1 /* 2 * Handles the M-Systems DiskOnChip G3 chip 3 * 4 * Copyright (C) 2011 Robert Jarzmik 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/platform_device.h> 26 #include <linux/string.h> 27 #include <linux/slab.h> 28 #include <linux/io.h> 29 #include <linux/delay.h> 30 #include <linux/mtd/mtd.h> 31 #include <linux/mtd/partitions.h> 32 33 #include <linux/debugfs.h> 34 #include <linux/seq_file.h> 35 36 #define CREATE_TRACE_POINTS 37 #include "docg3.h" 38 39 /* 40 * This driver handles the DiskOnChip G3 flash memory. 41 * 42 * As no specification is available from M-Systems/Sandisk, this drivers lacks 43 * several functions available on the chip, as : 44 * - block erase 45 * - page write 46 * - IPL write 47 * - ECC fixing (lack of BCH algorith understanding) 48 * - powerdown / powerup 49 * 50 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and 51 * the driver assumes a 16bits data bus. 52 * 53 * DocG3 relies on 2 ECC algorithms, which are handled in hardware : 54 * - a 1 byte Hamming code stored in the OOB for each page 55 * - a 7 bytes BCH code stored in the OOB for each page 56 * The BCH part is only used for check purpose, no correction is available as 57 * some information is missing. What is known is that : 58 * - BCH is in GF(2^14) 59 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes 60 * + 1 hamming byte) 61 * - BCH can correct up to 4 bits (t = 4) 62 * - BCH syndroms are calculated in hardware, and checked in hardware as well 63 * 64 */ 65 66 static inline u8 doc_readb(struct docg3 *docg3, u16 reg) 67 { 68 u8 val = readb(docg3->base + reg); 69 70 trace_docg3_io(0, 8, reg, (int)val); 71 return val; 72 } 73 74 static inline u16 doc_readw(struct docg3 *docg3, u16 reg) 75 { 76 u16 val = readw(docg3->base + reg); 77 78 trace_docg3_io(0, 16, reg, (int)val); 79 return val; 80 } 81 82 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg) 83 { 84 writeb(val, docg3->base + reg); 85 trace_docg3_io(1, 16, reg, val); 86 } 87 88 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg) 89 { 90 writew(val, docg3->base + reg); 91 trace_docg3_io(1, 16, reg, val); 92 } 93 94 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd) 95 { 96 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND); 97 } 98 99 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq) 100 { 101 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE); 102 } 103 104 static inline void doc_flash_address(struct docg3 *docg3, u8 addr) 105 { 106 doc_writeb(docg3, addr, DOC_FLASHADDRESS); 107 } 108 109 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; 110 111 static int doc_register_readb(struct docg3 *docg3, int reg) 112 { 113 u8 val; 114 115 doc_writew(docg3, reg, DOC_READADDRESS); 116 val = doc_readb(docg3, reg); 117 doc_vdbg("Read register %04x : %02x\n", reg, val); 118 return val; 119 } 120 121 static int doc_register_readw(struct docg3 *docg3, int reg) 122 { 123 u16 val; 124 125 doc_writew(docg3, reg, DOC_READADDRESS); 126 val = doc_readw(docg3, reg); 127 doc_vdbg("Read register %04x : %04x\n", reg, val); 128 return val; 129 } 130 131 /** 132 * doc_delay - delay docg3 operations 133 * @docg3: the device 134 * @nbNOPs: the number of NOPs to issue 135 * 136 * As no specification is available, the right timings between chip commands are 137 * unknown. The only available piece of information are the observed nops on a 138 * working docg3 chip. 139 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler 140 * friendlier msleep() functions or blocking mdelay(). 141 */ 142 static void doc_delay(struct docg3 *docg3, int nbNOPs) 143 { 144 int i; 145 146 doc_dbg("NOP x %d\n", nbNOPs); 147 for (i = 0; i < nbNOPs; i++) 148 doc_writeb(docg3, 0, DOC_NOP); 149 } 150 151 static int is_prot_seq_error(struct docg3 *docg3) 152 { 153 int ctrl; 154 155 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 156 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR); 157 } 158 159 static int doc_is_ready(struct docg3 *docg3) 160 { 161 int ctrl; 162 163 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 164 return ctrl & DOC_CTRL_FLASHREADY; 165 } 166 167 static int doc_wait_ready(struct docg3 *docg3) 168 { 169 int maxWaitCycles = 100; 170 171 do { 172 doc_delay(docg3, 4); 173 cpu_relax(); 174 } while (!doc_is_ready(docg3) && maxWaitCycles--); 175 doc_delay(docg3, 2); 176 if (maxWaitCycles > 0) 177 return 0; 178 else 179 return -EIO; 180 } 181 182 static int doc_reset_seq(struct docg3 *docg3) 183 { 184 int ret; 185 186 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL); 187 doc_flash_sequence(docg3, DOC_SEQ_RESET); 188 doc_flash_command(docg3, DOC_CMD_RESET); 189 doc_delay(docg3, 2); 190 ret = doc_wait_ready(docg3); 191 192 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true"); 193 return ret; 194 } 195 196 /** 197 * doc_read_data_area - Read data from data area 198 * @docg3: the device 199 * @buf: the buffer to fill in 200 * @len: the lenght to read 201 * @first: first time read, DOC_READADDRESS should be set 202 * 203 * Reads bytes from flash data. Handles the single byte / even bytes reads. 204 */ 205 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len, 206 int first) 207 { 208 int i, cdr, len4; 209 u16 data16, *dst16; 210 u8 data8, *dst8; 211 212 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len); 213 cdr = len & 0x3; 214 len4 = len - cdr; 215 216 if (first) 217 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS); 218 dst16 = buf; 219 for (i = 0; i < len4; i += 2) { 220 data16 = doc_readw(docg3, DOC_IOSPACE_DATA); 221 *dst16 = data16; 222 dst16++; 223 } 224 225 if (cdr) { 226 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE, 227 DOC_READADDRESS); 228 doc_delay(docg3, 1); 229 dst8 = (u8 *)dst16; 230 for (i = 0; i < cdr; i++) { 231 data8 = doc_readb(docg3, DOC_IOSPACE_DATA); 232 *dst8 = data8; 233 dst8++; 234 } 235 } 236 } 237 238 /** 239 * doc_set_data_mode - Sets the flash to reliable data mode 240 * @docg3: the device 241 * 242 * The reliable data mode is a bit slower than the fast mode, but less errors 243 * occur. Entering the reliable mode cannot be done without entering the fast 244 * mode first. 245 */ 246 static void doc_set_reliable_mode(struct docg3 *docg3) 247 { 248 doc_dbg("doc_set_reliable_mode()\n"); 249 doc_flash_sequence(docg3, DOC_SEQ_SET_MODE); 250 doc_flash_command(docg3, DOC_CMD_FAST_MODE); 251 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE); 252 doc_delay(docg3, 2); 253 } 254 255 /** 256 * doc_set_asic_mode - Set the ASIC mode 257 * @docg3: the device 258 * @mode: the mode 259 * 260 * The ASIC can work in 3 modes : 261 * - RESET: all registers are zeroed 262 * - NORMAL: receives and handles commands 263 * - POWERDOWN: minimal poweruse, flash parts shut off 264 */ 265 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode) 266 { 267 int i; 268 269 for (i = 0; i < 12; i++) 270 doc_readb(docg3, DOC_IOSPACE_IPL); 271 272 mode |= DOC_ASICMODE_MDWREN; 273 doc_dbg("doc_set_asic_mode(%02x)\n", mode); 274 doc_writeb(docg3, mode, DOC_ASICMODE); 275 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM); 276 doc_delay(docg3, 1); 277 } 278 279 /** 280 * doc_set_device_id - Sets the devices id for cascaded G3 chips 281 * @docg3: the device 282 * @id: the chip to select (amongst 0, 1, 2, 3) 283 * 284 * There can be 4 cascaded G3 chips. This function selects the one which will 285 * should be the active one. 286 */ 287 static void doc_set_device_id(struct docg3 *docg3, int id) 288 { 289 u8 ctrl; 290 291 doc_dbg("doc_set_device_id(%d)\n", id); 292 doc_writeb(docg3, id, DOC_DEVICESELECT); 293 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 294 295 ctrl &= ~DOC_CTRL_VIOLATION; 296 ctrl |= DOC_CTRL_CE; 297 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL); 298 } 299 300 /** 301 * doc_set_extra_page_mode - Change flash page layout 302 * @docg3: the device 303 * 304 * Normally, the flash page is split into the data (512 bytes) and the out of 305 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear 306 * leveling counters are stored. To access this last area of 4 bytes, a special 307 * mode must be input to the flash ASIC. 308 * 309 * Returns 0 if no error occured, -EIO else. 310 */ 311 static int doc_set_extra_page_mode(struct docg3 *docg3) 312 { 313 int fctrl; 314 315 doc_dbg("doc_set_extra_page_mode()\n"); 316 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532); 317 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532); 318 doc_delay(docg3, 2); 319 320 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 321 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR)) 322 return -EIO; 323 else 324 return 0; 325 } 326 327 /** 328 * doc_seek - Set both flash planes to the specified block, page for reading 329 * @docg3: the device 330 * @block0: the first plane block index 331 * @block1: the second plane block index 332 * @page: the page index within the block 333 * @wear: if true, read will occur on the 4 extra bytes of the wear area 334 * @ofs: offset in page to read 335 * 336 * Programs the flash even and odd planes to the specific block and page. 337 * Alternatively, programs the flash to the wear area of the specified page. 338 */ 339 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page, 340 int wear, int ofs) 341 { 342 int sector, ret = 0; 343 344 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n", 345 block0, block1, page, ofs, wear); 346 347 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) { 348 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1); 349 doc_flash_command(docg3, DOC_CMD_READ_PLANE1); 350 doc_delay(docg3, 2); 351 } else { 352 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2); 353 doc_flash_command(docg3, DOC_CMD_READ_PLANE2); 354 doc_delay(docg3, 2); 355 } 356 357 doc_set_reliable_mode(docg3); 358 if (wear) 359 ret = doc_set_extra_page_mode(docg3); 360 if (ret) 361 goto out; 362 363 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 364 doc_flash_sequence(docg3, DOC_SEQ_READ); 365 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 366 doc_delay(docg3, 1); 367 doc_flash_address(docg3, sector & 0xff); 368 doc_flash_address(docg3, (sector >> 8) & 0xff); 369 doc_flash_address(docg3, (sector >> 16) & 0xff); 370 doc_delay(docg3, 1); 371 372 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK); 373 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR); 374 doc_delay(docg3, 1); 375 doc_flash_address(docg3, sector & 0xff); 376 doc_flash_address(docg3, (sector >> 8) & 0xff); 377 doc_flash_address(docg3, (sector >> 16) & 0xff); 378 doc_delay(docg3, 2); 379 380 out: 381 return ret; 382 } 383 384 /** 385 * doc_read_page_ecc_init - Initialize hardware ECC engine 386 * @docg3: the device 387 * @len: the number of bytes covered by the ECC (BCH covered) 388 * 389 * The function does initialize the hardware ECC engine to compute the Hamming 390 * ECC (on 1 byte) and the BCH Syndroms (on 7 bytes). 391 * 392 * Return 0 if succeeded, -EIO on error 393 */ 394 static int doc_read_page_ecc_init(struct docg3 *docg3, int len) 395 { 396 doc_writew(docg3, DOC_ECCCONF0_READ_MODE 397 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE 398 | (len & DOC_ECCCONF0_DATA_BYTES_MASK), 399 DOC_ECCCONF0); 400 doc_delay(docg3, 4); 401 doc_register_readb(docg3, DOC_FLASHCONTROL); 402 return doc_wait_ready(docg3); 403 } 404 405 /** 406 * doc_read_page_prepare - Prepares reading data from a flash page 407 * @docg3: the device 408 * @block0: the first plane block index on flash memory 409 * @block1: the second plane block index on flash memory 410 * @page: the page index in the block 411 * @offset: the offset in the page (must be a multiple of 4) 412 * 413 * Prepares the page to be read in the flash memory : 414 * - tell ASIC to map the flash pages 415 * - tell ASIC to be in read mode 416 * 417 * After a call to this method, a call to doc_read_page_finish is mandatory, 418 * to end the read cycle of the flash. 419 * 420 * Read data from a flash page. The length to be read must be between 0 and 421 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because 422 * the extra bytes reading is not implemented). 423 * 424 * As pages are grouped by 2 (in 2 planes), reading from a page must be done 425 * in two steps: 426 * - one read of 512 bytes at offset 0 427 * - one read of 512 bytes at offset 512 + 16 428 * 429 * Returns 0 if successful, -EIO if a read error occured. 430 */ 431 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1, 432 int page, int offset) 433 { 434 int wear_area = 0, ret = 0; 435 436 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n", 437 block0, block1, page, offset); 438 if (offset >= DOC_LAYOUT_WEAR_OFFSET) 439 wear_area = 1; 440 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2)) 441 return -EINVAL; 442 443 doc_set_device_id(docg3, docg3->device_id); 444 ret = doc_reset_seq(docg3); 445 if (ret) 446 goto err; 447 448 /* Program the flash address block and page */ 449 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset); 450 if (ret) 451 goto err; 452 453 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES); 454 doc_delay(docg3, 2); 455 doc_wait_ready(docg3); 456 457 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ); 458 doc_delay(docg3, 1); 459 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2) 460 offset -= 2 * DOC_LAYOUT_PAGE_SIZE; 461 doc_flash_address(docg3, offset >> 2); 462 doc_delay(docg3, 1); 463 doc_wait_ready(docg3); 464 465 doc_flash_command(docg3, DOC_CMD_READ_FLASH); 466 467 return 0; 468 err: 469 doc_writeb(docg3, 0, DOC_DATAEND); 470 doc_delay(docg3, 2); 471 return -EIO; 472 } 473 474 /** 475 * doc_read_page_getbytes - Reads bytes from a prepared page 476 * @docg3: the device 477 * @len: the number of bytes to be read (must be a multiple of 4) 478 * @buf: the buffer to be filled in 479 * @first: 1 if first time read, DOC_READADDRESS should be set 480 * 481 */ 482 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf, 483 int first) 484 { 485 doc_read_data_area(docg3, buf, len, first); 486 doc_delay(docg3, 2); 487 return len; 488 } 489 490 /** 491 * doc_get_hw_bch_syndroms - Get hardware calculated BCH syndroms 492 * @docg3: the device 493 * @syns: the array of 7 integers where the syndroms will be stored 494 */ 495 static void doc_get_hw_bch_syndroms(struct docg3 *docg3, int *syns) 496 { 497 int i; 498 499 for (i = 0; i < DOC_ECC_BCH_SIZE; i++) 500 syns[i] = doc_register_readb(docg3, DOC_BCH_SYNDROM(i)); 501 } 502 503 /** 504 * doc_read_page_finish - Ends reading of a flash page 505 * @docg3: the device 506 * 507 * As a side effect, resets the chip selector to 0. This ensures that after each 508 * read operation, the floor 0 is selected. Therefore, if the systems halts, the 509 * reboot will boot on floor 0, where the IPL is. 510 */ 511 static void doc_read_page_finish(struct docg3 *docg3) 512 { 513 doc_writeb(docg3, 0, DOC_DATAEND); 514 doc_delay(docg3, 2); 515 doc_set_device_id(docg3, 0); 516 } 517 518 /** 519 * calc_block_sector - Calculate blocks, pages and ofs. 520 521 * @from: offset in flash 522 * @block0: first plane block index calculated 523 * @block1: second plane block index calculated 524 * @page: page calculated 525 * @ofs: offset in page 526 */ 527 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page, 528 int *ofs) 529 { 530 uint sector; 531 532 sector = from / DOC_LAYOUT_PAGE_SIZE; 533 *block0 = sector / (DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES) 534 * DOC_LAYOUT_NBPLANES; 535 *block1 = *block0 + 1; 536 *page = sector % (DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES); 537 *page /= DOC_LAYOUT_NBPLANES; 538 if (sector % 2) 539 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE; 540 else 541 *ofs = 0; 542 } 543 544 /** 545 * doc_read - Read bytes from flash 546 * @mtd: the device 547 * @from: the offset from first block and first page, in bytes, aligned on page 548 * size 549 * @len: the number of bytes to read (must be a multiple of 4) 550 * @retlen: the number of bytes actually read 551 * @buf: the filled in buffer 552 * 553 * Reads flash memory pages. This function does not read the OOB chunk, but only 554 * the page data. 555 * 556 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured 557 */ 558 static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, 559 size_t *retlen, u_char *buf) 560 { 561 struct docg3 *docg3 = mtd->priv; 562 int block0, block1, page, readlen, ret, ofs = 0; 563 int syn[DOC_ECC_BCH_SIZE], eccconf1; 564 u8 oob[DOC_LAYOUT_OOB_SIZE]; 565 566 ret = -EINVAL; 567 doc_dbg("doc_read(from=%lld, len=%zu, buf=%p)\n", from, len, buf); 568 if (from % DOC_LAYOUT_PAGE_SIZE) 569 goto err; 570 if (len % 4) 571 goto err; 572 calc_block_sector(from, &block0, &block1, &page, &ofs); 573 if (block1 > docg3->max_block) 574 goto err; 575 576 *retlen = 0; 577 ret = 0; 578 readlen = min_t(size_t, len, (size_t)DOC_LAYOUT_PAGE_SIZE); 579 while (!ret && len > 0) { 580 readlen = min_t(size_t, len, (size_t)DOC_LAYOUT_PAGE_SIZE); 581 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs); 582 if (ret < 0) 583 goto err; 584 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_COVERED_BYTES); 585 if (ret < 0) 586 goto err_in_read; 587 ret = doc_read_page_getbytes(docg3, readlen, buf, 1); 588 if (ret < readlen) 589 goto err_in_read; 590 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE, 591 oob, 0); 592 if (ret < DOC_LAYOUT_OOB_SIZE) 593 goto err_in_read; 594 595 *retlen += readlen; 596 buf += readlen; 597 len -= readlen; 598 599 ofs ^= DOC_LAYOUT_PAGE_OOB_SIZE; 600 if (ofs == 0) 601 page += 2; 602 if (page > DOC_ADDR_PAGE_MASK) { 603 page = 0; 604 block0 += 2; 605 block1 += 2; 606 } 607 608 /* 609 * There should be a BCH bitstream fixing algorithm here ... 610 * By now, a page read failure is triggered by BCH error 611 */ 612 doc_get_hw_bch_syndroms(docg3, syn); 613 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1); 614 615 doc_dbg("OOB - INFO: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", 616 oob[0], oob[1], oob[2], oob[3], oob[4], 617 oob[5], oob[6]); 618 doc_dbg("OOB - HAMMING: %02x\n", oob[7]); 619 doc_dbg("OOB - BCH_ECC: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", 620 oob[8], oob[9], oob[10], oob[11], oob[12], 621 oob[13], oob[14]); 622 doc_dbg("OOB - UNUSED: %02x\n", oob[15]); 623 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1); 624 doc_dbg("ECC BCH syndrom: %02x:%02x:%02x:%02x:%02x:%02x:%02x\n", 625 syn[0], syn[1], syn[2], syn[3], syn[4], syn[5], syn[6]); 626 627 ret = -EBADMSG; 628 if (block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) { 629 if (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) 630 goto err_in_read; 631 if (is_prot_seq_error(docg3)) 632 goto err_in_read; 633 } 634 doc_read_page_finish(docg3); 635 } 636 637 return 0; 638 err_in_read: 639 doc_read_page_finish(docg3); 640 err: 641 return ret; 642 } 643 644 /** 645 * doc_read_oob - Read out of band bytes from flash 646 * @mtd: the device 647 * @from: the offset from first block and first page, in bytes, aligned on page 648 * size 649 * @ops: the mtd oob structure 650 * 651 * Reads flash memory OOB area of pages. 652 * 653 * Returns 0 if read successfull, of -EIO, -EINVAL if an error occured 654 */ 655 static int doc_read_oob(struct mtd_info *mtd, loff_t from, 656 struct mtd_oob_ops *ops) 657 { 658 struct docg3 *docg3 = mtd->priv; 659 int block0, block1, page, ofs, ret; 660 u8 *buf = ops->oobbuf; 661 size_t len = ops->ooblen; 662 663 doc_dbg("doc_read_oob(from=%lld, buf=%p, len=%zu)\n", from, buf, len); 664 if (len != DOC_LAYOUT_OOB_SIZE) 665 return -EINVAL; 666 667 switch (ops->mode) { 668 case MTD_OPS_PLACE_OOB: 669 buf += ops->ooboffs; 670 break; 671 default: 672 break; 673 } 674 675 calc_block_sector(from, &block0, &block1, &page, &ofs); 676 if (block1 > docg3->max_block) 677 return -EINVAL; 678 679 ret = doc_read_page_prepare(docg3, block0, block1, page, 680 ofs + DOC_LAYOUT_PAGE_SIZE); 681 if (!ret) 682 ret = doc_read_page_ecc_init(docg3, DOC_LAYOUT_OOB_SIZE); 683 if (!ret) 684 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE, 685 buf, 1); 686 doc_read_page_finish(docg3); 687 688 if (ret > 0) 689 ops->oobretlen = ret; 690 else 691 ops->oobretlen = 0; 692 return (ret > 0) ? 0 : ret; 693 } 694 695 static int doc_reload_bbt(struct docg3 *docg3) 696 { 697 int block = DOC_LAYOUT_BLOCK_BBT; 698 int ret = 0, nbpages, page; 699 u_char *buf = docg3->bbt; 700 701 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE); 702 for (page = 0; !ret && (page < nbpages); page++) { 703 ret = doc_read_page_prepare(docg3, block, block + 1, 704 page + DOC_LAYOUT_PAGE_BBT, 0); 705 if (!ret) 706 ret = doc_read_page_ecc_init(docg3, 707 DOC_LAYOUT_PAGE_SIZE); 708 if (!ret) 709 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE, 710 buf, 1); 711 buf += DOC_LAYOUT_PAGE_SIZE; 712 } 713 doc_read_page_finish(docg3); 714 return ret; 715 } 716 717 /** 718 * doc_block_isbad - Checks whether a block is good or not 719 * @mtd: the device 720 * @from: the offset to find the correct block 721 * 722 * Returns 1 if block is bad, 0 if block is good 723 */ 724 static int doc_block_isbad(struct mtd_info *mtd, loff_t from) 725 { 726 struct docg3 *docg3 = mtd->priv; 727 int block0, block1, page, ofs, is_good; 728 729 calc_block_sector(from, &block0, &block1, &page, &ofs); 730 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n", 731 from, block0, block1, page, ofs); 732 733 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA) 734 return 0; 735 if (block1 > docg3->max_block) 736 return -EINVAL; 737 738 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7)); 739 return !is_good; 740 } 741 742 /** 743 * doc_get_erase_count - Get block erase count 744 * @docg3: the device 745 * @from: the offset in which the block is. 746 * 747 * Get the number of times a block was erased. The number is the maximum of 748 * erase times between first and second plane (which should be equal normally). 749 * 750 * Returns The number of erases, or -EINVAL or -EIO on error. 751 */ 752 static int doc_get_erase_count(struct docg3 *docg3, loff_t from) 753 { 754 u8 buf[DOC_LAYOUT_WEAR_SIZE]; 755 int ret, plane1_erase_count, plane2_erase_count; 756 int block0, block1, page, ofs; 757 758 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf); 759 if (from % DOC_LAYOUT_PAGE_SIZE) 760 return -EINVAL; 761 calc_block_sector(from, &block0, &block1, &page, &ofs); 762 if (block1 > docg3->max_block) 763 return -EINVAL; 764 765 ret = doc_reset_seq(docg3); 766 if (!ret) 767 ret = doc_read_page_prepare(docg3, block0, block1, page, 768 ofs + DOC_LAYOUT_WEAR_OFFSET); 769 if (!ret) 770 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE, 771 buf, 1); 772 doc_read_page_finish(docg3); 773 774 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK)) 775 return -EIO; 776 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8) 777 | ((u8)(~buf[5]) << 16); 778 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8) 779 | ((u8)(~buf[7]) << 16); 780 781 return max(plane1_erase_count, plane2_erase_count); 782 } 783 784 /* 785 * Debug sysfs entries 786 */ 787 static int dbg_flashctrl_show(struct seq_file *s, void *p) 788 { 789 struct docg3 *docg3 = (struct docg3 *)s->private; 790 791 int pos = 0; 792 u8 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL); 793 794 pos += seq_printf(s, 795 "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n", 796 fctrl, 797 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-", 798 fctrl & DOC_CTRL_CE ? "active" : "inactive", 799 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-", 800 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-", 801 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready"); 802 return pos; 803 } 804 DEBUGFS_RO_ATTR(flashcontrol, dbg_flashctrl_show); 805 806 static int dbg_asicmode_show(struct seq_file *s, void *p) 807 { 808 struct docg3 *docg3 = (struct docg3 *)s->private; 809 810 int pos = 0; 811 int pctrl = doc_register_readb(docg3, DOC_ASICMODE); 812 int mode = pctrl & 0x03; 813 814 pos += seq_printf(s, 815 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (", 816 pctrl, 817 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0, 818 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0, 819 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0, 820 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0, 821 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0, 822 mode >> 1, mode & 0x1); 823 824 switch (mode) { 825 case DOC_ASICMODE_RESET: 826 pos += seq_printf(s, "reset"); 827 break; 828 case DOC_ASICMODE_NORMAL: 829 pos += seq_printf(s, "normal"); 830 break; 831 case DOC_ASICMODE_POWERDOWN: 832 pos += seq_printf(s, "powerdown"); 833 break; 834 } 835 pos += seq_printf(s, ")\n"); 836 return pos; 837 } 838 DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show); 839 840 static int dbg_device_id_show(struct seq_file *s, void *p) 841 { 842 struct docg3 *docg3 = (struct docg3 *)s->private; 843 int pos = 0; 844 int id = doc_register_readb(docg3, DOC_DEVICESELECT); 845 846 pos += seq_printf(s, "DeviceId = %d\n", id); 847 return pos; 848 } 849 DEBUGFS_RO_ATTR(device_id, dbg_device_id_show); 850 851 static int dbg_protection_show(struct seq_file *s, void *p) 852 { 853 struct docg3 *docg3 = (struct docg3 *)s->private; 854 int pos = 0; 855 int protect = doc_register_readb(docg3, DOC_PROTECTION); 856 int dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS); 857 int dps0_low = doc_register_readb(docg3, DOC_DPS0_ADDRLOW); 858 int dps0_high = doc_register_readb(docg3, DOC_DPS0_ADDRHIGH); 859 int dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS); 860 int dps1_low = doc_register_readb(docg3, DOC_DPS1_ADDRLOW); 861 int dps1_high = doc_register_readb(docg3, DOC_DPS1_ADDRHIGH); 862 863 pos += seq_printf(s, "Protection = 0x%02x (", 864 protect); 865 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK) 866 pos += seq_printf(s, "FOUNDRY_OTP_LOCK,"); 867 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK) 868 pos += seq_printf(s, "CUSTOMER_OTP_LOCK,"); 869 if (protect & DOC_PROTECT_LOCK_INPUT) 870 pos += seq_printf(s, "LOCK_INPUT,"); 871 if (protect & DOC_PROTECT_STICKY_LOCK) 872 pos += seq_printf(s, "STICKY_LOCK,"); 873 if (protect & DOC_PROTECT_PROTECTION_ENABLED) 874 pos += seq_printf(s, "PROTECTION ON,"); 875 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK) 876 pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,"); 877 if (protect & DOC_PROTECT_PROTECTION_ERROR) 878 pos += seq_printf(s, "PROTECT_ERR,"); 879 else 880 pos += seq_printf(s, "NO_PROTECT_ERR"); 881 pos += seq_printf(s, ")\n"); 882 883 pos += seq_printf(s, "DPS0 = 0x%02x : " 884 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " 885 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 886 dps0, dps0_low, dps0_high, 887 !!(dps0 & DOC_DPS_OTP_PROTECTED), 888 !!(dps0 & DOC_DPS_READ_PROTECTED), 889 !!(dps0 & DOC_DPS_WRITE_PROTECTED), 890 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED), 891 !!(dps0 & DOC_DPS_KEY_OK)); 892 pos += seq_printf(s, "DPS1 = 0x%02x : " 893 "Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, " 894 "WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n", 895 dps1, dps1_low, dps1_high, 896 !!(dps1 & DOC_DPS_OTP_PROTECTED), 897 !!(dps1 & DOC_DPS_READ_PROTECTED), 898 !!(dps1 & DOC_DPS_WRITE_PROTECTED), 899 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED), 900 !!(dps1 & DOC_DPS_KEY_OK)); 901 return pos; 902 } 903 DEBUGFS_RO_ATTR(protection, dbg_protection_show); 904 905 static int __init doc_dbg_register(struct docg3 *docg3) 906 { 907 struct dentry *root, *entry; 908 909 root = debugfs_create_dir("docg3", NULL); 910 if (!root) 911 return -ENOMEM; 912 913 entry = debugfs_create_file("flashcontrol", S_IRUSR, root, docg3, 914 &flashcontrol_fops); 915 if (entry) 916 entry = debugfs_create_file("asic_mode", S_IRUSR, root, 917 docg3, &asic_mode_fops); 918 if (entry) 919 entry = debugfs_create_file("device_id", S_IRUSR, root, 920 docg3, &device_id_fops); 921 if (entry) 922 entry = debugfs_create_file("protection", S_IRUSR, root, 923 docg3, &protection_fops); 924 if (entry) { 925 docg3->debugfs_root = root; 926 return 0; 927 } else { 928 debugfs_remove_recursive(root); 929 return -ENOMEM; 930 } 931 } 932 933 static void __exit doc_dbg_unregister(struct docg3 *docg3) 934 { 935 debugfs_remove_recursive(docg3->debugfs_root); 936 } 937 938 /** 939 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure 940 * @chip_id: The chip ID of the supported chip 941 * @mtd: The structure to fill 942 */ 943 static void __init doc_set_driver_info(int chip_id, struct mtd_info *mtd) 944 { 945 struct docg3 *docg3 = mtd->priv; 946 int cfg; 947 948 cfg = doc_register_readb(docg3, DOC_CONFIGURATION); 949 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0); 950 951 switch (chip_id) { 952 case DOC_CHIPID_G3: 953 mtd->name = "DiskOnChip G3"; 954 docg3->max_block = 2047; 955 break; 956 } 957 mtd->type = MTD_NANDFLASH; 958 /* 959 * Once write methods are added, the correct flags will be set. 960 * mtd->flags = MTD_CAP_NANDFLASH; 961 */ 962 mtd->flags = MTD_CAP_ROM; 963 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE; 964 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES; 965 mtd->writesize = DOC_LAYOUT_PAGE_SIZE; 966 mtd->oobsize = DOC_LAYOUT_OOB_SIZE; 967 mtd->owner = THIS_MODULE; 968 mtd->erase = NULL; 969 mtd->point = NULL; 970 mtd->unpoint = NULL; 971 mtd->read = doc_read; 972 mtd->write = NULL; 973 mtd->read_oob = doc_read_oob; 974 mtd->write_oob = NULL; 975 mtd->sync = NULL; 976 mtd->block_isbad = doc_block_isbad; 977 } 978 979 /** 980 * doc_probe - Probe the IO space for a DiskOnChip G3 chip 981 * @pdev: platform device 982 * 983 * Probes for a G3 chip at the specified IO space in the platform data 984 * ressources. 985 * 986 * Returns 0 on success, -ENOMEM, -ENXIO on error 987 */ 988 static int __init docg3_probe(struct platform_device *pdev) 989 { 990 struct device *dev = &pdev->dev; 991 struct docg3 *docg3; 992 struct mtd_info *mtd; 993 struct resource *ress; 994 int ret, bbt_nbpages; 995 u16 chip_id, chip_id_inv; 996 997 ret = -ENOMEM; 998 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL); 999 if (!docg3) 1000 goto nomem1; 1001 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); 1002 if (!mtd) 1003 goto nomem2; 1004 mtd->priv = docg3; 1005 1006 ret = -ENXIO; 1007 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1008 if (!ress) { 1009 dev_err(dev, "No I/O memory resource defined\n"); 1010 goto noress; 1011 } 1012 docg3->base = ioremap(ress->start, DOC_IOSPACE_SIZE); 1013 1014 docg3->dev = &pdev->dev; 1015 docg3->device_id = 0; 1016 doc_set_device_id(docg3, docg3->device_id); 1017 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET); 1018 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL); 1019 1020 chip_id = doc_register_readw(docg3, DOC_CHIPID); 1021 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV); 1022 1023 ret = -ENODEV; 1024 if (chip_id != (u16)(~chip_id_inv)) { 1025 doc_info("No device found at IO addr %p\n", 1026 (void *)ress->start); 1027 goto nochipfound; 1028 } 1029 1030 switch (chip_id) { 1031 case DOC_CHIPID_G3: 1032 doc_info("Found a G3 DiskOnChip at addr %p\n", 1033 (void *)ress->start); 1034 break; 1035 default: 1036 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id); 1037 goto nochipfound; 1038 } 1039 1040 doc_set_driver_info(chip_id, mtd); 1041 platform_set_drvdata(pdev, mtd); 1042 1043 ret = -ENOMEM; 1044 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1, 1045 8 * DOC_LAYOUT_PAGE_SIZE); 1046 docg3->bbt = kzalloc(bbt_nbpages * DOC_LAYOUT_PAGE_SIZE, GFP_KERNEL); 1047 if (!docg3->bbt) 1048 goto nochipfound; 1049 doc_reload_bbt(docg3); 1050 1051 ret = mtd_device_parse_register(mtd, part_probes, 1052 NULL, NULL, 0); 1053 if (ret) 1054 goto register_error; 1055 1056 doc_dbg_register(docg3); 1057 return 0; 1058 1059 register_error: 1060 kfree(docg3->bbt); 1061 nochipfound: 1062 iounmap(docg3->base); 1063 noress: 1064 kfree(mtd); 1065 nomem2: 1066 kfree(docg3); 1067 nomem1: 1068 return ret; 1069 } 1070 1071 /** 1072 * docg3_release - Release the driver 1073 * @pdev: the platform device 1074 * 1075 * Returns 0 1076 */ 1077 static int __exit docg3_release(struct platform_device *pdev) 1078 { 1079 struct mtd_info *mtd = platform_get_drvdata(pdev); 1080 struct docg3 *docg3 = mtd->priv; 1081 1082 doc_dbg_unregister(docg3); 1083 mtd_device_unregister(mtd); 1084 iounmap(docg3->base); 1085 kfree(docg3->bbt); 1086 kfree(docg3); 1087 kfree(mtd); 1088 return 0; 1089 } 1090 1091 static struct platform_driver g3_driver = { 1092 .driver = { 1093 .name = "docg3", 1094 .owner = THIS_MODULE, 1095 }, 1096 .remove = __exit_p(docg3_release), 1097 }; 1098 1099 static int __init docg3_init(void) 1100 { 1101 return platform_driver_probe(&g3_driver, docg3_probe); 1102 } 1103 module_init(docg3_init); 1104 1105 1106 static void __exit docg3_exit(void) 1107 { 1108 platform_driver_unregister(&g3_driver); 1109 } 1110 module_exit(docg3_exit); 1111 1112 MODULE_LICENSE("GPL"); 1113 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); 1114 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3"); 1115