 1270 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf); 1271 1272 if (oob && autoecc) { 1273 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob); 1274 doc_delay(docg3, 2); 1275 oob += DOC_LAYOUT_OOB_UNUSED_OFS; 1276 1277 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY); 1278 doc_delay(docg3, 2); 1279 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ, 1280 &hamming); 1281 doc_delay(docg3, 2); 1282 1283 doc_get_bch_hw_ecc(docg3, hwecc); 1284 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc); 1285 doc_delay(docg3, 2); 1286 1287 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob); 1288 } 1289 if (oob && !autoecc) 1290 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob); 1291 1292 doc_delay(docg3, 2); 1293 doc_page_finish(docg3); 1294 doc_delay(docg3, 2); 1295 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2); 1296 doc_delay(docg3, 2); 1297 1298 /* 1299 * The wait status will perform another doc_page_finish() call, but that 1300 * seems to please the docg3, so leave it. 1301 */ 1302 ret = doc_write_erase_wait_status(docg3); 1303 return ret; 1304 err: 1305 doc_read_page_finish(docg3); 1306 return ret; 1307 } 1308 1309 /** 1310 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops 1311 * @ops: the oob operations 1312 * 1313 * Returns 0 or 1 if success, -EINVAL if invalid oob mode 1314 */ 1315 static int doc_guess_autoecc(struct mtd_oob_ops *ops) 1316 { 1317 int autoecc; 1318 1319 switch (ops->mode) { 1320 case MTD_OPS_PLACE_OOB: 1321 case MTD_OPS_AUTO_OOB: 1322 autoecc = 1; 1323 break; 1324 case MTD_OPS_RAW: 1325 autoecc = 0; 1326 break; 1327 default: 1328 autoecc = -EINVAL; 1329 } 1330 return autoecc; 1331 } 1332 1333 /** 1334 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes 1335 * @dst: the target 16 bytes OOB buffer 1336 * @oobsrc: the source 8 bytes non-ECC OOB buffer 1337 * 1338 */ 1339 static void doc_fill_autooob(u8 *dst, u8 *oobsrc) 1340 { 1341 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1342 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ]; 1343 } 1344 1345 /** 1346 * doc_backup_oob - Backup OOB into docg3 structure 1347 * @docg3: the device 1348 * @to: the page offset in the chip 1349 * @ops: the OOB size and buffer 1350 * 1351 * As the docg3 should write a page with its OOB in one pass, and some userland 1352 * applications do write_oob() to setup the OOB and then write(), store the OOB 1353 * into a temporary storage. This is very dangerous, as 2 concurrent 1354 * applications could store an OOB, and then write their pages (which will 1355 * result into one having its OOB corrupted). 1356 * 1357 * The only reliable way would be for userland to call doc_write_oob() with both 1358 * the page data _and_ the OOB area. 1359 * 1360 * Returns 0 if success, -EINVAL if ops content invalid 1361 */ 1362 static int doc_backup_oob(struct docg3 *docg3, loff_t to, 1363 struct mtd_oob_ops *ops) 1364 { 1365 int ooblen = ops->ooblen, autoecc; 1366 1367 if (ooblen != DOC_LAYOUT_OOB_SIZE) 1368 return -EINVAL; 1369 autoecc = doc_guess_autoecc(ops); 1370 if (autoecc < 0) 1371 return autoecc; 1372 1373 docg3->oob_write_ofs = to; 1374 docg3->oob_autoecc = autoecc; 1375 if (ops->mode == MTD_OPS_AUTO_OOB) { 1376 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf); 1377 ops->oobretlen = 8; 1378 } else { 1379 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE); 1380 ops->oobretlen = DOC_LAYOUT_OOB_SIZE; 1381 } 1382 return 0; 1383 } 1384 1385 /** 1386 * doc_write_oob - Write out of band bytes to flash 1387 * @mtd: the device 1388 * @ofs: the offset from first block and first page, in bytes, aligned on page 1389 * size 1390 * @ops: the mtd oob structure 1391 * 1392 * Either write OOB data into a temporary buffer, for the subsequent write 1393 * page. The provided OOB should be 16 bytes long. If a data buffer is provided 1394 * as well, issue the page write. 1395 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will 1396 * still be filled in if asked for). 1397 * 1398 * Returns 0 is successfull, EINVAL if length is not 14 bytes 1399 */ 1400 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, 1401 struct mtd_oob_ops *ops) 1402 { 1403 struct docg3 *docg3 = mtd->priv; 1404 int block0, block1, page, ret, pofs = 0, autoecc, oobdelta; 1405 u8 *oobbuf = ops->oobbuf; 1406 u8 *buf = ops->datbuf; 1407 size_t len, ooblen; 1408 u8 oob[DOC_LAYOUT_OOB_SIZE]; 1409 1410 if (buf) 1411 len = ops->len; 1412 else 1413 len = 0; 1414 if (oobbuf) 1415 ooblen = ops->ooblen; 1416 else 1417 ooblen = 0; 1418 1419 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB) 1420 oobbuf += ops->ooboffs; 1421 1422 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n", 1423 ofs, ops->mode, buf, len, oobbuf, ooblen); 1424 switch (ops->mode) { 1425 case MTD_OPS_PLACE_OOB: 1426 case MTD_OPS_RAW: 1427 oobdelta = mtd->oobsize; 1428 break; 1429 case MTD_OPS_AUTO_OOB: 1430 oobdelta = mtd->ecclayout->oobavail; 1431 break; 1432 default: 1433 oobdelta = 0; 1434 } 1435 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) || 1436 (ofs % DOC_LAYOUT_PAGE_SIZE)) 1437 return -EINVAL; 1438 if (len && ooblen && 1439 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta)) 1440 return -EINVAL; 1441 1442 ret = -EINVAL; 1443 calc_block_sector(ofs + len, &block0, &block1, &page, &pofs, 1444 docg3->reliable); 1445 if (block1 > docg3->max_block) 1446 goto err; 1447 1448 ops->oobretlen = 0; 1449 ops->retlen = 0; 1450 ret = 0; 1451 if (len == 0 && ooblen == 0) 1452 return -EINVAL; 1453 if (len == 0 && ooblen > 0) 1454 return doc_backup_oob(docg3, ofs, ops); 1455 1456 autoecc = doc_guess_autoecc(ops); 1457 if (autoecc < 0) 1458 return autoecc; 1459 1460 while (!ret && len > 0) { 1461 memset(oob, 0, sizeof(oob)); 1462 if (ofs == docg3->oob_write_ofs) 1463 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE); 1464 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB) 1465 doc_fill_autooob(oob, oobbuf); 1466 else if (ooblen > 0) 1467 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE); 1468 ret = doc_write_page(docg3, ofs, buf, oob, autoecc); 1469 1470 ofs += DOC_LAYOUT_PAGE_SIZE; 1471 len -= DOC_LAYOUT_PAGE_SIZE; 1472 buf += DOC_LAYOUT_PAGE_SIZE; 1473 if (ooblen) { 1474 oobbuf += oobdelta; 1475 ooblen -= oobdelta; 1476 ops->oobretlen += oobdelta; 1477 } 1478 ops->retlen += DOC_LAYOUT_PAGE_SIZE; 1479 } 1480 err: 1481 doc_set_device_id(docg3, 0); 1482 return ret; 1483 } 1484 1485 /** 1486 * doc_write - Write a buffer to the chip 1487 * @mtd: the device 1488 * @to: the offset from first block and first page, in bytes, aligned on page 1489 * size 1490 * @len: the number of bytes to write (must be a full page size, ie. 512) 1491 * @retlen: the number of bytes actually written (0 or 512) 1492 * @buf: the buffer to get bytes from 1493 * 1494 * Writes data to the chip. 1495 * 1496 * Returns 0 if write successful, -EIO if write error 1497 */ 1498 static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, 1499 size_t *retlen, const u_char *buf) 1500 { 1501 struct docg3 *docg3 = mtd->priv; 1502 int ret; 1503 struct mtd_oob_ops ops; 1504 1505 doc_dbg("doc_write(to=%lld, len=%zu)\n", to, len); 1506 ops.datbuf = (char *)buf; 1507 ops.len = len; 1508 ops.mode = MTD_OPS_PLACE_OOB; 1509 ops.oobbuf = NULL; 1510 ops.ooblen = 0; 1511 ops.ooboffs = 0; 1512 1513 ret = doc_write_oob(mtd, to, &ops); 1514 *retlen = ops.retlen; 1515 return ret; 1516 } 1517 1518 static struct docg3 *sysfs_dev2docg3(struct device *dev, 1519 struct device_attribute *attr) 1520 { 1521 int floor; 1522 struct platform_device *pdev = to_platform_device(dev); 1523 struct mtd_info **docg3_floors = platform_get_drvdata(pdev); 1524 1525 floor = attr->attr.name[1] - '0'; 1526 if (floor < 0 || floor >= DOC_MAX_NBFLOORS) 1527 return NULL; 1528 else 1529 return docg3_floors[floor]->priv; 1530 } 1531 1532 static ssize_t dps0_is_key_locked(struct device *dev, 1533 struct device_attribute *attr, char *buf) 1534 { 1535 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1536 int dps0; 1537 1538 doc_set_device_id(docg3, docg3->device_id); 1539 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1540 doc_set_device_id(docg3, 0); 1541 1542 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK)); 1543 } 1544 1545 static ssize_t dps1_is_key_locked(struct device *dev, 1546 struct device_attribute *attr, char *buf) 1547 { 1548 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1549 int dps1; 1550 1551 doc_set_device_id(docg3, docg3->device_id); 1552 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1553 doc_set_device_id(docg3, 0); 1554 1555 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK)); 1556 } 1557 1558 static ssize_t dps0_insert_key(struct device *dev, 1559 struct device_attribute *attr, 1560 const char *buf, size_t count) 1561 { 1562 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1563 int i; 1564 1565 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1566 return -EINVAL; 1567 1568 doc_set_device_id(docg3, docg3->device_id); 1569 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1570 doc_writeb(docg3, buf[i], DOC_DPS0_KEY); 1571 doc_set_device_id(docg3, 0); 1572 return count; 1573 } 1574 1575 static ssize_t dps1_insert_key(struct device *dev, 1576 struct device_attribute *attr, 1577 const char *buf, size_t count) 1578 { 1579 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr); 1580 int i; 1581 1582 if (count != DOC_LAYOUT_DPS_KEY_LENGTH) 1583 return -EINVAL; 1584 1585 doc_set_device_id(docg3, docg3->device_id); 1586 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++) 1587 doc_writeb(docg3, buf[i], DOC_DPS1_KEY); 1588 doc_set_device_id(docg3, 0); 1589 return count; 1590 } 1591 1592 #define FLOOR_SYSFS(id) { \ 1593 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \ 1594 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \ 1595 __ATTR(f##id##_dps0_protection_key, S_IWUGO, NULL, dps0_insert_key), \ 1596 __ATTR(f##id##_dps1_protection_key, S_IWUGO, NULL, dps1_insert_key), \ 1597 } 1598 1599 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = { 1600 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3) 1601 }; 1602 1603 static int doc_register_sysfs(struct platform_device *pdev, 1604 struct mtd_info **floors) 1605 { 1606 int ret = 0, floor, i = 0; 1607 struct device *dev = &pdev->dev; 1608 1609 for (floor = 0; !ret && floor < DOC_MAX_NBFLOORS && floors[floor]; 1610 floor++) 1611 for (i = 0; !ret && i < 4; i++) 1612 ret = device_create_file(dev, &doc_sys_attrs[floor][i]); 1613 if (!ret) 1614 return 0; 1615 do { 1616 while (--i >= 0) 1617 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1618 i = 4; 1619 } while (--floor >= 0); 1620 return ret; 1621 } 1622 1623 static void doc_unregister_sysfs(struct platform_device *pdev, 1624 struct mtd_info **floors) 1625 { 1626 struct device *dev = &pdev->dev; 1627 int floor, i; 1628 1629 for (floor = 0; floor < DOC_MAX_NBFLOORS && floors[floor]; 1630 floor++) 1631 for (i = 0; i < 4; i++) 1632 device_remove_file(dev, &doc_sys_attrs[floor][i]); 1633 } 1634 1635 /* 1636 * Debug sysfs entries 1637 */ 1638 static int dbg_flashctrl_show(struct seq_file *s, void *p) 1639 { 1640 struct docg3 *docg3 = (struct docg3 *)s->private; 1641 1642 int pos = 0; 1643 u8 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1644 1645 pos += seq_printf(s, 1646 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", 1647 fctrl, 1648 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", 1649 fctrl & DOC_CTRL_CE ? "active" : "inactive", 1650 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", 1651 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", 1652 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); 1653 return pos; 1654 } 1655 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show); 1656 1657 static int dbg_asicmode_show(struct seq_file *s, void *p) 1658 { 1659 struct docg3 *docg3 = (struct docg3 *)s->private; 1660 1661 int pos = 0; 1662 int pctrl = doc_register_readb(docg3, DOC_ASICMODE); 1663 int mode = pctrl & 0x03; 1664 1665 pos += seq_printf(s, 1666 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", 1667 pctrl, 1668 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, 1669 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, 1670 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, 1671 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, 1672 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, 1673 mode >> 1, mode & 0x1); 1674 1675 switch (mode) { 1676 case DOC_ASICMODE_RESET: 1677 pos += seq_printf(s, "reset"); 1678 break; 1679 case DOC_ASICMODE_NORMAL: 1680 pos += seq_printf(s, "normal"); 1681 break; 1682 case DOC_ASICMODE_POWERDOWN: 1683 pos += seq_printf(s, "powerdown"); 1684 break; 1685 } 1686 pos += seq_printf(s, ")\n"); 1687 return pos; 1688 } 1689 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show); 1690 1691 static int dbg_device_id_show(struct seq_file *s, void *p) 1692 { 1693 struct docg3 *docg3 = (struct docg3 *)s->private; 1694 int pos = 0; 1695 int id = doc_register_readb(docg3, DOC_DEVICESELECT); 1696 1697 pos += seq_printf(s, "DeviceId = %d\n", id); 1698 return pos; 1699 } 1700 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show); 1701 1702 static int dbg_protection_show(struct seq_file *s, void *p) 1703 { 1704 struct docg3 *docg3 = (struct docg3 *)s->private; 1705 int pos = 0; 1706 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high; 1707 1708 protect = doc_register_readb(docg3, DOC_PROTECTION); 1709 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 1710 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW); 1711 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH); 1712 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 1713 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW); 1714 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH); 1715 1716 pos += seq_printf(s, "Protection = 0x%02x (", 1717 protect); 1718 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) 1719 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,"); 1720 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) 1721 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,"); 1722 if (protect & DOC_PROTECT_LOCK_INPUT) 1723 pos += seq_printf(s, "LOCK_INPUT,"); 1724 if (protect & DOC_PROTECT_STICKY_LOCK) 1725 pos += seq_printf(s, "STICKY_LOCK,"); 1726 if (protect & DOC_PROTECT_PROTECTION_ENABLED) 1727 pos += seq_printf(s, "PROTECTION ON,"); 1728 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) 1729 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,"); 1730 if (protect & DOC_PROTECT_PROTECTION_ERROR) 1731 pos += seq_printf(s, "PROTECT_ERR,"); 1732 else 1733 pos += seq_printf(s, "NO_PROTECT_ERR"); 1734 pos += seq_printf(s, ")\n"); 1735 1736 pos += seq_printf(s, "DPS0 = 0x%02x : " 1737 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " 1738 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1739 dps0, dps0_low, dps0_high, 1740 !!(dps0 & DOC_DPS_OTP_PROTECTED), 1741 !!(dps0 & DOC_DPS_READ_PROTECTED), 1742 !!(dps0 & DOC_DPS_WRITE_PROTECTED), 1743 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), 1744 !!(dps0 & DOC_DPS_KEY_OK)); 1745 pos += seq_printf(s, "DPS1 = 0x%02x : " 1746 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " 1747 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 1748 dps1, dps1_low, dps1_high, 1749 !!(dps1 & DOC_DPS_OTP_PROTECTED), 1750 !!(dps1 & DOC_DPS_READ_PROTECTED), 1751 !!(dps1 & DOC_DPS_WRITE_PROTECTED), 1752 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), 1753 !!(dps1 & DOC_DPS_KEY_OK)); 1754 return pos; 1755 } 1756 DEBUGFS_RO_ATTR(protection, dbg_protection_show); 1757 1758 static int __init doc_dbg_register(struct docg3 *docg3) 1759 { 1760 struct dentry *root, *entry; 1761 1762 root = debugfs_create_dir("docg3", NULL); 1763 if (!root) 1764 return -ENOMEM; 1765 1766 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3, 1767 &flashcontrol_fops); 1768 if (entry) 1769 entry = debugfs_create_file("asic_mode", S_IRUSR, root, 1770 docg3, &asic_mode_fops); 1771 if (entry) 1772 entry = debugfs_create_file("device_id", S_IRUSR, root, 1773 docg3, &device_id_fops); 1774 if (entry) 1775 entry = debugfs_create_file("protection", S_IRUSR, root, 1776 docg3, &protection_fops); 1777 if (entry) { 1778 docg3->debugfs_root = root; 1779 return 0; 1780 } else { 1781 debugfs_remove_recursive(root); 1782 return -ENOMEM; 1783 } 1784 } 1785 1786 static void __exit doc_dbg_unregister(struct docg3 *docg3) 1787 { 1788 debugfs_remove_recursive(docg3->debugfs_root); 1789 } 1790 1791 /** 1792 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure 1793 * @chip_id: The chip ID of the supported chip 1794 * @mtd: The structure to fill 1795 */ 1796 static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) 1797 { 1798 struct docg3 *docg3 = mtd->priv; 1799 int cfg; 1800 1801 cfg = doc_register_readb(docg3, DOC_CONFIGURATION); 1802 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); 1803 docg3->reliable = reliable_mode; 1804 1805 switch (chip_id) { 1806 case DOC_CHIPID_G3: 1807 mtd->name = kasprintf(GFP_KERNEL, "DiskOnChip G3 floor %d", 1808 docg3->device_id); 1809 docg3->max_block = 2047; 1810 break; 1811 } 1812 mtd->type = MTD_NANDFLASH; 1813 mtd->flags = MTD_CAP_NANDFLASH; 1814 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; 1815 if (docg3->reliable == 2) 1816 mtd->size /= 2; 1817 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; 1818 if (docg3->reliable == 2) 1819 mtd->erasesize /= 2; 1820 mtd->writesize = DOC_LAYOUT_PAGE_SIZE; 1821 mtd->oobsize = DOC_LAYOUT_OOB_SIZE; 1822 mtd->owner = THIS_MODULE; 1823 mtd->erase = doc_erase; 1824 mtd->read = doc_read; 1825 mtd->write = doc_write; 1826 mtd->read_oob = doc_read_oob; 1827 mtd->write_oob = doc_write_oob; 1828 mtd->block_isbad = doc_block_isbad; 1829 mtd->ecclayout = &docg3_oobinfo; 1830 } 1831 1832 /** 1833 * doc_probe_device - Check if a device is available 1834 * @base: the io space where the device is probed 1835 * @floor: the floor of the probed device 1836 * @dev: the device 1837 * 1838 * Checks whether a device at the specified IO range, and floor is available. 1839 * 1840 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM 1841 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is 1842 * launched. 1843 */ 1844 static struct mtd_info *doc_probe_device(void __iomem *base, int floor, 1845 struct device *dev) 1846 { 1847 int ret, bbt_nbpages; 1848 u16 chip_id, chip_id_inv; 1849 struct docg3 *docg3; 1850 struct mtd_info *mtd; 1851 1852 ret = -ENOMEM; 1853 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); 1854 if (!docg3) 1855 goto nomem1; 1856 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); 1857 if (!mtd) 1858 goto nomem2; 1859 mtd->priv = docg3; 1860 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, 1861 8 * DOC_LAYOUT_PAGE_SIZE); 1862 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL); 1863 if (!docg3->bbt) 1864 goto nomem3; 1865 1866 docg3->dev = dev; 1867 docg3->device_id = floor; 1868 docg3->base = base; 1869 doc_set_device_id(docg3, docg3->device_id); 1870 if (!floor) 1871 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); 1872 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); 1873 1874 chip_id = doc_register_readw(docg3, DOC_CHIPID); 1875 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); 1876 1877 ret = 0; 1878 if (chip_id != (u16)(~chip_id_inv)) { 1879 goto nomem3; 1880 } 1881 1882 switch (chip_id) { 1883 case DOC_CHIPID_G3: 1884 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n", 1885 base, floor); 1886 break; 1887 default: 1888 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); 1889 goto nomem3; 1890 } 1891 1892 doc_set_driver_info(chip_id, mtd); 1893 1894 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ); 1895 doc_reload_bbt(docg3); 1896 return mtd; 1897 1898 nomem3: 1899 kfree(mtd); 1900 nomem2: 1901 kfree(docg3); 1902 nomem1: 1903 return ERR_PTR(ret); 1904 } 1905 1906 /** 1907 * doc_release_device - Release a docg3 floor 1908 * @mtd: the device 1909 */ 1910 static void doc_release_device(struct mtd_info *mtd) 1911 { 1912 struct docg3 *docg3 = mtd->priv; 1913 1914 mtd_device_unregister(mtd); 1915 kfree(docg3->bbt); 1916 kfree(docg3); 1917 kfree(mtd->name); 1918 kfree(mtd); 1919 } 1920 1921 /** 1922 * docg3_resume - Awakens docg3 floor 1923 * @pdev: platfrom device 1924 * 1925 * Returns 0 (always successfull) 1926 */ 1927 static int docg3_resume(struct platform_device *pdev) 1928 { 1929 int i; 1930 struct mtd_info **docg3_floors, *mtd; 1931 struct docg3 *docg3; 1932 1933 docg3_floors = platform_get_drvdata(pdev); 1934 mtd = docg3_floors[0]; 1935 docg3 = mtd->priv; 1936 1937 doc_dbg("docg3_resume()\n"); 1938 for (i = 0; i < 12; i++) 1939 doc_readb(docg3, DOC_IOSPACE_IPL); 1940 return 0; 1941 } 1942 1943 /** 1944 * docg3_suspend - Put in low power mode the docg3 floor 1945 * @pdev: platform device 1946 * @state: power state 1947 * 1948 * Shuts off most of docg3 circuitery to lower power consumption. 1949 * 1950 * Returns 0 if suspend succeeded, -EIO if chip refused suspend 1951 */ 1952 static int docg3_suspend(struct platform_device *pdev, pm_message_t state) 1953 { 1954 int floor, i; 1955 struct mtd_info **docg3_floors, *mtd; 1956 struct docg3 *docg3; 1957 u8 ctrl, pwr_down; 1958 1959 docg3_floors = platform_get_drvdata(pdev); 1960 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 1961 mtd = docg3_floors[floor]; 1962 if (!mtd) 1963 continue; 1964 docg3 = mtd->priv; 1965 1966 doc_writeb(docg3, floor, DOC_DEVICESELECT); 1967 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 1968 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE; 1969 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 1970 1971 for (i = 0; i < 10; i++) { 1972 usleep_range(3000, 4000); 1973 pwr_down = doc_register_readb(docg3, DOC_POWERMODE); 1974 if (pwr_down & DOC_POWERDOWN_READY) 1975 break; 1976 } 1977 if (pwr_down & DOC_POWERDOWN_READY) { 1978 doc_dbg("docg3_suspend(): floor %d powerdown ok\n", 1979 floor); 1980 } else { 1981 doc_err("docg3_suspend(): floor %d powerdown failed\n", 1982 floor); 1983 return -EIO; 1984 } 1985 } 1986 1987 mtd = docg3_floors[0]; 1988 docg3 = mtd->priv; 1989 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN); 1990 return 0; 1991 } 1992 1993 /** 1994 * doc_probe - Probe the IO space for a DiskOnChip G3 chip 1995 * @pdev: platform device 1996 * 1997 * Probes for a G3 chip at the specified IO space in the platform data 1998 * ressources. The floor 0 must be available. 1999 * 2000 * Returns 0 on success, -ENOMEM, -ENXIO on error 2001 */ 2002 static int __init docg3_probe(struct platform_device *pdev) 2003 { 2004 struct device *dev = &pdev->dev; 2005 struct mtd_info *mtd; 2006 struct resource *ress; 2007 void __iomem *base; 2008 int ret, floor, found = 0; 2009 struct mtd_info **docg3_floors; 2010 2011 ret = -ENXIO; 2012 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2013 if (!ress) { 2014 dev_err(dev, "No I/O memory resource defined\n"); 2015 goto noress; 2016 } 2017 base = ioremap(ress->start, DOC_IOSPACE_SIZE); 2018 2019 ret = -ENOMEM; 2020 docg3_floors = kzalloc(sizeof(*docg3_floors) * DOC_MAX_NBFLOORS, 2021 GFP_KERNEL); 2022 if (!docg3_floors) 2023 goto nomem1; 2024 docg3_bch = init_bch(DOC_ECC_BCH_M, DOC_ECC_BCH_T, 2025 DOC_ECC_BCH_PRIMPOLY); 2026 if (!docg3_bch) 2027 goto nomem2; 2028 2029 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) { 2030 mtd = doc_probe_device(base, floor, dev); 2031 if (IS_ERR(mtd)) { 2032 ret = PTR_ERR(mtd); 2033 goto err_probe; 2034 } 2035 if (!mtd) { 2036 if (floor == 0) 2037 goto notfound; 2038 else 2039 continue; 2040 } 2041 docg3_floors[floor] = mtd; 2042 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 2043 0); 2044 if (ret) 2045 goto err_probe; 2046 found++; 2047 } 2048 2049 ret = doc_register_sysfs(pdev, docg3_floors); 2050 if (ret) 2051 goto err_probe; 2052 if (!found) 2053 goto notfound; 2054 2055 platform_set_drvdata(pdev, docg3_floors); 2056 doc_dbg_register(docg3_floors[0]->priv); 2057 return 0; 2058 2059 notfound: 2060 ret = -ENODEV; 2061 dev_info(dev, "No supported DiskOnChip found\n"); 2062 err_probe: 2063 free_bch(docg3_bch); 2064 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2065 if (docg3_floors[floor]) 2066 doc_release_device(docg3_floors[floor]); 2067 nomem2: 2068 kfree(docg3_floors); 2069 nomem1: 2070 iounmap(base); 2071 noress: 2072 return ret; 2073 } 2074 2075 /** 2076 * docg3_release - Release the driver 2077 * @pdev: the platform device 2078 * 2079 * Returns 0 2080 */ 2081 static int __exit docg3_release(struct platform_device *pdev) 2082 { 2083 struct mtd_info **docg3_floors = platform_get_drvdata(pdev); 2084 struct docg3 *docg3 = docg3_floors[0]->priv; 2085 void __iomem *base = docg3->base; 2086 int floor; 2087 2088 doc_unregister_sysfs(pdev, docg3_floors); 2089 doc_dbg_unregister(docg3); 2090 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) 2091 if (docg3_floors[floor]) 2092 doc_release_device(docg3_floors[floor]); 2093 2094 kfree(docg3_floors); 2095 free_bch(docg3_bch); 2096 iounmap(base); 2097 return 0; 2098 } 2099 2100 static struct platform_driver g3_driver = { 2101 .driver = { 2102 .name = "docg3", 2103 .owner = THIS_MODULE, 2104 }, 2105 .suspend = docg3_suspend, 2106 .resume = docg3_resume, 2107 .remove = __exit_p(docg3_release), 2108 }; 2109 2110 static int __init docg3_init(void) 2111 { 2112 return platform_driver_probe(&g3_driver, docg3_probe); 2113 } 2114 module_init(docg3_init); 2115 2116 2117 static void __exit docg3_exit(void) 2118 { 2119 platform_driver_unregister(&g3_driver); 2120 } 2121 module_exit(docg3_exit); 2122 2123 MODULE_LICENSE("GPL"); 2124 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); 2125 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); 2126